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Preface

This thesis is submitted as the final part and conclusion of my master’s degree
in Applied Physics and Mathematics at the Norwegian University of Science and
Technology (NTNU). The thesis centers around a peer-reviewed scientific paper
published in January of 2022, where I am shared first author. The paper is processed
by an introduction that provides background information and motivation for the
work.
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1 Introduction

1.1 Background and Motivation
Cancer is the second most common cause of death in the world [1, 2], with almost
10.0 million people dying from the disease in 2020 [3]. That equates to roughly one
in six deaths being caused by cancer globally. Cancer incidences are furthermore
estimated to increase by 47% within 2040, as the world population increases and
ages [4]. The number of new cancer cases each year will then go up from 19.3 million
in 2020 to 28.4 million in 2040 [4].

With such enormous ramifications, there is no surprise that a huge effort has been
put into improving the treatment of cancer. U.S. National Cancer Institute alone has
spent over 150 billion dollar on cancer research since its establishment in 1937 [5].
This effort has lead to substantial improvements in cancer screening, diagnosis and
treatment. One strong indication of the difference these improvements have made
can be found in one of the oldest national cancer registries, The Cancer Registry
of Norway, which shows that the 5-year relative survival in Norway has steadily
increased from 34% in 1965 to 77% in 2021 [6].1 This trend is also representative for
other developed countries such as The United States, England, Wales and Australia,
although the curves differs somewhat for the available year [9–11].

Still, a 77% 5-year relative survival means that we fail to provide just under a
quarter of all cancer patients, that would not have died from other causes, with
effective enough treatment to be alive five years after their diagnosis. Cancer treat-
ment is simply ineffective for a lot of patients. With all the resources that have
been put into curing cancer, the question of why we have not made even greater
improvements have been asked many times. Cancer have indeed turned out to be
very difficult to cure, and understanding why is useful for progressing its treatment.
Let us start by exploring some of the answer to this question by looking at what
cancer actually is, its definition.

Cancer is a malignant neoplasm. A neoplasm is a collection of cells in the body

1Note that this number aggregate all types of cancer and does not account for the changing
prevalence of risk factors nor how earlier diagnosis could improve 5-year survival compared to
longer term survival [7, 8]. It is thus only an indication of the effect of these improvements and
not a direct display of it.
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CHAPTER 1. INTRODUCTION

with changes in their genome which causes abnormal cell growth. If a neoplasm
has the ability to intrude into neighbouring tissue or spread to other parts of the
body (metastasizing), it is called malignant. This malignant property is what makes
cancer lethal. Meanwhile, the fact that cancer can result from any DNA changes
that causes abnormal cell growth in any of the body’s cells, turns out to make it
incredibly challenging to treat in general as the share variety of cancers is enormous.
This has gotten increasing attention over the past decades as more and more of this
diversity has been uncovered. Cancer is not a single disease, but a group of more
than 200 diseases or types of cancer—corresponding to the different types of cells in
the body it initially affects [12]. As the cost of DNA sequencing have plummeted
[13], we have discovered more and more of the huge genetic variety within each
of these types of cancer through projects such as The Cancer Genome Atlas [14].
This work has also unveiled a substantial genetic diversity within indivdual tumors
(intra-tumor genetic heterogeneity), both spatially and temporally as the cancer
evolves, in addition to the diversity between tumors. That the cancers consists
of the body’s own cells also constitutes a challenge, as any treatment must deal
with the problem of distinguishing between cancer and normal cells—getting rid of
one without harming the other too much. It also contributes to more diversity of
interaction with the body’s signaling pathways, and makes the problem considerable
more complex.

1.2 Personalized Treatment
With the tremendous variety of cancers, a very natural way of improving its treat-
ment is to find a better selection of therapies for the particular variety of cancer the
patient has. This has indeed been a persistent trend in cancer therapy—patients
being divided into more and more groups by improved diagnostics and given com-
plex combinations of advanced treatments that have proven more effective for that
particular group.

As a fairly representative example of how individualized cancer treatment has
become, we can look at treatment in Norway for breast cancer, which is the most
common cancer type in the world [4]. Norway is one of several countries that have
introduced national standardised cancer care pathways, and since 2015 patients in
Norway have followed national action programs for diagnosis and treatment of 28
different types of cancer [15, 16]. These programs provides an excellent overview
of the current recommended treatments. The therapy for breast cancer can be
divided into local treatments, consisting of surgery and/or radiation, and systemic
treatments, consisting of drug therapies such as chemo-, hormonal and targeted
therapies. The program assigns the patient into groups with associated sets of
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CHAPTER 1. INTRODUCTION

recommended treatments based on TNM-classification, which consists of tumor size,
presence and extent of regional lymph node metastases and presence of distant
metastases, along with histological grading, hormone receptor status (HR), human
epidermal growth factor receptor 2 status (HER2), proliferation index (Ki67) and
gene panel tests [17]. The patients given therapeutic treatment are first divided into
initially inoperable and operable. The operable are further divided into 8 groups for
local treatment and 26 groups for adjuvant systematic treatment. Furthermore, the
initially inoperable are divided into 4 groups for neoadjuvant systemic treatment
and 16 groups for the local treatment potentially given afterwards. The treatment
for some of the groups are no treatment. The 5-year relative survival in Norway
of breast cancer has reached 92% with the use of this treatment scheme [6], which
likely is among the very highest in the world [18–20].

This examplifies the need for individualization in the treatment of cancer. Such
division of patients into groups with different therapies is the start of what is called
personalized or precision medicine, which works towards tailoring the treatment to
the individual characteristics of each patient. Precision medicine is an approach
that can be used for any disease. There is, however, reason to believe that precision
medicine will provide greater improvements in effectiveness of treatment in cancer
than in most other diseases, because, as discussed above, cancer have enormous
variations and providing a large degree of differentiated treatment based on the
patents characteristics has already proven very successful.

Providing each cancer patient with their own optimal combination of treatments
is a lofty goal. For the systematic treatment with drugs, there is a combinatorial
growth of possible combinations of different drugs, dosages and timing of adminis-
tration for each set of biomarkers the patient may have. The interaction of different
combinations of drug treatments can further be very hard to predict in some cir-
cumstances [21, 22]. So, to come close to reaching this goal, there is a real need
to develop a way to help the clinician in charge to select the best treatment for
their individual patients. It would be beyond reach for even a team of experts to
find this optimum on their own with the incredible complex interactions between
multiple drugs, tumors and the human body, in addition to the tremendous variety
of cancers.

This need for improved guidance on selecting treatment as the personalization
increases is also present in just the same way when it comes to in vivo testing. This
includes the gold standard of randomized clinical trials in a fairly straightforward
way—comparing a few treatments to find the one that is best on average for each
of the groups of patients with some common combination of biomarkers. There is
a limit to how many treatment regimens can be tested in this way, because the
group sizes will become too small to give significant insight. Personalized in vitro
models, such as cells from a patient’s biopsy grown in a culture that mimics the in
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CHAPTER 1. INTRODUCTION

vivo environment, could provide insight into which treatment that specific patient
would respond best to out of a much larger set of treatments [23]. While this would
undoubtedly give very valuable data and give great improvement, the combinato-
rial growth of treatments with possible significant differences gives way too many
possibilities for even in vitro testing to conquer.

1.3 Modeling and Simulating Treatment
With both in vivo and in vitro testing arriving short of the desired goal of providing
each patient with their optimal treatment on their own, it is natural to explore
how in silico testing (i.e., computer simulations) could help to make progress. By
making a mathematical model of cancer that can be handled by a computer and
providing it with sufficient input data, such in silico methods can make predictions
of how the cancer will develop under a treatment regimen. This is already done with
great success for complex systems in other domains including weather forcasting or
molecular modeling in drug design [24, 25]. With such predictions for many different
treatments, the computer can hone in on the optimal treatment for a specific patient
and their input values. In essence a digital representation of the patient’s cancer
is created, a digital twin of the cancer, on which experiments can be performed
to discover what will happen. The goal of precision medicine can in other words
be greatly aided, if one can develop a mathematical model that makes accurate
predictions of the outcome of a treatment based on the biomarkers of an individual
patient.

While in silico experiments will always have to be verified in vivo, it does offer
some key advantages. As discussed above, a major limitaton of in vivo and in vitro
experiments when it comes to personalized medicine is the number of experiments
that can be performed, but one can likely perform several orders of magnitue more
experiments in silico depending on the model used without running into the same
financial burden of in vivo experiments. The perfect control one has over experi-
ments in silico is also a major advantage, and one does not have the ethical conserns
associated with in vivo experiments.

