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Abstract

In this thesis, we study the homotopy theory of associative dg-algebras, conilpotent coassocia-
tive dg-coalgebras, and strongly homotopy associative algebras. We employ twisting morphisms
to show that the cobar-bar construction defines a Quillen equivalence between conilpotent dg-
coalgebras and dg-algebras. EveryA8-algebra is a bifibrant object of the category of conilpotent
dg-coalgebras, and the three associated homotopy categories are all equivalent.

Similarly, there are Quillen equivalences between comodule categories associated to conilpo-
tent dg-coalgebras and module categories associated to dg-algebras. Every polydule of an A8-
algebra is considered to be a bifibrant object of a comodule category, and the derived module
category, homotopy category of the comodule category, and the derived polydule category are
all equivalent.
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Sammendrag

I denne avhandlingen studerer vi homotopiteorien til assosiative dg-algebraer, konilpotente
koassosiative dg-koalgebraer og sterkt homotopi-assosiative algebraer. Vi bruker vridde morfier
for å vise at kobar-bar konstruksjonen definerer en Quillen-ekvivalens mellom konilpotente dg-
koalgebraer og dg-algebraer. Enhver A8-algebra er et bifibrant objekt i kategorien av konilpo-
tente dg-koalgebraer, og de tre assosierte homotopikategoriene er ekvivalente.

På sammemåte, er det Quillen-ekvivalensermellom komodulkategorier assosiert til konilpotente
dg-koalgebraer og modulkategorier assosiert til dg-algebraer. Enhver polydul til en A8-algebra
kan ansees som et bifibrant objekt i en komodulkategori, og den deriverte modulkategorien, ho-
motopikategorien til komodulkategorien og den deriverte polydulkategorien er alle ekvivalente.

v





Acknowledgements

This thesis marks the conclusion of my studies at NTNU.

I want to express my deepest gratitude to Professor Steffen Opperman for his guidance and
feedback, his encouragement to explore homological and homotopical algebra, and for showing
me the wonder of this subject. He has always been very supportive and has provided good
guidance when needed.

I would like to thankmy friends and ”Matteland” for making each day different and worthwhile. My
time at NTNU would not have been the same without them. A special thanks go to Elias Klakken
Angelsen, Tallak Manum, and Markus Valås Hagen for their proofreading, editing support, and
much-appreciated opinions.

Lastly, I would like to thank my family for their support during my time as a student.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Bar and Cobar Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Algebras and Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Electronic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.4 Derivations and DG-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Cobar-Bar Adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.1 Convolution Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.2 Twisting Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.3 Bar and Cobar Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3 Strongly Homotopy Associative Algebras and Coalgebras . . . . . . . . . . . . . . . 42

1.3.1 SHA-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.3.2 A8-Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



x Thorbjørnsen: Derived SHA

2 Homotopy Theory of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.1 Model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1.2 Homotopy category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1.3 Quillen adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2 Model structures on Algebraic Categories . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.1 DG-Algebras as a Model Category . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.2 A Model Structure on DG-Coalgebras . . . . . . . . . . . . . . . . . . . . . . 76

2.2.3 Homotopy theory of A8-algebras . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 The Homotopy Category of Alg8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Derived Categories of Strongly Homotopy Associative Algebras . . . . . . . . . . . 95

3.1 Twisting Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1.1 Twisted Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1.2 Model Structure on Module Categories . . . . . . . . . . . . . . . . . . . . . 100

3.1.3 Model Structure on Comodule Categories . . . . . . . . . . . . . . . . . . . . 101

3.1.4 Triangulation of Homotopy Categories . . . . . . . . . . . . . . . . . . . . . . 103

3.1.5 The Fundamental Theorem of Twisting Morphisms . . . . . . . . . . . . . . 112

3.2 Polydules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.2.1 The Bar Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.2.2 Polydules of SHA-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2.3 Universal Enveloping Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2.4 Bipolydules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.2.5 A Tensor and a Hom on ModA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.2.6 Homologically Unital SHA-Algebras and Polydules . . . . . . . . . . . . . . . 124

3.2.7 H-Unitary SHA-Algebras and Polydules . . . . . . . . . . . . . . . . . . . . . 126



Contents xi

3.3 The Derived Category D8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3.1 The Derived Category of Augmented SHA-Algebras . . . . . . . . . . . . . . 128

3.3.2 The Derived Category of Strictly Unital SHA-Algebras . . . . . . . . . . . . . 132

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1 Monads and Categories of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Comonads and Categories of Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 Canonical Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B Simplicial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.1 The Simplex Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Simplicial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.1 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.2 Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.3 Spectral Sequence of a Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D Symmetric Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.1 Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

*



xii Thorbjørnsen: Derived SHA



Introduction

A differential graded algebra, or simply dg-algebra, is an associative algebra where the under-
lying object is a cochain complex. Any dg-algebra A naturally carries homotopical information,
and we get a graded algebra by considering the homology algebra H˚A. When we are work-
ing with homology algebras, there are many more morphisms than the morphisms coming from
the differential graded structure. To understand homology algebras in the context of their dg-
counterparts, we should restrict our attention solely to those morphisms from this structure.
This leads us to the definition of a quasi-isomorphism, that is, morphisms f : A Ñ B between
dg-algebras such that H˚f : H˚A Ñ H˚B is an isomorphism.

Localization is involved when constructing this category of homology algebras HoAlg‚
K. We say

that

HoAlg‚
K = Alg‚

K[Qis
´1].

Localization works by adding morphisms, and we add new morphisms such that at least the
intended class of morphisms we want to be invertible is invertible. The problem with this is
that controlling how many morphisms we add is difficult, so figuring out which dg-algebras are
quasi-isomorphic is not a simple process.

There is a weaker structure called strongly homotopy associative algebras, or A8-algebras. An
A8-algebra is almost a dg-algebra, but the multiplication may fail to be associative. Instead, we
assume that the associator is null-homotopic and an infinite hierarchy of homotopies controls
this homotopy. By considering an A8-algebra A up to homotopy, we see that the homotopy
algebra A defines a graded algebra.

It is becoming well known that quasi-isomorphisms f : A Ñ B between A8-algebras admit a
homotopy inverse. When we localize the category of A8-algebras at quasi-isomorphism, there
is an equivalence to the homotopy category

HoAlg8 = Alg8[Qis´1] » Alg8/„.

Using this construction, we can bypass the localization construction. Instead of adding new
morphisms to invert the quasi-isomorphisms, we can identify homotopic morphisms.

xiii
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What might be surprising is that there is an equivalence of categories,

HoAlg‚
K » HoAlg8.

This equivalence is given by localizing the non-full inclusion functor i : Alg‚
K Ñ Alg8 at quasi-

isomorphisms. We may say that a quasi-isomorphism f : A Ñ B between dg-algebras admits
a homotopy inverse of the corresponding A8-algebras. Similarly, we bypass the localization
construction by considering homotopy algebras,

HoAlgK » Alg8/„,

This result is still true if we consider quasi-isomorphisms f : M Ñ N between A-modules. If
we considerM and N as A-polydules, that is, A8-modules, the morphism f admits a homotopy
inverse. With this in mind, there are equivalences of categories,

D8A » K8A » DA.

Here,D8A andK8A denote the derived and homotopy category of the category ofA8-modules,
respectively.

In this thesis, we investigate a proof provided by Lefèvre-Hasegawa [Lef03] on the homotopy
invertibility of quasi-isomorphisms. In our approach, we will take a lot of inspiration from Loday
and Vallette [LV12]. We wish to elaborate upon Lefèvre-Hasegawa’s work to make this particular
instance clearer and more accessible. Many of the concepts we will discuss here for associa-
tive algebras have been generalized to many different algebras. See, for instance, [Val20] for a
generalization to Koszul operads.

The thesis is split into three different chapters.

Chapter 1 - The Bar and Cobar Construction

In Chapter 1, we develop the theory of dg-algebras and dg-coalgebras. We try to make the the-
ory of coalgebras more intuitive by comparing how they differ from algebras. The augmented
algebras and conilpotent coalgebras are of utmost importance in this thesis.

The essential tool developed in this chapter is the bar and cobar construction, denoted as B
and Ω, respectively. Twisting morphisms play a unique role as they define a functor, represented
by the bar and cobar construction. Thus, we have an adjoint pair of functors,

coAlg‚
K,conil Alg‚

K,+

Ω

K
B

Lastly, we define A8-algebras in terms of the bar construction. We will think of these as the
algebras which make the bar construction fully faithful on the image of quasi-free conilpotent
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dg-coalgebras. We can thus think of an A8-algebra in two different ways, either as a dg-algebra
with strong homotopy associativity or as a conilpotent dg-coalgebra. Both points of view will be
fruitful.

Chapter 2 - Homotopy Theory of Algebras

Chapter 2 aims to explain some of the homotopy theories of dg-algebras, conilpotent dg-coalgebras,
and A8-algebras. We start by giving an exposition on model categories, having a special inter-
est in Whitehead’s theorem, the fundamental theorem of model categories, and Quillen equiva-
lences.

We upgrade the cobar-bar adjunction into a Quillen equivalence, identifying the homotopy cat-
egory of dg-algebras and conilpotent dg-coalgebras. The category of A8-algebra will be equiv-
alent to the bifibrant conilpotent dg-coalgebras. This will allow us to show the first claim,

HoAlgK » Alg8/„.

Chapter 3 - Derived Categories of Strongly Homotopy Associative Algebras

In the final chapter, we investigate the homotopy theory of modules over dg-algebras and co-
modules over dg-coalgebras. We will further develop the theory of twisting morphisms to obtain
Quillen equivalences,

coModC ModA
Lα

K
Rα

We prove the fundamental theorem of twisting morphisms, which allows us to characterize when-
ever a twisting morphism defines a Quillen equivalence.

A8-modules of A, called A-polydules are defined to be objects being the converse of Rα when-
ever C = BA. We may then see that A-polydules are the bifibrant BA-comodules. We will then
define the derived category of polydules, D8A. We will conclude the thesis by showing that,

D8A » K8A » DA.

Prerequisites

We assume the reader is familiar with homological algebra, category theory, triangulated cat-
egories, and Kan extensions. The theory of monads, simplicial sets, spectral sequences, and
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symmetric monoidal categories will also be applied. At the end of the thesis, four appendixes
are supplied, recalling the definitions and most important results, which we will use throughout
this thesis.



Chapter 1

Bar and Cobar Construction

In Stasheff [Sta63], a strongly homotopy associative algebra, or A8-algebra, over a field is a
graded vector space together with homogenous linear maps mn : Abn Ñ A of degree 2 ´ n
satisfying some homotopical relations; this will be made precise later. We will regard m2 as
a multiplication of A, but it is not a priori associative. We choose m3 to be a homotopy of
m2’s associator. In this manner, we know that the homotopy of A is an associative algebra. The
maps mn corresponds uniquely to a map mc : BA Ñ A[1], which extends to a coderivation
mc : BA Ñ BA of the bar construction of A. With this relation, we will define an A8-algebra to
be a coalgebra on the form BA, and we will prefer to do so in this thesis.

To understand the bar construction, we will first study it on associative algebras. Given a differ-
ential graded coassociative coalgebra C and a differential graded associative algebra A, we say
that a homogenous linear transformation α : C Ñ A is twisting if it satisfies the Maurer-Cartan
equation;

Bα+ α ‹ α = 0.

Let Tw(C,A) be the set of twisting morphisms from C to A. It defines a functor Tw : coAlgopK ˆ

AlgK Ñ Ab, which is represented in both arguments. Moreover, these representations give rise
to an adjoint pair of functors called the bar and cobar construction.

Alg‚
K,+ Coalg‚

K,conil
B

K

Ω

This chapter will follow the notions and progression presented in Loday and Vallette [LV12] to
develop the theory for the bar-cobar adjunction, which will be the basis for our discussion of
A8-algebras.

1
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1.1 Algebras and Coalgebras

1.1.1 Algebras

This section reviews associative algebras over a fieldK. We denote the category of such algebras
AlgK, and we will study some of its properties before dualizing these to the context of coalgebras.

Definition 1.1.1 (K-Algebra). Let K be a field with unit 1. A K-algebra A, or an algebra A over
K, is a vector space with structure morphisms called multiplication and unit,

(¨A) : AbK A Ñ A

1A : K Ñ A,

satisfying the associativity and identity laws.

(associativity) (a ¨A b) ¨A c = a ¨A (b ¨A c)

(unitality) 1A(1) ¨A a = a = a ¨A 1A(1)

Whenever A does not possess a unit morphism, we will call A a non-unital algebra. In this case,
only the associativity law must hold.

By abuse of notation, we will confuse the unit of K with the unit of A. Since 1A is a ring homo-
morphism, this is well-defined. However, when we use the unit as a morphism, we will stick to
the 1A notation. When there is no confusion, we will exchange the symbol (¨A) with words in A.
In other words, variable concatenation replaces (¨A).

Definition 1.1.2 (Algebra homomorphisms). Let A and B be algebras. Then f : A Ñ B is an
algebra homomorphism if

1. f is K-linear
2. f(ab) = f(a)f(b)
3. f ˝ 1A = 1B

Whenever A and B are non-unital, we must drop the condition that f preserves units.

Definition 1.1.3 (Category of algebras). We let AlgK denote the category of K-algebras. Its
objects consist of every algebra A, and the morphisms are algebra homomorphisms. The sets
of morphisms between A and B are denoted as AlgK(A,B).

Let xAlgK denote the category of non-unital algebras. Its objects consist of every non-unital al-
gebra A, and the morphisms are non-unital algebra homomorphisms. The sets of morphisms
between A and B are denoted as xAlgK(A,B).

There is an equivalent description of algebras by considering the symmetric monoidal category
(ModK,bK,Z). Observe that given any algebra A in ModK, the triple (A, (¨A), 1A) is a monoid.
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There is thus an isomorphism of categories, namely AlgK is the category of monoids in ModK.
The algebra axioms are then equivalent to the commutative diagrams below.

AbK AbK A AbK A

AbK A A

(¨A)bidK

idKb(¨A) (¨A)

(¨A)

AbK K AbK A K bK A

A

idAb1A

»
(¨A)

1AbidA

»

In any symmetricmonoidal category C, wemay reformulate these definitions by using themonoidal
structure. Section 3 will introduce electronic circuits inspired by some of the proofs found in
[LV12]. These conventions will give us a graphical calculus of morphisms in C.

We supply some examples of algebras one may encounter in nature.

Example 1.1.4. Let K be any field. The field is trivially an algebra over itself.

Example 1.1.5. The complex numbers C is an algebra over R, as it is a vector space over R, and
complex multiplication respects scalar multiplication.

Example 1.1.6. Let K be any field. The ring of n-dimensional matricesMn(K) is an algebra over
K. The multiplication is matrix multiplication, and the unit is the n-dimensional identity matrix.

Augmented algebras will be central to our discussion. An algebra A is augmented if an algebra
homomorphism splits the algebra into an augmentation ideal and a unit component. We make
this precise with the following definition

Definition 1.1.7 (Augmented algebras). A K-algebra A is augmented if there is an algebra ho-
momorphism εA : A Ñ K. We refer to the pair (A, εA) as the augmented algebra.

Given this algebra homomorphism, we know it has to preserve the unit. Thus the kernel KerεA Ď

A is almost A, but without its unit. In the module category ModK, the morphism εA is auto-
matically a split-epimorphism, where the splitting is the unit 1A. Thus as a module, we have
A » A‘ K, where A = KerεA. A is called the augmentation ideal or the reduced algebra of A.

A morphism f : A Ñ B of augmented algebras is an algebra homomorphism, but with the
added condition that it must preserve the augmentation, i.e., εB ˝ f = εA. The collection of all
augmented algebras over K together with the morphisms defines the category of augmented
algebras over K, AlgK,+.

Given an augmented algebra A, taking kernels of εA gives a functor : AlgK,+ Ñ xAlgK. This
functor is well-defined on morphisms of augmented algebras, as each morphism is required to
preserve the splitting. This functor has a quasi-inverse, given by the free augmentation + :
xAlgK Ñ AlgK,+. Given a non-unital algebra A, the free augmentation is defined as A

+ = A‘ K,
where the multiplication is given by:

(a, k)(a1, k1) = (aa1 + ak1 + a1k, kk1).

The unit is given by the element (0, 1). We summarize this in the statement below.
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Proposition 1.1.8. The functors and + are quasi-inverse to each other.

Proof. We show that the free augmentation functor is fully faithful and essentially surjective.

Let A and B be non-unital K-algebras, and let f, g : A Ñ B morphisms in xAlgK. Suppose that
f+ = g+, then f = f+ = g+ = g. Now suppose that h : A+ Ñ B+, then h = h

+
.

Suppose that A P AlgK,+. We want to show that A » A
+
. As K-modules, A = A

+
, so we propose

that idA : A Ñ A
+
induces an isomorphism. To see that idA is an algebra homomorphism is

to see that the multiplication in A decomposes as (a1 + k)(a2 + l) = (a1a2 + a1l + ka2) + kl,
where a1, a2 P A and k, l P K. The second condition is equivalent to the existence of εA. idA also

preserves the augmentation as A » A
+
.

There are many augmented algebras to encounter in nature. We will note some examples.

Example 1.1.9 (Group algebra). Pick any group G and any field K. The group ring K[G] is an
augmented algebra where the augmentation εK[G] : K[G] Ñ K is given as

εK[G](
ÿ

gPG

kgg) =
ÿ

gPG

kg .

Among our most important example of algebras is the tensor algebra, which is also the free
algebra over K.
Example 1.1.10 (Tensor algebra). Let V be a K-module. We define the tensor algebra T (V ) of V
as the module

T (V ) = K ‘ V ‘ V b2 ‘ V b3 ‘ ¨ ¨ ¨ .

The tensor algebra is then the algebra consisting of words in V . Given two words v1..vi and
w1...wj in T (V ) we define the multiplication by the concatenation operation,

∇T (V ) : T (V ) bK T (V ) Ñ T (V ),

(v1...vi) b (w1...wj) ÞÑ v1...viw1...wj .

The unit is given by including K into T (V ),

υT (V ) : K Ñ T (V ),

1 ÞÑ 1.

Observe that the tensor algebra is augmented. The projection from T (V ) into K is an algebra
homomorphism, and its splitting is the inclusion K Ñ T (V ). We obtain a splitting of the tensor
algebra into its unit component and its augmentation ideal T (V ) » K ‘ T (V ). T (V ) is called
the reduced tensor algebra.
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Proposition 1.1.11 (Tensor algebras are free). The tensor algebras are the free algebras over the
category of K-modules, i.e., for any K-module V , there is a natural isomorphism HomK(V,A) »

AlgK(T (V ), A).

The reduced tensor algebra is the free non-unital algebra over the category of K-modules. That
is, for any K-module V there is a natural isomorphism HomK(V,A) » xAlgK(T (V ), A).

Proof. If f : T (V ) Ñ A is an algebra homomorphism, then f must satisfy the following condi-
tions:

‚ Unitality: f(1) = 1
‚ Homomorphism property: Given v, w P V , then f(vw) = f(v) ¨A f(w)

By induction, we see that f is determined by where it sends the elements of V . Thus, restriction
along the inclusion of V into T (V ) induces a bijection.

