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Summary

This work aimed to evaluate if a contact-free radar sensor can be used to observe

ultradian patterns in sleep physiology, by way of a data processing tool known as

Locomotor Inactivity During Sleep (LIDS). LIDS was designed as a simple transforma-

tion of actigraphy recordings of wrist movement, meant to emphasise and enhance

the contrast between movement and non-movement and to reveal patterns of low

residual activity during sleep that correlate with ultradian REM/NREM cycles. We

adapted the LIDS transformation for a radar that detects body movements without

direct contact with the subject and applied it to a dataset of simultaneous recordings

with polysomnography, actigraphy, and radar from healthy young adults (n = 12, four

nights of polysomnography per participant). Radar and actigraphy-derived LIDS sig-

nals were highly correlated with each other (r > 0.84), and the LIDS signals

were highly correlated with reduced-resolution polysomnographic hypnograms

(rradars >0.80, ractigraph >0.76). Single-harmonic cosine models were fitted to LIDS sig-

nals and hypnograms; significant differences were not found between their ampli-

tude, period, and phase parameters. Mixed model analysis revealed similar slopes of

decline per cycle for radar-LIDS, actigraphy-LIDS, and hypnograms. Our results indi-

cate that the LIDS technique can be adapted to work with contact-free radar mea-

surements of body movement; it may also be generalisable to data from other body

movement sensors. This novel metric could aid in improving sleep monitoring in clini-

cal and real-life settings, by providing a simple and transparent way to study ultradian

dynamics of sleep using nothing more than easily obtainable movement data.

K E YWORD S
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1 | INTRODUCTION

The gold standard of sleep monitoring, polysomnography (PSG),

clearly displays the cycling of distinct physiological stages during

sleep (Berry et al., 2020; Rechtschaffen & Kales, 1968). However,

PSG is not always an ideal solution; it depends on multiple

on-body electrodes that can be experienced as uncomfortable,

the equipment is expensive, and the interpretation laborious. For
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practical reasons, it is not considered a good option for long term

monitoring or population studies (Kushida et al., 2005). In those

situations where PSG is not desirable or feasible, wrist actigraphy

has been the most well-accepted alternative for getting an objec-

tive measure of sleep (Sadeh, 2011; Smith et al., 2018). But acti-

graphy today typically limits itself to identifying circadian

patterns of rest and activity. Although earlier works have noted

the presence of patterns in actimetric movement data during

sleep and explored their relation to other aspects of sleep physi-

ology (Dement & Kleitman, 1957; Muzet, Naitoh, Townsend, &

Johnson, 1972; Naitoh, Muzet, Johnson, & Moses, 1973;

Schulz & Salzarulo, 2012; Wilde-Frenz & Schultz, 1983), in mod-

ern actigraphy this source of potentially valuable information is

largely disregarded. However, in a fairly recent large-scale analy-

sis of movement during human sleep, Winnebeck et al. intro-

duced a simple and transparent analysis tool designed to exploit

more of the full potential of actigraphy (Winnebeck, Fischer,

Leise, & Roenneberg, 2018). By converting locomotor inactivity

to “Locomotor Inactivity During Sleep” (LIDS), they found that

patterns of residual activity were exposed and enhanced in a

manner that reflected the underlying ultradian sleep cycles.

In our previous work, we explored how a contact-free radar sen-

sor able to measure body movement can be used to differentiate

between sleep and wake, using methods inspired by actigraphy

(Heglum et al., 2021). Contact-free monitoring has advantages over

actigraphy in certain settings, that is, in a psychiatric hospital, where

the use of on-body sensor equipment can be challenging or even dan-

gerous. A permanently mounted radar sensor can record continuously

over an indefinite time, with no inconvenience whatsoever to the

subject.

In the present work, we sought to investigate if more complex

aspects of sleep can be studied with this radar sensor. Specifically, we

sought to explore if the LIDS analysis technique can be modified for

use with radar-recorded movement data, to evaluate the similarity of

the resulting radar-derived LIDS signals to actigraphy-derived LIDS

and PSG dynamics, and to compare our work with the previously pub-

lished results (Winnebeck et al., 2018). Using a data set from young

healthy adults sleeping in a hospital environment and recorded simul-

taneously with PSG, actigraphy, and two radar sensors, we calculated

and analysed inactivity profiles for each night with data from each

sensor. For ease of comparison, we also introduced a transformation

and smoothing of the PSG hypnograms intended to be analogous

with LIDS.

The specific objectives of the analyses were: (1) Evaluate the simi-

larity between LIDS signals derived from radar-recorded and acti-

graphic activity data, and between LIDS signals and overall

hypnogram dynamics (represented by PSG-INH). (2) Identify the best-

fit single-harmonic cosine model for each signal. Then, compare the

parameters (amplitude, period, phase, and offset) estimated from the

different signal types; in particular, compare LIDS-derived with PSG-

derived parameters to evaluate if the former could be a possible esti-

mate of the latter. (3) Evaluate if the oscillating ultradian patterns and

trends found in aggregates of actigraphic LIDS (Winnebeck

et al., 2018) would emerge in aggregates of LIDS signals derived from

a contact-free radar sensor.

