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Abstract—This article presents a novel nonlinear adaptive line-
of-sight (ALOS) guidance law for path following, compensating
for drift forces due to wind, waves, and ocean currents. The
ALOS guidance law is proven to have uniform semiglobal
exponential stability (USGES) properties during straight-line
path following at constant speed. The ALOS guidance law
performs similarly to the classical integral line-of-sight (ILOS)
guidance law by Børhaug et al. [2] and adaptive ILOS by
Fossen et al. [10] when the sideslip angle is nearly constant. The
ALOS guidance law, however, has better tracking capabilities
when compensating for rapidly-varying sideslip caused by a
time-varying disturbance. This is because the integral state of
the ALOS guidance law is additive to the unknown sideslip
angle (disturbance matching). In contrast, the ILOS guidance
laws must compensate sideslip through a saturating arctangent
function. The study also includes an input-to-state stable (ISS)
reduced-order extended state observer for estimation of the LOS
crab angle, known as the ELOS guidance law (Liu et al. [21]).
The performance of the ALOS, ILOS, and ELOS guidance laws
are compared by simulating rapid changes in the sideslip angle
to stress the critical assumptions of the algorithms. Finally, a
case study of the Remus 100 autonomous underwater vehicle
(AUV) exposed to stochastic ocean currents is used to compare the
performance of the ILOS, ALOS, and ELOS algorithms during
normal operation.

Index Terms—Guidance, adaptive control, unmanned aerial
vehicles, marine vehicles; land vehicles.

I. INTRODUCTION

A IRCRAFT, marine craft, and unmanned vehicles use
line-of-sight (LOS) guidance laws to accomplish motion

control scenarios such as object tracking, path following, path
tracking, and path maneuvering; see Breivik and Fossen [3],
Beard and McLain [1], Fossen [12], Lekkas and Fossen [16],
Lin [18], Wilhelm and Clem [31] and Yanushevsky [32] for
instance.

Vehicle path-following control systems can be implemented
using both heading and course autopilot systems in cascade
with a guidance law. This article studies LOS guidance laws
for path following using a heading autopilot command ψd.
The system under consideration is

ẏpe = U sin(ψ + βc − πh) (1)

ψd = πh + θ2 − tan−1 (Kpy
p
e + θ1) (2)

where ype is the cross-track error expressed in a path-tangential
reference frame {p} rotated an azimuth angle πh with respect
to the North-East reference frame {n}, ψ is the yaw (heading)
angle, U = (u2 + v2)1/2 is the speed where (u, v) denotes
the surge and sway velocities, and βc = tan−1(v/u) is the
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vehicle’s crab angle; see Section II for details. It is assumed
that the heading autopilot achieves ψ = ψd where ψd is the
LOS yaw angle command (2), which can be tuned by the
proportional gain Kp > 0. The crab angle βc is assumed to
be unknown, and the control objective is to cancel βc by using
the control signals θ1 or θ2 to drive the cross-track error ype
to zero. Previous studies assumes that θ1 = θ2 = 0 or that θ1
can be designed to cancel βc. The main contribution of this
article is an adaptive law for θ2, which achieves disturbance
matching. The different design techniques and their root in the
literature are presented below.

A. Line-of-sight (LOS) guidance (θ1 = θ2 = 0)

The study in this article builds on the concept of path
following using proportional guidance where Kp = 1/∆,
and ∆ is the look-ahead distance. The proportional guidance
law, ψd = πh − tan−1(ype/∆), mimics the heading angle
command of an experienced sailor (Healey and Lienhard [14]).
Applications to marine craft are discussed by Pettersen and
Lefeber [26], and Fossen et al. [7]. A similar approach has
been applied to small unmanned aerial vehicles (UAVs) by
Nelson et al. [23]. This work uses a vector field surrounding
the path generating course commands to guide the UAV toward
the desired path. A comparative study of the LOS and vector-
field guidance laws with application to AUVs are found in
Charaija et al. [5]. Proportional guidance techniques can also
be used to guide missiles, see Siouris [29] and Yanushevsky
[32]. Model-based predictive control (MPC) has been applied
successfully to LOS guidance path following by numerous
authors; see Liu et al. [19], Oh and Sun [24], Pavlov et al.
[25], and Rout and Subudhi [28].