Modules

As for rings, every algebra A has a module category.

Definition 1.1.12 (Modules). Let A be an algebra over K. A K-module M is said to be a left
(right) A-module if there exists a structure morphism µM : AbK M Ñ M (µM :M bK A Ñ M )
called multiplication. We require that µM is associative and preserves the unit of A; i.e. we have
the commutative diagrams in ModK,

AbK AbK M AbK M

AbK M M

(¨A)bM

AbµM

µM

µM

K bK M AbK M

M

1AbM

» µM

Definition 1.1.13 (A-linear homomorphisms). Let M,N be two left A-modules. A morphism
f :M Ñ N is called A-linear if it is K-linear and for any a in A f(am) = af(m).

The category of left A-modules is denoted as ModA, where the morphisms HomA( , ) are A-
linear. Likewise, we denote the category of right A-modules as ModA. There is a free functor
from K-modules to left A-modules.

Proposition 1.1.14. Let M be a K-module. The module A bK M is a left A-module. Moreover,
it is the free left module over K-modules, i.e. there is a natural isomorphism HomK(M,N) »

HomA(AbK M,N).

Proof. We define natural transformations in each direction and then show that they are inverses.
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We define morphisms φ and ψ as

φ : HomA(AbK M,N) Ñ HomK(M,N)

f ÞÑ f ˝ (1A bM),

ψ : HomK(M,N) Ñ HomA(AbK M,N)

g ÞÑ µN ˝ (Ab g).

Pick an f P HomA(AbK M,N), then

ψ ˝ φ(f) = µN ˝ (Ab φ(f)) = µN ˝ (Ab f(1A bM)) = f(AbM) = f .

Pick a g P HomK(M,N), then

φ ˝ ψ(g) = φ(µN ˝ (Ab g)) = µN ˝ (1A b g) = g.

Corollary 1.1.14.1. A as a left A-module is the free left A-module over K; i.e. for any left A-
moduleM ,M » HomK(K,M) » HomA(A,M)

Categorical structure

It is convenient to understand some of the most fundamental limits and colimits to understand
the category of algebras. Unfortunately, the category of algebras does not have nice kernels and
cokernels; therefore, we will restrict our attention to augmented algebras.

The category of augmented algebras is pointed. Since every morphism of augmented algebras
has to preserve both unit and counit, the algebra K is both initial and terminal.

Definition 1.1.15. Let A and B be augmented algebras. We define their direct sum A ‘ B as
the following limit:

A‘B B

A K

x εB

εA

Notably, A‘B is the product in AlgK,+, since K is terminal. Calculating this limit as a kernel, it
is a subobject of A‘B in the sense of K-modules. We have the following relation between the
direct and the ordinary direct sum.

Lemma 1.1.16. The direct sum of augmented algebras A and B is the free augmentation on the
direct sum of the augmentation ideals, A‘B » (A‘B)+.
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Proof. This lemma is clear from the monadicity of the forgetful functor; see Theorem A.2.10,

forget : AlgK,+ Ñ ModK

A ÞÑ A.

Observe that the injections A ãÑ A‘B and B ãÑ A‘B do not satisfy the universal property of
the coproduct. Thus, the direct sum is no longer the coproduct in this category.

Definition 1.1.17. Given two augmented algebras A and B, the free product A ˚B is defined as
the following colimit:

K A

B A ˚B

υA

υB
{

Notice that the free product is definitionally the coproduct. In the case of groups, the free product
consists of every formal word formed from letters from each group. We extend this construction
to augmented algebras, following the main idea presented by Aambø [Aam21].

Lemma 1.1.18. LetA andB be augmented algebras. The free product is isomorphic to a quotient
of the tensor algebra

A ˚B » T (A ‘ B)/I.

The right-hand side is the tensor algebra over the direct sum of the underlying non-unital alge-
bras, and I is an ideal generated by elements on the form xab a1 ´ a ¨ a1, bb b1 ´ b ¨ b1y.

Proof. We have naturally injective linear morphisms

ιA : A ãÑ T (A ‘ B)/I,

a ÞÑ a,

1 ÞÑ 1.

This is in fact a ring homomorphism since ιA(aa1) = aa1 = ab a1 = ιA(a)ιA(a
1).

Suppose we have the following diagram.

A T (A ‘ B)/I B

Tf

ιA

h

ιB

g
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By functoriality we obtain a morphism h = T (f ‘g) : T (A‘B) Ñ T . Unitality and augmentation
property force this to act as the identity on the respective identities. Clearly f = hιA and g = hιB .

Assume there exists another h1 : T (A ‘ B)/I Ñ T such that f = h1ιA and g = h1ιB . Then h = h1

on A‘B part of T (A ‘ B)/I. Since h1 is a ring morphism, h = h1 on all of T (A ‘ B)/I.

The forgetful functor creates every small limit in AlgK,+, and the kernel is no exception to this.

Lemma 1.1.19. Suppose that f : A Ñ B is a morphism of augmented algebras. The kernel of f
is isomorphic to Kerf = (Kerf)+.

Proof. This lemma is clear from the monadicity of the forgetful functor.

On the other hand, AlgK,+ is cocomplete as well. However, the colimits are not as simple to
describe. In some cases, we can give a simple description of it. E.g., we know that the cokernel
of a morphism f : A Ñ B exists and is B/A+ if A is an ideal of A. Thus A is the kernel of the
cokernel morphism g : B Ñ B/A+. Conversely, if f is the kernel morphism of g, then A is an
ideal of B. In other words, we may think of an ideal as a kernel.

Given any morphism f : A Ñ B, we may consider its coimage-image factorization.

A B

Kerf coImf Imf coKerf

f

0 rf 0

It is clear that Imf is an ideal of B, thus coKerf » B/Imf
+. The problem is that in the category of

algebras, we cannot be sure if rf is an isomorphism, even if it is mono and epi. Thus the ordinary
set-theoretic image, coImf , may not be the categorical image, Imf . We define the image as
the smallest ideal of B such that coImf Ď Imf Ď B, and f is called regular whenever rf is an
isomorphism. In this case, the image is then the same as the set-theoretic image, and

coKerf » B/Imf
+.

1.1.2 Coalgebras

A coalgebra is like an algebra, but we reverse every arrow. In this section, we dualize the defini-
tions as given for algebras. For many purposes, this dualization is good, but as we will observe,
some finiteness conditions are necessary. We will denote the category of coalgebras as coAlgK.
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Definition 1.1.20 (K-Coalgebra). Let K be a field. A coalgebra C over K is a K-module with
structure morphisms called comultiplication and counit,

(∆C) : C Ñ C bK C

εC : C Ñ K,

satisfying the coassociativity and coidentity laws.

(coassociativity) (∆C b idC) ˝ ∆C(c) = (idC b ∆C) ˝ ∆C(c)

(counitality) (idC b εC) ˝ ∆C(c) = c = (εC b idC) ˝ ∆C(c)

In the same way as for algebras, we say that a coalgebra is non-counital if it is without a counit.

Like algebras, coalgebras admits a single intuitive method for writing repeated application of
the comultiplication. To see this, pick an element c P C , we may apply the comultiplication twice
on c in two different ways:

∆2
C,(1)(c) = (∆C b C)∆C(c),

∆2
C,(2)(c) = (C b ∆C)∆C(c).

One should immediately note that ∆2
C,(1)(c) = ∆2

C,(2)(c) is the coassociativity axiom. Hence
there is a unique way to make repeated applications of ∆C on c. We denote the n-fold repeated
application of ∆C by ∆n

C . Since the element ∆
n
C(c) represents a finite sum in Cbn, we may use

Sweedlers notation [LV12],

∆n
C(c) =

ÿ

c(1) b ...b c(n).

Definition 1.1.21 (Coalgebra homomorphism). Let C and D be coalgebras. Then f : C Ñ D is
a coalgebra morphism if

1. f is K-linear
2. (f b f) ˝ ∆C(c) = ∆D(f(c))
3. εD ˝ f = εC

Whenever C and D are non-counital, we only require 1. and 2. for a homomorphism of non-
counital coalgebras.

Definition 1.1.22 (Category of coalgebras). Let coAlgK denote the category of coalgebras. Its
objects consist of coalgebras C , and the morphisms are coalgebra homomorphisms. The set of
morphisms between C and D are denoted as coAlgK(C,D).

Let {coAlgK denote the category of non-counital algebras. Its objects consist of non-counital
algebras C , and the morphisms are non-counital coalgebra homomorphisms. The set of mor-
phisms between C and D are denoted as {coAlgK(C,D).
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At first glance, coalgebras may seem weird and unnatural, but they appear in many places in
nature.

Example 1.1.23 (K as a coalgebra). The field K can be given a coalgebra structure over itself.
Since t1u is a basis for K we define the structure morphisms as

∆K(1) = 1 b 1

ε(1) = 1.

Onemay check that thesemorphisms are indeed coassociative and counital. Thus wemay regard
our field as an algebra or a coalgebra over itself.

Example 1.1.24 (K[G] as a coalgebra). The group algebra has a natural coalgebra structure. We
may take duplication of group elements as the comultiplication, i.e.

∆K[G](kg) = kg b g.

Coincidentally we have already defined the counit, and this is the augmentation εK[G] for the
group algebra K[G]. Recall that this was

εC(
ÿ

kgg) =
ÿ

kg .

One may see that these morphisms satisfy coassociativity and counitality.

Example 1.1.25 (The linear dual coalgebra). LetM be any finite-dimensional K-module. There is
a natural isomorphism ξ :M˚ bK M

˚ Ñ (M bK M)˚, given on elementary tensors as

ξ(f b g)(mb n) = f(m)g(n).

Let A be a finite-dimensional algebra, then its linear dual A˚ is a coalgebra. The linear dual of
the multiplication (¨A) is defined as

(¨A)
˚ : A˚ Ñ (AbK A)

˚.

We define the comulitplication of A˚ as ξ´1(¨A)
˚.

The counit of A˚ is the morphism 1˚
A.

Before we state our primary example, we will introduce its essential structure.

Definition 1.1.26 (Coaugmented coalgebras). Let C be a coalgebra. C is coaugmented if there
is a coalgebra homomorphism ηC : K Ñ C .

Like augmented algebras, each coaugmented coalgebra splits in the category ModK. We first
notice that given a coalgebra homomorphism f , the cokernel Cokf is also a coalgebra. Given a
coaugmentation ηC : K Ñ C , we call CokηC = C for the coaugmentation quotient or reduced
coalgebra of C . Thus, we obtain the splitting C » C ‘K. The reduced comultiplication, denoted
∆C may explicitly be given as

∆C(c) = ∆C(c) ´ 1 b c´ cb 1.
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Example 1.1.27 (Tensor Coalgebras). Let V be aK-module. We define the tensor coalgebra T c(V )
of V as the module

T c(V ) = K ‘ V ‘ V b2 ‘ V b3 ‘ ¨ ¨ ¨ .

Given a string v1...vi in T (V ) we define the comultiplication by the deconcatenation operation,

∆T c(V ) : T
c(V ) Ñ T c(V ) bK T

c(V )

v1...vi ÞÑ 1 b (v1...vi) + (
i´1
ÿ

j=1

(v1...vj) b (vj+1...vi)) + (v1...vi) b 1.

The counit is given by projecting T c(V ) onto K,

εT c(V ) : T
c(V ) Ñ K

1 ÞÑ 1

v1...vi ÞÑ .

We observe that the tensor coalgebra is coaugmented, and its coaugmentation is the inclusion
of K into T c(V ). We can split T c(V ) » K ‘ T

c
(V ), where T

c
(V ) denotes the reduced tensor

coalgebra.

Cofreeness does not come for free for the tensor coalgebra. Our problem is a mismatch in
the behavior of algebras and coalgebras. The problem arises when we try to do an evaluation.
Suppose that A is an algebra and that we have n elements of A, i.e., an element of Abn. On
this element, we may apply the multiplication of A a maximum of n-times; there is no non-
trivial empty multiplication. However, given a single element in a coalgebra C , we may use the
comultiplication on this element n times, n+ 1 times, and so on ad infinitum. In the coalgebra,
we may comultiply any element, possibly an infinite amount of times. This property is sometimes
ill-behaved with our dualization of algebras to coalgebras.

However, the correct property was not lost when we dualized the tensor algebra to the tensor
coalgebra. We did not lose the property that an element may only be comultiplied a finite number
of times since T c(V ) is a direct sum of V bn, i.e., any element is a finite sum of finite tensors.

This extra assumption we need for coalgebras will be called conilpotent. Let C » K ‘ C be a
coaugmented coalgebra. We define the coradical filtration of C as a filtration Fr0C Ď Fr1C Ď

... Ď FrrC Ď ... by the submodules:

Fr0C = K
FrrC = K ‘ tc P C | @n ě r,∆C(c) = 0u.

Definition 1.1.28 (Conilpotent coalgebras). Let C be a coaugmented coalgebra. We say that C
is conilpotent if its coradical filtration is exhaustive, i.e.

lim
ÝÑ
r

FrrC » C .

The full subcategory of conilpotent coalgebras will be denoted as coAlgK,conil.
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Proposition 1.1.29 (Conilpotent tensor coalgebra). Let V be a K-module. The tensor coalgebra
T c(V ) is conilpotent.

Proof. Let v P V , then ∆T c(V )(v) = 1 b v + v b 1 and ∆T c(V )(v) = 0. We then observe the
following:

Fr0T
c(V ) = K,

Fr1T
c(V ) = K ‘ V ,

FrrT
c(V ) =

à

iďr

V bi.

Exhaustiveness is clear from the coradical filtration.

Proposition 1.1.30 (Cofree tensor coalgebra). The tensor coalgebra is the cofree conilpotent
coalgebra over the category of K-modules. That is, for any K-module V and any conilpotent
coalgebra C , there is a natural isomorphism HomK(C, V ) » coAlgK,conil(C, T

c(V )).

Proof. This proposition should be evident from the description of a coalgebra homomorphism
into the tensor coalgebra. If g : C Ñ T c(V ) is a coalgebra homomorphism, then g must satisfy
the following conditions:

1. (Coaugmentation) g(1) = 1,
2. (Counitality) Given c P C then εT c(V ) ˝ g(c) = 0,
3. (Homomorphism property) Given c P C then ∆T c(V )(g(c)) = (g b g) ˝ ∆C(c).

We will construct the maps for the isomorphism explicitly. If g : C Ñ T c(V ) is a coalgebra
homomorphism, then composing with projection gives amap π˝g : C Ñ V . Note that π˝g(1) = 0,
so this is essentially a map π ˝ g : C Ñ V . For the other direction, let g : C Ñ V . We will then
define g as

g = idK ‘

8
ÿ

i=1

(big)∆
i´1
C .

Observe that g is well-defined since the sum convergence follows from the conilpotency of C .
One may check that g is a coalgebra homomorphism, which yields the result.

Comodules

Essential to our dualization is comodules. We provide a short definition.

Definition 1.1.31 (Comodules). Let C be a coalgebra. A K-module M is said to be left (right)
C-comodule if there exist a structure morphism ωM :M Ñ CbKM (ωM :M Ñ M bKC) called
comultiplication. We require that ωM is coassociative with respect to the comultiplication of C
and preserves the counit of C ; i.e. we have the following commutative diagrams in ModK,



Chapter 1: Bar and Cobar Construction 13

C bK C bK M C bK M

C bK M M

CbωM

∆CbM

ωM

ωM

K bK M C bK M

M

εCbM

»
ωM

Definition 1.1.32 (C-colinear homomorphism). LetM,N be two left C-comodules. A morphism
g :M Ñ N is called C-colinear if it isK-linear and for anym inM , ωN (g(m)) = (idC bg)ωM (m).
In Sweedlers notation, this looks like

ÿ

g(m)(1) b g(m)(2) =
ÿ

c(1) b g(m(2)).

The category of leftC-comodules is denoted as CoModC , where the morphisms HomC( , ) are
C-colinear. We would also like to restrict our attention to those C-comodules that are conilpo-
tent, i.e., the comodules with exhaustive coradical filtration. The coradical filtration is defined
analogously, as we only care for the K-module structure. Notice that for conilpotent coalge-
bras, this requirement is automatic. Likewise, we denote the category of right C-comodules as
CoModC .

Proposition 1.1.33. LetM be aK-module. The module CbKM is a left C-comodule. Moreover,
it is the cofree left comodule over K-modules, i.e. there is an isomorphism HomK(N,M) »

HomC(N,C bK M).

Proof. This proposition is dual to Proposition 1.1.14. We will only construct the isomorphism, as
its validity is apparent.

φ1 : HomC(N,C bK M) Ñ HomK(N,M)

f ÞÑ (εC bM) ˝ f ,

ψ1 : HomK(N,M) Ñ HomC(N,C bK M)

g ÞÑ (C b g) ˝ ωN .

Corollary 1.1.33.1. C as a left C-comodule is the cofree C-comodule over K; i.e. for any left
C-comodule N , N˚ » HomK(N,K) » HomC(N,C).

Categorical structure

Dual to augmented algebras, conilpotent coalgebras have colimits that are easy to calculate,
while the limits are complicated. For this discussion, we will restrict our attention to coAlgK,conil.

Like for augmented algebras, coAlgK,conil is a pointed category. The initial and terminal object
is K.
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Definition 1.1.34. Let C and D be conilpotent coalgebras. Their direct sum C ‘ D is defined
as the following colimit:

K C

D C ‘D

ηC

ηD

As before, this is some abuse of notation. This direct sum will almost be the direct sum, except
we have to fix the coaugmentation.

Lemma 1.1.35. Given conilpotent coalgebras C and D, their direct sum is the free coaugmen-
tation on the direct sum of the coaugmentation quotients, C ‘D » (C ‘D)+.

Proof. This lemma is clear from the comonadicity of the forgetful functor.

Dually to before, the projection C ‘D Ñ C is not usually a coalgebra morphism.

Definition 1.1.36. Let C and D be two augmented algebras, the free product C ˚ D is defined
as the following limit:

C ˚D C

D K

εC

εD

We proceed to describe the free product of conilpotent coalgebras. Due to it being dual to the
free product of augmented algebras, this will naturally be a subobject of the tensor coalgebra.

Lemma 1.1.37. Given to conilpotent coalgebras C and D, then C ˚D Ď T c(C ‘D) consists in
words generated by letters in C or D on the form

JcK =
8
ÿ

i=0

∆i
C(c), and

JdK =
8
ÿ

i=0

∆i
D(d).

Proof. We define a projection C ˚D Ñ C as the ”identity” on the letters in C and 0 otherwise.

pC : C ˚D Ñ C

JcK ÞÑ c

ÞÑ 0
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By definition, pC is a coalgebra morphism as

pb2
C (∆T c(C‘D)JcK) = pb2

C (
ÿ

Jc(1)K b Jc(2)K) =
ÿ

c(1) b c(2).

Themorphisms pC and pD define a cone overC andD. It remains to check the universal property.
Suppose there are morphisms f : T Ñ C and g : T Ñ D.