2 | METHODS

2.1 | Data collection

The data used in this work were collected as part of a randomised

cross-over trial meant to evaluate the effect of the light conditions in

an acute psychiatric hospital unit at St Olavs Hospital in Trondheim,

Norway (Vethe et al., 2021), and are the same data used to develop

and evaluate contact-free sleep/wake classification models in our pre-

vious work (there referred to as Dataset 1) (Heglum et al., 2021). The

study protocol was approved by the Regional Ethical Committee in

Trondheim, (Central Norway; REK: 2017/916) and is registered on the

ISRCTN website (reference number 12419665). Written informed

consent was obtained from all participants.

The dataset consists of data from 12 healthy young adults (mean age

± SD: 23.0 ± 3.1 years, 5male) who resided in the otherwise empty hospi-

tal ward for a total of 10 days each (the newly constructed unit had not

yet opened for regular patient admissions). Each participantwore a Phillips

Actiwatch (Actiwatch Spectrum, Philips Respironics Inc., Murrysville, PA)

on the non-dominant wrist for the duration of the study. Each room was

outfitted with two radar sensors (XeThru model X4M200, Novelda AS,

Oslo, Norway [Novelda AS, 2018]), one embedded in the ceiling and one

placed on a nightstand; both recording continuously for the duration of

the study. One ceiling radarmalfunctioned, leading to some data loss. Each

participant also underwent four nights of PSG, manually scored by a spe-

cialist in clinical neurophysiology according to the AASM manual for the

Scoring of Sleep and Associated Events, version 2.4 Berry et al., (2017).

One night of PSGwas lost due to an equipment error.

The final dataset contains a total of 47 nights of consecutive

recordings from PSG, actigraphy, and radar. Four nights lack ceiling

radar data. Additionally, the dataset contains 125 nights of consecu-

tively recorded nightstand radar and actigraphy data, with 117 of

these also containing data from the ceiling radar. The study protocol,

recording setup, and data preparation is described in greater detail in

our previous works (Heglum et al., 2021; Vethe et al., 2021).

2.2 | Radar signal processing

The radar used in the present work is an impulse radio ultra-wideband

(IR-UWB) radar, which generates short pulses of radio signals in the

3.1–10.6 GHz frequency band and measures their reflections from

objects in the environment. The combination of large bandwidth with

high frequencies gives signals with high resolution despite very low

power, that easily penetrate soft materials such as clothes and bed-

ding while being reflected by more solid objects such as human bodies

(Stone, 1997). The radar digital signal processing (DSP) used in the

present work was provided by the manufacturer, and extracts both

distance to and velocity of a reflecting object by measuring the time-
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of-flight and the doppler shift of the reflected radio pulses (Novelda

AS, 2018). For the closest target where movement is detected above

a configurable threshold, small low-frequency oscillations and larger,

faster movements are detected simultaneously, every second, by per-

forming a Fast Fourier Transform over the preceding 20 and 6 s of

data, respectively. In the present work, only the larger, faster move-

ments, normalised for distance to target, are used for the calculation

of LIDS. In this data, slow and small oscillations such as respiration are

greatly dampened if they register above the detection threshold at all.

For this reason, although LIDS is a transformation designed to amplify

the impact of small signals, no additional steps were taken to eliminate

low-magnitude noise in this work.

2.3 | Locomotor inactivity during sleep applied to
radar data

Locomotor inactivity during sleep (LIDS) is a non-linear transformation of

activity data, meant to emphasise and enhance movement patterns and

dynamics of ultradian sleep cycles (Winnebeck et al., 2018). Activity data

are aggregated to bins of 10 min duration via summation, and then

inverted from activity to inactivity by passing it through a simple inversion

resulting in values from 0 to 100; inactivity¼ 100
activityþ1. LIDS is then found

by smoothing these inactivity scores via a 30min centred moving

average.

In the present work, we aimed to stay as close as possible to the

procedure described by Winnebeck et al. (2018), however, when

working with radar data we found a few adaptations to be necessary:

1. A radar does not follow a participant as theymove about their environ-

ment; whenever the room under observation is empty, the registered

activity has a value of zero. The resulting LIDS signal is less meaningful,

as it is pulled to high peaks both by actual locomotor inactivity and by

an empty room. To rectify this, we utilise the “state” variable output by
the radar, which indicates the presence or absence of people in the

room (Novelda AS, 2018). Before applying the LIDS inversion formula

to a radar activity recording, we set the radar activity in the time

epochs where the “state” variable indicates “no presence” to a

F IGURE 1 Application of the LIDS transform to simultaneously recorded radar and actigraphy movement data from one participant over one
night, with step-by-step illustration of the preprocessing steps and their effect. (a) The Actiwatch Spectrum follows the participant throughout the
day, so the resting period at night is clearly defined and the corresponding LIDS immediately meaningful. (b) The radar remains stationary, with