While there has been very limited use of mathematical cancer models in clinical
use, there has been a sharp incline in the development of them on the research level
over the past three decades—leading to a rich selection of models [26]. There are
two prominent approaches of data-driven models in the form of machine learning
and simulations of mechanistical models based on qualitive knowledge, as well as
some that combine the two. Each has their merits, but machine learning requires
a huge amount of data to have a chance at producing good prediction for the large
variety of patients there are. This is data we do not have access to, and the rest of
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CHAPTER 1. INTRODUCTION

this thesis will therefore focus on simulation of mechanistic models.
The many mechanistical cancer models that exist can be classified by the rep-

resentation they use to describe cancer evolution in the body and they range from
continuous models governed by partial differencial equations to discrete models such
cellular automaton, petri net, cellular Potts models or agent-based modelling [26].
There are also hybrid models that combine them by using a discrete model for the
individual cells and a continuous model for other parts of the model such as trans-
port of drugs from blood vessels to cancer cells. The models can also be classified
by the length scales that are included in the model—from how genes and subcellular
processes affect a single cell to how cancer and vascular density chances throughout
the tumor. Models that incorporate both small and large length scales are referred
to as multiscale models.

1.4 A Breast Cancer Simulation
Needing Improvements

In a recent paper [27] our research group presented a complex hybrid, multiscale
model of breast cancer that can be initialed by the measurements and samples taken
as standard in the standardized pathway for breast cancer patients in Norway. The
model does in a nutshell consist of discrete cancer cells, initialised from an annotated
biopsy, that proliferate or die according to a stochastic cellular automaton’s response
to the surrounding environment and sub-cellular processes modelled for each cell.
The environment surrounding each cancer cell consists of a number of substances
such as chemotherapeutic and anti-angiogenic agents diffusing continuously between
discrete blood vessels and the cells. While the model is specific to breast cancer, it
is fairly straight forward to adapt it to any solid cancer by replacing the pharma-
cokinetic and pharmacodynamic equations for the relevant chemotherapies of the
relevant cancer type.

The paper demonstrates the potential of this approach by reproducing the out-
come of four patients, while calibrating some parameters that could not be measured
in the patients nor be found in the literature, and correctly predicting a fifth pa-
tient’s response to their treatment using these parameters. While these results are
encouraging, there are also signigicant limitations. A major one of these limitations
is the small simulation size of 200×300 µm dictated by prohibitively large runtimes.
At this size the simulated piece of the cancer can not by any means be expected to
be representative for the whole tumor, as it is not uncommon for breast cancers to
be two orders of magnitude larger than this in each direction and cancer is as we
have discussed highly heterogeneous in nature [28, 29].
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In chapter 2 our solution to remidy most of this limitation is presented in the
form of a research paper. We were able to simulate a clinically relevant cancer size
of a full biopsy, roughly 500 times larges than previously achieved. This was done by
utilising a novel way of implementing the stochastic evolution of the discrete cancer
cells and blood vessels, in a scalable manner, on top of known methods for solving
the continuous parts of the model.
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2 Paper

Sammendraget fra artikken
Matematisk modellering og simulering er en lovende tilnærming til persontilpas-
set kreftmedisin. Å sette sammen diskrete celle-baserte modeller med kontinuerlige
modeller til en hybrid, cellulær automata (CA) er en kraftfull framgangsmåte for å
etterlikne biologisk kompleksitet og beskrive den dynamiske utvekslingen av infor-
masjon over forskjellige størrelsesordner. Kreftens kompleksitet, hetrogenitet og
multiskala-natur utgjør derimot, en betydelig beregningsmessig utfordring. Når
man ser på klinisk relevante utsnitt av svulsten blir det beregningsmessig svært
kostbart. Selvom effektive parallelliseringsteknikker finnes for kontinuerlige mod-
eller, så krever deres sammenkobling med diskrete modeller, CA spesielt, avanserte
og forseggjorte løsninger. Med utgangspunkt i FEniCS, en populær og kraftig
platform for å løse partielle differensiallikninger med vitenskapelige beregninger,
utviklet vi en parallell algoritme som kobler sammen stokastisk CA med differen-
siallikninger (https://bitbucket.org/HTasken/cansim). Algoritmen minimerer
kommunikasjonen mellom prosessene som deler naboverdiene i CA, samtidig som
den også tillater reproduserbarhet under stokastiske oppdateringer. Vi demonstr-
erte potensialet for vår løsning på en kompleks hybrid cellulær automaton modell
for brystkreft behandlet med cellegiftskombinasjoner. På en enkeltkjerne prosessor,
oppnådde vi nær linjær skalering med økende problemstørrelse, mens svak parallell
skalering viste moderat vekst i løsningstiden relativt til størrelsesøkningen av prob-
lemet. Til slutt brukte vi algoritmen på et problem som er 500 ganger større enn
tidligere arbeid, som tillater oss å kjøre simuleringer av persontilpasset terapi basert
på heterogen celletetthet og perfusjon av svulsten estimert fra magnetresonansto-
mografi data på en enestående skala.
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Abstract

Mathematical modeling and simulation is a promising approach to personalized

cancer medicine. Yet, the complexity, heterogeneity and multi-scale nature of

cancer pose significant computational challenges. Coupling discrete cell-based

models with continuous models using hybrid cellular automata (CA) is a power-

ful approach for mimicking biological complexity and describing the dynamical

exchange of information across different scales. However, when clinically rele-

vant cancer portions are taken into account, such models become computation-

ally very expensive. While efficient parallelization techniques for continuous

models exist, their coupling with discrete models, particularly CA, necessitates

more elaborate solutions. Building upon FEniCS, a popular and powerful scien-

tific computing platform for solving partial differential equations, we developed

parallel algorithms to link stochastic CA with differential equations (https://

bitbucket.org/HTasken/cansim). The algorithms minimize the communication

between processes that share CA neighborhood values while also allowing for

reproducibility during stochastic updates. We demonstrated the potential of our

solution on a complex hybrid cellular automaton model of breast cancer treated

with combination chemotherapy. On a single-core processor, we obtained nearly

linear scaling with an increasing problem size, whereas weak parallel scaling

showed moderate growth in solving time relative to increase in problem size.

Finally, we applied the algorithm to a problem that is 500 times larger than previ-

ous work, allowing us to run personalized therapy simulations based on hetero-

geneous cell density and tumor perfusion conditions estimated from magnetic

resonance imaging data on an unprecedented scale.
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1 | INTRODUCTION

Mathematical modeling and computer simulations, informed by patient-specific clinical data, can be used to make per-
sonalized predictions of response to cancer therapy.1 The methodology can in principle be used to design patient-
specific treatment plans and constitutes a promising approach to personalized cancer medicine. One of the main goals
is the development of quantitative and computational tools that can effectively and efficiently simulate the outcome of
multiple therapeutical strategies in individual patients. However, the complexity, heterogeneity and multi-scale nature
of cancer present severe computational challenges to that goal. Specifically, treated cancer tissue entails multiple inter-
acting processes occurring at different spatio-temporal scales (for instance, intracellular signaling pathways, drug phar-
macokinetics or single cell fates such as division or death). One approach to model the interactions is the hybrid
cellular automata (HCA) framework coupling discrete cellular automata (CA) and continuous model components
accounting for the different phenomena and scales.2,3,4,5

To simulate HCA models, computational algorithms have to balance the numerical schemes used to efficiently solve
the different discrete and continuous formalism together with the sharing of partial states between them.6,7 Computa-
tional time can be easily misspent in situations in which solvers are on hold while others need to reach stationary
states. Furthermore, because different solvers can have different numerical meshes in space and time, resolving states
sharing is not always a straightforward task. The large number of cells and the heterogeneity present within the tissue
add to the complexity of simulating cancer tissue. Tumors, for example, frequently have areas with different cell densi-
ties and perfusion characteristics, cells and vessels may have different characteristics, and so on. As such, heterogeneity
is known to influence treatment outcomes, large scale simulations that can capture it are needed. Furthermore, a simu-
lation algorithm is only useful in clinical settings if the computational time is compatible with clinical decision-making.
As a result, parallel computing is expected to play an important role.

FEniCS is a finite element computing platform for solving partial differential equations (PDEs) that has been funda-
mentally designed for parallel processing.8 While FEniCS has already been extended to couple PDEs with ordinary dif-
ferential equations (ODEs) associated with mesh nodes, the coupling with stochastic CA models required to solve HCA,
is not straightforward. Specifically, mesh partitioning methods used by FEniCS are unsuitable for applying CA rules
based on values in different CA meshes. We solved this issue by developing an algorithm that creates a map of what
information needs to be exchanged between processes during each CA update. In addition, we implement a priority sys-
tem to resolve potential conflicts caused by multiple processes attempting to set a CA node value at the same time. This,
combined with an efficient and lightweight random number generation implementation, enables us to reproduce sto-
chastic model simulations, produce unbiased results, and claim statistical significance.