Uniform global asymptotic stability (UGAS) and uniform
local exponential stability (ULES) of the proportional LOS
guidance law were first proven by Pettersen and Lefeber [26].
This is also referred to as global κ-exponential stability as
defined by Sørdalen and Egeland [30]. More recently, Fossen
and Pettersen [11] have shown that the proportional guidance
law, when applied to course and heading control, is uniformly
semiglobally exponentially stable (USGES). This guarantees
strong convergence and robustness properties to perturbations;
see Pettersen [27]. An immediate consequence of Fossen and
Pettersen [11] is that global exponential stability (GES) of
the proportional LOS guidance law cannot be achieved due
to a saturating sinusoidal function in the cross-track error
dynamics.

B. Integral line-of-sight (ILOS) guidance (θ1 6= 0, θ2 = 0)

Despite the effectiveness and popularity of proportional
LOS guidance laws, they have limitations when the vehicle
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is exposed to drift forces caused by wind, waves, and ocean
currents. In addition, underactuated vehicles cannot produce
a sway force. Hence, convergence to the desired path under
the influence of drift is a non-trivial task. The consequence
can be large cross-track errors during path following. The
standard solution to this problem has been to add an integral
state θ1 to the guidance law in an ad-hoc manner and rely
on linear superposition. This is referred to as proportional-
integral (PI) guidance. Unfortunately, the PI guidance laws can
be challenging to tune, and no global stability results exist.

In 2008, a nonlinear ILOS guidance law was proposed by
Børhaug et al. [2]. In this work, global κ-exponential stable for
straight-line path following at constant speed was proven using
Lyapunov stability analysis. Extensions to path following for
curved paths using monotone cubic Hermite splines were
made by Lekkas and Fossen [17]. The ILOS guidance law
has been successfully implemented in many applications, and
excellent performance has been demonstrated by Charija [4]
and Caharija et al. [6].

An adaptive ILOS guidance law replacing the integral state
with a parameter for sideslip compensation has been proposed
by Fossen et al. [10], while Fossen and Lekkas [9] present
indirect and direct adaptive control methods for LOS path
following. Alternative methods using observer theory have
been proposed by Liu et al. [20] and [21].

C. Adaptive line-of-sight (ALOS) guidance (θ1 = 0, θ2 6= 0)

The article’s main contribution is a novel adaptive LOS
guidance law with USGES stability properties. The ALOS
guidance law is proven to have USGES properties during
straight-line path following at constant speed. Unknown distur-
bances due to wind, waves, and ocean currents are modeled
as drift, and the ALOS guidance law compensates for this
by parameter adaptation. The main difference between the
classical and adaptive ILOS guidance laws to the ALOS
guidance law is that the integral state θ1 is replaced by θ2,
which is additive to the unknown crab angle. In contrast,
the ILOS guidance law must compensate the crab angle
through a saturating arctangent function using the integral
state θ1. The guidance laws have similar tracking performance
during normal operations. However, the ALOS guidance law
has better tracking capability for rapidly varying crab angles
caused by environmental disturbances.

D. Organization of the article

Section II contains the kinematic preliminaries, including
the cross-track error dynamics expressed in a path-tangential
reference frame. Sections III and IV present the classical and
adaptive ILOS guidance laws represented by the control signal
θ1. Section V discusses the new ALOS guidance law defined
by the control signal θ2, while the extended state observer for
LOS path following is presented in Section VI. A comparative
study of the guidance laws is presented in Section VII, and
Section VIII is a case study based on a high-fidelity model of
the Remus 100 AUV. Finally, Section IX concludes the results.

Fig. 1. North-East and path-tangential coordinate systems {n} and {p},
respectively. The along- and cross-track errors are denoted by (xpe , y

p
e ).

II. KINEMATIC PRELIMINARIES

This section presents the coordinate frames, tracking error
dynamics, and kinematic differential equations.