T

C ˚D C

D K

f

h

g
pC

pD εC

εD

We define the morphism h as the following sum

h(t) =
8
ÿ

i=1

Jf(t(1))K b Jg(t(2))K b ¨ ¨ ¨ b J?(t(i))K + Jg(t(1))K b Jf(t(2))K b ¨ ¨ ¨ b J?(t(i))K,

where ? means either f or g, which is appropriate.

We have constructed this morphism to be a coalgebra morphism, and every other coalgebra
morphism has to be on this form as well. Thus h is unique.

Opposite to augmented algebras, every small colimit of conilpotent coalgebras is created by the
forgetful functor.

Lemma 1.1.38. Suppose that f : C Ñ D is a morphism of augmented algebras. The cokernel
is isomorphic to coKerf » (coKerf)+ » D/Imf

+.

Proof. This lemma is clear from the comonadicity of the forgetful functor.

This time around, we will instead have a problem calculating kernels. Let f : C Ñ D be a mor-
phism of coalgebras. The set tc P C | f(c) = 0u is not necessarily closed under comultiplication.
We require that fb2(∆C(c)) = f(c(1)) b f(c(2)) = ∆D(f(c)) = ∆D(0) = 0, but then only one of
f(c(1)) or f(c(2)) has to be 0.

The abovementioned construction will sometimes work. If f is a cokernel map, that is if f :
D Ñ D/C+, then C = td P D | f(d) = 0u. Whenever f : C Ñ D is epi and regular, f will then
be a cokernel map. In particular, it is enough that f : C Ñ D is regular, as we can consider
the morphism π : C Ñ coImf instead of f . Since rf : coImf Ñ Imf is an isomorphism,
Kerf » Kerπ, so we can use the set-theoretic description instead,

Kerf = tc P C | f(c) = 0u.
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1.1.3 Electronic Circuits

Calculations involving both algebras and coalgebras tend to become convoluted and unman-
ageable. Since we want to study the interplay between algebras and coalgebras, using other
tools to write equations can be handy. We will develop a graphical calculus briefly mentioned in
[LV12], where we take a lot of inspiration from Sobocinski’s blog [Sob15]. This graphical calculus
will consist of string diagrams, referred to as electronic circuits, which describe the function
composition on tensors. Since we only care about the interplay of tensors, we may develop this
graphical calculus in any closed symmetric monoidal category. Why do we want to introduce this
abstraction? A closed symmetric monoidal category is a good category to model functions, or
morphisms, which may take several variables in its argument. Moreover, in the next section, we
are going to switch categories. In this manner, we can reuse the same notions and proofs.

This section will use closed symmetric monoidal categories to define electronic circuits. The
definitions can be found in Appendix D. For our purposes, a closed symmetric monoidal category
is a category C together with a bifunctor b : C ˆ C Ñ C usually called tensor, and a unit
object Z P C. Additionally, we have four natural isomorphisms relating the functors and the unit
to what they are supposed to represent:

Associator α : (AbB) b C Ñ Ab (B b C).

Right unit ρ : Ab Z Ñ A.

Left unit λ : Z bA Ñ A.

Braiding/Symmetry β : AbB Ñ B bA.

These natural isomorphisms are supposed to satisfy some laws as well. See the appendix for
the full definition.

We want to rewrite equations into string diagrams with an electronic circuit, possibly involving
tensors. To illustrate with some simple examples, let f : A Ñ B, g : B Ñ C and h : D Ñ E. We
may consider the composition

(g b E) ˝ (f b h) : AbD Ñ C b E.

An electronic circuit is written from top to bottom and is composed of levels. The first morphisms
we apply will be at the top, descending downwards with each function composition. We write each
argument in the composition as a string. Thus this example above will look like the circuit below.
Notice how f and h are at the same level, indicating that they are interpreted as f b h. Thus an
b indicates a change of string, while a ˝ indicates a change of level.

f

g

h

Beware that when many tensors are in use, we should remember exactly how each string is
tensored. We may call adding tensors for horizontal composition and composition of morphism
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for vertical composition. Both have a choice in how we associate them, but both have unique
choices up to isomorphism given by the associator.

The true power of electronic circuit comes to light when we consider morphisms that, in some
sense, ”creates” or ”destroys” strings. For example, a morphism of 2 variables ”destroys” a string
by applying them to each other. Consider now a morphism f : A b B Ñ C ; we represent this
morphism in an electronic circuit using a converging fork. Likewise, ”creation” of strings is seen
as a diverging fork.

f

We may write the unit object Z without any strings in a circuit. By right and left unitality, any
object A is isomorphic to A b Z » A » Z b A. In this manner, whenever a morphism enters
or exits the unit Z , we start a new string using a source or a sink. For example, consider f as
before and a morphism g : Z Ñ A, then we may write f ˝ (g b B) as the circuit below. Again,
this is only well-defined up to isomorphism by right and left unitality.

f

g

The final operation we have is braiding. When we apply the braiding morphism on the tensors,
we may denote this as interchanging the strings. For example, βA,B : A b B Ñ B b A is the
circuit below. Notice that by the naturality of β, we may move a braiding along the circuit. In
this manner, if we have two braids, they may sometimes undo each other. In either case, we can
carry a braid to either end of the circuit to ignore them during calculations.

With the language of electronic circuits, we may now write down the axioms of an algebra or
coalgebra electronically. The axioms state the existence of morphisms. We give the structure
maps of algebras and coalgebras special notation since we will use these often.

For convenience we will let C = ModK. This category is closed symmetric monoidal, with bK as
the tensor. Recall that an algebra is a K-module A together with maps (¨A) : A b A Ñ A and
1A : K Ñ A. We denote these morphisms electronically, as shown in the diagrams below.

(¨A) = 1A =
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We write the electronic laws for an algebra as how one would write equations. Associativity and
unitality then become as follows.

Associativity =

Unitality = =

Dually, given a coalgebraC , we will make a similar notation. We denote themaps∆C : C Ñ CbC
and εC : C Ñ K as the following electronic circuits.

∆C = εC =

The electronic laws for C become the following diagrams.

Coassociativity =

Counitality = =

This notation will be adopted for our algebras and coalgebras when convenient. The intuition
for coalgebras is more accessible with electronic circuits, as we can work out a statement of
algebras and then turn the diagram upside down to make it into a statement of coalgebras.

Previously we talked about braiding and how that relates to interchanging strings. In the same
manner that we have a horizontal and vertical associator, we also have vertical and horizontal
braiding. Horizontal braiding is the usual notion of braiding strings. On the other hand, vertical
braiding refers to the function composition of tensors, which manifests in electronic circuits as
sliding a morphism along a string. Whenever the given braiding of C is nice enough, we can
get away by ignoring it whenever we move a morphism along a string. For instance, look at the
category of K-modules where we may define the braiding on elementary tensors as β(a b b) =
b b a. In this case, the braiding is agnostic to how we move our morphisms along a string, and
this means that we have the following equality of circuits.
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f

g

h

=
f

g h

In nature, we may encounter braidings that are not as nice. In these cases, we should take a step
back to figure out how to move morphisms along strings before we continue using this graphical
calculation of function composition. We will meet such a braiding soon.

1.1.4 Derivations and DG-Algebras

This section aims to define differential graded algebras and their modules. Given an algebra A,
we define a derivation as a map satisfying the Leibniz rule. In the dual case for a coalgebra, we
may define a coderivation as a map satisfying the Zinbiel rule, but we will refer to these maps as
derivations for brevity. Once we grasp how to make derivations, we introduce graded algebras
and modules to equip these with derivations. Derivations will allow us to state the categories
of differential graded algebras and cochain complexes. Throughout this section, we will also
develop electronic circuits for these notions.

Definition 1.1.39 (Derivations and Coderivations). Let M be an A-bimodule. A K-linear mor-
phism d : A Ñ M is called a derivation if d(ab) = d(a)b+ ad(b), i.e. electronically,

d

=
d

µrM
+

d

µlM

Let N be a C-bicomodule. A K-linear morphism d : N Ñ C is called a coderivation if ∆C ˝ d =
(db idC) ˝ ωr

N + (idC b d) ˝ ωl
N , i.e. electronically,

d

=
d

ωr
N

+
d

ωl
N

We remark that this translation between equations and electronic circuits is not at the same
level of generalization. Due to this, the electronic circuit description has more advantages as it
allows us to think with elements when we are only dealing with morphisms. We will use these
circuits to derive results independent of the given braiding on the category.

A helpful fact about derivations is that they will always map the identity to 0. We obtain this from
the Leibniz rule as one would get d(1) = 2d(1), and thus d(1) = 0.



20 Thorbjørnsen: Derived SHA

Proposition 1.1.40. Let V be a K-module and M be a T (V )-bimodule. A K-linear morphism
f : V Ñ M uniquely determines a derivation df : T (V ) Ñ M , i.e. there is an isomorphism
HomK(V,M) » Der(T (V ),M).

LetN be a T c(V )-bicomodule. AK-linear morphism g :M Ñ V uniquely determines a coderiva-
tion dcg : N Ñ T c(V ), i.e. there is an isomorphism HomK(N,V ) » Coder(N,T c(V )).

Proof. Let a1 b ...b an be an elementary tensor of T (V ). We define a map df : T (V ) Ñ M as

df (a1 b ...b an) =
n

ÿ

i=1

a1...f(ai)...an

df (1) = 0.

df is a derivation by definition.

Restriction to V gives the natural isomorphism. Let i : V Ñ T (V ) be the inclusion, then i˚df = f .
Let d : T (V ) Ñ M be a derivation, then di˚d = d. Suppose now that g : M Ñ N is a morphism
of T (V )-bimodules; then naturality follows from linearity.

In the dual case, dcg : N Ñ T c(V ) is a bit tricky to define. Let ωl
N : N Ñ N b T c(V ) and

ωr
N : N Ñ T c(V ) b N denote the coactions on N . Since T c(V ) is conilpotent, we get the

same finiteness restrictions on N . Define the reduced coactions as ωl
N = ωl

N ´ b 1 and
ωr
N = ωr

N ´ 1 b , this is well-defined by coassociativity. Observe that for any n P N there are

k and k1 ą 0 such that ωlk

N (n) = 0 and ωrk
1

N (n) = 0.

Let n(i)(k) denote the extension of n by k coactions at position i, i.e.

n
(i)
(k) = ωri

Nω
lk´i

N (n).

The extension of n by k coactions is then the sum over every position i,

n(k) =
k

ÿ

i=0

n
(i)
(k).

Observe that n(0) = n. The grade of n is the smallest k such that n(k) is zero. This grading gives
us the coradical filtration of N , and it is exhaustive by the finiteness restrictions given above.
With this notion, every element of N has a finite grade.

If g : N Ñ V is a linear map, we may think of it as a map sending every element of N to an
element of T c(V ) of grade 1. We must extend the morphism to get a map that sends the element
of grade k to grade k. Let π : T c(V ) Ñ V be the linear projection and define g(i)(k) = πb ...bgbπ

as a morphism which of k tensors which is g at the i-th argument, but the projection otherwise.
We define dcg as the sum over each coaction and coordinate,

dcg(n) =
8
ÿ

k=0

k
ÿ

i=0

g
(i)
(k)(n

(i)
(k)).
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Upon closer inspection, we may observe this is the dual construction of the derivation morphism.
It is well-defined as the sum is finite by the finiteness restrictions. The map is a coderivation by
duality, and the natural isomorphism is post-composition with the projection map π.

Definition 1.1.41 (Differential algebra). Let A be an algebra. We say that A is a differential
algebra if it is equipped with a derivation d : A Ñ A. Dually, a coalgebra C is a differential
coalgebra if it is equipped with a coderivation d : C Ñ C .

Definition 1.1.42 (A-derivation). Let (A, dA) be a differential algebra andM a left A-module. A
K-linear morphism dM : M Ñ M is called an A-derivation if dM (am) = dA(a)m + adM (m), or
electronically,

dM

=
dA

+
dM

Dually, given a differential coalgebra (C, dC) and N a left C-comodule, a K-linear morphism
dN : N Ñ N is a coderivation if ωN ˝ dN = (dC b idN + idC b dN ) ˝ ωN , or electronically,

dN

=
dC

+
dN

When there is no ambiguity, we will start to adopt writing the differential in electronic circuits
as a triangle,

d‚
M =

Proposition 1.1.43. Let A be a differential algebra andM aK-module. AK-linear morphism f :
M Ñ AbKM uniquely determines a derivation df : AbM Ñ AbM , i.e. there is an isomorphism
HomK(M,AbKM) » Der(AbKM). Moreover, df is given as ((¨A)b idM )˝ (idA bf)+dA b idM .

Dually, if C is a differential coalgebra and N is a K-module, then a K-linear morphism g :
CbN Ñ N uniquely determines a coderivation dg : CbKN Ñ CbKN . There is an isomorphism
HomK(C bK N,N) » Coder(C bK N), and dg is given as (idC b g) ˝ (∆C b idN ) + dC b idN .

Proof. We will only prove this proposition in the case of algebras. The case of coalgebras is dual.

We have to prove that the morphism d : HomK(M,A bK M) Ñ Der(A bK M) is well-defined.
To do this, we must check that for any morphism f : M Ñ A bK M , the morphism df satisfies
the Leibniz rule.
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Assume that we have elements a, b P A and m P M . Then df (abbm) = df (a(bbm)). We abuse
the notation to write equality between an element and a circuit. Recall that this means that we
have to think of a, b, and m as generalized elements,

df (abbm) =
f

+ =
f

+ +

= dA(a)bbm+ adf (bbm).

Next, we show that d has an inverse, which is given by ”restriction toM ,” also known as

(1A bM)˚ : HomK(AbK M,N) Ñ HomK(M,N).

Let f :M Ñ AbKM be a linear map and D : AbKM Ñ AbKM be a derivation, then a quick
calculation verifies that d is inverse to restriction.

df ˝ (1A bM)=
f

+ = f

dD˝(1AbM) = D
+ =D

Notice that we use the Leibniz rule in the last equation to get the equality to D.

We say that a K-module M˚ admits a Z-grading if it decomposes into either summands or
factors

M˚ =
à

z:Z
M z orM˚ =

ź

z:Z
M z .

An element ofm P M is said to be homogenous if it is properly contained in a single summand,
i.e., m P Mn. m is then said to have degree n. We say that a morphism of graded modules
f :M˚ Ñ N˚ is homogenous of degree n if it preserves the grading, that is f(M i) Ď Nn+i. The
degree of a homogenous element m or morphism f is denoted as |m| or |f |.

There is a distinction between the ordinary and self-enriched categories of graded modules. We
are going to work with the self-enriched category, and its hom-objects are the graded module
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of homogenous morphisms. We denote a factor in the grading as Homw
K(M

˚, N˚) = tf :M˚ Ñ

N˚ | f is homogenous and |f | = wu, so the graded hom is

Hom˚
K =

ź

wPZ
Homw

K.

This category is denoted as Mod˚
K. In general, and whenever it makes sense, we write C˚ as the

category of Z-graded objects from C.

The category Mod˚
K is a closed symmetric monoidal category. The tensor is given by the following

formula, using the ordinary tensor of ModK,

M˚ bN˚ =
à

nPZ

à

pPZ
Mp bK N

q , where q = n´ p.

The associator of ModK may be lifted to this tensor. The unit is the module K concentrated in
degree 0. Likewise, both the right and left unit transformation may be lifted from K.

The category Mod˚
K is closed, which means that the graded tensor fixed in one variable is left

adjoint to the graded hom. We may obtain the graded hom as the right adjoint for the other
variable by using the braiding, which we will define later. Showing closedness is done using the
tensor-hom adjunction from ModK.

Hom˚
K(A

˚ bB˚, C˚) =
ź

wPZ

ź

nPZ
Homw

K(
à

pPZ
Ap bK B

n´p, Cn)

=
ź

wPZ

ź

nPZ

ź

pPZ
HomK(A

p bK B
n´(p+w), Cn) »

ź

wPZ

ź

nPZ

ź

pPZ
HomK(A

p,HomK(B
n´(p+w),Cn

))

»
ź

wPZ

ź

pPZ
HomK(A

p,
ź

nPZ
HomK(B

n´(p+w),Cn
)) =

ź

wPZ

ź

pPZ
HomK(A

p,Homp+w
K (B˚, C˚))

»
ź

wPZ
Homw

K(A
˚,Hom˚

K(B
˚, C˚)) = Hom˚

K(A
˚,Hom˚

K(B
˚, C˚)).

Following Kelly [Kel05a], we define a symmetric monoidal structure on this category. We give a
braiding on homogenous elementary tensors as

β(ab b) = (´1)|a||b|bb a.

It is immediate that βA,B is inverse to βB,A. Observe that this category also admits a braiding
where we don’t introduce a sign. However, this does not work when we want to add differentials
to our graded modules, so we stick with this sign. This braiding is also commonly known as the
Koszul sign convention.

Since Mod˚
K is a closed symmetric monoidal category, it admits electronic circuits. Thus the

previous results we have proved by electronic circuits also apply to this category, as the proof
is identical in this language. One should note that the specific implementation may differ as
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vertical braiding works differently. The application of two homogenous morphisms f : A Ñ A1

and g : B Ñ B1 on elements a P A and b P B on tensors is defined as

(f b g)(ab b) = (´1)|g||a|f(a) b g(b).

Viewing a and b as generalized elements again, we get Koszul’s sign rule on morphisms. That is,
given homogenous composable morphisms f, f 1, g, g1, we get that

(f 1 b g1) ˝ (f b g) = (´1)|g1||f |(f 1 ˝ f) b (g1 ˝ g).

Electronically we may represent this as a 2-string circuit where a morphism on the left wants to
downwards pass a morphism on its right,

f

g
= (´1)|g||f |

f

g

A good way of thinking about moving components in a circuit is that whenever we move a com-
ponent downwards, it has to pass over every component to the left on its current level and every
component to the right of it on the level below. We introduce signs in a 2-string circuit whenever
a component is moved downwards to or completely past another component on its right. If we
move a component upwards completely past another component to its left, we introduce a sign.
In an n-string circuit, it gets more complicated as the component may have to move past several
components on both the left and right.

Unlike the other electronic equations in which we may substitute parts of an electronic circuit
with other equal parts, this does not work a priori in this context because of how we defined
levels. Within a 3-string circuit, the formula changes, and this is because we want to manipulate
every element on a level simultaneously. If we move a left-most component downwards past
many components, we may regard them as a single component on a single string. We will use
this interpretation to prove an interchange of components on an n-string circuit formula.

Proposition 1.1.44. Let n ě 1 and suppose that we have ai P Ai Ñ Bi and bi : Bi Ñ Ci for any
0 ă i ď n. Then we get that

(bi ˝ ai) b ¨ ¨ ¨ b (bn ˝ an) = (´1)s(b1 b ¨ ¨ ¨ b bn) ˝ (a1 b ¨ ¨ ¨ b an),

where s =
n

ÿ

i=1

|bi|(
ÿ

1ďjăi

|aj |).

Proof. We prove this by induction. If n = 1, this is true. s = 0 since the sum is empty, so
b1 ˝ a1 = (´1)sb1 ˝ a1.