To demonstrate the potential of our approach and algorithms, we consider an updated multi-scale HCA model, previ-
ously used for simulating personalized breast cancer therapy.9,10 In previous work,9 model simulations were used to explain
treatment outcomes at the level of individuals and suggest more successful regimes for tumors that did not respond to ther-
apy. These findings were encouraging, but they were limited to small sections of the tumor with only a few hundred biolog-
ical cells and were simulated on a single CPU. While the new model is parameterized using the same methods as
described,9 this work is dedicated to describing the unique numerical schemes implementing the stochastic hybrid discrete-
continuum modeling. The new parallel solver allows to simulate more clinically relevant pieces of tumors and to capture
the tumor heterogeneity as observed in magnetic resonance imaging (MRI) data. In addition to testing the solver scalability
of single core performance, we performed a weak scaling study on a cluster of up to 80 cores as problem size increased.
Finally, we demonstrate that it is now possible to run simulations of 2D tumor sections 500 times larger than previously.9,10

2 | METHODS

2.1 | Magnetic resonance imaging

Variation in cellular and vascular density across breast tumor tissue of one patientwas assessedwithMRI. The patient underwent
MRI examinations before the start of treatment, and after 1 and 12 weeks of neoadjuvant treatment. Examinations were per-
formed on an ESPREE 1:5 T MR scanner (Siemens, Erlangen, Germany) equipped with a phased-array bilateral breast
coil (CP breast coil, Siemens, Erlangen, Germany). The MRI protocol was a state-of-the-art MRI protocol11 with
T2-weighted, diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) MRI. DCE-images were acquired using
a radial, spoiled gradient echo with k-space weighted image contrast (KWIC), using spectral adiabatic inversion
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recovery (SPAIR) for fat-suppression (TE = 2:59 ms, TR = 5:46 ms, flip angle = 15 ∘ , field of view = 320 mm�320 mm,
in-plane resolution = 1 mm�1 mm, slice thickness ¼ 15 mm). After eight pre-contrast series, the contrast agent
(Gadovist, Bayer Pharma, Germany) was administered at a dosage of 0:8 mmol kg�1, at a rate of 3 ml s�1, followed by a
20 ml saline flush. Subsequently, 32 post contrast image-series were acquired at a frequency of 1=13 s�1.

DCE images were analyzed using an extended Tofts two-compartment pharmacokinetic model, yielding
1 mm�1 mm-resolution maps of in-vivo perfusion parameters in the tumor. Perfusion parameters calculated includes
the permeability-surface area product, K trans of the vasculature, volume fraction of the vascular space, vp and volume
fraction of the extravascular, extracellular space, ve. Additionally, the cellular density was estimated as
vc ¼ 1� vpþ ve

� �
. Image analysis was performed using nICE (Nordic NeuroLab, Bergen, Norway). Patient specific arte-

rial input function was sampled from a region of the right atrium of the heart, visible in the DCE images.

2.2 | Multi-scale mathematical model

We begin by summarizing the multi-scale mathematical model of breast cancer and its treatment by a combination of
administrated drugs. A more in-depth biological and clinical discussion of the model can be found in our previous
work.9 Using hybrid CA,2,3 the model accounts for the response of a 2D cross section of tumor tissue to a combination
of chemotherapeutic and anti-angiogenic agents. Thus, a tumor section is represented by a finite regular square lattice
L, consisting of a set of nodes labeled by their positions x � L, x¼ iΔx, jΔxð Þ, i¼ 0, ::,n�1, j¼ 0,…,m�1, Δx being the
distance between nearest nodes. Biological cells and cross-sectional cuts of functional blood vessels are modeled as indi-
vidual agents occupying a single lattice node. Microenvironmental factors in the tissue section, such as oxygen, are
modeled as continuous variables over the domain D¼ 0, n�1ð ÞΔx½ �� 0, m�1ð ÞΔy½ � �ℝ2. Intracellular and intravascu-
lar processes are modeled as continuous variables associated to each cell and blood vessel, respectively. To account for
cell and blood vessel dynamics and the molecular factors that control them, we build five interlinked model modules:
the cellular, subcellular, vascular, intravascular and extravascular-extracellular modules. Figure 1 shows a diagram with
the main components of each module, the interactions between them and the model formalism used in each case. A
more detailed description of each module is provided below.

2.2.1 | Stochastic cellular automaton for the cellular module

The presence of cancer and other cells, referred here as stroma, on the lattice sites at time t, is described by a function
ℒ that takes three possible values: ℒ x, tð Þ¼ 0, if the site x is empty; ℒ x, tð Þ¼ 1, if x is occupied by a cancer cell; or

FIGURE 1 Modular structure of the hybrid cellular automaton model for vascular tumor growth and combination therapy. The

directions of arrows indicate influence between different components of each module. The last column shows the mathematical formalism

used to describe each of the modules
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ℒ x, tð Þ¼ 2, if x is occupied by a stroma cell. At most one cell can occupy one site of the grid. It is assumed that cancer
cells can divide or die but cell movements are neglected. Cancer cell division is controlled by an internal cell cycle clock
described in the subcellular module below. When a cell at position xcell is committed to divide, it can be killed by the
chemotherapy agent i¼ 1,2,3 with a probability given by:

I
Gi xcell, tð Þ
max Gi,0ð Þ ;1,bi

� �
, ð1Þ

where I x;a,bð Þ¼ Γ aþbð Þ
Γ að ÞþΓ bð Þ

R x
0y

a�1 1� yð Þb�1dy. The value max Gi,0ð Þ refers to the maximal concentration of chemotherapy
i in the blood and bi is a parameter describing the sensitivity toward chemotherapy i. If the cell at position x dies at time
t, it is removed from the computational grid by setting L x, tð Þ¼ 0. If chemotherapy does not kill the proliferating cell, a
daughter cell is placed at an empty (Moore) neighbor location with the highest oxygen pressure. If, however, no free
space is available in the neighborhood, the cell cycle of the parent cell is reset to zero and no daughter cell is produced.

Stroma cells in our cellular automaton do not proliferate or die. Thus, their role in the model is restricted to compe-
tition for space and oxygen with cancer cells and to production of the vascular endothelial growth factor (VEGF) under
hypoxia (low oxygen tension).

2.2.2 | Stochastic cellular automaton for the vascular module

We consider only perfused functional blood vessels and assume that all are cylindrical and perpendicular to the
modeled tumor section. The presence of cross-sectional vessel cuts in the lattice at time t is given by the function G,
with G x, tð Þ¼ 1 representing the presence of a functional vessel and G x, tð Þ¼ 0 its absence. Vessel dynamics is modeled
by a birth-death process, with the probability of creating and removing vessels depending on the extracellular spatial
distribution of the angiogenic factor VEGF. Specifically, we assume there is a range of VEGF concentrations where ves-
sels are viable but outside that concentration range vessels are more likely to regress and disappear. Therefore, at every
fixed time step Δv, we define the probability of creating and removing a vessel at x � L as:

P G x, tþΔvð Þ¼ 0 j G x, tð Þ¼ 1ð Þ¼ pdeath if Vx <Vlow or V x >Vhigh

P G x, tþΔvð Þ¼ 1 j G x, tð Þ¼ 0ð Þ¼ pbirth x, tð Þ if Vlow ≤Vx ≤Vhigh
ð2Þ

where Vlow and Vhigh are lower and upper thresholds of VEGF concentration where functional vessels are viable, and
Vx ¼V x, tð Þ denotes the extracellular concentration of VEGF at location x at time t, which is described below. Exten-
ding our original model,9 we now assume that the probability of birth pbirth x, tð Þ is proportional to the VEGF concentra-
tion V x, tð Þ, instead of being constant. Following Owen et al,12 we also assume that at each time-step Δv, the expected
value of new created vessels is given by nnew:

E nnew½ � ¼Prsprout2πr0hcΔv
Z

rx
r0

Vx

V sproutþVx

X
x � xv

δ x�x, tð Þdx, ð3Þ

where Prsprout is the maximum probability that an endothelial sprout emerges from a surface of a vessel and forms a
new vessel, Xv ¼ x :G x, tð Þ¼ 1f g is the set of all blood vessel locations at time t. rx ¼ r x, tð Þ is the vessel radius, r0 is the
average radius of initial vessels, hc is the height of the simulated tissue layer and V sprout is the VEGF concentration at
which the probability is half-maximal.

2.2.3 | Systems of ordinary differential equations for the intravascular module

The time-dependent concentrations of four drugs in the blood, that is, Avastin and a cocktail of three chemotherapies
(Fluorouracil, Epirubicin, and Cyclophosphamide) together known as FEC100, are modeled by their respective
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pharmacokinetic equations, dosage and drug administration schedule. It is assumed that all vessels share the same drug
concentration at a given time point. For Avastin, a two-compartment model is used:

dA1

dt
¼� q

v1
A1�

cl
v1
A1þ

q
v2
A2, ð4aÞ

dA2

dt
¼� q

v2
A2�

cl
v1
A1, ð4bÞ

where A1 ¼A1 tð Þ and A2 ¼A2 tð Þ are the concentrations of Avastin at time t in the plasma and peripheral compart-
ments, respectively, and q, cl, v1, v2, are kinetic and compartment volume parameters. For Fluorouracil a single com-
partment model is used:

dG1,0

dt
¼� vmax

kmþG1,0
G1,0, t≠ tDn ð5Þ

and

G1,0 tdnð Þ¼ dn
V
, n¼ 1…N ð6Þ

where G1,0 ¼G1,0 tð Þ is the plasma concentration at time t, dn is the nth dose, and vmax , km and V are kinetic parameters.
For Epirubicin, a three-compartment model is used:

dG2,0

dt
¼� q2

w1
G2,1�

q3
w1

G2,2�
cl2
w1

G2,0þ
q3
w3

G2,2þ
q2
w2

G2,1, ð7aÞ

dG2,1

dt
¼� q2

w2
G2,1þ

q2
w1

G2,0, ð7bÞ

dG2,2

dt
¼� q3

w3
G2,2þ

q3
w1

G2,0,andG2,0 tdnð Þ¼ dn
V 1

, n¼ 1…N ð7cÞ

and

G2,0 tdnð Þ¼ dn
V1

, n¼ 1…N ð7dÞ

where G2,0 ¼G2,0 tð Þ is the plasma concentration at time t and G2,1 ¼G2,1 tð Þ and G2,2 ¼G2,2 tð Þ are concentrations in two
peripheral compartments at time t. The parameters q1, q2, q3, cl2 are kinetic rates and w1, w2, w3 are compartment vol-
umes. For Cyclophosphamide, a single compartment model is again used:

dG3,0

dt
¼�cl3

u
G3,0, ð8Þ

and

G3,0 tdnð Þ¼ dn
V
, n¼ 1…N ð9Þ

where G3,0 ¼G3,0 tð Þ is the plasma concentration at time t and cl3, u are kinetic parameters. For G2,0 and G3,0, closed-
form solutions, described in elsewhere,13 were used for the calculation of plasma chemotherapy concentration.
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2.2.4 | Ordinary differential equations for the intracellular module