A. Coordinate systems

For marine craft and aircraft, the six different motion
components in the body frame {b} are defined as surge, sway,
heave, roll, pitch and yaw. The North-East coordinate system is
denoted by {n}. Consider a straight-line segment given by two
waypoints (xni , y

n
i ) and (xni+1, y

n
i+1) expressed in {n} where

i = 1, 2, . . . , N . Assume that the path-tangential coordinate
system {p} has its origin located at (xni , y

n
i ) and the xp-axis

is pointing towards the next waypoint (xni+1, y
n
i+1). Hence, the

path-tangential coordinate system can be obtained by rotating
the North-East coordinate system {n} an angle πh about the
downwards zn axis as shown in Fig. 1.

B. Tracking errors

The along- and cross-track errors (xpe, y
p
e ) expressed in {p}

are given by[
xpe
ype

]
= R>z,πh

([
xn

yn

]
−
[
xni
yni

])
(3)

where (xn, yn) is the vehicle’s North-East position,

Rz,πh =

[
cos(πh) − sin(πh)
sin(πh) cos(πh)

]
∈ SO(2) (4)

and πh = atan2(yni+1−yni , xni+1−xni ). This can be extended
to path following for curved paths using the approach of
Fossen and Pettersen [11].

C. Kinematic differential equations

Let pn = [xn, yn]> be the position vector expressed in
{n} and vb = [u, v]> be the velocity vector expressed in {b}.
Then it follows that (Fossen [12])

ẋn = u cos(ψ)− v sin(ψ) (5)
ẏn = u sin(ψ) + v cos(ψ) (6)

where ψ is the yaw angle.
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D. Amplitude-phase representation

It is advantageous to express the kinematic differential
equations (5)–(6) in amplitude-phase form

ẋn = U cos(ψ + βc) (7)
ẏn = U sin(ψ + βc) (8)

where the amplitude U is the speed over ground (SOG) and
βc is the crab angle given by

U =
√
u2 + v2 (9)

βc = tan−1
( v
u

)
(10)

The course over ground (COG) is recognized as, χ := ψ+βc.

E. Influence of wind, waves and ocean currents

Aircraft operate in the wind, while marine craft can be
exposed to ocean currents, waves, and wind. The aerodynamic
and hydrodynamic forces are functions of the relative velocity
vector vbr = vb−vbf where vbf = [uf , vf ]> is the flow velocity
vector due to wind, waves, and currents expressed in {b}.
This implies that lift will be perpendicular and drag will be
parallel to the relative flow. The linear relative velocities can
be expressed by (Fossen [12])

ur = Ur cos(β) (11)
vr = Ur sin(β) (12)

where Ur = (u2r + v2r)1/2 is the relative speed and

β = tan−1
(
vr
ur

)
(13)

is the sideslip angle. Note that the crab angle1 defined by
(10) is equal to the sideslip angle when uf = vf = 0. We can
express the crab angle as a function of the flow velocities by

βc = tan−1
(
vr + vf
ur + uf

)
= tan−1

(
tan(β) +

vf
Ur cos(β)

1 +
uf

Ur cos(β)

)
(14)

This formula is used in Section VI when simulating vehicles
exposed to environmental disturbances.

F. Tracking-error differential equations

The tracking-error dynamics expressed in {p} is found by
time differentiation of (3) and substitution of (7)–(8). This
gives the formulas

ẋpe = U cos(ψ + βc − πh) (15)
ẏpe = U sin(ψ + βc − πh) (16)

1In the literature, the term sideslip angle is often used for the crab angle
while we explicitly distinguish between the angles.

III. THE CLASSICAL ILOS GUIDANCE LAW

The control objective is to choose the yaw angle ψ in (16)
such that the cross-track error ype → 0. The LOS algorithms
for path following are usually employed at a kinematic level
under the assumption that the heading autopilot guarantees
that ψ = ψd. The classical ILOS guidance law (Børhaug and
Pettersen [2]) assumes that βc is unknown for a given azimuth
angle πh. Hence,

ψd = πh − tan−1
(
Kpy (ype + κypint)

)
(17)

ẏpint =
∆

∆2 + (ype + κypint)
2 y

p
e (18)

where ypint is the integral state used to compensate βc as
defined by (14), ∆ > 0 is the user specified look-ahead
distance, and Kpy = 1/∆. The integral gain κ > 0 is a tunable
parameter. Substitution of (17) into (16) gives

ẏpe = U sin(βc − tan−1(Kpy (ype + κypint))) (19)

Hence, βc must be compensated for by the integral state ypint
to satisfy the control objective. In the stability analysis, the
following assumptions will be made:

Assumption 1: The vehicle is moving at positive forward
speed 0 < Umin ≤ U ≤ Umax.