“zero activity” throughout large portions of the day when the room is empty. Without including state information indicating the presence or
absence of a person in the room where the radar is continuously recording, the resulting LIDS signal is not meaningful. (c) By replacing the activity
values during the “no presence” epochs with the maximum value of radar activity, LIDS is forced toward zero at these times. The resulting signal
is meaningful in terms of “rest and activity in the specific location being measured”. (d) The radar and the actigraph originally operate at different
scales, as shown by the left (actigraph) and right (radar) y-axes. (e) The difference in scales cause the radar-derived LIDS to be pushed more
aggressively toward zero in the presence of activity. (f) By rescaling the data prior to transformation, two initially different types of movement
data produce comparable LIDS signals. LIDS, locomotor inactivity during sleep
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constant high value (chosen as the median of observed daily maximum

activity values for the respective radar positions). This pushes the LIDS

value toward zero at these times, representing an assumption that

“room empty”means the subject is active and awake.

2. The data output from both radars and actigraphs are in the form of

unitless aggregates of activity counts, but the devices operate at

different scales; the 1 Hz normalised fast movement data type

from the radar is several orders of magnitude larger than the 15 s

epoched activity data from the actigraphs. These differences are

further compounded when the movement data are summed into

10 min bins. The large absolute values of the radar activity data

have the effect of pushing the inactivity formula closer to zero

much more aggressively in the presence of movement than the

comparatively smaller values from the Actiwatch. To alleviate this,

the 10 min bins of aggregated radar data were rescaled to the

range [0, 1000] using the MATLAB rescale function before they

were passed through the inversion formula. To increase compara-

bility of the sensor types, the same rescaling was applied, in the

same way, to the actigraphy data.

2.4 | Inverted numerical hypnogram

In a PSG hypnogram, sleep stages are usually plotted as categorical

variables with wake on top, then descending through REM, N1, N2,

to N3. To provide convenient comparison with LIDS, we converted

these sleep profiles into inverted numerical hypnograms (PSG-

INH). The sleep stages were given numerical values corresponding

to an inversion of their usual positions; Wake = 0, REM = 1,

N1 = 2, N2 = 3, and N3 = 4. Then, to correspond with the 10 min

resolution of LIDS signals, the 30 s epoch sleep profiles were

aggregated into bins of 10 min duration by taking the mean. Finally,

the inverted and aggregated sleep profiles were rescaled to match

the LIDS signal range of [0, 100] (using the MATLAB rescale

function).

2.5 | Estimating the period of the LIDS cycle

Actigraphy-derived LIDS signals have been used to determine the pre-

dominant, or mean, period of the sleep dynamics, by identifying the

period of the first-order cosine model whose parameters (phase,

period, amplitude, and offset) minimised the difference between

model and data (Winnebeck et al., 2018). We followed this procedure,

with some modifications, for all signals (LIDS and PSG-INH) from the

nights with PSG data available. A separate cosine model was fitted for

each individual signal, giving four sets of non-identical parameters for

each night of recordings in the dataset.

For the purpose of fitting the cosine models, data were first

trimmed to exclude data from outside of the main sleep period;

F IGURE 2 The effect of different rescaling factors on LIDS signals derived from simultaneously recorded radar and actigraphy movement
data from one participant over one night. A lower rescaling factor will reach higher values of inactivity more easily and will resist being pushed
down in the presence of activity. A higher rescaling factor will react more quickly to activity. LIDS, locomotor inactivity during sleep
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“PSG Lights Off” (set by user marker) to 7 a.m., the set rise time

for the participants. The task of finding the best-fit cosine model

was then approached as the nonlinear optimisation problem of

finding the four parameters a, b, c, and d (amplitude, period,

phase, and offset) that minimise the cost function

f tð Þ¼ y tð Þ�by tð Þð Þ2, where y tð Þ is the original signal and

by tð Þ¼ asin 2π
b t�cð Þ� �þd is a single-harmonic sinusoid. The starting

points for amplitude, phase, and offset were set to range y tð Þð Þ, zero,
and mean y tð Þð Þ, respectively. To mitigate the risk of the optimisation

converging to a local minimum, the problem was then solved 30 times

using the MATLAB function fminsearch with starting periods from

30 to 180min in steps of 5. The set of resultant parameters giving the

highest correlation coefficient between signal and cosine model

(as given by the MATLAB function corrcoef) was chosen as the best

fit, given that the period of this parameter set was between 30 and

180min.