Assume that the conclusion holds for n´ 1 and that we have ai and bi as in the hypothesis. Let
s1 =

řn´1
i=1 |bi|(

ř

1ďjăi |aj |), then

s = s1 + |bn|(
n´1
ÿ

i=1

|ai|).



Chapter 1: Bar and Cobar Construction 25

The conclusion follows from this calculation.

(b1 ˝ a1) b ¨ ¨ ¨ b (bn ˝ an) = (´1)s
1

((b1 b ¨ ¨ ¨ b bn´1) ˝ (a1 b ¨ ¨ ¨ b an´1)) b (bn ˝ an)

= (´1)s
1+|bn|(

řn´1
i=1 |ai|)(b1 b ¨ ¨ ¨ b bn) ˝ (a1 b ¨ ¨ ¨ b an).

A final remark on this braiding is that it affects any scenario where we compose functions,
and they move past each other. Since function composition factors through this tensor, moving
functions around is a braiding. An important example of this is the pre-composition functor. If
f and g are homogenous and composable, then

f˚(g) = (´1)|f ||g|g ˝ f .

The graphical calculus we have developed will be the same for any symmetric monoidal category
where the braiding is similar. What this means will soon be evident when we add extra structure
to the objects of Mod˚

K.

A graded K-module M‚ is called a cochain complex if it comes equipped with a differential
dM : M‚ Ñ M‚. By a differential, we mean a homogenous morphism of degree 1 such that
d2M = 0. Be cautious of bad notation, as d2M might mean d2M = dM ˝ dM and d2M :M2 Ñ M3.

Given a cochain complexM‚, we know by definition that the image of the differential lies inside
the kernel of the differential. We denote this at the i’th coordinate as BiM Ď ZiM . B˚M is the
graded submodule of images, also called boundaries. Z˚M is the graded submodule of kernels,
also called cycles. The graded cohomology module H˚M is defined as the quotient Z˚M/B˚M .
A cochain complex is said to be exact if H˚M » 0.

Cochain complexes are plentiful in nature.

Example 1.1.45 (K as a cochain complex). LetK‚ = (K, 0) be the gradedK-module concentrated
in degree 0 together with a 0 differential, and this is trivially a cochain complex.

Example 1.1.46 (Trivial cochain complexes). Let M˚ be a graded K-module. Let M‚ = (M˚, 0)
be the same graded module with the 0 differential, and this is also a cochain complex.

Example 1.1.47. We can create a cochain complex, as shown in the following diagram.

¨ ¨ ¨ 0 K K 0 ¨ ¨ ¨
idK

Example 1.1.48 (Cone of a chain map). Suppose that f : A‚ Ñ B‚ is a homogenous morphism
of degree 0 such that f ˝dA = dB ˝ f . There is an associated cochain complex to f , which yields
a short-exact sequence of cochain complexes. We define cone(f) at each degree by

cone(f)n = An+1 ‘Bn,

dncone(f) =

(
dn+1
A 0
fn+1 dnB

)
.

This complex gives us a short exact sequence,
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B‚ cone(f) A‚[1].

Example 1.1.49 (Normalized cochain complex). Let A : ∆op Ñ ModK be a simplicial K-module.
We define a collection of diagrams Jn as J0 = A0, and every other as

Jn = An An´1

0

d1

...
dn

A’s normalized cochain complex is the complex given as

NA´n = lim
ÐÝ

Jn.

In a complete pointed category, such as ModK, the limit is the same as the intersection of every
kernel:

lim
ÐÝ

Jn =
n

č

i=1

Kerdi.

The differential of NA is defined to be d0. Since we have turned the complex around, this is a
morphism of degree 1. By taking the limit, we force d20 = 0 as well.

Example 1.1.50 (Associated cochain complex). Let A : ∆op Ñ ModK be a simplicial K-module.
We define a differential as

d =
n

ÿ

i=0

(´1)idi.

Let CA be the complex given in each degree as

CA´n = An.

d defines a differential on CA of degree 1.

Example 1.1.51 (Singular chain complex withK-coefficents). LetM be a topological space. There
is a simplicial set defined as Sing(M) = Top(∆ ,M) : ∆op Ñ Set. Here ∆[n] in Top refers to
the topological standard n-simplex. We get a simplicial K-module by creating the free one,
KSing(M). The above example defines a chain complex in ModK.

We make a distinction for some cochain complexes, which is of particular interest.

Definition 1.1.52 (Quasi-free cochain complexes). Suppose thatM‚ is a cochain complex. We
say that M‚ is quasi-free if the underlying graded module M˚ is free; in other words, M˚ is a
tensor algebra.

Likewise, we say thatM‚ is quasi-cofree ifM˚ is cofree; in other words,M˚ is a tensor coalgebra.
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The category of cochain complexes will be denoted asMod‚
K. Note that this category is built upon

Mod˚
K, and we inherit the braiding β. We want to entertain different collections of morphisms

because the morphisms that respect the structure and the morphisms that make this category
self-enriched are different. We will usually denote both of these categories as Mod‚

K, but when
we want to emphasize the structure-preserving maps, we will instead denote this as Ch(K).

When A‚ and B‚ are cochain complexes the graded K-module Hom˚
K(A

‚, B‚) admits a deriva-
tive. Let f : A‚ Ñ B‚ be any homogenous morphism, then the derivative-, or boundary of f is
given by

Bf = (dB˚ + d˚
A)(f) = dB ˝ f ´ (´1)|f |f ˝ dA.

We see that |B| = |dB˚ + d˚
A| = 1, and

B2f = (dB˚ + d˚
A)(dB ˝ f ´ (´1)|f |f ˝ dA) = d2Bf + (´1)|f |dBfdA ´ (´1)|f |dBfdA ´ fd2A = 0.

Thus, Hom‚
K(A

‚, B‚) = (Hom˚
K(A

‚, B‚), B) is a cochain complex. We endow Mod‚
K with these

hom-objects. In an electronic circuit, we write Bf as a sum of circuits,

Bf =
f

+(´1)|f |

f

Notice how this construction of Hom‚
K is the same as the (product) total complex of an anticom-

mutative double complex. An anticommutative double complex is a graded module of cochain
complexes, together with a differential between the cochain complexes. These different differ-
entials are supposed to be anticommuting. We draw an anticommutative double complex, as
shown below.

...
...

...

¨ ¨ ¨ C´1,1 C0,1 C1,1 ¨ ¨ ¨

¨ ¨ ¨ C´1,0 C0,0 C1,0 ¨ ¨ ¨

¨ ¨ ¨ C´1,´1 C0,´1 C1,´1 ¨ ¨ ¨

...
...

...

dhC

dvC

dhC

dvC

dhC

dvC

dhC

dhC

dvC

dhC

dvC

dhC

dvC

dhC

dhC

dvC

dhC

dvC

dhC

dvC

dhC

dvC dvC dvC

Another way of thinking of an anticommutative double complex C‚,‚ is that it is a bigraded
K-module with a vertical and horizontal differential such that dvC ˝ dhC = ´dhC ˝ dvC .
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Definition 1.1.53. Let C‚,‚ be an anticommutative double complex. We define the sum and
product total complex. The differential at each Cp,q is defined as dTotC = dvC + dhC , and

Tot‘(C‚,‚) =
à

nPZ

à

p+q=n

Cp,q ,

Tot
ś

(C‚,‚) =
ź

nPZ

ź

p+q=n

Cp,q .

If C‚,‚ is bounded, then Tot‘(C‚,‚) » Tot
ś

(C‚,‚).

If we let HomK(A
‚, B‚)‚,‚ = (

ś

p,qPZ HomK(A
p, Bq), d˚

A, dB˚), then it is clear that

Hom‚
K(A

‚, B‚) = Tot
ś

(HomK(A
‚, B‚)‚,‚).

From this, we can deduce that Mod‚
K is a closed symmetric monoidal category. The tensor is

collected from the data of Hom‚
K. We do this by defining an anticommutative double complex

(A‚ bK B
‚)‚,‚ = (

À

nPZ
À

p+q=nA
p bBq, dA bB,Ab dB), then the tensor is defined as

A‚ bB‚ = Tot‘((A‚ bB‚)‚,‚).

This tensor is left adjoint to Hom‚
K. All the structure morphisms for a closed symmetric monoidal

category are inherited from s inherited from Mod˚
K, and this also means that Mod

‚
K employs the

same electronic circuits as Mod˚
K.

The category of cochain complexes with chain maps Ch(K) is defined to have its hom-objects
as Z0Hom‚

K(A
‚, B‚). By abuse of notation we may write Ch(K) = Z0Mod‚

K. Notice that this
condition means that the derivative of any morphism f : A‚ Ñ B‚ in Ch(K) is 0; i.e., that Bf = 0,
or f ˝ dA = dB ˝ f . We will call these morphisms chain maps.

The homotopy category K(K) is defined to be the quotient category of Ch(K) at null-homotopic
chain maps. Observe that K(K) = H0Mod‚

K because the chain maps f, g : A‚ Ñ B‚ are homo-
topic if there is a homogenous morphism h : A‚ Ñ B‚ of degree ´1 such that Bh = f ´ g.

A chain map f : A‚ Ñ B‚ induces homogenous morphisms of degree 0.

B˚f : B˚A Ñ B˚B

Z˚f : Z˚A Ñ Z˚B

H˚f : H˚A Ñ H˚B

We say that f is a quasi-isomorphism if H˚f is an isomorphism, which is equivalent to saying
that cone(f) is exact.

A cochain complex N‚ is said to be contractible if idN is null-homotopic. Then it follows for any
other cochain complexM‚ that H0Hom‚

K(M
‚, N‚) » 0.
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The shift functor [n] : Mod‚
K Ñ Mod‚

K is defined on cochainsM‚ as

(M‚, dM )[n] = (M‚[n], (´1)ndM ).

With this definition, shifting is naturally isomorphic to tensoring. That is if K[n] denotes the field
concentrated in dimension ´n, then

K[n] bK M
‚ » M‚[n] » M‚ bK K[n].

One may see how the differential gets its sign by writing out the total tensor product. We usu-
ally call [1] shifting, desuspension or looping; and [´1] for inverse-shifting, suspension or
delooping.

We are now ready to talk about algebras in Mod‚
K.

Definition 1.1.54 (Differential graded algebra). (A‚, dA) is a differential graded algebra if:

‚ A‚ is a differential algebra in Mod‚
K,

‚ the structure morphisms (¨A) and 1A are chain maps,
‚ and the derivation and differential coincide.

Example 1.1.55 (The unit). K = (K, 0) is a differential graded algebra in the trivial way. It is
concentrated in degree 0, and the differential is the trivial derivation.

Example 1.1.56 (De Rham complex). Given amanifoldM , the exterior algebraΩM is a differential
graded algebra. See Tu [Tu11] for a thorough explanation.

In the case of differential graded algebras, we can naively define homotopies like homotopies
for cochain complexes. Given morphisms f, g : A‚ Ñ B‚, a homotopy between f and g is a
morphism h : A‚ Ñ B‚ of degree ´1 such that Bh = f ´ g. We know that such morphisms
allow us to say that these morphisms are isomorphic in homotopy on the underlying cochain
complexes. However, the ring structure is no longer required to be preserved. We amend this
problem by (f, g)-derivations.

Definition 1.1.57. Suppose there are morphisms f, g : A‚ Ñ B‚. We say that h : A Ñ B is an
(f, g)-derivation if |h| = ´1 and h ˝ (¨A) = (¨A) ˝ (f b h+ g b h).

We will say that the morphisms f and g are homotopic whenever there is an (f, g)-derivation h
such that Bh = f ´ g.

Given a differential graded, or dg-algebra A‚, we may form the category of left A‚-modules,
ModA.

Definition 1.1.58. M‚ is a left A‚-module if

‚ M‚ is a cochain complex,
‚ there is a chain map µM : A‚ bK M

‚ Ñ M‚ satisfying associativity and unitality,
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‚ dM is an A‚-derivation.

The hom-objects are defined analogously. We use Hom‚
A‚ to denote the K-linear cochain com-

plex.

With this definition, the categories ModK where K is considered as a cochain complex, and the
category Mod‚

K is the same category because a cochain complex already satisfies the first two
bullet points by definition. Being a K‚-derivation is a trivial condition, so every map meets this.

We also have the dual definition to obtain dg-coalgebras, (f, g)-coderivations and their comod-
ules.

Definition 1.1.59. C‚ is a differential graded coalgebra if

‚ C‚ is a differential coalgebra in Mod‚
K,

‚ the structure morphisms ∆C and εC are chain maps,
‚ the coderivation and differential coincides

Definition 1.1.60. Suppose that f, g : C‚ Ñ D‚ are morphisms of dg-coalgebras. We say that
h is an (f, g)-coderivation if ∆h = (f b h+ g b h)∆.

Two morphisms f, g : C‚ Ñ D‚ are said to be homotopic if there is an (f, g)-coderivation such
that Bh = f ´ g.

Definition 1.1.61. N‚ is a left C‚-comodule if

‚ N‚ is a cochain complex,
‚ there is a chain map ωC : N‚ Ñ C‚ bK N

‚ satisfying coassociativity and counitality,
‚ dN is a C‚-coderivation.

By these definitions, we may extend proposition 1.1.43 to the category of cochain complexes.

Corollary 1.1.61.1. Let A‚ be a differential graded algebra and M‚ a cochain complex. A ho-
mogenous K-linear morphism f :M Ñ AbK M uniquely determines a derivation
df : AbM Ñ AbM of same degree, i.e. there is an isomorphism
Hom˚

K(M
‚, A‚bKM

‚) » Der˚(A‚bKM
‚). Moreover, df is given as (∇A‚ bidM )˝(idAbf)+dAbM .

Dually, if C‚ is a differential graded coalgebra andN‚ is a cochain complex, then a homogenous
K-linear morphism g : C‚ bN‚ Ñ N‚ uniquely determines a coderivation
dg : C‚bKN

‚ Ñ C‚bKN
‚. There is an isomorphism Hom˚

K(C
‚bKN

‚, N‚) » Coder˚(C‚bKN
‚),

and dg is given as (idC b g) ˝ (∆C‚ b idN ) + dCbN .

Proof. The same electronic circuits as in the proof of proposition 1.1.43 suffice to prove this
statement.
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Notably, this statement carries an additional two duals. We have the same result when consid-
ering right modules, and the same proof applies in these cases.

1.2 Cobar-Bar Adjunction

1.2.1 Convolution Algebras

Given a coalgebraC and an algebraA, we obtain a particular product on the hom-object HomK(C,A)
by twisting the comultiplication and multiplication together. The convolution algebra forms the
backbone of our proof of the cobar-bar adjunction.

Let C be a coalgebra and A an algebra, then if f, g : C Ñ A is a K-linear morphism we may
define f ‹ g = (¨A)(f b g)∆C . This operation is called ‹ convolution.

f ‹ g = f g

Proposition 1.2.1 (Convolution algebra). The K-module HomK(C,A) is an associative algebra
when equipped with convolution ‹ : HomK(C,A) Ñ HomK(C,A). The unit is given by 1 ÞÑ υA˝εC .

Proof. This proposition follows from (co)associativity and (co)unitality of (C) A.

(f ‹ g) ‹ h = f g h = f g h = f g h = f ‹ (g ‹ h)

(υA ˝ εC) ‹ f = f = f = f = f ‹ (υA ˝ εC)

This proof does not rely on braiding and lifts to any closed symmetric monoidal category.
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Any algebra A may be considered a differential algebra together with the trivial derivation. That
is, (A, 0) is a differential algebra. For such structures, the set of A-derivations is precisely the set
of A-linear morphisms. Dually, we can consider every coalgebra C as a differential coalgebra.

We may apply a trivialization of proposition 1.1.43 to A and C considered as differential (co)al-
gebra. When we look at the module C bK A, it is free over A on the right and cofree over C on
the left. Consider a morphism α : C Ñ A, and then there are two ways to extend α to obtain a
(co)derivation. Precomposing with C ’s comultiplication gives us a morphism from C to the free
A-module C bK A,

(idC b α) ˝ ∆C : C Ñ C bK A.

Postcomposing with the multiplication of A gives us a morphism from to the cofree C-comodule
C bK A to A,

(¨A) ˝ (α b idA) : C bK A Ñ A.

When we apply proposition 1.1.43 to both morphisms, it yields the same map. Therefore it is both
a derivation and a coderivation, as

drα = (idC b (¨A)) ˝ (idC b α b idA) ˝ (∆C b idA)

drα = α

This coderivation will be very important for the rest of this thesis. In the ungraded case, we may
transform it into a ring homomorphism.

Proposition 1.2.2. dr : HomK(C,A) Ñ End(C bK A) is a morphism of algebras. Moreover, if
α ‹ α = 0, then (drα)

2 = 0.

Proof. The proof follows from (co)associativity and (co)unitality.

drα‹β = α β = α β = drα ˝ drβ
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drυA˝εC = = = idCbKA

This proof relies on braiding, so we will encounter problems when we try to lift this proposition to
the graded case. We may observe that the above has no problem lifting, and this is because the
β has no morphisms of odd degrees to the right or over itself. However, the dual will introduce
some signs when lifted.

Corollary 1.2.2.1. Suppose thatC andA are differential graded (co)algebras. dr : Hom˚
K(C,A) Ñ

End˚(C bK A) extends to a homogenous ring morphism of degree 0.

Suppose thatC andA are differential graded (co)algebras. We want to expect that the differential
B makes (Hom˚

K(C,A), ‹) into a dg-algebra.

Proposition 1.2.3. The convolution algebra (Hom˚
K(C,A), ‹) is a dg-algebra with differential B.

Proof. We know that (Hom˚
K(C,A), ‹) is a convolution algebra and that (Hom˚

K(C,A), B) is a
cochain complex. It remains to verify that the differential is compatible with the multiplication,
i.e., B(f ‹ g) = Bf ‹ g + (´1)|f |f ‹ Bg.

Let f, g P Hom˚
K(C,A) be two homogenous morphisms. The key property to arrive at the result

is that the differential in a dg-(co)algebra is a (co)derivation. We denote the degree of f ‹ g as
|f ‹ g| = |f | + |g| = d. Then

B(f ‹ g) =B f g =
f g

´(´1)d
f g

=
f

g +(´1)|f | f

g

´(´1)d((´1)|g|
f

g + f
g )
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=
f

g ´(´1)|f |
f

g +(´1)|f |( f

g

´(´1)|g| f
g )

= Bf g +(´1)|f | f Bg = B(f) ‹ g + (´1)|f |f ‹ B(g)

Proposition 1.2.4. The morphism dr : Hom‚
K(C,A) Ñ End‚(C bK A) is a chain map.

Proof. We already know from Corollary 1.2.2.1 that dr is a homogenous ring map. It remains to
see that it commutes with the differentials. That is, Bdrα = drBα. We write out each summand in
Bdrα,

dCbKA ˝ drα = α +
α

+(´1)|α| α

drα ˝ dCbKA = (´1)|α| α +
α

+ α

When α is of even degree, Bdrα = dCbKA ˝ drα ´ drα ˝ dCbKA. The outer summands cancel, and we
have

Bdrα = ddAα´αdC = dBα.

When α is of odd degree, Bdrα = dCbKA ˝ drα + drα ˝ dCbKA. The outer summands cancel, and we
have

Bdrα = ddAα+αdC = dBα.