Assumption 2: The crab angle βc is constant during path
following such that β̇c = 0.

Assumption 3: The crab angle estimation error β̃c = βc −
β̂c where β̂c is the parameter estimate, is small during path
following. When applying integral control instead of parameter
adaption, β̂c ≡ 0 and thus β̃c = βc is small.

Remark 1: Vehicle control systems are designed to keep
the relative speed Ur constant and the sideslip angle β small.
Because of (14), the crab angle βc will be nearly constant for
a vehicle traversing straight lines and circular paths if the flow
velocity vector is nearly constant. Also note the sway velocity
v (and thus the yaw rate r) will be small during straight-line
path following. Straight lines and circles are the main segments
used to construct Dubins paths [13]. The switching between
the segments will appear as steps in the integral state. For
vehicles traversing a non-circular feasible path, i.e., a small
curvature path, βc will vary slowly. However, the dynamics
of βc will be much slower than the control bandwidth;
thus, integral control will track the changes. Also, note that
although the crab angle is relatively small, it primarily affects
the path-following properties of the vehicle. Not adequately
compensated, this results in significant deviations from the
desired path.

For the ILOS guidance law (17)–(18), β̃c = βc is small
by Assumption 3. Hence, sin(βc) ≈ βc and cos(βc) ≈ 1.
Furthermore, application of the trigonometry identity,
sin(a− b) = sin(a) cos(b)− cos(a) sin(b), to (19) gives

ẏpe = U cos(tan−1 ((ype + κypint)/∆)βc

− U sin(tan−1 ((ype + κypint)/∆) (20)
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Using, cos(tan−1((x + a)/d)) = d/
√
d2 + (x+ a)2 and

sin(tan−1((x + a)/d)) = (x + a)/
√
d2 + (x+ a)2, the ex-

pression for (20) is further simplified such that

ẏpe = − U(ype + κypint)√
∆2 + (ype + κypint)

2
+ d (21)

where d is an additive disturbance defined by

d :=
U∆√

∆2 + (ype + κypint)
2
βc ≤ dmax (22)

Assumption 4: The additive disturbance d is nearly constant
and upper bounded, so integral action can be applied.

Theorem 1: The classical ILOS guidance law (17)–(18)
applied to the cross-track error (16) renders the origin
(ype , y

p
int) = (0, ȳpint) USGES under Assumptions 1–4 if the

heading autopilot guarantees that ψ = ψd and κ ≤ κmax,
where the upper bound κmax is defined by Børhaug and
Pettersen [2].

Proof: The origin (ype , y
p
int) = (0, ȳpint) is UGAS/ULES as

shown by Børhaug and Pettersen [2]. This can be extended to
USGES following the approach of Fossen and Pettersen [11].

IV. THE ADAPTIVE ILOS GUIDANCE LAW

Assumption 4 stating that d given by (22) must be constant
can be removed. The adaptive ILOS guidance law of Fossen
et al. [10] replaces the integral state (18) with a parameter
estimate β̂c according to

ψd = πh − tan−1
(
ype
∆

+ β̂c

)
(23)

˙̂
βc = γ

U∆√
∆2 + (ype + ∆β̂c)2

ype (24)

Theorem 2: The adaptive ILOS guidance law (23)–(24)
applied to the system (16) renders the origin (ype , β̃c) = (0, 0)
USGES under Assumptions 1–3 if γ > 0 and the heading
autopilot guarantees that ψ = ψd.

Proof: See Fossen et al. [10].

V. ADAPTIVE LOS (ALOS)

The main result of the paper is the ALOS guidance law

ψd = πh − β̂c − tan−1
(
ype
∆

)
(25)

˙̂
βc = γ

∆√
∆2 + (ype )2

ype (26)

where γ is the adaptation gain and β̂c is the parameter
estimate. Note that β̂c in (25) is additive to the unknown crab
angle in (16). This is referred to as disturbance matching. In
contrast, the classical and adaptive ILOS guidance laws must
compensate for the crab angle through a saturating arctangent
function. Also note that the parameter update law (26) does
not include the additional term ∆β̂c of the adaptive ILOS
parameter update law (24) nor the speed U .