2.6 | Average LIDS profiles

When individual LIDS signals are averaged over their original timelines

the aggregate signal has been seen to be initially rhythmic but quickly

dampened by the progressive desynchronisation of many different

overlapping periodicities; however, this effect has been counteracted

F IGURE 3 Parallel plots of simultaneous recordings with three activity sensors and PSG, fromone participant over one night. The LIDS transform
was applied to the activity sensors, and the PSG hypnogramwas inverted and averaged into 10min bins, then rescaled to a range of [0, 100], to
correspondwith the temporal resolution and numerical range of the LIDS transform. The final subplot shows this inverted numerical hypnogram (PSG-
INH) plotted together with the three sensor-derived LIDS signals. PSG, polysomnography; LIDS, locomotor inactivity during sleep
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through a procedure for normalising and synchronising the individual

LIDS signals prior to averaging (Winnebeck et al., 2018). We followed

this procedure for all signals (LIDS and PSG-INH) from the nights with

PSG data available: The timelines for each individual signal was con-

verted from “external” (real) time to an “internal” time for which their

mean LIDS period is exactly 90 min by transforming them according

to the formula tint ¼ text
optPer�90, where optPer is the period of the best-

fit cosine model. The LIDS signals themselves were then correspond-

ingly resampled from their “external” rate (10min) to their “internal”
rate (optPer9 min) using the MATLAB resample function. The resampled

internal-time LIDS curves were then phase synchronised by identify-

ing the first peak in their optimal cosine curve, then assigning this

point as t¼30 min (i.e., bin nr. 3) on a common timeline over which all

recordings were placed before the average LIDS profile was calculated

from the resulting matrix.

2.7 | Statistical analysis

Similarity between LIDS signals derived from different types of activ-

ity data (actigraphy, nightstand-, and ceiling radars), and between LIDS

signals and PSG-INH, was evaluated using the Pearson correlation

coefficients (r) between the signals. For each set of concurrent record-

ings from each participant, the MATLAB function corrcoef was used

with LIDS signals and PSG-INH (where available) as columns and con-

current 10 min bins as rows. When PSG-INH was not available, a

series of NaN (Not a Number) values were generated to replace

it. Other missing data were also replaced by NaN. Corrcoef was then

instructed to compute each two-column correlation coefficient on a

pairwise basis, so that if one of the two columns contained a NaN,

that row was omitted (MathWorks, 2022). The median of the resulting

4 � 4 matrices of correlation coefficients were then found for each

participant, before finding the medians and quartiles of the individual

values over the dataset. To evaluate within-subject variability, the

range of all r values for each participant were also calculated. The min-

imum and maximum values of within-subject range of r were

recorded, as well as their medians over the participants.

The Pearson correlation coefficient was also used to evaluate the

goodness-of-fit of the single-harmonic cosine models (GF-r, “goodness-
of-fit” correlation). The corrcoef function was used to calculate the GF-r

values between each signal (LIDS from three sensors and PSG-INH) and

their best-fit model. The total number of nights for which the correlation

between signal and best-fit cosine model was at least moderately strong

(r > 0.4) were counted. The medians and quartiles of GF-r were

TABLE 1 Correlation matrix for LIDSa signals derived from all available concurrent recordings of actigraphy, nightstand-, and ceiling radars,
and PSG-INHb

Median r [Q1, Q3] within-subject range

(median [min, max])

Nightstand radar

LIDS (n = 125) Ceiling radar LIDS (n = 117) Actigraphy LIDS (n = 125)

PSG-INH (n = 47) 0.83 [0.82, 0.87] (0.10 [0.05,

0.26])

0.80 [0.76, 0.85] (0.08 [0.02,

0.23])

0.78 [0.70, 0.82] (0.11 [0.03,

0.24])

Nightstand radar LIDS (n = 125) - 0.94 [0.91, 0.95] (0.10 [0.03,

0.42])

0.88 [0.84, 0.90] (0.15 [0.08,

0.28])

Ceiling radar LIDS (n = 117) - - 0.84 [0.80, 0.87] (0.17 [0.09,

0.43])

Note: Median, upper, and lower quartiles of within-subject PCCc (r) medians over the dataset. Within-subject variability shown as median within-subject

range of r over all participants, as well as minimum and maximum within-subject range of r of any participant.

The smallest of row and column n's shows how many concurrent recordings were available for any given combination of sensorsd.
aLIDS, locomotor inactivity during sleep.
bPSG-INH, polysomnography – inverted numerical hypnogram.
cPearson correlation coefficient.
dExcepting ceiling radar and PSG, for which the number of concurrent recordings was n = 43 because of a malfunctioning sensor.

TABLE 2 Goodness-of-fit statistics for single-harmonic cosine models fitted to concurrently recorded PSG-INHa and LIDSb

PSG-INH (n = 47)
Nightstand radar
LIDS (n = 47)

Ceiling radar
LIDS (n = 43)

Actigraphy
LIDS (n = 47)

GF-rc >0.4 47/47 [100%] 44/47 [94%] 40/43 [93%] 45/47 [96%]

GF-r median [Q1, Q3] within-subject

range (median [min, max])

0.56 [0.50, 0.63] (0.15

[0.06, 0.25])

0.53 [0.47, 0.60] (0.18

[0.10, 0.42])

0.54 [0.46, 0.61] (0.14

[0.01, 0.38])

0.56 [0.47, 0.63] (0.21

[0.11, 0.36])

Note: Cosine models were fitted to data from the nights where the participants underwent PSG in addition to being recorded with two radars and

actigraphy. GF-r between the model and the four input data time series were calculated.