Chapter 1: Bar and Cobar Construction 35

1.2.2 Twisting Morphisms

In this section, we will define twisting morphisms from coalgebras to algebras. They are impor-
tant as the bifunctor Tw(C,A) is represented in both arguments. To understand the elements of
Tw, we start this section by reviewing the Maurer-Cartan equation.

Suppose that C is a coaugmented dg-coalgebra and A is an augmented dg-algebra. We say that
a morphism α P Hom˚

K(C,A) is twisting if it is of degree 1, is 0 on the coaugmentation of C , is
0 on the augmentation of A and satisfies the Maurer-Cartan equation:

Bα+ α ‹ α = 0.

We say that α is an element of Tw(C,A) Ă Hom1
K(C,A) Ă Hom˚

K(C,A). Notice that these
requirements means that Imα|C Ď A. In light of proposition 1.2.2, every morphism between
(coalgebras) algebras extends to a unique (co)derivation on the tensor product C bK A. Let drα
denote this unique morphism. In the case of dg-coalgebras and dg-algebras, we perturb the
total differential on the tensor with drα, as in proposition 1.1.43. We call this derivation for the
perturbated derivative,

dα = dCbKA + drα = dC b idA + idC b dA + drα.

Proposition 1.2.5. Suppose thatC is a dg-coalgebra andA is a dg-algebra, andα P Hom1
K(C,A).

The perturbated derivation satisfies the following relation.

dα
2 = drBα+α‹α

Moreover, a morphism satisfies the Maurer-Cartan equation if and only if its associated pertur-
bated derivative is a differential.

Proof. dα2 = dCbKA ˝ drα + drα ˝ dCbKA + drα
2. The result is immediate by proposition 1.2.4.

Corollary 1.2.5.1. If α : C Ñ A is a twisting morphism, then (C bKA, d
‚
α) is a cochain complex

which is also a left C-comodule and a right A-module. We call this the right twisted tensor
product, denoted as C bα A.

Normally A b C and C b A are isomorphic as modules. In general, it is not true that C bα A
and A bα C are isomorphic since we have to choose a particular side to perform the twisting.
However, if A is commutative and C is cocommutative, they are isomorphic. To illustrate, we
realize the unique derivation above as a right derivative. The left derivative dlα is then defined
analogously,

dlα = α

.
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dl : Hom‚
K(C,A) Ñ End‚(C,A) does no longer define a ring morphism. Note that this still

commutes with the differential. The problem lies in the ring homomorphism property. Observe
that we get

dlα‹β = (´1)|α||β|dlβ ˝ dlα.

We summarize this in the next proposition.

Proposition 1.2.6. The morphism dl : Hom‚
K(C,A) Ñ End‚(C,A) is a skew chain map.

Proof. This proposition is clear from the previous discussion.

Remark 1.2.7. The functoriality of the right twisted tensor at the level of chain maps does not
work. To show where it may go wrong, pick two twisting morphisms α : C Ñ A and β : C 1 Ñ A1.
Given a pair of morphisms f : C Ñ C 1 and g : A Ñ A1, it is unclear if f b g will preserve the
perturbed differential, and it is not valid in general.

However, it is the case that the right twisted tensor product defines a tri-functor from the cate-
gory of elements to cochain complexes,

b :
ÿ

CoalgbAlg

Tw Ñ ModAC .

Any commutative square as below gets mapped to a morphism of its right twisted tensors. Here
f is a morphism of coalgebras, and g is a morphism of algebras,

C A

C 1 A1

α

f g

α1

ù

C bα A

C 1 bα1 A1

fbg

The important property to obtain this is that f and g are morphisms in their respective cate-
gories, allowing us to collapse the different compositions to the same map up to sign.

1.2.3 Bar and Cobar Construction

Eilenberg and Mac Lane first formalized the bar construction for augmented skew-commutative
dg-rings [EM53]. The bar construction then served as a method to calculate the homology of
Eilenberg-Mac Lane spaces. This construction was later dualized by Adams [Ada56] to obtain
the cobar construction. Its first purpose was to serve as a method for constructing an injective
resolution to calculate the cotor resolution [EM66]. With time, the bar-cobar construction has
been subjected to many generalizations, such as a fattened tensor product on simplicially en-
riched, tensored, and cotensored categories [Rie14]. We will mainly follow the work of [LV12] to



Chapter 1: Bar and Cobar Construction 37

obtain the one-sided algebraic bar and cobar construction. The approach we will take is also
slightly inspired by MacLane’s canonical resolutions of comonads [Mac71].

For our purposes, the bar construction of an augmented algebra is a simplicial resolution as a
cofree coalgebra structure. Given a dg-algebra, we will realize this as the total complex of its
resolution. Dually, the cobar construction of a conilpotent coalgebra is a cosimplicial resolution
as a free algebra structure. We will see that these constructions define an adjoint pair of functors.

An algebra A is a monoid in the monoidal category (ModK,bK,K). By proposition B.1.5, we may
think of A as an augmented cosimplicial object A : ∆+ Ñ ModK. Notice that all of the cosim-
plicial identities follow from associativity and unitality. If A is an augmented algebra, we may
instead give it the structure of an augmented simplicial set. Let d00 = εA be the augmentation.
We define dnn = Abn´1bεA and set din = Ai´1b(¨A)bAbn´i´1. The degeneracies are chosen to
be the units, that is, the morphisms sin = Abi bυA bAbn´i´1. One may check that this structure
defines an augmented simplicial object A : ∆op

+ Ñ ModK. Observe that the cochain complex CA
is exactly the Hochschild complex of A. We depict the simplicial object in the following diagram:

K A Ab2 Ab3 ...
εA

(¨A)

AbεA

(¨A)

Ab2bεA

(¨A)

Ab4bεA

K A Ab2 Ab3 ...
s1 si si

The augmentation idealA carries a natural semi-simplicial structure induced byA. As in Example
1.1.50, there is an associated cochain complex to A by restricting each of the face maps, d

i
=

di|A : A
bn

Ñ A
bn´1

. The associated cochain complex is the non-unital Hochschild complex of
A. We depict the semi-simplicial object as shown in the following diagram:

K A A
b2

A
b3

...
0

(¨A)

0

(¨A)

0

(¨A)

0

As gradedmodules, the cochain complex CA is isomorphic to T c(A). Here we think of the grading
T c(A) as starting at 0 and going down to negative degrees. Consider instead the looped non-
unital algebra A[1]. There is a natural grading on every algebra, concentrating it in degree 0. The
shift functor then changes the degree to which we concentrate the algebra. However, A[1] is no
longer an associative algebra. To understand this looped multiplication, we will first consider
Ktωu, where |ω| = ´1. We define a looped multiplication (¨) : Ktωub2 Ñ Ktωu as

ω ¨ ω = ω.

Given an algebra A, the looped multiplication of A[1] is defined as the composite

(¨A[1]) = ((¨) b (¨A)) ˝ (Ktωu b β bA).
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As an example, suppose that ωa1 and ωa2 are elements of A[1], then their multiplication would
look like

(¨A[1])(ωa1 b ωa2) = (´1)|a1||ω|((¨) b ¨A)(ω
b2 b a1 b a2) = (´1)|a1|ωa1a2.

Observe that the resulting morphism (¨A[1]) is of degree 1.

Proposition 1.2.8. Suppose thatA is an augmented algebra. The differential dA[1] is a coderiva-

tion for the cofree coalgebra T c(A[1]). Thus (CA[1], dA[1]) is a dg-coalgebra.

Proof. By injecting A[1] into T c(A[1]), we may think of (¨A[1]) : A[1]
b2 Ñ T c(A[1]) as a morphism

into the tensor coalgebra. By using Proposition 1.1.40, (¨A[1]) extends uniquely into a coderivation:

dc
A[1]

=
8
ÿ

n=0

n
ÿ

i=0

(¨A[1])
(n)
(i) = dA[1].

If (A, dA) is an augmented dg-algebra, then A is a simplicial object of Mod‚
K. There is also an

associated complex CA of A by taking the alternate sum of face maps. The complex CA may be
seen as the total complex of the double complex represented below.

¨ ¨ ¨ 0 K 0 ¨ ¨ ¨

¨ ¨ ¨ A´1 A0 A1 ¨ ¨ ¨

¨ ¨ ¨ (Ab2)´1 (Ab2)0 (Ab2)1 ¨ ¨ ¨

...
...x

...

0 0 0 0

´dA ´dA

εA

´dA

εA

´dA

εA

dAb2 dAb2

(¨A) AbεA

dAb2

(¨A) AbεA

dAb2

(¨A) AbεA

For simplicity, we will write d1 for the horizontal differential and d2 for the vertical differential. CA
is thus the total complex of the double complex above. Instead of considering the abovemen-
tioned double complex, we will consider the double complex associated with the looped algebra
A[1]. The following lemma states that this double complex is well-defined.

Proposition 1.2.9. Let A be an augmented dg-algebra. The bar complex BA is the total as-
sociated cochain complex of the augmentation ideal A. (BA, d‚

BA) is the cofree conilpotent
coalgebra equipped with d‚

BA = d1 + d2 as coderivation.
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Proof. d1 and d2 are coderivations with respect to deconcatenation as comultiplication. Since
the multiplication (¨A) is a chain map, we should have d‚

BA
2 = d1 ˝ d2 + d2 ˝ d1 = 0. We will show

this for each element in Ab2, and the result may be extended to all of BA. Instead of decorating
each ai with an ω, we will follow Eilenberg and MacLane’s notation, using brackets and bars,
ωa1 b ωa2 = [a1|a2] [EM53, p. 73]. The bars in this notation are what gave this coalgebra its
name.

d1 ˝ d2[a1|a2] = (´1)|a1|d1[a1a2] = (´1)|a1|dA[1][a1a2]

= (´1)|a1|+1[dA(a1a2)] = (´1)|a1|+1([dA(a1)a2] + (´1)|a1|[a1dA(a2)])

= (´1)|a1|+1[dA(a1)a2] ´ [a1dA(a2)]

d2 ˝ d1[a1|a2] = d2 ˝ (dA[1] b idA[1] + idA[1] b dA[1])[a1 b a2]

= ´d2 ˝ ([dA(a1)|a2] + (´1)|a1|+1[a1|dA(a2)])

= (´1)|dA(a1)|+1[dA(a1)a2] + (´1)2|a1|+2[a1dA(a2)]

= (´1)|a1|[dA(a1)a2] + [a1dA(a2)] = ´d1 ˝ d2[a1|a2]

Remark 1.2.10. We don’t need to show that BA is a functor. This property follows from BA
representing the object of Tw( , A).

On the other hand, a coalgebra C is a comonoid in ModK. By the dual of proposition B.1.5,
we may think of it as an augmented simplicial object C : (∆+)

op Ñ ModK. Dually, all of the
simplicial identities follow from coassociativity and counitality. A coaugmented coalgebra C
may be given an augmented cosimplicial structure in the opposite way of algebras. We then get
that the coaugmentation quotient C is a semi-cosimplicial object of ModK. Observe that C has
an associated cochain complex like A, but every arrow goes in the opposite direction.

K C Cb2 Cb3 ...
υC

∆C

AbυC

∆C

Cb2bυC

∆C

Cb4bυC

K C Cb2 Cb3 ...
s1 si si

The cobar construction is made from the suspended dg-coalgebra C[´1]. We may also denote
suspension by tensoring with a formal generator s, such that |s| = 1. Then we have an isomor-
phism C[´1] » KtsubC . The cobar construction is realized as the free tensor algebra T (C[´1]),
where the comultiplication ∆C[´1] induces a derivation dC[´1] by Proposition 1.1.40.
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Remark 1.2.11. As we have chosen to define (¨A[1])(a1 b a2) = (´1)|a1|a1a2, we are forced by the

linear dual to define ∆C[´1](c) = ´(´1)|c(1)|c(1) b c(2). Here we use Sweedler’s notation without
sums to denote the comultiplication. Note that this really should be a sum of many different
elementary tensors. Lastly, observe that this definition also agrees with Koszuls’s sign rule.

The associated cochain complex CC is the total complex of the double complex below. Similarly,
we want to study C[´1] to obtain a similar result to the bar construction.

...
...

...

... (C
b2

)´1 (C
b2

)0 (C
b2

)1 ...

... C
´1

C
0

C
1

...

... 0 K 0 ...

d
C

b2 d
C

b2

∆CbC

d
C

b2

∆CbC

d
C

b2

∆CbC

dC dC

∆C

dC

∆C

dC

∆C

0

Proposition 1.2.12. Let C be a coaugmented dg-coalgebra. The cobar complex ΩC is the total
associated cochain complex of the suspended coaugmentation quotient C[´1]. (ΩC, dΩC) is the
free algebra equipped with the differential dΩC = d1 + d2 as derivation.

Proof. This proof is similar to the one given for the bar construction.

Given a string of elements in the cobar sc1 b ¨ ¨ ¨ , we write it by using pointed brackets and bars
instead,

sc1 b sc2 b ¨ ¨ ¨ b scn = xc1|c2| ¨ ¨ ¨ |cny.

The bar and cobar construction defines an adjoint pair of functors. We want to show that for any
conilpotent dg-coalgebra C , the object ΩC represents a functor in the category of augmented
algebras. By Yoneda’s lemma, Ω does truly define a functor.

Theorem 1.2.13. Let C be a conilpotent dg-coalgebra and A an augmented dg-algebra. The
functor Tw(C,A) is represented in both arguments, i.e.

Alg‚
K,+(ΩC,A) » Tw(C,A) » coAlg‚

K,conil(C,BA).

Proof. We will show that ΩC represents the set of twisting morphisms in the first argument, and
this shows that BA represents the second argument by using every dual proposition. Thus, C
must be conilpotent to dualize the results.
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Suppose that f : ΩC Ñ A is an augmented dg-algebra homomorphism. f is then a morphism of
degree 0. By freeness, f is uniquely determined by a morphism f |C[´1]: C[´1] Ñ A of degree
0, which corresponds to a morphism f 1 : C Ñ A of degree 1 which is 0 on the augmentation and
coaugmentation.

Since f is a morphism of chain complexes, it commutes with the differential, i.e.

f ˝ dΩC = dA ˝ f

ô f ˝ (d1 + d2) = dA ˝ f

By 1.1.11, to establish these conditions, it is enough to consider the summand where d1 = ´dC
and d2 = ∆C[´1]. Then the right hand side becomes ´f 1 ˝ dC ´ (´1)|f |(¨A)(f

1 b f 1)∆C . This is
equivalent to saying that ´f 1 ˝ dC ´ f 1 ‹ f 1 = dA ˝ f 1. Thus f 1 is a twisting morphism as desired.

Since every step to establish that f 1 is a twisting morphism was a logical equivalence, we arrive
at the desired conclusion.

For our convenience, we will give these isomorphisms some names. Whenever τ : C Ñ A is
a twisting morphism, we denote the induced morphism of algebras as fτ : ΩC Ñ A, and the
induced morphism of coalgebras as gτ : C Ñ BA.

Remark 1.2.14. We could have defined a twistingmorphism from any coalgebraC to algebraA. In
this case, we could have defined a twisting morphism as a morphism of degree 1, which satisfies
the Cartan-Maurer equation. However, the cobar and bar construction on augmented algebras
does not represent this definition of twisting morphisms. The subclass of twisting morphisms
which also (co)restricts to twistingmorphisms on its coaugmentation quotient and augmentation
ideal, would be represented in this manner, which is what our definition requires.

The cobar-bar adjunction consists of a composition with the augmentation ideal (quotient) and
then the (co)free tensor (co)algebra. By reversing these operations, we obtain another adjunction
that is more or less the same. By abuse of language, we will call these functors for the bar and
cobar construction as well, and they establish an adjoint pair between non-unital dg-algebras
and reduced conilpotent dg-coalgebras. In other words, given a non-unital dg-algebra A and a
reduced conilpotent dg-coalgebra C , BA = T

c
(A[1]) and ΩC = T (C[´1]).

xAlg
‚

K coAlg‚
K,conil,´

B

K

Ω

We obtain universal elements and universal properties associated with this adjunction. Let A
be an augmented dg-algebra, then the identity of the coalgebras idBA : BA Ñ BA, the counit
εA : ΩBA Ñ A and a twisting morphism πA : BA Ñ A are equivalent by the adjunction and
representation. Dually, the identity of algebras idΩC : ΩC Ñ ΩC , the unit ηC : C Ñ BΩC and
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the twisting morphism ιC : C Ñ ΩC are equivalent. The morphisms πA and ιC are called the
universal elements. We summarize their universal property in the following corollary.

Corollary 1.2.14.1. Let A be an augmented dg-algebra and C a conilpotent dg-coalgebra. Any
twisting morphism α : C Ñ A factors uniquely through either πA or ιC .

ΩC

C A

BA

gα

α

ιC

fα πA

Moreover, the morphism fα is a morphism of dg-coalgebras, and gα is a morphism of dg-
algebras.

Definition 1.2.15 (Augmented Bar-Cobar construction). LetA be an augmented dg-algebra. The
(right) augmented bar construction is the right twisted tensor product BA bπA A, where πA is
the universal twisting morphism.

Let C be a conilpotent dg-coalgebra. The (right) augmented cobar construction is the right
twisted tensor product C bιC ΩC , where ιC is the universal twisting morphism.

Remark 1.2.16. We could have defined the augmented bar-cobar construction as the left twisted
tensor product. There is no preference for handedness. It will be specified whenever we wish to
be precise about which handedness we will use. For instance, the left augmented bar construc-
tion of A.

Proposition 1.2.17. The augmentation ideal and quotient of the augmented bar and cobar con-
struction are acyclic, i.e., BAbπAA (AbπABA) and CbιCΩC (ΩCbιCC) are acyclic.

Proof. We will postpone this proof until chapter 3; this is a part of the fundamental theorem of
twisting morphisms and will not be relevant until then.

1.3 Strongly Homotopy Associative Algebras and Coalgebras

1.3.1 SHA-Algebras

We have seen from Corollary 1.2.8 that any dg-algebraA defines a dg-coalgebra T c(A[1]), the bar
construction, with a coderivation mc of degree 1. Does this work in reverse? I.e., if A is a vector
space such that the coalgebra T c(A[1]) together with a coderivationmc is a dg-coalgebra, is then
A an algebra? The answer is no, but it leads to the definition of a strongly homotopy associative
algebra.
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Definition 1.3.1. An A8-algebra is a graded vector space A together with a differential m :
T
c
(A[1]) Ñ T

c
(A[1]) that is a coderivation of degree 1.

The differentialm induces structure morphisms on A[1]. By Proposition 1.1.40, there is a natural
bijection HomK(T

c
(A[1]), A[1]) » Coder(T

c
(A[1]), T

c
(A[1])) given by the projection onto A[1].

Thus m : T
c
(A[1]) Ñ T

c
(A[1]) corresponds to maps rmn : A[1]bn Ñ A[1] of degree 1 for any

n ě 1. We define maps mn : Abn Ñ A by the composite srmnω
bn. Since ωbn is of degree ´n,

rmn and s is of degree 1, we get that mn is of degree 2 ´ n.