TABLE I
KEY PROPERTIES AND ASSUMPTIONS OF THE LOS ALGORITHMS.

Algorithm Crab angle Peaking Stability
ELOS Time varying No peaking ISS
Classical ILOS Constant - USGES
Adaptive ILOS Constant May suffer from peaking USGES
ALOS Constant - USGES

Substituting (25) into (16) under the assumption that the
heading autopilot guarantees that ψ = ψd gives

ẏpe = U sin

(
β̃c − tan−1

(
ype
∆

))
(27)

where β̃c = βc− β̂c. Assumption 2 implies that ˙̃
βc = − ˙̂

βc and
application of Assumption 3 to (27) gives the error dynamics

ẏpe = − U√
∆2 + (ype )

2
ype +

U∆√
∆2 + (ype )2

β̃c (28)

˙̃
βc = −γ ∆√

∆2 + (ype )2
ype (29)

Theorem 3: The ALOS guidance law (25)–(26) applied to
the system (16) renders the origin (ype , β̃) = (0, 0) USGES
under Assumptions 1–3 if the heading autopilot guarantees
that ψ = ψd and γ > 0.

Proof: See Appendix A.

VI. EXTENDED STATE OBSERVER FOR LINE-OF-SIGHT
(ELOS) PATH FOLLOWING

Liu et al. [21] has derived a reduced-order extended state
observer (ESO) for estimation of the crab angle, given by

β̂c =
ĝ

U cos(ψ − πh)
(30)

with

ṗ = −kp− k2ype − kU sin(ψ − πh) (31)
ĝ = p+ kype (32)

where k > 0 and p(0) = −kype (0). The estimation error g̃ =
g − ĝ satisfies the differential equation ˙̃g = −kg̃ − ġ. Liu
et al. [21] has derived conditions for the state g̃ to be input-
to-stable (ISS) with the input being ġ. The ESO-based LOS
(ELOS) guidance law is chosen as (23). The observer (30)–
(32) is capable of estimating a time-varying crab angle βc.

VII. COMPARATIVE STUDY OF THE GUIDANCE LAWS

The goal of the case study is to stress test the critical
assumptions of the guidance laws by computer simulations.
The following algorithms are tested:

ELOS (Liu, Wang and Peng [21])

ṗ = −kp− k2ype − kU sin(ψ − πh) (33)

β̂c =
p+ kype

U cos(ψ − πh)
(34)

ψd = πh − tan−1
(
ype
∆

+ β̂c

)
(35)
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Fig. 2. Performance of the classical ILOS, adaptive ILOS, ALOS and ELOS
algorithms when βc (deg) is allowed to vary as a function of time. The green
vertical lines separate Phases 1–3.

Classical ILOS (Børhaug and Pettersen [2])

ψd = πh − tan−1
(
ype + κypint

∆

)
(36)

ẏpint =
∆

∆2 + (ype + κypint)
2 y

p
e (37)

Adaptive ILOS (Fossen, Pettersen and Galeazzi [10])

ψd = πh − tan−1
(
ype
∆

+ β̂c

)
(38)

˙̂
βc = γ

U∆√
∆2 + (ype + ∆β̂c)2

ype (39)

ALOS (main result of Section V)

ψd = πh − β̂c − tan−1
(
ype
∆

)
(40)

˙̂
βc = γ

∆√
∆2 + (ype )2

ype (41)

The properties and assumptions of the different LOS algo-
rithms are summarized in Table I. The guidance laws were
implemented using ∆ = 20.0 m. The ILOS integrator gain
was tuned to obtain maximum performance, and the chosen
value was κ = 3.0. A similar approach was used to find the
adaptive ILOS and ALOS adaptation gain γ = 0.2, while the

Fig. 3. The Remus 100 AUV at the AUR-Lab at the Nor-
wegian University of Science and Technology, Trondheim, Norway.
URL: https://www.ntnu.edu/aur-lab/auv-remus-100.