GF-r was above 0.4 for 96% of the 184 fittings performed in total. Within-subject variability is shown through the median of the within-subject range of

GF-r for all participants, as well as the minimum and maximum within-subject range of GF-r found in the dataset.
aPSG-INH, polysomnography – inverted numerical hypnogram.
bLIDS, locomotor inactivity during sleep.
cGF-r, goodness-of-fit correlation (Pearson).
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calculated. To evaluate within-subject variability, medians, and quartile

values of within-subject GF-r range were recorded.

The means and standard deviations of the four estimated parame-

ters (amplitude, period, phase, and offset) of the best-fit cosine

models were calculated for each signal type. The bias of LIDS parame-

ters compared with PSG-INH were calculated, including 95% confi-

dence intervals, p values from paired-sample Student's t-tests on the

hypothesis of zero bias, and 95% Limits of Agreement (calculated as

bias ±1.96 � SD).

Mixed model analysis was performed to evaluate systematic dif-

ferences between devices and overall trends of LIDS- and PSG-INH

over time. Only the nights with a simultaneous PSG recording avail-

able were included. A linear mixed effect regression model was com-

puted with signal (LIDS and PSG-INH) over normalised timelines as

the target variable. As fixed effects we included device type, cycle

number, and sex (nested by device), with PSG-INH as the reference

device and female as the reference sex. As random intercepts we

included subject, night nested within subject, and cycle nested within

night nested within subject. Finally, the cycle within each individual

was included as a random slope.

3 | RESULTS

Figures 1–3 illustrate the process of the LIDS transform, using data from

one night of simultaneous recordings. In Figure 1, actigraphy-derived

LIDS is compared with radar-derived LIDS, with step-by-step application

of the two adaptations made to the process: state correction and rescal-

ing. We see how, before state correction, radar-LIDS is pulled upwards

both by actual locomotor inactivity and by periods where the room is

empty. After state correction the radar-LIDS is pushed to zero at those

times, resulting in a more meaningful signal with dynamics somewhat

comparable to actigraphy-LIDS. However, the magnitude of this radar-

LIDS remains significantly lower than its actigraphy-derived counterpart.

This is due to the differences in the scales the original data; the high

absolute values of the radar activity data cause any activity to push

radar-LIDS toward zero too aggressively. This effect is alleviated by

rescaling the aggregated activity data from different sensors to the same

range prior to transformation. Figure 2 illustrates the effect of the choice

of rescaling range. Figure 3 shows activity data and LIDS from all three

activity sensors (actigraphy, ceiling, and nightstand radar), plus the corre-

sponding PSG hypnogram for this night and its transformed and inverted

form (PSG-INH). In the final subplot of Figure 3, the three LIDS signals

and PSG-INH are plotted together.

The matrix of correlations between LIDS signals and PSG-

INH can be seen in Table 1. Median [Q1, Q3] r between PSG-

INH and nightstand and ceiling radars were 0.83 [0.82, 0.87] and

0.80 [0.76, 0.85], respectively, and 0.78 [0.70, 0.82] between

PSG-INH and actigraphy. Between the nightstand and ceiling

radar positions median r was 0.94 [0.91, 0.95], and respectively,

0.88 [0.84, 0.90] and 0.84 [0.80, 0.87] between radars and acti-

graphy. Table 1 also includes median, minimum, and maximum of

within-subject range.T
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Statistics related to the cosine model fittings are reported in

Table 2. Of the 184 total model fittings performed, 47 for each of the

four kinds of signal (LIDS from three sensors and PSG-INH), GF-r was

>0.4 for 176 (96%). The median [Q1, Q3] GF-r between signal and

best-fit cosine model was 0.56 [0.50, 0.63] for PSG-INH, 0.56 [0.47,

0.63] for actigraphy, and 0.53 [0.47, 0.60] and 0.54 [0.46, 0.61] for

ceiling and nightstand radars, respectively.

Table 3 summarises the four parameters of the cosine models

(amplitude, period, phase, and offset), and compares the PSG-INH

parameters with those of the LIDS signals. Figure 4 illustrates the esti-

mated periods specifically, including histograms and kernel distribu-

tion of estimated periods, and Bland–Altman plots of LIDS compared

with PSG-INH. The mean of the periods of the best-fit cosine models

was 97.8 min for PSG-INH, 105.5 for actigraphy, and 107.8 and 110.5

for the nightstand and ceiling radars, respectively. Paired-sample Stu-

dent's t-tests did not reveal systematic bias (at the 5% significance

level) between the amplitude, period, and phase of cosine models

fitted to LIDS signals compared with those fitted to PSG-INH; how-

ever, a 6% significance level would reject the hypothesis for the radar

periods, and the period and phase confidence intervals and limits of

agreement were large for all period and phase estimates. Comparing

the offsets of LIDS and PSG-INH is not meaningful as the numerical

PSG coding is arbitrary.