Abn A

A[1]bn A[1]

mn

»ωbn

rmn

»s

Remark 1.3.2. The choice of isomorphisms here is not canonical. Different choices may lead to
different signs in the following formulas. We will follow the sign convention of Loday and Vallette
[LV12]. This will give us the same signs as in Lefèvre-Hasegawa [Lef03], as his signs always
come in a pair to cancel each other out.

Proposition 1.3.3. An A8-algebra is equivalent to a graded vector space A together with ho-
mogenous morphismsmn : Abn Ñ A of degree 2´n. Moreover, the morphism must satisfy the
following relations for any n ě 1:

(reln)
ÿ

p+q+r=n

(´1)pq+rmp+1+r ˝ (idbp bmq b idbr) = 0

Remark 1.3.4. We make a more convenient notation for (reln), called partial composition ˝i,

mp+1+r ˝p+1 mq = mk ˝ (idbp bmq b idbr).

With this noation we may rewrite each (reln) as

(reln)
ÿ

p+q+r=n

(´1)pq+rmp+1+r ˝p+1 mq = 0.

Before starting with the proof, we will need a lemma for checking whether a coderivation
m : T c(A) Ñ T c(A) is a differential.

Lemma 1.3.5. Let m : T c(A) Ñ T c(A) be a coderivation, and denote mn = m|Abn . m is a
differential if and only if the following relations are satisfied,

ÿ

p+q+r=n

mp+1+r ˝p+1 mq = 0.
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Proof. By Proposition 1.1.40 we may write m =
ř8

n=0

řn
i=0m

(i)
(n). By using partial composition,

we rewrite its n’th component as,

mn =
n

ÿ

q=1

n
ÿ

p=1

idb(n´q) ˝p mq =
ÿ

p+q+r=n

idb(p+1+r) ˝p+1 mq .

For m2, we denote its n’th component as m2
n. Let π : T c(A) Ñ A denote the projection onto A.

Observe the following:

m2
n = m ˝mn = m ˝

ÿ

p+q+r=n

idb(p+1+r) ˝p+1 mq =
ÿ

p+q+r=n

m ˝p+1 mq ,

πm2
n = π

ÿ

p+q+r=n

m ˝p+1 mq =
ÿ

p+q+r=n

mp+1+r ˝p+1 mq .

By Proposition 1.1.43, every coderivation is uniquely determined by π, we get that m2 = 0 if and
only if

ÿ

p+q+r=n

mp+1+r ˝p+1 mq = 0.

Proof of Proposition 1.3.3. Let (A,m) be an A8-algebra. We denote the n’th component of m
as rmn. The n’th components thus define maps mn : Abn Ñ A as mn = srmnω

bn.

By the above lemma, we know that the n’th component of m2 is,
ÿ

p+q+r=n

rmp+1+r ˝p+1 rmq

=
ÿ

p+q+r=n

ωmp+1+rs
b(p+1+r) ˝p+1 ωmqs

bq =
ÿ

p+q+r=n

(´1)pq+rωmp+1+r ˝p+1 mqs
bn.

The last equation is given by applying Proposition 1.1.44 twice. In other words, we want to find
a parity p = p1 + p2, which determines the sign above. To get p1 we start with moving the s on
the left,

sbp+1+r ˝ (idbp b ωmqs
bq b idbr) = (´1)p1(sbq bmqs

bq b sbr).

By Proposition 1.1.44,

p1 =
n

ÿ

i=1

ÿ

1ďjăi

(if j = p+ 1 then 1 otherwise 0) = r.

In the next step, we separate the s on the right,

(idbp bmq b idbr) ˝ sbn = (´1)p2(sbq bmqs
bq b sbr).
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We calculate p2 to be,

p2 = (2 ´ q)
ÿ

1ďjăp+1

1 = 2p´ qp.

Thus the parity of p is p = 2p´ qp+ r = pq + r modulo 2.

Since suspension and loop are isomorphisms, we get that m2 = 0 if and only if (reln) are 0 for
every n ě 1, i.e.

ÿ

p+q+r=n

(´1)pq+rmp+1+r ˝p+1 mq = 0.

Given an A8 algebra A, we may either think of it as a differential tensor coalgebra T
c
(A[1]) with

differentialm : T
c
(A[1]) Ñ T

c
(A[1]), or as a graded vector space with morphismsmn : Abn Ñ A

satisfying (reln). We will calculate (reln) for n = 1, 2, 3:

(rel1) m1 ˝m1 = 0

(rel2) m1 ˝m2 ´m2 ˝1 m1 ´m2 ˝2 m1 = 0

(rel3) m1 ˝m3 ´m2 ˝1 m2 +m2 ˝2 m2 +m3 ˝1 m1 +m3 ˝2 m1 +m3 ˝3 m1 = 0

We see that (rel1) states that m1 should be a differential. Thus we may think of (A,m1) as a
cochain complex. Furthermore, (rel2) says that m2 : (Ab2,m1 b idA + idA b m1) Ñ (A,m1)
is a morphism of chain complexes. Lastly, (rel3) gives us a homotopy for the associator of m2,
namelym3. Thus we may regard (A,m1,m2) as an algebra that is associative up to the homotopy
m3. Regarding A as a cochain complex, instead, we obtain our final equivalent definition of an
A8-algebra.

Proposition 1.3.6. Suppose that (A, d) is a cochain complex and that there exist morphisms
mn : Abn Ñ A of degree 2 ´ n for any n ě 2. A is an A8-algebra if and only it satisfies the
following relations:

(rel’n) B(mn) = ´
ÿ

n=p+q+r
k=p+1+r
ką1,qą1

(´1)pq+rmk ˝p+1 mq

We define the homotopy of an A8-algebra to be the homology of the cochain complex (A,m1).
Since B(m3) = m2 ˝1m2 ´m2 ˝2m2, we get thatm2 is associative in homology. Thus for any A8-
algebra A, the homotopy HA is an associative algebra. The operadic homology of A is defined
as the homology of (T c(A[1]),m), which is the non-unital augmented Hochschild homology of
A.

Example 1.3.7. Suppose that V is a cochain complex with differential d. Then V is anA8-algebra
with trivial multiplication. In other words m1 = d and mi = 0 for any i ą 1.
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Example 1.3.8. Suppose thatA is a dg-algebra. ThenA is anA8-algebra wherem1 = d,m2 = (¨)
and mi = 0 for any i ą 2.

Next, we want to understand the category of A8-algebras. A morphism between A8-algebras
is called an 8-morphism. We define such an 8-morphism f : A ù B between A8-algebras
as associated dg-coalgebra homomorphism Bf : (T

c
(A[1]),mA) Ñ (T

c
(B[1]),mB). Here Bf is

purely formal, and we will make sense of this soon.

Proposition 1.3.9. Let A,B be two A8-algebras. A collection of morphisms fn : Abn Ñ B of
degree 1 ´ n for any n ě 1 defines an 8-morphism f : A ù B if and only if f1 is a morphism
of chain complexes and for any n ě 2 the following relations are satisfied:

(reln) B(fn) =
ÿ

p+1+r=k
p+q+r=n

(´1)pq+rfk ˝p+1 m
A
q ´

ÿ

kě2
i1+...+ik=n

(´1)emB
k ˝ (fi1 b fi2 b ...b fik),

where e is

e =
k

ÿ

l=1

(1 ´ il)
ÿ

1ďmăl

im.

Proof. Establishing the shape of this equation is immediate by the universal property of cofree
coalgebras. We obtain the parity e by factoring the s to the right.

(fi1 b ¨ ¨ ¨ b fik) ˝ sbn = (´1)e(fi1s
bi1 b ¨ ¨ ¨ b fiks

bik).

By Proposition 1.1.44, we arrive at the conclusion,

e =
k

ÿ

l=1

|fil |
ÿ

1ďmăl

|sbim | =
k

ÿ

l=1

(1 ´ il)
ÿ

1ďmăl

im

Since the composition of two dg-coalgebra homomorphisms is again a dg-coalgebra homomor-
phism, we get that the composition of two8-morphisms is again an8-morphism. More explicitly
if f : A ù B and g : B ù C are two 8-morphisms, then their composition is defined as

(fg)n =
ÿ

r

ÿ

i1+...+ir=n

(´1)egr(fi1 b ...b fir).

Here e denotes the same parity as above.

Definition 1.3.10. An 8-morphism f : A ù B is called strict if fn = 0 for any n ě 2.

Definition 1.3.11. Alg8 denotes the category of A8-algebras, and the morphisms in this cate-
gory are the 8-morphisms.
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Observe that we may extend the bar construction to B : Alg8 Ñ CoAlg‚
K,conil to a fully faithful

functor. This construction may be done explicitly by using Proposition 1.1.40. The subcategory
of the essential image is the full subcategory of every quasi-cofree dg-coalgebra. Notice that
the bar construction on the category of dg-algebras is a non-full injection into the category of
A8-algebras. This inclusion gives us a recontextualization of a dg-algebra as an A8-algebra.

A quasi-isomorphism between A8-algebras is called an 8-quasi-isomorphism. Given an 8-
morphism f : A ù B, we say that it is an 8-quasi-isomorphism if f1 is a quasi-isomorphism.
If we wanted to be more stringent with this definition, we would define an 8-quasi-isomorphism
to be an 8-morphism which is a quasi-isomorphism of dg-coalgebras. We will later see that
these definitions are equivalent.

A homotopy between two A8-algebras is a homotopy between the dg-coalgebras they define.
We may trace this definition back along the quasi-inverse of the bar construction to get a new
definition in terms of many morphisms.

Definition 1.3.12. Let f, g : A ù B be two 8-morphisms, we say that f „ g are homotopic if
there is a collection of morphisms hn : Abn Ñ B of degree ´n such that the following relations
are satisfied for any n ě 1:

fn ´ gn =
ÿ

(´1)smB
r+1+t ˝ (fi1 b ... b fir b hk b gj1 b ... b gjt) +

ÿ

(´1)j+klhi ˝j+1 m
A
k .

s is some constant depending on t, r, and k, which is calculable with Koszul’s sign rule. More
specific details may be found in [Lef03].

One may observe that this definition of homotopy is exactly the same as requiring that the
morphisms Bf and Bg are homotopic by a (Bf,Bg)-coderivation Bh.

If we have morphisms of algebras f, g : A Ñ A1 such that they are homotopic, then the (f, g)-
derivation h : A Ñ A1 defines a homotopy between f and g if we consider them as strict
8-morphisms. The relations for when n = 2 describes the property of being an (f, g)-derivation
whenever f2 and g2 are both 0, which is the case by strictness. The higher relations will be trivially
satisfied in this case. Thus, we may see that the bar construction maps (f, g)-derivations to
(f, g)-coderivations.

As in the same case for algebras, there is also a notion of unital A8-algebras and augmented
A8-algebras. For this discussion, it is essential to observe that the fieldK is also anA8-algebra.
This algebra will be the initial algebra like it does for ordinary algebras.

Definition 1.3.13. A strictly unitalA8-algebra is anA8-algebraA together with a unit morphism
υA : K Ñ A of degree 0 such that the following are satisfied:

‚ m1 ˝ υA = 0.
‚ m2(idA b υA) = idA = m2(υA b idA).
‚ mi ˝k υA = 0 for any i ě 3 and 1 ď k ă i.
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A strictly unital 8-morphism f : A ù B between strictly unital A8-algebras is a morphism
that preserves the unit. This means that f1υA = υB and fi ˝k υA = 0 for any i ě 2 and 1 ď k ă i.
The collection of strictly unital A8-algebras and strictly unital 8-morphisms form a non-full
subcategory of A8-algbras. A strict 8-morphism which is unital at the level of chain complexes
is automatically strictly unital. Strict unital will then mean strict and strictly unital. Note that K
is strictly unital where the unit is idK.

Definition 1.3.14. An augmented A8-algebra is a strictly unital A8-algebra A together with a
strict unital morphism εA : A Ñ K. The 8-morphism εA is called the augmentation of A.

The collection of augmented A8-algebras and strictly unital morphism is the category of aug-
mentedA8-algebras, denoted as Alg8,+. As in the same way for algebras, there is an equivalence
of categories Alg8 » Alg8,+. The augmentation ideal, or the reduced A8-algebra, is the kernel
of the augmentation εA. It does not make sense to talk about this limit a priori, as we do not
know if it exists. However, we will see in Section 2.3.3 that such morphisms have kernels. This
defines a functor, : Alg8,+ Ñ Alg8, where KerεA = A. Free augmentations give the quasi-
inverse to this functor. Given an A8-algebra A, we may construct the A8-algebra A ‘ K. The
structure morphisms are given bymA

i , but there is now a unit υA‘K. Thus we get thatm1(1) = 0,
m2(a b 1) = a and mi ˝k 1 = 0 in the same manner. We obtain a functor + : Alg8 Ñ Alg8,+,
where A‘ K = A+.

1.3.2 A8-Coalgebras

Dual to A8-algebras, we got conilpotent A8-coalgebras. Here we ask ourselves if the cobar
construction has some converse, i.e., if C is a graded vector space such that T (C[´1]) together
with a derivation m is a dg-algebra, is then C a coalgebra? Again, the answer to this is no, but
we obtain a definition for conilpotent A8-coalgebras.

Definition 1.3.15. A graded vector space C is called a conilpotent A8-coalgebra if it is a dg-
algebra of the form (T (C[´1]), d) where d is a derivation of degree 1.

Remark 1.3.16. For the rest of this thesis, anA8-coalgebra should be understood as a conilpotent
A8-coalgebra unless otherwise specified.

Corollary 1.3.16.1. C is an A8-coalgebra with differential d then there is a cochain complex
(C, d1), where d1 is of degree 1, and together with morphisms dn : C Ñ Cbn such that d uniquely
determines each di for any i ą 0. Conversely, if themorphisms di satisfy (rel)n, then they uniquely
determine a d such that C is an A8-coalgebra,

(reln) is
ÿ

p+q+r=n

(´1)pq+rdp+1+q ˝
op
p+1 d

q = 0

A morphism of A8-coalgebras is defined in the same manner as for A8-morphisms. An 8-
morphism f : C ù D is then either a morphism rf : (T (C[´1]),mC) Ñ (T (D[´1]),mD) of
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dg-algebras; or equivalently it is a collection of morphisms fn : C Ñ Dbn of degree 1 ´ n such
that f1 is a morphism of chain complexes, and for any n ě 2 the following relations are satisfied:

(reln) B(fn) =
ÿ

p+1+r=k
p+q+r=n

(´1)pq+rfk ˝
op
p+1 m

D
q ´

ÿ

kě2
i1+...+ik=n

(´1)emC
k ˝op (fi1 b fi2 b ...b fik),

where e is

e =
k

ÿ

l=1

(1 ´ il)
ÿ

1ďmăl

im.

We denote coAlg8 as the category ofA8-coalgebras. Similarly, the cobar construction extends to
this category and identifies A8-coalgebras and a subcategory of dg-algebras. This subcategory
consists of every dg-algebra that is isomorphic, as an algebra, to a free tensor algebra. Lastly,
every dg-coalgebra is an A8-coalgebra by letting every morphism mi = 0 where i ą 2, and this
gives a non-full inclusion.





Chapter 2

Homotopy Theory of Algebras

Quillen envisioned a more general approach to homotopy theory, which he dubbed homotopical
algebra. The structure of a model category first enclosed a homotopy theory, and now we mainly
consider closed model categories. Many of the results from classical homotopy theory were
recovered in the theory of model categories. The theorem which we are most concerned about
is Whitehead’s theorem:

Theorem 2.0.1 (Whitehead’s Theorem). Let X and Y be two CW-complexes. If f : X Ñ Y is
a weak equivalence, it is also a homotopy equivalence. I.e. there exists a morphism g : Y Ñ X
such that gf „ idX and fg „ idY .

If we endow a Quillen model category onto the category Top, we get that a space X is bifibrant
if and only if it is a CW-complex. The natural generalization is not to ask X to be a CW-complex
but a bifibrant object.

Theorem 2.0.2 (Generalized Whiteheads Theorem, [Proposition 1.2.8 Hov99, p. 11]). Let C be
a model category. Suppose that X and Y are bifibrant objects of C and that there is a weak
equivalence f : X Ñ Y . Then f is also a homotopy equivalence, i.e., there exists a morphism
g : Y Ñ X such that gf „ idX and fg „ idY .

The category of differential graded algebras employs such a model category, and here we let
the weak equivalences be quasi-isomorphisms. On the other hand, the category of differential
graded coalgebras has a model structure where the weak equivalences are the maps sent to
quasi-isomorphism by the cobar construction. Moreover, the bar and cobar construction defines
a Quillen equivalence between these model structures. As we will see, a dg-coalgebra will be
bifibrant exactly when it is an A8-algebra. Thus, by Whitehead’s theorem, quasi-isomorphisms
lift to homotopy equivalences. In this case, the derived category of A8-algebras is equivalent to
the homotopy category of A8-algebras.

We will conclude this chapter by looking at the category of algebras as a subcategory of A8-
algebras. The derived categorymay then be expressed as the homotopy category ofA8-algebras,

51
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restricted to algebras.

2.1 Model categories

As one may see in literature, many semantically different definitions of model categories ex-
ist, but they are all made to be equivalent under good conditions. The difference mainly comes
down to preference. This thesis will use the definitions from Mark Hovey’s book ”Model Cate-
gories” [Hov99]. In this section, we will define Quillen’s model category. We will then prove the
fundamental results about model categories, their associated homotopy category, and Quillen
functors between model categories.

Before we state the definition of a model category, we need some preliminary definitions. For
this section, let C be a category.

Definition 2.1.1 (Retract). A morphism f : A Ñ B in C is a retract of a morphism g : C Ñ D if
it fits in a commutative diagram on the form

A C A

B D B

f

idA

g f

idB

Definition 2.1.2 (Functorial factorization). A pair of functors α, β : CÑ Ñ CÑ is called a func-
torial factorization if for any morphism f P Mor(C), there is a factorization f = β(f) ˝ α(f). We
will use the notation fα = α(f) and fβ = β(f). The following commutative diagram depict the
functorial factorization:

A B

C

f

fα fβ

Definition 2.1.3 (Lifting properties). Suppose that the morphisms i : A Ñ B and p : C Ñ D fit
inside a commutative square. i is said to have the left lifting property with respect to p, or p has
the right lifting property with respect to i if there is an h : B Ñ C such that the two triangles
commute.

A C

B D

i ph
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Remark 2.1.4. We will call the left lifting property LLP and the right lifting property RLP.

Definition 2.1.5 (Wide subcategory). We call a subcategory W Ă C wide if W has every object
C. In particular, W is a subcategory having every identity morphism.

2.1.1 Model categories

Definition 2.1.6 (Model category). Let C be a category with all finite limits and colimits. C admits
a model structure if there are three wide subcategories, each defining a class of morphisms:

‚ Ac Ă Mor(C) are called weak equivalences
‚ Cof Ă Mor(C) are called cofibrations
‚ Fib Ă Mor(C) are called fibrations

In addition, we call morphisms in Cof X Ac for acyclic cofibrations and Fib X Ac for acyclic
fibrations. Moreover, C has two functorial factorizations (α, β) and (γ, δ). The following axioms
should be satisfied:

MC1 The class of weak equivalences satisfy the 2-out-of-3 property, i.e. if f and g are com-
posable morphisms such that 2 out of f , g and gf are weak equivalences, then so is the
third.