ELOS observer used k = 0.5. The initial states were chosen
as ype (0) = 0 m, ypint(0) = 0, β̂c(0) = 0, and p(0) = 0. The
sampling time was selected as 20 Hz. It is assumed that the
vehicle control system keeps the speed at U = 2.0 m/s during
path following. Hence, the environmental disturbances can be
simulated by perturbing βc according to (14). Three phases
are considered:
Phase 1: (0 ≤ t < 100) initial phase showing the convergence
of the integral state and crab angle estimates when the crab
angle is increased slowly from 0 to 10.0 deg. The maximum
crab angle rate is |β̇c| ≤ 0.4 deg/s.
Phase 2: (100 ≤ t < 200) the crab angle is decreased from
10.0 deg to −20.0 deg and |β̇c| ≤ 1.0 deg/s.
Phase 3: (200 ≤ t < 300) the crab angle is increased from
−20.0 deg to 20.0 deg and |β̇c| ≤ 2.0 deg/s.

Fig. 2 shows the exponential convergence of ype to zero
during Phases 1–3 for the four guidance laws when the
vehicle is exposed to stochastic disturbances. The classical
ILOS algorithm shows a performance reduction compared to
the other guidance laws during Phases 2 and 3 when the
crab angle is allowed to vary rapidly. During these phases
|β̇c| is 1.0 to 2.0 deg/s. The adaptive ILOS and ALOS
algorithms, and the ELOS algorithm keep the cross-track error
ype close to zero even when βc is time-varying. As shown by
Liu et al. [20], the adaptive guidance laws may suffer from
peaking and oscillation behaviors during the transient state
since a large initial tracking error may deteriorate the learning
process. The largest oscillations are observed for the adaptive
ILOS algorithm, but there are also some oscillations in the
ALOS algorithm, particularly when |β̇c| is large. The overall
conclusion is that the ALOS and ELOS algorithm outperform
the other two when |β̇c| is large. The ELOS algorithm removes
the oscillations to the price of degrading the USGES stability
property to ISS. However, during normal operation (Phase 1),
the performance of the four algorithms is quite similar. The
case study also confirms that the ALOS assumption that βc is
constant can be relaxed since |β̇c| ≤ 2.0 deg/s gives accurate
regulation of the cross-track error to zero.

VIII. CASE STUDY WITH THE REMUS 100 AUV

Since the ALOS guidance law outperforms the adaptive
ILOS guidance law, it was decided to compare the ALOS
guidance law with the classical ILOS and ELOS guidance
laws using a high-fidelity model of the Remus 100 AUV; see
Fig. 3. The goal is to evaluate the efficiency and robustness of
the AUV during normal operation when the AUV is exposed
to a stochastic ocean current.

The three guidance laws were implemented with ∆ = 10 m.
The ILOS integrator gain was chosen as κ = 0.1. The ALOS
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Fig. 4. Vehicle speed U = (u2 + v2)1/2 (m/s), current speed Vc (m/s) and
current direction βVc (deg).

adaptation gain was chosen as γ = 0.0006, while the ELOS
gain was k = 0.5. The initial current speed was chosen as
Vc = 1.0 m/s with direction βVc = 180.0 deg. The sampling
time was selected as 20 Hz.

The mathematical model of the AUV is available in the
MATLAB MSS toolbox; see Fossen and Perez [8]. The script
remus100.m describes an AUV of length 1.6 m, cylinder
diameter of 19.0 cm, mass 31.9 kg, and trim weight of 1.0 kg.
The vehicle’s maximum speed is 2.5 m/s, obtained by running
the propeller at 1525 rpm in zero currents. The endurance is
22 hours at the optimum speed of 1.5 m/s. Depth is controlled
using the stern plane δs, and the heading angle is controlled
using a tail rudder δr. In the case study, the following control
systems have been implemented (see Fig. 5):

Propeller revolution: The propeller revolution is increased
linearly from 1000 to 1300 rpm (see Fig. 5) until the AUV
reaches its cruise speed.

Depth: the depth is changed from 0 to 20 m as shown in
Fig. 6 using successive-loop closure

θd = Kpz

(
(zn − znd ) +

1

Tz

∫ t

0

(z − zd)dτ
)

(42)

δs = −Kpθ (θ − θd)−Kdθq −Kiθ

∫ t

0

(θ − θd)dτ (43)

where θd is the desired pitch angle, zn is the heave position,
θ is the pitch angle and q is the pitch rate. The controller
gains and time constant can be computed using pole placement
(Beard and McLain [1, Section 6.4]). However, trial and failure
gave excellent performance for Kpz = 0.1, Tz = 100.0 s,
Kpθ = 2.0, Kdθ = 3.0 and Kiθ = 0.1. The maximum allowed
stern-plane deflection is chosen as ±30 deg.