Period estimation and LIDS profile averaging are illustrated in

Figure 5; first the simple averaging of all LIDS vectors with concur-

rent PSG recordings, then an example of cosine models fitted for

F IGURE 4 Periods of the best-fit cosine models for PSG-INH and LIDS from actigraphy, ceiling radar, and nightstand radar, estimated for all

nights with a concurrent PSG recording available. (a) Histograms of cosine-estimated periods. (b) Kernel distributions of cosine-estimated periods.
(c) Bland–Altman plots comparing LIDS-estimates to PSG-INH estimates, including slopes (where significant at the 5% level) estimated according
to the regression approach for nonuniform differences (Bland & Altman, 1999)
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the ceiling radar LIDS and the PSG-INH over a single night. Finally,

the figure shows the average LIDS and PSG-INH profiles formed

after first normalising the timelines to their internal rate based on

the calculated predominant periods and synchronising the signals

by their first peak. These profiles are shown along with lines illus-

trating the result of linear mixed model analysis of the cycle-

normalised profiles. The slopes of these lines, representing the

average decline of inactivity (or PSG-INH) per cycle, were found to

be �6.4 units per cycle for PSG-INH, and �5.5, �5.1, and

�4.4 units per cycle for LIDS from ceiling radar, Actiwatch Spec-

trum, and nightstand radar, respectively. All upper and lower 95%

confidence bounds for slopes were overlapping. The ceiling radar

slope overlapped zero. Compared with the reference PSG-INH

intercept at 86.5, the ceiling radar, Actiwatch Spectrum, and night-

stand radar had intercepts of �20.2, �18.9, and �14.5, respec-

tively. The upper and lower bounds of all LIDS intercepts were

overlapping. Males exhibited lower levels of LIDS and PSG-INH

than females, except for in the ceiling radar LIDS. The results of the

mixed model analysis are summarised in Table 4.

Figure 6 is an example of how LIDS signals can be plotted

together with activity data to provide additional information about

sleep dynamics in a traditional actigraphy-style raster plot. The figure

shows data for all nights for a single participant, also including PSG

information where available as well as sleep–wake classification based

on the ceiling radar using a model developed in our previous work

(Heglum et al., 2021).

The full results of the mixed model analysis as well as a complete

set of figures in the style of Figures 3 and 6 for each recording and

each participant in the dataset can be found attached to the

Appendix S1 of the present work.

4 | DISCUSSION

After a few adaptations, the LIDS transform was applicable to

contact-free radar measurements of body movement. LIDS derived

from radar data were very similar to actigraphy-derived LIDS. Both

also highly correlated with down-sampled PSG hypnograms (PSG-

INH), indicating a distinct relationship between the macroscopic

dynamics of polysomnographically measured ultradian REM/NREM

sleep cycles and the patterns formed by activity and inactivity during

sleep as revealed by the LIDS transformation. LIDS (radar- and

actigraphy-derived) and PSG-INH both exhibited cycles that were dis-

tinct and stationary enough that a single-harmonic cosine function

could adequately model the signal, and key parameters of these

models (amplitude, period, and phase) were not significantly different

between PSG-INH and LIDS. Mixed-model analysis of aggregated

LIDS and PSG-INH, signals revealed trends of decline per cycle similar

F IGURE 5 Average LIDS and PSG-INH profiles over the nights with PSG recordings available, before and after normalisation of the timeline.
(a) Average of the LIDS (and PSG-INH) signals, ±95% confidence intervals shaded. (b) An example of the optimal cosine curves fitted to a ceiling
radar LIDS signal and the PSG-INH of its concurrently recorded PSG hypnogram. (c) Average of the LIDS (and PSG-INH) signals (±95% CI), and
linear mixed effects model fits, over timelines normalised to individual predominant LIDS periods as estimated by the corresponding optimal
cosine curves. LIDS, locomotor inactivity during sleep; PSG, polysomnography; PSG-INH, inverted numerical hypnogram
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to those observed in a previous investigation of aggregated LIDS in a

large dataset (more than 16,000 nights of 500 subjects) (Winnebeck

et al., 2018), demonstrating that trend analysis of LIDS patterns on a

group-level can be done also in smaller studies, and that trends in

LIDS may be useful reflections of trends in REM/NREM cyclicity.