MC2 The three classes Ac, Cof and Fib are retraction closed, i.e., if f is a retraction of g, and g
is either a weak equivalence, cofibration or fibration, then so is f .

MC3 The class of cofibrations have the left lifting property with respect to acyclic fibrations, and
fibrations have the right lifting property with respect to acyclic cofibrations.

MC4 Given any morphism f , fα is a cofibration, fβ is an acyclic fibration, fγ is an acyclic cofi-
bration and fδ is a fibration.

Remark 2.1.7. The class Ac has every isomorphism, and this is because every isomorphism is a
retract of some identity morphism.

Remark 2.1.8. The type of category above was first called a closed model category by Quillen
[Hin01a]. In his sense, a model category does not require finite limits or finite colimits. In our
case, we will explicitly state whenever a model category is non-closed, i.e., it does not have every
finite limit or colimit.

A model category C is now defined to be a category equipped with a particular model structure.
Notice that a category may admit several model structures. For more topological examples, we
refer to Dwyer–Spalinski [DS95] and Hovey [Hov99].

An interesting and a not so non-trivial property of model categories is that giving all three classes
Ac, Cof, and Fib is redundant. The model structure is determined by the class of weak equiv-
alences and either cofibrations or fibrations. Thus the classes of fibrations are determined by
acyclic cofibrations, and fibrations determine cofibrations. The following two results will show
this.
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Lemma 2.1.9 (The retract argument). Let C be a category. Suppose there is a factorization
f = pi and that f has LLP with respect to p; then f is a retract of i. Dually, if f has RLP to i, then
it is a retract of p.

Proof. We assume that f : A Ñ C has LLP with respect to p : B Ñ C . Then we may find a lift
r : C Ñ B, which realizes f as a retract of i.

A B

C C

f

i

pr ùñ

A A A

C B C

f i f

r p

Proposition 2.1.10. Let C be a model category. A morphism f is a cofibration (acyclic cofibra-
tion) if and only if f has LLP with respect to acyclic fibrations (fibrations). Dually, f is a fibration
(acyclic fibration) if and only if it has RLP with respect to acyclic cofibrations (cofibrations).

Proof. Assume that f is a cofibration. By MC3, we know that f has LLP with respect to acyclic
fibrations. Assume instead that f has LLP with respect to every acyclic fibration. By MC4, we
factor f = fα ˝ fβ , where fα is a cofibration, and fβ is an acyclic fibration. Since we assume f
to have LLP with respect to fβ , by Lemma 2.1.9, we know that f is a retract of fα. Thus by MC2,
we know that f is a cofibration.

Corollary 2.1.10.1. Let C be a model category. (Acyclic) Cofibrations are stable under pushouts,
i.e., if f is an (acyclic) cofibration, then f 1 is an (acyclic) cofibration.

A C

B D

f
{

f 1

Dually, fibrations are stable under pullbacks.

Proof. Consider the diagram

A C E

B D F

f
{

f 1 g
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where the left-hand square is a pushout. Then f has LLP to g if and only if f 1 has LLP to g by the
universal property of the pushout. It follows by Proposition 2.1.10 that f 1 is a cofibration.

Since we assume that every model category C admits finite limits and colimits, we know that it
has both an initial and a terminal object. We let H denote the initial object, and ˚ denote the
terminal object.

Definition 2.1.11 (Cofibrant, fibrant and bifibrant objects). Let C be a model category. An object
X is called cofibrant if the unique morphism H Ñ X is a cofibration. Dually, X is called fibrant
if the unique morphism X Ñ ˚ is fibrant. If X is both cofibrant and fibrant, we call it bifibrant.

There is no reason for every object to be either cofibrant or fibrant. However, we may see that
every object is weakly equivalent to an object which is either fibrant or cofibrant. In this case,
we can think of X and Y being weakly equivalent if there is a weak equivalence f : X Ñ Y . We
will make precise what it means for two objects to be weakly equivalent later.

Construction 2.1.12. Let X be an object of a model category C. The morphism i : H Ñ X has a
functorial factorization i = iβ ˝ iα, where iα : H Ñ QX is a cofibration and iβ : QX Ñ X is an
acyclic fibration. By definition, QX is cofibrant and weakly equivalent to X .

Q : C Ñ C defines a functor called the cofibrant replacement. To see this, we first look at
the slice category H/C. The objects are morphisms f : H Ñ X for any object X in C, while
morphisms are commutative triangles. We first observe that H/C Ă CÑ is a subcategory of the
arrow category. Thus (α, β) may be interpreted as functors on the slice category to the arrow
category. Moreover, since every arrow f : H Ñ X is unique, we observe that this category is
equivalent to C. Thus (α, β) may be interpreted as functors on C into arrows. We define Q as the
composition Q = cod ˝ α, where cod : CÑ Ñ C is the codomain functor.

Dually, we get a fibrant replacement functor R : C Ñ C. By the functorial factorizations, we have
natural transformations q : Q ñ IdC and r : IdC ñ R.

We collect the following properties

Lemma 2.1.13. The cofibrant replacement Q and fibrant replacement R preserve weak equiv-
alences.

Proof. Suppose there is a weak equivalence f : X Ñ Y . Then there is a commutative square

QX QY

X Y

Qf

„ „

f

„

where every morphism is a weak equivalence by the 2-out-of-3 property.
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Lemma 2.1.14 (Ken Brown’s lemma). Let C be a model category and D be a category with
weak equivalences satisfying the 2-out-of-3 property. If F : C Ñ D is a functor sending acyclic
cofibrations between cofibrant objects to weak equivalences, then F takes all weak equivalences
between cofibrant objects to weak equivalences. Dually, if F takes all acyclic fibrations between
fibrant objects to weak equivalences, then F takes all weak equivalences between fibrant objects
to weak equivalences.

Proof. Suppose that A and B are cofibrant objects and that f : A Ñ B is a weak equivalence.
Using the universal property of the coproduct, we define the map (f, idB) = p : A

š

B Ñ B. p
has a functorial factorization into a cofibration and acyclic fibration, p = pβ ˝ pα. We recollect
the maps in the following pushout diagram:

H B

A A
š

B

C

B

{
i2

idBi1

f

pα

pβ

By Corollary 2.1.10.1, both i1 and i2 are cofibrations. Since f , idB and pβ are weak equivalences,
so are pα ˝ i1 and pα ˝ i2 by MC2. Moreover, they are acyclic cofibrations.

Assume that F : C Ñ D is a functor as described above. Then by assumption, F (pα ˝ i1) and
F (pα ˝ i2) are weak equivalences. Since a functor sends identity to identity, we also know that
F (idB) is a weak equivalence. Thus by the 2-out-of-3 property F (pβ) is a weak equivalence,
as F (pβ) ˝ F (pα ˝ i2) = idF (B). Again, by 2-out-of-3 property F (f) is a weak equivalence, as
F (f) = F (pβ) ˝ F (pα ˝ i1).

2.1.2 Homotopy category

At its most abstract, homotopy theory is the study of categories and functions up to weak equiv-
alences. Here, a weak equivalence may be anything, but most commonly, it is a weak equivalence
in topological homotopy or a quasi-isomorphism in homological algebra. The biggest concern
when dealing with such concepts is to make a functor well-defined when these chosen weak
equivalences are inverted. To this end, there is a construction to amend these problems, known
as derived functors. We define a homotopical category in the sense of Riehl [Rie16].

Definition 2.1.15 (Homotopical Category). Let C be a category. C is homotopical if there is a wide
subcategory constituting a class of morphisms known as weak equivalences, Ac Ă MorC. The
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weak equivalences should satisfy the 2-out-of-6 property, i.e. given three composable morphisms
f , g and h, if gf and hg are weak equivalences, then so are f , g, h and hgf .

A B

C D

f

gf
g

hg

h

Remark 2.1.16. Notice that the 2-out-of-6 property is stronger than the 2-out-of-3 property. To
see this, let either f , g, or h be the identity, and then conclude with the 2-out-of-3 property.

Remark 2.1.17. The collection of weak equivalences contains every isomorphism. To see this pick
an isomorphism f and f´1, then the compositions are the identity on the domain and codomain,
which are assumed to be in Ac.

Given such a homotopical category C, we want to invert every weak equivalence and create
the homotopy category of C. This construction is developed in Gabriel and Zisman [Hin01b]
called the calculus of fractions. This method tries to mimic localization for commutative rings
in a category-theoretic fashion. We will not give an account of the existence or construction of
localizations.

Definition 2.1.18. Let C be a homotopical category. Its homotopy category is HoC = C[Ac´1],
together with a localization functor L : C Ñ HoC. The following universal property determines
the localization: If F : C Ñ D is a functor sending weak equivalences to isomorphisms, then it
uniquely factors through the homotopy category up to a unique natural isomorphism η.

C D

HoC

F

L F 1
η

Definition 2.1.19. Suppose that C is a homotopical category. Two objects of C are said to be
weakly equivalent if they are isomorphic in HoC. I.e., X and Y are weakly equivalent if there is
some zig-zag relation between the objects, consisting only of weak equivalences.

X ¨ ¨ ¨ Y

X 1 Y 1

„ „ „ „

Remark 2.1.20. A renowned problem with localizations is that even if C is a locally small category,
localizations C[S´1] do not need to be. Thus, without a good theory of classes or higher universes,
we cannot generally ensure that localization still exists as a locally small category.
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From the definition of the homotopy category, a functor F admits a lift F 1 from the homotopy
category whenever weak equivalences are mapped to isomorphisms. Moreover, if we have a
functor F between homotopical categories, which preserves weak equivalences, it then induces
a functor between the homotopy categories.

Definition 2.1.21 (Homotopical functors). A functor F : C Ñ D between homotopical categories
is homotopical if it preserves weak equivalences. Moreover, there is a lift of functors, as in the
following diagram, where η is a natural isomorphism.

C D

HoC HoD

F

LC LDη

F 1

Derived functors becomes relevant whenever we want to make a lift of non-homotopical functors.
These lifts will be the closest approximation that we can make functorial. We will see that a
model category is a congenial environment to work with these concepts. Firstly the problem
with localizations where the homotopy category may not exist will be amended. Secondly, we will
obtain a simple description of some derived functors.

Proposition 2.1.22. Any model category C is a homotopical category.

Proof. To show that a model category is homotopical, it suffices to show that Ac satisfies the
2-out-of-6 property. Assume there are 3 composable morphisms f, g, h such that gf, hg P Ac.
By the 2-out-of-3 property for Ac, it is enough to show that at least one of f, g, h, fgh is a weak
equivalence to deduce that every other morphism is a weak equivalence.

A B

C D

f

gf
g

hg

h

To use the model structure, we will first show that we may assume f, g to be cofibrant and g, h
to be fibrant. We know by MC4 that f, g, gf may be factored into a cofibration composed with
an acyclic fibration, e.g., f = fβfα. Since gf is a weak equivalence, so is (gf)α by the 2-out-of-3
property.

A B

B1

f

fα fβ

B C

C 1

g

gα gβ

A C

C2

gf

(gf)α (gf)β
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Notice that the ”cofibrant approximation” of the map from A to C either goes through C 1 or C2.
We conjoin these by taking the pullback. Since acyclic fibrations are stable under pullbacks, we
get a pullback square where every morphism is an acyclic fibration. Thus the map A Ñ rC is a
weak equivalence by 2-out-of-3.

A

rC C 1

C2 C

(gf)α

gαf

t

x
gβ

(gf)β

To replace f with fα, we must lift the composition into our ”new” C , which is rC . We do this using
MC3, as fα is a cofibration and the pullback square above consists entirely of acyclic fibrations.

A rC

B1 C

fα
s

To summarize, we have the following diagram, where every squiggly arrow is a weak equivalence.

A B1 B

rC C D

fα

t
„

„

s
„

„

We now wish to promote the arrow s : B1 Ñ rC into a cofibration. We do this by factoring s and t
with MC4. Notice that sβ , tβ and tα are weak equivalences.

B1
rC

rC 1

s

sα sβ

A rC

rC2

t

tα tβ

To obtain our final factorization, we use RLP of sβ on tα.
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B1

A rC 1

rC2
rC

sα
fα

tα sβ

tβ

u

Since the bottom square only consists of weak equivalences, u has to be a weak equivalence by
the 2-out-of-3 property. In this manner, we may transform our diagram into the following diagram

A B1 B

rC 1 C D

fα

utα
„

„

sα
„

„

We now have a factorization of gf into two cofibrations, followed by an acyclic fibration, in such a
manner that it is compatible with the original diagram. The dual to this claim is that we may also
factor hg into two fibrations preceded by an acyclic cofibration. In other words, we may assume
without loss of generality that f and g are cofibrations and that g and h are fibrations.

In this case, it is enough to show the 2-out-of-6 property to show that g is an isomorphism.
Consider the diagram below with lifts i and j, and these exist since we assume gf and hg to be
weak equivalences.

A B B

C C D

f

gf

idB

g hg

idC

i

h

j

Since the diagram is commutative, we get that i = j, and that g is both split-mono and split-epi,
with i as its splitting.

Since every model category is homotopical, it also has an associated homotopy category HoC.
Let Cc, Cf , and Ccf denote the full subcategories consisting of cofibrant, fibrant and bifibrant
objects, respectively.

Proposition 2.1.23. Let C be a model category. The following categories are equivalent:

‚ HoC,
‚ HoCc,
‚ HoCf ,
‚ HoCcf .
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Proof. We only show that HoC » HoCc, the other arguments are similar. The inclusion i : Cc Ñ C
preserves weak equivalences; i is homotopical and admits a lift. Moreover, since the cofibrant
replacement is homotopical, it also has a lift.

Cc C

HoCc HoC

i

Ho i

Ho Q

It is clear that Ho Q is the quasi-inverse of Ho i.

We still don’t see how model categories will fix the size issues. To do this, we will develop the
notion of homotopy equivalence, „. This homotopy equivalence will be a congruence relation
on the subcategory of bifibrant objects Ccf . We solve the size issues with this, together with the
fact that there is an equivalence of categories HoCcf » Ccf/„.

Definition 2.1.24 (Cylinder and path objects). Let C be a model category. Given an object X , a
cylinder object X ^ I is a factorization of the codiagonal map i : X

š

X Ñ X , such that p0 is a
cofibration and that p1 is a weak equivalence.

X
š

X X

X ^ I

i

p0 p1

Dually, a path object XI is a factorization of the diagonal map i : X Ñ X
ś

X , such that p0 is
a weak equivalence and that p1 is a fibration.

X X
ś

X

XI

i

p0 p1

Remark 2.1.25. Even though we have written X ^ I suggestively to be a functor, it is not. There
may be many choices for a cylinder object. However, by using the functorial factorization from
MC4, we get a canonical choice of a cylinder object, as it factors every map into a cofibration
and an acyclic fibration. If we let the cylinder object denote this functorial choice, we can define
it as a functor.

Proposition 2.1.26. Let C be a model category andX an object of C. Given two cylinder objects
X ^ I and X ^ I 1, they are weakly equivalent.
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Proof. It is enough to show that there exists a weak equivalence from any cylinder object into
one specified cylinder object. There is such a map for the functorial cylinder object X ^ I , as
the morphism p1 is an acyclic fibration, which enables a lift that is a weak equivalence by the
2-out-of-3 property.

X
š

X X ^ I

X ^ I 1 X

p0

p1
0

p1

p1
1

Definition 2.1.27 (Homotopy equivalence). Let f, g : X Ñ Y . A left homotopy between f and
g is a morphism H : X ^ I Ñ Y such that Hi0 = f and Hi1 = g. We say that f and g are left

homotopic if a left homotopy exists, and it is denoted f l
„ g.

X

X
š

X X ^ I Y

X

i0

f

p0 H

i1

g

A right homotopy between f and g is a morphism H : X Ñ Y I such that i0H = f and i1H = g.
We say that f and g are right homotopic if a right homotopy exists, and it is denoted f r

„ g.

Y

X Y I Y
ś

Y

Y

H

f

g

p1

i0

i1

f and g are said to be homotopic if they are both left and right homotopic, denoted f „ g. f
is a homotopy equivalence if it has a homotopy inverse h : Y Ñ X , such that hf „ idX and
fh „ idY .

It is important to note that homotopy equivalence is not a priori an equivalence relation. With the
following two propositions, we can amend this by taking both fibrant and cofibrant replacements.
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Proposition 2.1.28. Let C be a model category, and f, g : X Ñ Y be morphisms. We have the
following:

1. If f l
„ g and h : Y Ñ Z , then hf l

„ hg.

2. If Y is fibrant, f l
„ g and h :W Ñ X , then fh l

„ gh.
3. If X is cofibrant, then left homotopy is an equivalence relation on C(X,Y ).

4. If X is cofibrant and f l
„ g, then f r

„ g.

Proof. (1.) Assume that f l
„ g and h : Y Ñ Z . Let H : X ^ I Ñ Y denote the left homotopy

between f and g. The left homotopy between hf and hg is hH .

(2.) Assume that Y is fibrant, f l
„ g and that h :W Ñ X . LetH : X^ I Ñ Y be a left homotopy.

We construct a new cylinder object for the homotopy. Factor p1 : X ^ I Ñ X as q1 ˝ q0 where
q0 : X^ I Ñ X^ I 1 is an acyclic cofibration and q1 : X^ I 1 Ñ X is a fibration. By the 2-out-of-3
property, q1 is an acyclic fibration, as p1 and q0 are weak equivalences.X^I 1 is a cylinder object
as q0 ˝ p0 is a cofibration and q1 is a weak equivalence. Since we assume Y to be fibrant we lift
the left homotopy H : X ^ I Ñ Y to the left homotopy H 1 : X ^ I 1 Ñ Y with the following
diagram:

X ^ I Y

X ^ I 1 ˚

H

q0
H 1

We letWI be a cylinder object forW , where p1
0 :W \W Ñ QI is a cofibration. We can find an

appropriate homotopy needed with LLP of q1 against p1
0, as done in the diagram below.

W
š

W X ^ I 1

W ^ I X

q0p0(h
š

h)

p1
0

q1

hp1
1

k

The morphism H 1k is the desired left homotopy witnessing fh l
„ gh.

(3.) Assume that X is cofibrant. First, observe that a left homotopy is reflexive and symmetric.
Wemust show that it is also transitive. Thus, assume that f, g, h : X Ñ Y and thatH : X^I Ñ Y

is a left homotopy witnessing f l
„ g and that H 1 : X ^ I 1 Ñ Y is a left homotopy witnessing

g
l

„ h. We first observe that i0 : X Ñ X ^ I is a weak equivalence, as idX = p1i0 where idX and
p1 are weak equivalences. Since X is assumed to be cofibrant, we see that X

š

X is cofibrant
by the following pushout:
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H X

X X
š

X

{
inr

inl

Moreover, both inl and inr are cofibrations. It follows that i0 is a cofibration as i0 = p0 ˝ inr is
a composition of two cofibrations. i0 is thus an acyclic cofibration. We define an almost cylinder
objectC by the pushout of i1 and i10. We define the maps t andH

2 by using the universal property
in the following manner:

X X ^ I

X ^ I 1 C

X

i1

i1
0

p1

p1
1

t

X X ^ I

X ^ I 1 C

Y

i1

i1
0

H

H 1

H2

Observe that there is a factorization of the codiagonal map X
š

X
s

Ñ C
t

Ñ X . However, s may
not be a cofibration, so we replace C with the cylinder object X ^ I2 such that we have the

factorization X
š

X
sα
Ñ X ^ I2

tsβ
Ñ X . The morphism H2sβ is then our required homotopy for

f
l

„ g.