Heading: The ILOS guidance law (17)–(18) and ALOS guid-
ance law (25)–(26) are used to compute the desired yaw angle

Fig. 5. Commanded rudder angle δr (deg), commanded stern-plane angle
δs (deg) and propeller revolution n (rpm) for the ELOS, ILOS, and ALOS
guidance laws.

ψd during path following; see Fig. 7. The PID controller is

δr = −Kpψssa(ψ−ψd)−Kdψr−Kiψ

∫ t

0

ssa(ψ−ψd)dτ (44)

where ψ is the yaw angle and r is the yaw rate. The controller
gains are chosen using pole placement (Fossen [12, Algorithm
15.1]). This gave Kpψ = 7.5, Kdψ = 15.0 and Kiψ = 0.75
corresponding to a natural frequency of 0.18 rad/s and relative
damping ratio of 1.0 in yaw. The maximum rudder angle
deflection is ±30.0 deg. The unconstrained yaw angle tracking
error ψ̃ = ψ − ψd is mapped to the interval [−π, π) using
the operator ssa :R → [−π, π) representing the smallest
difference between the two angles ψ and ψd. The Matlab MSS
toolbox implementation is ssa.m. The goal is to follow a path
given by the following six waypoints:

wpt.pos.x = [0, 150, 300, 200, 0, 0 ]
wpt.pos.y = [0, 200, 400, 800, 1000, 1200]

A switching mechanism for selecting the next waypoint is
used when moving along the piecewise linear path. Waypoint
(xni+1, y

n
i+1) is selected based on whether or not the vehicle

lies within a circle of acceptance with radius R = 10 m around
(xni+1, y

n
i+1). In other words, if the vehicle’s position (xn, yn)

at time t satisfy(
xni+1 − xn

)2
+
(
yni+1 − yn

)2 ≤ R2 (45)

the next waypoint (xni+1, y
n
i+1) is selected. The case study is:

Phase 1: The Remus 100 AUV starts at an position
(xn(0), yn(0)) = (0 m, 0 m) and heading ψ(0) = 0 deg
at time t = 0. During the first phase (0–900 seconds), the
vehicle accelerates up to its cruise speed while exposed to a
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Fig. 6. Depth zn (m), roll angle φ (deg), pitch angle θ (deg) and yaw angle
ψ (deg) for the ELOS, ILOS, and ALOS guidance laws.

stochastic ocean current with constant magnitude and direction
(Vc = 1.0 m/s and βVc = 180.0 deg). The current increases
the vehicle’s speed during the first phase, as shown in Fig. 4.
The sideslip angle β varies slowly when traversing through the
waypoints; see Fig. 7. The performance of the ILOS, ALOS,
and ELOS guidance laws are similar, and excellent tracking
is obtained for all the algorithms; see Fig. 7.

Phase 2: After 900 seconds an extreme stochastic current
is simulated. The current’s direction βVc is changed from
180.0 deg to −180.0 deg in one minute. At the same time,
the magnitude Vc of the current is increased from 1.0 m/s to
2.0 m/s. The ILOS and ALOS algorithms handle the time-
varying current quite well, even though both assume that βc
and U are constant during path following. As expected, the
performance of the ELOS algorithm is best in extreme situa-
tions with a rapidly varying βc. It is interesting to notice that
the ALOS algorithm has a slightly better tracking performance
than the ILOS algorithm when studying the cross-track error
ype during rapidly changing current speed and direction (time
900–1400 seconds). Also note that the ELOS algorithm has
larger overshoots than the other algorithms even though the
estimate of βc is smoother.