While LIDS do not assess sleep architecture in the traditional

sense, the simplicity and transparency of the method means that it

can enable the study of sleep dynamics while circumventing some of

the challenges of more complex approaches. For example, the fit sta-

tistics of the cosine modelling process, specifically the correlation

between signal and best-fit model, may be useful indicators of the

strength and stability of the sleep cycles – and conversely, if a cosine

model of acceptable fit cannot be found, it may be an indicator of

some abnormality. Moreover, while Sundararajan et al. found that

LIDS on its own probably lacks the discriminatory strength needed to

classify sleep stages, they did report that LIDS had significant value as

a feature for both sleep/wake- and non-wear detection from actigra-

phy (Sundararajan et al., 2021); it may consequently be a useful fea-

ture to consider when designing more complex sleep analysis tools

using movement data.

LIDS seems to represent a basic physiological relation between

movement cycling and sleep stage cycling and may therefore be capa-

ble of providing clinically relevant surrogate markers of some subset

of PSG-derived measures. It has been reported to correlate with sev-

eral polysomnographic sleep parameters, such as micro-arousals, REM

density, slow eye movements, delta amplitude density, and theta

activity (Winnebeck et al., 2018), which again have been linked to inci-

dence, course, and treatment of several disorders (such as insomnia,

mood disorders, schizophrenia, and other psychiatric disorders) and to

other health-related phenomena such as cognitive performance and

longevity (Drews et al., 2018; Feige et al., 2013; Leary et al., 2020;

Lechinger et al., 2020; Monica, Johnsen, Atzori, Groeger, & Dijk,

2018; Palagini, Baglioni, Ciapparelli, Gemignani, & Riemann, 2013;

Van Someren, 2021; Weinhold et al., 2021). The parameters of the

cosine-models may be one way to reflect this physiological relation.

For example, the period of the cosine model may be an estimator of

average sleep cycle length, which has been linked to cognitive decline

in the elderly (Suh et al., 2019). However, Table 3 and Figure 4 indi-

cate that the LIDS-derived periods estimated with the present meth-

odology may be biased toward higher values, compared with periods

TABLE 4 Mixed model analysis of
LIDSa and PSG-INHb over normalised
timelines

Fixed effects

Estimate p 95% CI

(Intercept) 86.5 <0.001 [83.1, 89.9]

Cycle �6.4 <0.001 [�7.3, �5.5]

Sex �4.4 0.01 [�7.5, �1.2]

Radar (Nightstand) �14.5 <0.001 [�18.2, �10.8]

Radar (Ceiling) �20.2 <0.001 [�24.1, �16.4]

Actiwatch Spectrum �18.9 <0.001 [�22.6, �15.2]

Cycle: Radar (Nightstand) 1.3 0.02 [0.2, 2.4]

Cycle: Radar (Ceiling) 0.9 0.12 [�0.2, 2.1]

Cycle: Actiwatch Spectrum 2.0 <0.001 [0.9, 3.1]

Sex: Radar (Nightstand) �4.8 <0.001 [�7.8, �1.7]

Sex: Radar (Ceiling) �0.6 0.71 [�3.7, 2.5]

Sex: Actiwatch Spectrum �6.1 <0.001 [�9.1, �3.0]

Random effects

Estimate [SD] 95% CI

PIDc(Night[Cycle]) (Intercept) 1.4 [1.2, 1.6]

PID(Night) (Intercept) 1.5 [0.4, 5.7]

PID (Intercept) 5.8 [4.9, 6.8]

cycle 0

Residual 23 [22.7, 23.4]

Note: Target variables were LIDS and PSG-INH over normalised timelines, with PSG-INH as the

reference. “Cycle” refers to LIDS (or PSG-INH) cycle. Data were analysed in bins of normalised duration

(internal time = 90 min), starting from PSG sleep onset and ending at the prescribed rise time for the

participants. Reference sex was female. Only nights with concurrent PSG recordings available were

included.

n = 184 nights of recordings total (47 per device [43 with ceiling radar], 12 subjects). Number of

observations: 7453.
aLIDS, locomotor inactivity during sleep.
bPSG-INH, polysomnography – inverted numerical hypnogram.
cPID, participant identification.
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estimated from PSG-INH. Moreover, the Bland–Altman plots of

Figure 4 indicate that this bias may be nonuniform. Different parame-

ter estimates between the four signals do not necessarily reflect phys-

iological differences, but an assessment of this variability is useful for

evaluation of method consistency. For instance, the wide limits of

agreement suggest that the tentative application of this method in

individual subjects is limited in its present form. More in-depth har-

monic analysis of the signals, which should include more than a single

periodic component and test against PSG-periods extracted manually

from the hypnogram (as opposed to estimated automatically from the

PSG-INH), may help reveal if and how the quality and consistency of

the estimates can be enhanced.