For each cell c at position xc, the intracellular amount of p53, denoted by Pc ¼ Pc tð Þ, and the intracellular amount of
VEGF, denoted by V c ¼V c tð Þ, are modeled by the following system of equations:

dPc

dt
¼ k1�k01

Kxc

Kp53þKxc
Pc, ð10Þ

dVc

dt
¼ k2þk002

PcV c

J5þV c
�k02

Kxc

KV þKxc
V c ð11Þ

where k1, k
0
1, Kp53, k2, k

0
2, k

00
2, J5 and KV are kinetic parameters. The function Kxc ¼K xc, tð Þ represents the oxygen con-

centration at cell location xc and is modeled by a PDE (described below).
Similarly, the progression though the cell cycle ϕ¼ϕ tð Þ of each cell c at position xc is modeled by the equation:

dϕ
dt

¼ Kxc

T KϕþKxc

� � , ð12Þ

where T and Kϕ are scalar parameters. At start, all cancer cells are assigned a random ϕ value between 0 and 1. The
value of the cell cycle of a newly divided cell is set to ϕ¼ 0, and it increases until the first cellular update after ϕ≥ 1. At
that point, the cancer cell is committed to divide and will either divide or die due to the effect of chemotherapy as described
above.

2.2.5 | Reaction–diffusion equations for the extravascular-extracellular module

Each of the four drugs (Avastin A, Fluorouracil G1,0, Epirubicin G2,0, and Cyclophosphamide G3,0) is modeled as mov-
ing from the vessels (concentrations denoted by A1,G1,0,G2,0,G3,0 respectively) to the extracellular-extravascular space
(concentrations denoted by A,G1,G2,G3, respectively). These rates depend on the difference in concentrations between
the vessel Uv ¼Uv tð Þ and the extracellular-extravascular space (EES), Ux ¼U x, tð Þ, and the drugs' vessel surface perme-
abilities PU , and are modeled as:

RU ¼
Z

V0

Uv�Uxð ÞPU Sxdx ð13Þ

where the integration domain V0 is the total volume of the cross-section, and Sx ¼ S xð Þ is the vessel surface-per-volume
ratio for a vessel at x.

RU ¼
Z

V0

Uv�UxÞð ÞPU
2πrxh
Δx3

X
xv � Xv

δ x�xv, tð Þdx

¼ PU2πr0h
Δx3

Z
V0

Uv�Uxð Þrx
r0

X
xv � Xv

δ x�xv, tð Þdx,
ð14Þ

where r0 is the average radius of the initial vessels, rx ¼ r x, tð Þ is the radius of the vessel at x, and h is the vessel length
(which is the height of tissue section and equal to the cell size Δx). Function δ is the Dirac delta function and for conve-
nience, we introduce a short-hand for the sum of Dirac delta functions over a set of points Xa:
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N a ¼N a x, tð Þ¼
X

y � Xa

δ x�y, tð Þ ð15Þ

This forms part of the reaction terms in Equations (17) to (21) below.
For chemotherapy and Avastin, we assumed that PU ¼ cUPGado. PGado is the permeability of gadolinium, the contrast

agent used in MRI, and cU � ℝ is a scaling constant. Given that the initial transfer rate
K init

trans ¼ PGadoSinit ¼ PGadoN init
v 2πr0h= SMRIhð Þ, is the Tofts model permeability-surface area product of gadolinium,14

where N init
v is the initial number of vessels and SMRI is the permeability-surface area product of a voxel in MRI, we can

derive that PU ¼ cUK init
transSMRI= N init

v 2πr0
� �

. It can then be substituted in Equation (14) for Avastin and the chemother-
apies to give:

RU ¼ cUK
init
trans

SMRI

Δx2N init
v

Z
V0

rx
r0

Uv�Uxð ÞN vdx, ð16Þ

Oxygen
Oxygen pressure K ¼K x, tð Þ in the EES is modeled by the following reaction–diffusion equation for all x � D and t>0:

sK
∂K
∂t

¼DKr2K� ϕKK
K1þK

N cþ
PK2πr0
Δx2

K0�Kð ÞN v, ð17Þ

where Dk, ϕK , K1 and K0 are scalar parameters, Xc ¼ x :ℒ x, tð Þ≠ 0f g is the set of all cell locations. sK � 0,1f g is con-
stant. When sK ¼ 1, this becomes to the time-dependent reaction–diffusion PDE, while sK ¼ 0 corresponds to the steady-
state equation. The latter is used to initialize the oxygen pressure given initial locations of cells and vessels. The first
term in the right-hand-side of Equation (17) accounts for oxygen diffusion, the second term accounts for the consump-
tion by cells and the third term represents point sources accounting for the flow of oxygen from the blood vessels.

Chemotherapies
The concentration of each chemotherapy Gi ¼Gi x, tð Þ, with i¼ 1,2,3 in the EES is modeled by the following reaction–
diffusion equation for x � D and t>0:

sC
∂Gi

∂t
¼DGir2Gi�ψGi

Giþ cGK
init
trans

SMRI

Δx2N init
v

rx
r0

Gi,0�Gið ÞN v, ð18Þ

where DGi is the diffusion constant of Gi, ψGi
is the linear decay rate of Gi. Gi,0 is the concentration of chemotherapy

i in the blood. The first term in the right-hand-side of Equation (18) accounts for diffusion of the concentration, the second
term accounts for drug decay, the third term represent point sources accounting for the flow chemotherapy from the vessels.

VEGF-Avastin complex
Avastin is a VEGF-inhibitor that binds to the VEGF and produces an inactive VEGF-Avastin complex, thereby reducing
the availability of active VEGF. The interactions between the Avastin, VEGF and VEGF-Avastin complex concentrations
A¼A x, tð Þ, V ¼V x, tð Þ and C¼C x, tð Þ are given by the following system of reaction–diffusion equations
for x � D, t>0:

∂V
∂t

¼DVr2V þaV cN c�kaAV þkdC�ψVV ð19Þ

∂A
∂t

¼DAr2A�kaAV þkdC�ψAAþ cAK
init
trans

SMRI

Δx2N init
v

rx
r0

A1�Að ÞN v ð20Þ

∂C
∂t

¼DCr2CþkaAV �kdC�ψCC, ð21Þ
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where DV , DA, DC, a, b, ka, kd, ψV , ψA, ψC and cA are scalar parameters and V c is the time-dependent intracellular con-
centration of VEGF described in Equation (11) and A1 is the time-dependent concentration of Avastin intravascularly.
The first term in the right-hand-side of Equation (19) accounts for diffusion of the VEGF concentration, the second
term accounts for the release of VEGF by cells, the third and forth terms account for VEGF binding/unbinding to the
VEGF inhibitor Avastin and the last term accounts for natural VEGF decay. In Equation (20), the first term in the
right-hand-side accounts for diffusion of the Avastin concentration, the second and third terms account for Avastin
binding/unbinding to VEGF, the forth term accounts for drug decay and the last term represent point sources account-
ing for the flow of Avastin from the vessels. Finally, the first term in the right-hand-side of Equation (21) accounts for
diffusion of the VEGF-Avastin complex, the second and third terms account for Avastin binding/unbinding to VEGF
and the last term represents natural decay of the complex.

2.3 | Patient-specific model initialization and parameterization

All simulations run in this study were personalized by data from a specific breast cancer patient (Patient 3) from a clini-
cal trial.9 Model initialization and parameterization are, unless differently specified, as in that publication, where clini-
cal, histological, MRI and molecular data were used to estimate model parameters and initial values. Patient 3 is a
complex patient and was chosen for exhibiting very heterogeneous perfusion conditions as observed by MRI. More pre-
cisely, MRI showed a tumor core with very low perfusion and viable cells and a tumor edge with much higher perfusion
values. All parameter used for the simulations are listed in Table 1.