IX. CONCLUSIONS

A novel nonlinear adaptive line-of-sight (ALOS) guidance
law for vehicle path following, which compensates for drift
forces due to wind, waves, and ocean currents, has been
presented. The equilibrium points of the cross-track and pa-
rameters estimation errors are shown to be uniformly globally

Fig. 7. Sideslip angle β (deg) and cross-track error ype (m) for the ELOS,
ILOS, and ALOS guidance laws.

exponentially stable (USGES) during straight-line path fol-
lowing at constant speed. This guarantees strong convergence
and robustness properties to perturbations. Further, it was
demonstrated that the ALOS guidance law performs similarly
to the classical integral line-of-sight (ILOS) guidance law by
Børhaug et al. [2] when the sideslip angle is nearly constant.
The ALOS guidance law, however, has better tracking capa-
bilities when compensating for rapidly-varying sideslip caused
by a time-varying disturbance. This is because the integral
state of the ALOS guidance law is additive to the unknown
sideslip angle (disturbance matching). The case study used a
high-fidelity model of the Remus 100 autonomous underwater
vehicle (AUV) exposed to a severe stochastic ocean current.
It was concluded that both the ALOS and the classical ILOS
guidance laws give excellent performance and robustness
for normal AUV operations. In contrast, the ILOS guidance
law must compensate sideslip through a saturating arctangent
function. The case study also compared the ILOS and ALOS
guidance laws with a disturbance observer for βc, which can
handle rapidly-varying sideslip. As expected, the observer-
based guidance law (ELOS) gave smoother estimates of βc
and better accuracy for large values of the crab angle rate
β̇c. However, the ILOS and ALOS guidance law had less
overshoot than the ELOS algorithm when considering the
cross-track error ype .

Future studies should analyze the stability of the feedback
interconnection of the ALOS guidance law and the heading
autopilot for varying plant parameters and environmental con-
ditions. The assumption that the crab angle is small should
be relaxed by extending the stability proofs to arbitrary crab
angles.

APPENDIX

A. Proof of Theorem 3

The error dynamics (28) can be expressed as

ẋ = Ω(x)Ax (46)
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where x = [x1, x2]> := [ype , β̃c]
> and

A =

[
−U/∆ U
−γ 0

]
, Ω(x) :=

∆√
∆2 + x21

(47)

The characteristic equation, det(A − λI2) = 0, becomes
λ2 + (U/∆)λ + γU = 0. Since U > 0 and ∆ > 0, the
matrix A is Hurwitz if the adaptive gain γ > 0. Consider
the nominal system ẋ = Ω(x)Ax and Lyapunov function
W (x) = (1/2)x>Px with P = P> > 0. Consequently,

Ẇ (x) = Ω(x)x>(PA + A>P )x (48)

Let Q = diag{q1, q2} > 0. Then P and Q satisfy the
Lyapunov equation PA + A>P = −Q and

Ẇ (x) = −Ω(x)x>Qx

< 0, ∀x 6= 0 (49)

For each r > 0 and all ||x(t)|| ≤ r, we have that

Ω(x) ≥ ∆√
∆2 + r2

:= c(r) (50)

Let pmin = λmin{P } and pmax = λmax{P } be the minimum
and maximum eigenvalues of the matrix P , respectively, and
qmin = min{q1, q2} and qmax = max{q1, q2}. Consequently,

Ẇ (x) ≤ −c(r)x>Qx ≤ −2
qmin

pmax
c(r)W (x) (51)

Since W (x) > 0 and Ẇ (x) < 0 whenever x 6= 0,
it follows from Khalil [15] Theorem 4.8 that the origin
x = 0 is uniformly stable and ||x(t)|| ≤ ||x(t0)||,∀t ≥ t0.
The above holds for all trajectories generated by the ini-
tial conditions x(t0). Hence, we can invoke the compari-
son lemma (Khalil [15], Lemma 3.4) by noticing that the
system χ̇ = −2(qmin/pmax)c(r)χ has the solution χ(t) =
e−2(qmin/pmax)c(r)(t−t0)χ(t0), which implies that ẇ(t) ≤
e−2(qmin/pmax)c(r)(t−t0)w(t0) for w(t) = W (x). Hence,

||x(t)|| ≤
√
pmax

pmin
e−

qmin
pmax

c(r)(t−t0)||x(t0)|| (52)

for all t ≥ t0, ||x(t0)|| ≤ r and any r > 0. This allows us to
conclude that the equilibrium point x = 0 of (46) is USGES
(Loria and Pantely [22], Definition 2.7).
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