Generalising the LIDS method to work with data from a

contact-free sensor provides important flexibility, as such sensors

have a clear advantage in situations where on-body sensor equip-

ment is not desirable or feasible. UWB radars in particular are a

novel tool in sleep research that may have further advantages in

terms of data richness and potential. A recent attempt at sleep

stage classification using wrist-worn accelerometer data concluded

that it lacked sufficient discriminative features necessary for the

task (Sundararajan et al., 2021); for the radar this is not necessarily

true. It can detect a comparatively more complex set of move-

ments, such as macroscopic limb and body movements, chest

movements induced by respiration, and even heart beats transmit-

ted to the body surface (Khan, Ghaffar, Khan, & Cho, 2020; Lee

et al., 2018; Wisland et al., 2016). Radars have achieved favour-

able results in sleep-stage classification based on artificial intelli-

gence (Toften, Pallesen, Hrozanova, Moen, & Grønli, 2020), and

have shown promise for detection and analysis of sleep disordered

breathing (Kang et al., 2020; Tran, Al-Jumaily, & Islam, 2019). In

acute psychiatry it has been argued that permanently integrated

radars in the walls or ceiling of hospital wards could become a

core feature in “chronobiologically informed inpatient environ-

ments”, built to improve non-invasive treatment of severely ill psy-

chiatric inpatients (Drews, Scott, Langsrud, Vethe, &

Kallestad, 2020; Scott, Langsrud, Goulding, & Kallestad, 2021;

Vethe et al., 2021).

As the LIDS method was generalisable from one body movement

sensor to another, by inference it may also be generalisable to other

body movement sensors, such as raw data actigraphs, mattress sen-

sors, infrared cameras, and so forth. Of the adjustments made in the

present work, state correction would be necessary only for a position-

locked sensor, whereas rescaling would be a generalising step recom-

mended for any device.

Further investigation is required, however. The LIDS transfor-

mation process includes several preprocessing steps and

F IGURE 6 Temporal raster plot generated from ceiling-radar data for a single participant over the recording period, as an example to show
that LIDS plotted together with activity data may provide additional information about sleep dynamics. Background colours indicate the no
presence state, and the sleep/wake states is scored by the real-time model from our previous work (Heglum et al., 2021). PSG hypnograms and
PSG-INH signals are included where available. LIDS, locomotor inactivity during sleep; PSG, polysomnography; PSG-INH, inverted numerical
hypnogram
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parameter choices that should be thoroughly evaluated and stan-

dardised. Different rescaling factors, for example, will emphasise

different aspects of the signal. As illustrated in Figure 2, a lower

rescaling factor reaches higher values of inactivity more easily and

will resist being pushed down in the presence of activity, whereas

a higher rescaling factor will react more quickly to activity, result-

ing perhaps in lower-amplitude LIDS signals with a higher dynamic

range. The present work has not established an optimal value for

the rescaling – it may be the case that there is none, and that this

factor should be a tunable parameter. For example, if a significant

cosine function cannot be found for the signal at rescaling factor

1000, it may be possible to find one at factor 10,000. Careful

application of this technique may enable dynamic analysis of sleep

data from a wider population than otherwise. For position-locked

sensors, the optimal replacement value for no-presence times

should also be calibrated; it must be large enough to consistently

push the LIDS signal to zero during these times, but should avoid

affecting the ratio of activity to inactivity in the signal. Sundarara-

jan et al. circumvented the low resolution of LIDS by making the

10 min bins themselves moving averages (Sundararajan

et al., 2021), producing a smoother signal with a resolution down

to the resolution of the original data; this is an interesting alter-

ation that should be investigated and perhaps made standard. The

bin length itself is another important choice – the present work

chose 10 min bins based on the method proposed by Winnebeck

et al. but have also tested other bin lengths and observed that

they have a rather large effect on the resulting dynamics – 5 min

bins form very fast and “aggressive” dynamics, while 15 min bins

were sluggish and slow. A thorough analysis of the effect of bin

length was deemed out of scope for the present work but would

be an interesting avenue for further investigation. Moreover, LIDS

signals can be used to derive several metrics; goodness of fit to a

cosine model, mean period of oscillations, cycle-by-cycle ampli-

tude decline, etcetera, but the utility of these requires examina-

tion. Extensive testing of different LIDS calculation approaches

and the usefulness of different LIDS derived parameters should be

conducted.

A limitation of the present study is the small size and lack of

diversity of the dataset; with only young, healthy sleepers repre-

sented, conclusions regarding the utility of LIDS as a predictor of PSG

parameters in a clinical setting cannot be drawn. Investigation of LIDS

in a more diverse population will be necessary. An important limitation

of the LIDS technique itself is that since the transformation is

designed to enhance the impact of small signals, it also carries an

inherent risk of noise-amplification. Even a small amount of low-

amplitude noise can have a very large impact on LIDS, as it would be

aggregated in the long activity bins and result in erroneously low LIDS

values after inversion.

In summary, we have described how to implement the LIDS

method with a contact-free radar sensor. We have observed that

LIDS signals carry information on ultradian cycling, both for group

aggregates and on the individual level. We argue that our method

might be generalisable to other innovative sleep monitoring

devices, and that this simple and fully transparent sleep analysis

tool could aid in further improving sleep monitoring in both clinical

and real-life settings.
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