2.4 | Numerical methods

The main algorithm for the numerical solution of the full model equations is presented in Algorithm 1 below. Further
specification of the numerical techniques for solving the separate subproblems are given in the text below. The numeri-
cal solver was implemented using the open source FEniCS Project finite element library.8 The code is available at
https://bitbucket.org/HTasken/cansim.

2.4.1 | Numerical solution of the PDE systems

The time-dependent, nonlinear systems of PDEs describing the evolution of the oxygen and chemotherapy concentra-
tions and the VEGF-Avastin complex (Equations (17) to (21)) are solved using the finite element method in space and
finite difference method in time. The non-linear problems are solved using the Newton–Raphson method and all linear
systems are solved using iterative Krylov methods designed to scale to large-scale simulations.

The computational domain D, representing a tissue slice, is a rectangular region:
D¼ 0, n�1ð ÞΔx½ �� 0, m�1ð ÞΔy½ � �ℝ2. We call T the base regular square mesh with n�m vertices associated with D.
The vertices are the potential locations for the vessels and biological cells. To avoid having the accuracy of the PDE
solutions limited by the size of the biological cells, a finer mesh is used for the finite element discretization of the PDEs.
Specifically, we used a uniform refinement T H of the base mesh with 2 �22 n�1ð Þ�22 m�1ð Þ triangular elements. The
same refined mesh was used for the discrete functions, that is, the delta function representation of the vessels and bio-
logical cells. See section 2.5 for more detail. The choice for the number of refinement was determined by a mesh inde-
pendence study, in which the relative error of the solution was stable after twice refinement.

Solving the chemotherapy concentration equations
We first consider the numerical solution of the system of chemotherapy equations, 18 for i¼ 1,2,3. Each equation is
time-dependent but linear, and the equations are independent of each other. We first discretize each PDE by the
implicit second-order Crank–Nicolson scheme in time. At each time tk for k¼ 1,…,K, given the concentrations at the
previous time Gk�1

i , we solve for the concentrations Gk
i using the finite element method with continuous piecewise lin-

ear finite elements relative to the mesh T H . The resulting linear systems of equations are symmetric and positive
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TABLE 1 Overview of all parameters

Parameter Description Value Units

kϕ Oxygen concentration at half-maximal cycle speed 1.4 mmHg

k01 Degradation rate of p53 by oxygen 0.01 min�1

KTP53 Oxygen concentration for half-maximal TP53 degradation 0.01 mmHg

k2 Synthesis rate of VEGF 0.002 min�1

k02 Reaction rate of p53 with VEGF 0.01 min�1

J5 sVEGF concentration for half-maximal sVEGF production 0.04 μgml�1

KVEGF Oxygen concentration for half-maximal VEGF degradation 0.01 mmHg

Dk Oxygen diffusion coefficient 1.05 x 105 μm2min�1

rk Oxygen supply rate 1.88 x 104 min�1

K0 Oxygen concentration in the blood 20 mmHg

ϕk Oxygen consumption rate 900 min�1

K1 Oxygen concentration for half-maximal consumption 2.5 mmHg

Dv VEGF diffusion coefficient 3.52 x 103 μm2min�1

a VEGF secretion slope 6:66�10�6 min�1

b VEGF secretion intercept �1:10�10�6 μgml�1min�1

ka VEGF association rate to Avastin 7:4�10�1 μg�1 mlmin�1

kd VEGF dissociation rate from Avastin 1:76�10�3 min�1

ψ v VEGF decay rate 1.0 x 10�2 min�1

DA Avastin diffusion coefficient 2:4�103 μm2min�1

ψC Complex decay rate 1.0 x 10�2 min�1

DGi Chemotherapies diffusion coefficient 9.6 x 103 μm2min�1

ψGj Chemotherapies decay rate 1.0 x 10�2 min�1

v1 Avastin plasma compartment volume 2:66�103 ml

v2 Avastin peripheral compartment volume 2:76�103 ml

q Avastin intercompartmental clearance 0:412 ml/min

cl Avastin elimination clearance 0:144 ml/min

vmax Fluororacil maximal degradation rate 1:75 μg/ml/min

km Fluororacil half-maximal concentration 27 μg=ml�1

w1 Epirubicin plasma compartment volume 18�103 ml

w2 Epirubicin peripheral compartment volume 957�103 ml

w3 Epirubicin peripheral compartment volume 25�103 ml

q2 Epirubicin intercompartmental clearance 0:918�103 μg/ml/min

q3 Epirubicin intercompartmental clearance 0:25�103 μg/ml/min

cl2 Epirubicin elimination clearance 0:983�103 μg/ml/min

u Cyclophosphamide plasma compartment volume 2430�103 ml

cl3 Cyclophosphamide elimination clearance 3:93�103 μg/ml/min

Δx Space interval 10 μm

Δt Time interval of cell cycle update 30 min

Δv Vessel update interval 720 min

LowV Lower VEGF angiogenic threshold 10�6 μgml�1

α FEC dose–response shape 1 Dimensionless

Tmin Minimum cell cycle duration 3.74 Days

k1 Basal p53 synthesis rate 0.0004 min�1

k0 02 Maximal p53 effect in VEGF production �0.0002 min�1

dG1 Fluorouracil dose 600 mg m�2

(Continues)
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definite, and were solved (with optimal complexity) using a conjugate gradient (CG) solver with algebraic multigrid
(BoomerAMG15) preconditioning with a relative solver tolerance of 10�8.

Solving the oxygen concentration equation
We consider the time-dependent version of the nonlinear oxygen concentration Equation (17) (with sK ¼ 1). As for the
chemotherapy equations, we first discretize the PDE by the implicit second-order Crank–Nicolson scheme in time. The
resulting nonlinear system of differential equations at each timestep tk is discretized using continuous piecewise linear
finite elements relative to the mesh T H . We solve the resulting nonlinear system using a Newton iteration, with a toler-
ance of 10�8. The inner loop linear systems are symmetric and positive definite, and were solved with a CG Krylov
solver with Jacobi preconditioning, and a relative solver tolerance of 10�8.

TABLE 1 (Continued)

Parameter Description Value Units

dG1 Epirubicin dose 100 mg m�2

dG3 Cyclophosphamide dose 600 mg m�2

dA Bevacizumab dose 0 mg m�2

Algorithm 1 Numerical solution of the coupled PDE-ODE-CA model

1: Initialize computational meshes T H corresponding to the regular square lattice L (cf. 2.2).
2: Initialize the vascular lattice representation G � ,0ð Þ and cellular lattice representation L � ,0ð Þ based on

available patient data.
3: Compute the initial oxygen concentration K � ,0ð Þ by solving (17) with sK ¼ 0.
4: Define the initial condition for the cell cycle ϕ based on a uniform random distribution:

ϕx 0ð Þ∈U 0,1ð Þ 8x∈L,

and compute the intracellular levels of P tð Þ and Vc tð Þ at initial time (t¼ 0) by solving (10) and (11), respec-
tively, using the initial oxygen concentration K � ,0ð Þ.

5: Define the initial chemotherapy concentrations by setting Gj � ,0ð Þ¼ 0 for j¼ 1,2,3. Define initial condi-
tions for V , A and C by setting V � ,0ð Þ¼ 0, A � ,0ð Þ¼ 0 and C � ,0ð Þ¼ 0.

6: Compute the intravascular chemotherapy concentrations Gj,0 tið Þ, j¼ 1,2,3 and intravascular VEGF-
inhibitor concentrations A1 tið Þ by solving (4)-(9) given doses dk,k¼ 1,2,3 8ti ≤T

7: Set t1 ¼Δt¼ 30 min, n¼ 1
8: while tn ≤T do
9: Compute K � , tnð Þ by solving (17) with sK ¼ 1.
10: Compute V � , tnð Þ, A � , tnð Þ, C � , tnð Þ by solving eqs. (19) to (21).
11: Compute Gj for j¼ 1,2,3 by solving (18).
12: Compute P � , tnð Þ and Vc � , tnð Þ by solving (10) and (11) and compute ϕ � , tnð Þ by solving

(12) using K � , tnð Þ.
13: Compute L � , tnð Þ and G � , tnð Þ based on the cellular automaton rules described in section 2.2.1.
14: Set tn ¼ tn�1þΔt, n¼nþ1.
15: end while
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We also used a linear approximation of the nonlinear system that could lead to significant CPU time reduction. In

particular, the non-linear term at timestep tk can be approximated by
K x, tkð Þ

K1þK x, tk�1ð Þ, where K x, tk�1
� �

denotes the solution

of oxygen at time k�1. The resulting linearized system of differential equations at each timestep tk is discretized using
continuous piecewise linear finite elements relative to the mesh T H . The resulting linear system of equation is symmet-
ric and positive definite, and were solved (with optimal complexity) using a CG solver with algebraic multigrid
(BoomerAMG15) preconditioning with a relative solver tolerance of 10�8. We found that the difference between the
non-linear and linear approximations to be negligible (with a difference of less than 0.03%).

Solving the coupled system equations of VEGF/Avastin complex
The system of PDEs was discretized by the implicit second-order Crank–Nicolson scheme in time. The resulting
nonlinear system of differential equations at each timestep tk is discretized using continuous piecewise linear finite ele-
ments relative to the base mesh T H . We solve the resulting nonlinear system using Newton's method, and the (non-
symmetric) linear systems were solved with an iterative Krylov (GMRES) solver with Jacobi preconditioning. The stop-
ping criteria for the Newton and Krylov solvers were set to 10�8 for both.

The coupled system of VEGF/Avastin complex can be simplified when Avastin is not administered. In this case, the
PDE system reduces to a linear PDE in V alone. The resulting linear equation is symmetric and positive definite, and
were solved (with optimal complexity) using a CG solver with algebraic multigrid (BoomerAMG15) preconditioning
with a relative solver tolerance of 10�8.

2.4.2 | Numerical treatment of ODEs

The ODEs for the intravascular module and cell cycle can be solved analytically13 and evaluated at the necessary time
points. For the coupled system of the intracellular module, solution to P x, tkþdtð Þ can be written in explicit form given
solution P x, tkð Þ at t¼ tk. For Vc x, tð Þ, VODE solver with implicit Adams method from SciPy package was chosen for
the non-stiff problem for each cell. This solver uses an adaptive time step, and the maximum time step was set
to 1min:.

2.5 | Numerical treatment of cellular automaton

The biological cells and vessels are in the equations above represented as delta functions, and these delta functions are
here numerically approximated with continuous, piecewise linear functions defined relative to the refined mesh T H .
Such an approximated delta function, δ x�xIð Þ, will take the form of a right square pyramid centered at xi with the
value of 0 at all vertices, except at xi where it will take the value that makes the integral over the approximated delta
function become 1 (as it should for a delta function).

For each cancer cell at x¼ xi,xj
� �

� ℒ with cell cycle ϕx ≥ 1, the cell is killed with probability drawn from a cumu-
lative Beta distribution Beta 1,βð Þ,β>0. If the cell is not killed, a new cell is placed at the lattice site x0 � xp,xq

� �
,p¼

i�1,…, iþ1,q¼ j�1,…, jþ1 with the highest oxygen concentration K. No cell is placed if no space is available in the
neighborhood, i.e. if all (Moore) neighbor sites are occupied by other cells. If more than one cell attempts to place a
new cell at the same lattice site, the cell with the highest ϕ wins. The new cell inherits its minimum cell cycle duration
Tmin. Next, ϕx and ϕx0 are set to ϕx mod 1ð Þ and 0 respectively. The intracellular VEGF and TP53 levels P, Vc are set to
zero at both x and x0 at time t. The sequence of updates for proliferation-ready cells is asynchronous such that the new
state of a cell do not affect the calculation of states in neighboring cells.

2.6 | Parallelization of hybrid cellular automaton and finite element models

2.6.1 | Linking spatially parallel continuous and discrete modules

The computational expense of the whole algorithm is dominated by the operations within each time step. Each time
step consists of “continuous update”—solving a sequence of PDEs and ODEs, and “discrete update”—computing states
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of cellular automaton. Due to the inherent dependencies between the continuous and discrete components, parallelism
in the time variable is more difficult to approach. Instead, since the solvers in the FEniCS system are spatially parallel,
we consider a fork-join strategy. They are simple to integrate with the rest of the algorithm as long as the communica-
tion overhead is kept to a minimum.

Standard domain decomposition techniques, iterative linear solvers, and preconditioners were used to parallelize
the PDE assembly and solvers. The parallelization of the ODEs was trivial: they are made up of spatially decoupled
problems that are described on each biological cell and can thus be solved independently. The parallelization of the cel-
lular automaton models necessitated further consideration because they are dependent on the oxygen levels in neigh-
boring biological cells. Retrieving that information requires inter-process communication if that cell is at the boundary
of the domain decomposition. Cells are classified into two categories based on their location within the sub-domain.
Cells located inside a sub-domain are marked as internal, while those located at the boundary of two or more sub-
domains, shared by two, three or four processors are marked as inter-facial. To achieve this, we added a setup routine
(Algorithm 2) to the algorithm that allows parallel processes to determine which process owns their neighboring biolog-
ical cells. These neighbor maps allowed the cellular automaton to retrieve neighboring biological cell values with mini-
mal overhead.

2.6.2 | Choosing a scalable parallel random number generator

Since the model is stochastic, having a scalable parallel random number generator (RNG) is an important aspect of
parallelization. To investigate and understand the simulation results, we must be able to reproduce the same scenarios
and obtain the same confidence intervals each time the same stochastic experiment is performed; when debugging such
parallel stochastic application, we also need to reproduce the same result to correct any anomalous behavior. Further-
more, for applications in predicting treatment effect, it is important to produce unbiased results and claim statistical sig-
nificance. Implementation of pseudo RNG also reduces the number of simulations needed for claiming statistical
significance in cross-comparison between different treatment regimens since the simulation would be the same until
the point of divergence induced by different regimens.

Pseudo RNG in high-performance computing (HPC) applications, particularly in our HCA model, requires the following
criteria. It cannot download, or store the hundreds of thousands of numbers needed to reproduce the experiments due to
constraints of the server. The random number sequence assigned to each cell or vessel must not depend on the number of
processors, that is, each cell or vessel should autonomously obtain either its own random sequence or its own sub-sequence
of a global sequence. The pseudo RNG must also come with good statistical properties, approximating as close as possible a

Algorithm 2 Implementation of communication between neighbour cells on different processes

1: MPI Initialization
2: Make a map containing the coordinates on the mesh and the process of all eight neighbour cells for

each cell.
3:
4: for each time step do
5: Get oxygen concentration 8x∈L xð Þ
6: Get and update ϕ xð Þ
7: Gather x such that ϕ xð Þ>1
8: update cells according to cellular automaton rules
9:
10: if more than one processor attempt to update at the same x then
11: update L xð Þ from the processor with higher ϕ x0ð Þ value 8x0 in the neighbour
12: Set automata, vegf, p53 and cell cycle value of the new cancer cell equal to the parent cancer cells
13: end if
14: end for
15: Update map

12 of 21 LAI ET AL.



truly random sequence. The RNG should also be memory-efficient as sequences of the RNG will be the length of any given
simulation, and the size of the RNG grows at the rate of the total number of vertices. We have therefore chosen permuted
congruential RNG16 which partitions the main sequence of the generator into sub-sequences for the sake of memory-effi-
ciency, good statistical properties, small state and a more than sufficient period.

3 | RESULTS

3.1 | Small-scale simulations

We first run personalized simulations of a patient analyzed previously with a previous version of the model and using a
non-parallel solver.9 These simulations correspond to a 200 μm�300 μm tissue section, a size that allowed us to use
exact initial cell positions available from histopathological slides. We use here the same initial conditions and previ-
ously published model parameters9 (see Table 1). As both the model and the solver are now extended, we do not expect
to get the same solutions as in previous work. We tested different perfusion conditions estimated from MRI images and
confirmed that the treatment outcome after 12weeks strongly depends on the perfusion conditions used. In Figure 2,
we show a simulation representing a high perfusion condition estimated at the outer edge of the tumor. In the simula-
tion the initial cell density is reduced by half after the first chemotherapy shot at week 0. Chemotherapy is efficiently
distributed in space but it is washed out after a few days. As approximately half of the cells are not dividing while the
chemotherapy is available, they are not killed and the number of cells grows significantly before the second chemother-
apy shot at week 3. After week 3 instead, all cancer cells are killed as they divide when enough chemotherapy is avail-
able. Comparing with previous simulations, the final outcome is matched but the transients are slightly different. We

FIGURE 2 Simulation of a small tissue cross section of size 200 μm�300 μm. The top panel depicts the evolution of the cancer cell

density over the course of 12weeks of treatment. Chemotherapy shots are given at weeks 0, 3, 6 and 9 and are illustrated by a vertical dotted

line in the figure. The lower panels depict the spatial distribution of oxygen, VEGF and chemotherapy at weeks 0, 1, and 3 in the tissue

section. The presence of cancer cells is shown in black dots in the oxygen panel. Since the vessels are point sources of those molecules, areas

with high blood vessel density can be perceived in the oxygen and chemotherapy panels
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attribute it mostly to solving time-dependent PDEs instead of the steady-state solver considered previously. This differ-
ence in solvers adds a factor of seven to the run time on a single core.

3.2 | Solver performance

To evaluate the runtime and scalability of the complete numerical solver, we consider a simulation of a 1 mm2 tissue
slice (D¼ 0,1½ �� 0,1½ � mm2), with n¼m¼ 100. Initial cell and vascular densities were assumed to be 0.4 and 0.12
respectively. These settings reflect a real patient simulation scenario.

3.2.1 | Serial runtime profile

The average intra- and inter-update timing of the solver was first carried out on a single CPU core. The total timings,
broken down by computational processes and by model modules, are shown in Figures 3 and 4.

We observe that the assembly of the discrete PDE operators dominates the runtime, specifically the time-dependent
assembly of the non-linear PDEs (Figure 3A). As expected, the solution of the linear systems (PETSc Krylov solver) is
also a substantial component. The other components and in particular the solution of the ODEs represent a nearly neg-
ligible cost. Overall, we found similar cost distribution comparing intra- and inter-update, indicating that communica-
tion during discrete updates were efficient.

The breakdown by modules shed some further insights on the cost of assembly: the solution of both VAC and Oxy-
gen modules are obtained by solving non-linear PDEs, and the system is re-assembled for each Δt. To reduce the
runtime of these modules, an explicit splitting scheme could be used instead (corresponding to a single step of the

FIGURE 4 Average inter-update timing of the model with Δt¼ 30 min solved over t¼ 120 min

FIGURE 3 Intra-update timing of the model with Δt¼ 1 min solved for t¼ 30 min

14 of 21 LAI ET AL.



Newton iteration) at the cost of numerical accuracy. Time spent on chemotherapy module comes second as there are
three types of chemotherapies to be solved separately. Initialization includes mesh initialization as well as function ini-
tialization for each module. This is done only once at the beginning of the whole simulation, and is therefore expected
to become negligible for longer simulations.

3.2.2 | Parallel scalability

We also investigated the parallel (weak) scalability of the assembly and solution of the PDEs. Weak scalability can be
examined for a series of problem sizes by assigning a constant problem size to each processing element—typically for

TABLE 2 Timing of temporal chemotherapy update (t = 30min)

Nproc N it Ndofs Ndof tA WSEA tS WSES

1 5 1 159,197 2.9177 1 6.2043 1

8 6 8 1,279,157 3.1415 1.0767 9.8944 1.5948

16 6 16 2,556,797 3.543 1.2143 12.911 2.081

24 6 24 3,837,677 3.6139 1.2386 14.752 2.3777

32 6 32 5,121,165 3.8919 1.3339 15.248 2.4577

40 6 40 6,405,957 3.7023 1.2689 15.502 2.4986

80 6 80 12,809,237 3.7708 1.2924 15.784 2.544

Note: Nproc is the number of processors, N it is the number of Krylov iterations, Ndofs is the total number of degrees of freedom, Ndof is the average
number of degrees of freedom per process, tA is assembly runtime, WSEA is the weak scaling efficiency for the assembly, tS is the linear solver
runtime, and WSES the linear solver weak scaling efficiency. Δt was kept constant during the update and the results shown are the minimum of five
repeated runs of the updates with random initialization of cell and vessel configurations. Intravascular concentration was kept constant during the
simulation.

TABLE 3 Timing of temporal oxygen update (t = 30min)

Nproc N it Ndofs Ndof tA WSEA tS WSES

(a) Timing of temporal oxygen update (t = 30min)

1 12 159,197 159,197 13.112 1 44.012 1

8 12 1,279,157 159,894 15.211 1.1601 82.138 1.8663

16 12 2,556,797 159,799 15.528 1.1843 164.76 3.7435

24 11 3,837,677 159,903 15.802 1.2052 277.56 6.3065

32 11 5,121,165 160,036 15.753 1.2014 296.43 6.7352

40 10 6,405,957 160,036 18.601 1.419 322.40 7.3253

80 10 6,405,957 160,036 18.485 1.410 399.94 9.0871

(b) Timing of temporal linearized oxygen update (t = 30min)

1 1 159,197 159,197 2.6657 1 3.0532 1

8 8 1,279,157 159,894 3.0377 1.1396 3.9054 1.2791

16 16 2,556,797 159,799 3.3315 1.2498 5.6732 1.8581

24 24 3,837,677 159,903 3.5559 1.3339 6.2294 2.0403

32 32 5,121,165 160,036 3.5187 1.32 6.6993 2.1942

40 40 6,405,957 160,148 3.7548 1.4086 6.6725 2.1854

80 80 12,809,237 160,115 3.5985 1.3499 6.8429 2.2412

Note: Nproc is the number of processors, N it is the number of Krylov iterations, Ndofs is the total number of degrees of freedom, Ndof is the average number of

degrees of freedom per process, tA is assembly runtime, WSEA is the weak scaling efficiency for the assembly, tS is the linear solver runtime, and WSES the
linear solver weak scaling efficiency. Δt was kept constant during the update and the results shown are the minimum time of five repeated runs of the updates
with random initialization of cell and vessel configurations.
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an increasing amount of processor cores. Perfect weak scaling is achieved if the run time stays constant while the work-
load is increased in direct proportion to the number of processors. The weak scaling factor was defined as

WSF¼ tN
t1
, ð22Þ

where t1 and tN is the runtime when using 1 and N processors, respectively, and was calculated for the assembly and
solve times separately.

All weak scaling experiments were conducted on Saga, the high performance computing facility placed at NTNU in
Trondheim, composed of Intel Xeon-Gold 6138 running at 2.0 GHz. Each Saga compute node consists of 40 physical com-
pute cores with 192 GiB memory each, giving approximately 4 GiB memory per physical core. We used FEniCS version
2019.1.0 built with an Intel compiler. These scalability tests were run on two compute nodes totaling 80 physical cores, and
with exclusive access to minimize communication overhead. For the sake of comparison, the end time of all temporal
updates of PDEs in the model was set to t¼ 30 min, while cell and vessel configurations were initialized randomly. The
parallel runtime and scalability of the chemotherapy equations are presented in Table 2. We observe a nearly optimal
WSF ≤ 1:3ð Þ for the finite element assembly up to 80 cores. For the linear solver, we observe a moderate increase in the
WSF up to 2 for 16 cores and 2:5 for 80 cores. The number of iterations of the Krylov solver stay constant however.

For the solution of the oxygen concentration equation, the parallel scalability timings are shown in Table 3. We note
that the solution time is around four times that of the chemotherapy equations and thus a dominant contribution. The
finite element assembly scales well up to 80 cores (WSE A ≤ 1:4) for both non-linear and the linearized solver. However,
by linearizing the oxygen equation, the weak scalability of the linear solver is improved from a WSF of up to 9 in
80 cores to be comparable to the results for the chemotherapy equations (WSE less than 2.24). We also investigated the

FIGURE 5 Simulation of a patient biopsy of size 1 mm�1 mm, equivalent to the size of a MRI voxel. The top panel depicts the

evolution of the cancer cell density over the course of 12weeks of treatment. Chemotherapy shots are given at weeks 0, 3, 6 and 9 and are

illustrated by a vertical dotted line in the figure. The lower panels depict the spatial distribution of oxygen, VEGF and chemotherapy at

weeks 0, 2, 4 and 6 in the tissue section. The presence of cancer cells is shown in black dots in the oxygen panel. Since the vessels are point

sources of those molecules, areas with high blood vessel density can be perceived in the oxygen and chemotherapy panels
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weak parallel scalability of the VAC equations. The results (data not shown) were highly comparable to the scalability
of the oxygen concentration solver.

3.3 | Simulating a cross-section of a MRI voxel of tissue

The spatial resolution of the available MRI data is defined by the imaging voxels of size 1 mm3. Thus, important biological
information, such as the perfusion of the tumor is only given per voxel of tissue. As an intermediate step to run multi-
voxel simulations, here we demonstrate the ability of our parallel solver to run a grid-size equivalent to a cross-section
of a MRI voxel.

Figure 5 illustrates the cancer cell trajectory under 12 weeks of chemotherapy treatment. Since digitalized biopsy
data detailing the exact distribution of cancer and stroma cells are available only for the small tumor section of size
200 μm�300 μm, we used the same cell density to approximate the number of cancer and stroma cells in the larger
one, but they were randomly distributed in the grid to initialize the simulation. We again use the same model parame-
ters detailed in Table 1. Comparing Figure 5 to Figure 2, we observe similar patterns. Immediately following the initial
administration of chemotherapy, the number of cancer cells starts to decrease, reaching a minima about 2.5 days later.
At that point, the chemotherapy treatment loses its effect and the cancer cells start to grow back again. This pattern is
repeated after the second chemotherapy shot at 3weeks, while the third shot at 6weeks kills all existing cancer cells.
The panels at weeks 0, 2, 4 and 6 in Figure 5 show the spatial distribution of cells, oxygen, VEGF, blood vessels and

FIGURE 6 Simulation of a digital biopsy sample of size 2 mm�1 cm from week 0 to week 1. The top panel depicts the evolution of the

cancer cell density of the whole, the edge and the core of the simulated biopsy over the course of 1 week of treatment. This is followed by

spatial comparative view of cancer cells distribution and three extracellular variables, from top to bottom, oxygen, VEGF, and chemotherapy

between week 0 (left panels) and week 1 (right panels). In the first row, locations of simulated cancer cells were marked in black, while

locations of simulated vessels were overlaid in color to represent their permeability in chemotherapy. Intravascular concentration of the

three chemotherapies between week 0 and week 1 are shown at the bottom
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chemotherapy in the simulated tumor cross-section. As expected, the tissue oxygen concentration increases and VEGF
concentration decreases when the number of cancer cells decreases. Due to a good tissue perfusion with a large number
of vessels and high permeability, chemotherapy reaches the whole tissue at effective concentrations. The total runtime
of this 12-week simulation on Saga took approximately 12 h with 80 cores.

3.4 | Simulating a cross-section of a digital biopsy sample

To ultimately demonstrate the impact of heterogeneous perfusion conditions on the dynamics of cell growth and kill-
ing, we constructed a mesh of size equivalent to 2�10 MRI voxels. This matches with the size of the core needle biopsy
taken at the beginning of the treatment in the clinical trial and we will refer to it as a digital biopsy sample. Perfusion
related parameters were applied in each of the 20 simulated voxels of a digital biopsy sample as follows. First, the MRI
slice with the widest tumor diameter is selected. This image reveals a difference in perfusion conditions between the
tumor edge and the core. Starting from the boundary between the core and the edge of the tumor, 5 voxels were chosen
radially inwards and outwards respectively, totaling 10 voxels. Another 10 voxels were chosen in the same fashion from
their immediate neighbor, resulting in a simulated biopsy of 2�10 voxels. Estimated perfusion parameters, specifically

FIGURE 7 Differences in cell densities between weeks 0 and 1 are depicted as box-plots. Simulated and actual cell densities from

magnetic resonance imaging (MRI) were seen in blue and yellow, respectively. The x-axis shows the comparison of 10 biopsy slices. The first

box-plot from the left compares the simulation shown in Figure 6 to MRI data. Paired Wilcoxon signed rank test were performed between

simulated and actual cell densities for each biopsy. Asterisks were placed above the boxes of comparisons of p-values less than

0.05. �p< :05, ��p< :01

TABLE 4 Results from the fitted mixed effect model. Intercept and the source of the cell/vessel density (simulated or actual) were

considered as the fixed effects; the location of each MRI voxel and the biopsy sample ID was considered as nested random effects to reflect

the variation in biopsy samples in either simulated or actual vessel and cell densities. The regression coefficients estimates, standard error as

well as the significance of the two fixed effects were shown in the table

Cells Estimate Std. error t-Value p-Value

(Intercept) 0.04917292 0.02014897 2.4404685 0.0151

Simulated density compared to actual density �0.01138260 0.02021387 �0.5631087 0.5737

Vessels Estimate Std. error t-Value p-Value

(Intercept) 0.003049063 0.01643971 0.1854693 0.8530

Simulated density compared to actual density 0.002905701 0.01412006 0.2057853 0.8371
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ktrans and vp, from the extended Tofts model were then calculated individually to each voxel. Since exact distribution of
vessels, cancer and stroma cells are currently available only for small tumor sections, we used vp and vc ¼ 1� vpþ ve

� �
(where ve is the estimated fractional extravascular extracellular space volume), from applying the extended Tofts model
to the MRI data as estimates of the vessel and cell density respectively. Vessels and cells were then randomly distributed
accordingly within each voxel in the grid (100�100 grid points) to initialize the simulation.

Figure 6 shows 1-week evolution of one digital biopsy sample under therapy. We can clearly see the complex effect
of the heterogeneous perfusion condition illustrated by the heterogeneity in the oxygen concentration. As chemother-
apy reaches the tissue, active cancer cells are killed at different rates in various areas of the simulated biopsy. In areas
with high perfusion, cells are killed more rapidly, while in those areas with low perfusion, chemotherapy cannot be
delivered sufficiently, and more cancer cells survive. In areas with no vessels, cell growth is stalled and bounded by the
capacity of the computational grid and the oxygen. In areas with lower initial cell density, cells were dividing albeit at a
lower rate. In addition, a combined effect in areas between high and low perfusion is observed. Drug delivery to areas
with low perfusion reaches neighboring areas of high perfusion by diffusion instead of via the vasculature. Moreover,
dense cell populations from low perfusion areas can grow into areas with high perfusion where more cancer cells were
killed by the chemotherapy. Total runtime of the simulation was on average 18 h with 80 cores.

To assess the validity of our model, we extracted 10 biopsy samples using the same method described above. We use
data from week 0 of each digital biopsy to initialize the model and differences in cell density between week 0 and week
1 are evaluated between the simulation and the MRI data for each voxel within the 10 biopsy samples (Figure 7). Given
that all digital biopsies were collected from the same tumor, a mixed effect model was used to verify if there is any sta-
tistical difference between simulated and actual densities. We found no significant difference, thus proving that the
numerical simulations can reproduce the observed drug outcome in large, clinically relevant heterogeneous tumor por-
tions (Table 4).

4 | DISCUSSION

In this work, we present a multiscale HCA model for personalized breast cancer growth under the effect of therapy,
together with a parallel numerical algorithm aimed at large scale, clinically-relevant simulation sizes. We discovered
that the PDE solvers are the most computationally intensive component of the system, with non-linear coupled equa-
tion updates dominating the runtime. In terms of solver performance, the assembly of discrete PDE operators scales
almost linearly, while a moderate increase in weak scaling efficiency was observed in linear solver runtime. We simu-
lated tumor dynamics and drug therapies of tumor cross-sections in three different system sizes: a small tumor portion,
an MRI voxel of tissue, and a full biopsy sample consisting of 20 MRI voxels. Our results show that the parallel imple-
mentation of our model can account for tumor heterogeneity at a clinically-relevant system size while correctly
predicting treatment outcome.

Previously, multiple cancer modeling studies have used HCA models that couple CA with ODEs and PDEs, see for
instance.3,4,17,5,9 However, they typically considered small 2D or 3D tumor portions and account for only small number
of cells. Multi-scale models representing clinically relevant tumor portions, like the one considered in this study, require
parallel computing, specially if they include many PDEs describing the tumor microenvironment or very large ODE sys-
tems for cell signaling. A number of computational frameworks for simulating multi-scale models with parallel comput-
ing capabilities are available,18,7 including Morpheus,19 CompuCell3D,20 PhysiCell,21 CellSys,22 Chaste,23 Biocellion24

or Timothy.25 Each of these tools has their own specific features regarding modeling formalism, implementation,
usability and performance. Morpheus and CompuCell3D use cellular Potts model as cell-based model formalism while
CellSys, PhysiCell, Biocellion and Timothy use other off-lattice/cell centered approaches. Chaste has more flexibility
and allows the user to choose their own cell-based formalism, including CA like in our case. In terms of performance,
several simulation frameworks allow multithreading via OpenMP, including Morpheus, CompuCell3D, PhysiCell and
CellSys. Biocellion and Timothy, instead, were designed for intense parallelisation between nodes and allow domain
decomposition techniques as our solver. These tools can be used for simulating large numbers of PDEs in large domains
and up to billions of biological cells in high performance supercomputers. In order to run personalized simulation of
breast cancer therapy considered in our previous work9 but considering clinically relevant tumor portions, we have
taken this later approach. Specifically, we build on the domain decomposition capabilities of FEniCS for solving PDEs
and efficiently link the stochastic CA models with the continuous PDE and ODE models. To the best of our knowledge,
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this is the first time that the popular finite element framework FEniCS is extended for simulating a multi-scale HCA
model.

In terms of limitations, we used estimated cell density from MRI rather than actual cell distribution captured from a
core biopsy staining for cell initialization. This is due to the MRI dataset's inability to properly identify cancer and
stroma cells. We do not take into account local differences in cell density in each voxel. As a result, in some cases, simu-
lated treatment outcomes can vary from the actual outcomes. We leave for future work the digitization of the pathologi-
cal sample and integration of cell identification. Modeling other cell types and their interactions is possible but we did
not account for it in this work because the current clinical data cannot inform them on a patient-specific basis. Each
MRI voxel contains a large number of vessels, each with a different surface permeability and vascular flow, both of
which are important for drug delivery and response. In this study, a voxel was treated as a region of uniform vascular
flow and vascular permeability. Improving on this will necessitate MRI data with a higher spatial resolution than that
available in the clinical trial under consideration here.

Steady-state models were used in our previous implementation. They are often understood as a simplification of the
time evolution ones, with the assumption that the time-dependent solution stabilizes around the steady-state as t!∞.
In our study, where temporal accuracy is essential, this assumption is invalid for slow perfusion scenarios. However,
since it is beyond the reach of our work, we have only put in a limited amount of effort to tune the multigrid pre-
conditioners for this problem in order to improve simulation run-time of 1 week of actual treatment, which is roughly
6 h using 80 cores in cluster).

The ability to simulate clinically relevant pieces of breast tumors under therapy is a significant step toward in silico
design of patient-specific treatment plans. However, we have so far only applied this methodology to five patients and
much more testing and validation is needed before this methodology can assist oncologist in finding effective therapies
for each patient. Once models become sophisticated enough to predict treatment outcomes for a wide cancer patient
population, one possibility to test them in a clinical setting is in silico-guided clinical trials for personalized cancer med-
icine. The goal of such trials is to compare a standard approved therapy with personalized drug schedules optimized
through computer simulations.

Improved statistical inference methods that allow successful estimation of patient-specific parameters are needed to
achieve this using complex models like the one presented here. We have taken the first steps in that direction by
employing Approximate Bayesian computation,26,27,10 a very computationally intensive technique that certainly bene-
fits from the scalable solver presented in this study.
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