(4.) Suppose that X is cofibrant and that H : X ^ I Ñ Y is a left homotopy for f l
„ g. Pick

a path object for Y , such that we have the factorization Y
q0
Ñ Y I q1

Ñ Y
ś

Y where q0 is a weak
equivalence and q1 is a fibration. Again, asX is cofibrant, we get that i0 is an acyclic cofibration,
so we have the following lift of the homotopy:

X Y I

X ^ I Y
ś

Y

q0f

i0 q1

(fp1,H)

J

The right homotopy is given by injecting away from f , i.e., H 1 = Ji1.

Corollary 2.1.28.1. We collect the dual results of the above proposition and thus have the
following.

1. If f r
„ g and h :W Ñ X , then fh r

„ gh.
2. If X is cofibrant, f r

„ g and h : Y Ñ Z , then hf r
„ hg.

3. If Y is fibrant, then left homotopy is an equivalence relation on C(X,Y ).



Chapter 2: Homotopy Theory of Algebras 65

4. If Y is fibrant and f r
„ g, then f l

„ g.

Corollary 2.1.28.2. Homotopy is a congruence relation on Ccf . Thus the category Ccf/ „ is
well-defined, exists, and inverts every homotopy equivalence.

Lemma 2.1.29 (Weird Whitehead). Let C be a model category. Suppose that C is cofibrant and
h : X Ñ Y is an acyclic fibration or a weak equivalence between fibrant objects, then h induces
an isomorphism:

C(C,X)/ l
„ C(C, Y )/ l

„

h˚
»

Dually, if X is fibrant and h : C Ñ D is an acyclic cofibration or a weak equivalence between
cofibrant objects, then h induces an isomorphism:

C(D,X)/ r
„ C(C,X)/ r

„

h˚

»

Proof. We assume C to be cofibrant and h : X Ñ Y to be an acyclic fibration. We first prove that
h is surjective. Let f : C Ñ Y . By RLP of h, there is a morphism f 1 : C Ñ X such that f = hf 1.

H X

C Y

h

f

f 1

To show injectivity, we assume f, g : C Ñ X such that hf l
„ hg, in particular, there is a left

homotopy H : C ^ I Ñ Y . Remember that since C is cofibrant, the map p0 is a cofibration. We

find a left homotopy H : C ^ I Ñ X witnessing f l
„ g by the following lift.

C
š

C X

C ^ I Y

f+g

p0 h
H 1

H

If we instead assume that both X and Y are fibrant, then the functor C(C, )/ l
„ sends acyclic

fibrations to isomorphisms by Corollary 2.1.28.1. Ken Brown’s lemma, Lemma 2.1.14, tells us then
that C(C, )/ l

„ sends weak equivalences between fibrant objects to isomorphisms.

Theorem 2.1.30 (Generalized Whitehead’s theorem). Let C be a model category. Suppose that
f : X Ñ Y is a morphism of bifibrant objects. Then f is a weak equivalence if and only if f is a
homotopy equivalence.
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Proof. Suppose first that f is a weak equivalence. Pick a bifibrant objectA, then by Lemma 2.1.29
f˚ : C(A,X)/„ Ñ C(A, Y )/„ is an isomorphism. Letting A = Y , we know that there is a morphism
g : Y Ñ X , such that f˚g = fg „ idY . Furthermore, by Proposition 2.1.28, since X is bifibrant,
composing on the right preserves homotopy equivalence, e.g., fgf „ f . By letting A = X , we
get that f˚gf = fgf „ f = f˚idX , thus gf „ idX .

For the opposite direction, assume that f is a homotopy equivalence. We factor f into an acyclic

cofibration fγ and a fibration fδ , i.e. X
fγ
Ñ Z

fδ
Ñ Y . Observe that Z is bifibrant as X and Y is, in

particular, fγ is a weak equivalence of bifibrant objects, so it is a homotopy equivalence.

It is enough to show that fδ is a weak equivalence. Let g be the homotopy inverse of f , and
H : Y ^I Ñ Y is a left homotopy witnessing fg „ idY . Since Y is bifibrant, the following square
has a lift.

Y Z

Y ^ I Y

fγg

i0 fδ

H

H 1

Let h = H 1i1, and then by definition, we know that fδH 1i1 = idY . Moreover, H is a left homotopy
witnessing fγg „ h. Let g1 : Z Ñ X be the homotopy inverse of fγ . We have the following
relations fδ „ fδfγg

1 „ fg1, and hfδ „ (fγg)(fg
1) „ fγg

1 „ idZ . Let H2 : Z ^ I Ñ Z be a left
homotopy witnessing this homotopy. Since Z is bifibrant, i0 and i1 are weak equivalences. By
the 2-out-of-3 property, H2 and hfδ are weak equivalences. Since fδh = idY , it follows that fδ is
a retract of hfδ and is thus a weak equivalence.

Corollary 2.1.30.1. The category Ccf/„ satisfies the universal property of the localization of Ccf
by the weak equivalences. I.e. there is a categorical equivalence HoCcf » Ccf/„.

Proof. By generalized Whitehead’s theorem, Theorem 2.1.30 weak equivalences and homotopy
equivalences coincide. The corollary follows steadily from the universal property of the localiza-
tion and quotient categories.

We collect the results from above in the following theorem.

Theorem 2.1.31 (Fundamental theorem of model categories). Let C be a model category and
denote L : C Ñ HoC the localization functor. Let X and Y be objects of C.

1. There is an equivalence of categories HoC » Ccf/„.
2. There are natural isomorphisms Ccf/„(QRX,QRY ) » HoC(X,Y ) » Ccf/„(RQX,RQY ).

Additionally, HoC(X,Y ) » Ccf/„(QX,RY ).
3. The localization L identifies left or right homotopic morphisms.
4. A morphism f : X Ñ Y is a weak equivalence if and only if qf is an isomorphism.
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Proof. theorem is clear by the results above.

2.1.3 Quillen adjoints

We now want to study morphisms, or certain functors, betweenmodel categories. Like in the case
of homotopical functors, we want these morphisms to induce a functor between the homotopy
categories. However, we also want them to respect the cofibration and fibration structure, not
just weak equivalences. In this way, we will instead look toward derived functors to be able to
define this extension to the homotopy category. We recall the definition of a total (left/right)
derived functor. In the case of model categories, we get a simple description of some of these
derived functors.

Definition 2.1.32 (Total derived functors). Let C and D be homotopical categories, and F : C Ñ

D a functor. Whenever it exists, a total left derived functor of F is a functor LF : HoC Ñ HoD with
a natural transformation ε : LF ˝L ñ L ˝F satisfying the universal property: If G : HoC Ñ HoD
is a functor. There is a natural transformation α : G ˝ L ñ L ˝ F , then it factors uniquely up to
unique isomorphism through ε.

C D

HoC HoD

F

L L

LF

ε

C D

HoC HoD

F

L L
LF

G

D!

ε

Dually, whenever it exists, a total right derived functor of F is a functor RF : HoC Ñ HoD with a
natural transformation η : L ˝ F ñ RF ˝ L having the opposite universal property.

C D

HoC HoD

F

L Lη

RF

C D

HoC HoD

F

L L
RF

G

D!

η

Definition 2.1.33 (Deformation). A left (right) deformation on a homotopical category C is an
endofunctor Q (R) together with a natural weak equivalence q : Q ñ IdC (r : IdC ñ R).

A left (right) deformation on a functor F : C Ñ D between homotopical categories is a left (right)
deformation Q on C such that F preserves weak equivalences in the image of Q.

Remark 2.1.34 (Cofibrant and fibrant replacement). If C is a model category, then we have a
left and a right deformation. The cofibrant replacement Q defines a left deformation, and the
fibrant replacement defines a right deformation. Notice that this is only because the factorization
system is functorial.
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Proposition 2.1.35. Let F : C Ñ D be a functor between homotopical categories. If F has a
left deformation Q, then the total left derived functor LF exists. Moreover, the functor FQ is
homotopical, and LF is the unique extension of FQ.

Proof. Since we already have a candidate for the derived functor, we must check that it has the
universal property. This follows by [Proposition 6.4.11 Rie16, p. 207].

Remark 2.1.36. There is a somewhat weaker statement by Dwyer and Spalinski [Proposition 9.3
DS95, p. 111]. If we instead ask for functors F , which have the cofibrant replacement Q (fibrant
replacement R) as a left (right) deformation, we may make this proof more explicit.

With the above proposition and remark, it makes sense to define Quillen functors as left and right
Quillen functors. A left Quillen functor should be left deformable by the cofibrant replacement.
Moreover, for the composition of two left Quillen functors to make sense, we also need weak
equivalences between cofibrant objects to be mapped to weak equivalences between cofibrant
objects. We make the following definition.

Definition 2.1.37 (Quillen adjunction). Let C and D be model categories.

1. A left Quillen functor is a functor F : C Ñ D such that it preserves cofibrations and acyclic
cofibrations.

2. A right Quillen functor is a functor F : C Ñ D such that it preserves fibrations and acyclic
fibrations.

3. Suppose that (F,U) is an adjunction where F : C Ñ D is left adjoint to U . (F,U) is called
a Quillen adjunction if F is a left Quillen functor and U is a right Quillen functor.

Remark 2.1.38. By Ken Brown’s lemma, Lemma 2.1.14, we see that a left Quillen functor F is left
deformable to the cofibrant replacement functor Q. Thus the total left derived functor is given
by LF = HoFQ.

We will think of a morphism of model categories as a Quillen adjunction to eliminate the choice
of left or right derivedness. We can choose the direction of the arrow to be along either the left or
right adjoints, and we make the convention of following the left adjoint functors. We summarize
the following properties.

Lemma 2.1.39. Let C and D be model categories, and suppose there is an adjunction F : C é

D : U . The following are equivalent:

1. (F,U) is a Quillen adjunction.
2. F is a left Quillen functor.
3. U is a right Quillen functor.

Proof. This lemma follows from the naturality of the adjunction. I.e., any square in C, with the
right side from D is commutative if and only if any square in D with the left side from C is
commutative. Now, f has LLP with respect to Ug if and only if Ff has LLP with respect to g.
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A UX

B UY

k

f Ug

l

h ù

FA X

FB Y

kT

Ff g

lT

hT

Remark 2.1.40. We say that hT is the transpose of h along the unique natural isomorphism
witnessing the adjunction between F and U . With this notion, (hT )T = h.

Proposition 2.1.41. Suppose that (F,U) : C Ñ D is a Quillen adjunction. The functors LF :
HoC Ñ HoD and RU : HoD Ñ HoC forms an adjoint pair.

Proof. We must show that HoD(LFX, Y ) » HoD(X,RUY ). By using the fundamental theorem
of model categories, Theorem 2.1.31, we have the following isomorphisms: HoD(LFX, Y ) »

C(FQX,RY )/„ and HoD(X,RUY ) » D(QX,URY )/„. In other words, if we assumeX to be cofibrant
and Y to be fibrant, we must show that the adjunction preserves homotopy equivalences.

We show it in one direction. Suppose that the morphisms f, g : FA Ñ B are homotopic, wit-
nessed by a right homotopy H : FA Ñ BI . Since we assume U to preserve products, fibrations,
and weak equivalences between fibrant objects, U(BI) is a path object for UB. Thus the trans-
pose HT : A Ñ U(BI) is the desired homotopy witnessing fT „ gT

Definition 2.1.42 (Quillen equivalence). Let C and D be model categories, and (F,U) : C Ñ D
be a Quillen adjunction. (F,U) is called a Quillen equivalence if for any cofibrant X in C, fibrant
Y in D such that any morphism f : FX Ñ Y is a weak equivalence if and only if its transpose
fT : X Ñ UY is a weak equivalence.

Proposition 2.1.43. Suppose that (F,U) : C Ñ D is a Quillen adjunction. The following are
equivalent:

1. (F,U) is a Quillen equivalence.
2. Let η : IdC ñ UF denote the unit, and ε : FU ñ IdD denote the counit. The composite
UrF ˝ η : IdCc ñ URF |Cc , and ε ˝ FqU : FQU |Df

ñ IdDf
are natural weak equivalences.

3. The derived adjunction (LF,RU) is an equivalence of categories.

Proof. Firstly observe that 2. ùñ 3. by definition. Secondly, observe that equivalences both
preserves and reflect isomorphisms. From this, we get 3. ùñ 1.. We now show 1. ùñ 2.. Pick
X in C such that X is cofibrant. Since (F,U) is assumed to be a Quillen adjunction, FX is still
cofibrant. The fibrant replacement rFX : FX Ñ RFX gives us a weak equivalence. Furthermore,
since (F,U) is assumed to be a Quillen equivalence, its transpose rTFX : X Ñ URFX is a weak
equivalence. Unwinding the definition of the transpose, we get that rTFX = UrFX ˝ ηX .
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We have the following refinement.

Corollary 2.1.43.1. Suppose that (F,U) : C Ñ D is a Quillen adjunction. The following are
equivalent:

1. (F,U) is a Quillen equivalence.
2. F reflects weak equivalences between cofibrant objects, and ε ˝ FqU : FQU |Df

ñ IdDf

is a natural weak equivalence.
3. U reflects weak equivalences between fibrant objects, and UrF ˝ η : IdCc ñ URF |Cc is a

natural weak equivalence.

Proof. We start by showing 1. ùñ 2. and 3.. We already know that the derived unit and counit
are isomorphisms in homotopy, so we only need to show that F (U ) reflects weak equivalences
between cofibrant (fibrant) objects. Suppose thatFf : FX Ñ FY is a weak equivalence between
cofibrant objects. Since F preserves weak equivalences between cofibrant objects, we get that
FQf is a weak equivalence; that LFf is an isomorphism. By assumption, LF is an equivalence
of categories, so f is a weak equivalence as needed.

We will show 2. ùñ 1.; the case 3. ùñ 1. is dual. We assume that the counit map is
an isomorphism in homotopy. By assumption, the derived unit Lη is split-mono on the image of
LF . Moreover, the derived counit Rε is assumed to be an isomorphism. In particular, the derived
unit LFLη is an isomorphism. Unpacking this, we have a morphism, which we call η1

X : FQX Ñ

FQURFQX , which is a weak equivalence. Since F andQ reflect weak equivalences, we get that
ηX : X Ñ URFQX is a weak equivalence.

2.2 Model structures on Algebraic Categories

To understand 8-quasi-isomorphism of strongly homotopy associative algebras, we will study
different homotopy theories of various categories. Munkholm [Mun78] successfully showed that
the derived category of augmented algebras is equivalent to the derived category of augmented
algebras equipped with8-morphisms. To bemore precise, he showed that certain subcategories
of augmented algebras had this property. Lefevre-Hasagawas Ph.D. thesis [Lef03] builds upon
this identification, but with the help of further development within the field. We will follow the
approach of Lefevre-Hasegawa, by comparing the model structure for algebras and coalgebras,

2.2.1 DG-Algebras as a Model Category

Bousfield and Guggenheim [BG76] proved that the category of commutative dg-algebras had
a model structure whenever the base field was a field of characteristic 0. In a joint project,
Jardine’s paper from 1997 [Jar97] shows that this construction may be extended to dg-algebras
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over any commutative ring. On the other hand, Munkholm expanded on the ideas from Bousfield
and Guggenheim to get an identification of derived categories. Also, Hinich’s paper from 1997
[Hin97] details another method to obtain themodel category we want. We will follow the approach
of Hinich, as it will be helpful later on. Notice that where Hinich uses the theory of algebraic
operads to show that the category of algebras is a model category, we will give a more explicit
formulation.

Let K be a field, and C be a category such that there is an adjunction F : Ch(K) é C : #, where
F is left adjoint to #. Furthermore, suppose that C satisfies the 2 conditions:

(H0) C admits finite limits and every small colimit, and the functor # commutes with filtered
colimits;

(H1) ForM as the complex below, concentrated in 0 and 1,

... 0 K K 0 ...
id

we have that for any d P Z and for any A P C, the injection A Ñ A
š

F (M [d]) induces a
quasi-isomorphism A# Ñ (A

š

F (M [d]))#.

With this adjunction in mind, we define weak equivalences, fibrations, and cofibrations as follows:
Let f P C be a morphism

‚ f P Ac if f# is a quasi-isomorphism.
‚ f P Fib if f# is surjective on each component.
‚ f P Cof if f has LLP to acyclic fibrations.

Theorem 2.2.1. The category C equipped with the weak equivalences, fibrations, and cofibra-
tions as defined above is a model category.

Before we show this theorem, we need to understand the cofibrations better. Let A P C, M P

Ch(K) and α :M Ñ A# a morphism in Ch(K). We define a functor

hA,α(B) = t(f, t) | f P C(A,B), t P Hom´1
K (M,B#) s.t. Bt = f# ˝ αu.

Note that t is not a chain map. It is a homogenous morphism of degree ´1. The differential then
promotes this morphism to a chain map, and t is thus a homotopy for the composite f# ˝ α.

This functor is represented by an object of C. We define this representing object AxM,αy as the
pushout:

F (A#) A

F (cone(α)) AxM,αy

εA

{
a

e
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Let i :M [1] Ñ cone(α) be a homogenous morphism which is the injection when considered as
graded modules. Notice that we have a pair of morphisms (a, eT i) P hA,α(AxM,αy).

Proposition 2.2.2. The functor hA,α is represented by AxM,αy, i.e. hA,α » C(AxM,αy, ) is a
natural isomorphism. Moreover, the pair (a, eT i) is the universal element of the functor hA,α, i.e.,
the natural isomorphism is induced by this element under Yoneda’s lemma.

Proof. Let (f, t) P hA,α(B) for some B P C. The condition that Bt = f#α is equivalent to say that
f# extends to a morphism f 1 : cone(α) Ñ B# along t, i.e. there is a vector of morphisms f 1 =(
f# t

)
. This construction concludes the isomorphism part, as an element (f, t) is equivalent to

the diagram below, where rf is uniquely determined.

F (A#) A

F (cone(α)) AxM,αy

B

εA

a
f

f 1T

e

rf

We use the adjunction to observe that the element (a, eT i) is universal to obtain naturality.

We are now in a position to find some crucial cofibrations. We collect these morphisms into the
”standard” cofibrations.

Definition 2.2.3. Let f : A Ñ B be a morphism in C. Suppose that f factors as a transfinite
composition of morphisms on the form Ai Ñ AixMi, αiy, i.e. f factors into the diagram below,
where Ai+1 = AixMi, αiy.

A A1 A2 ... B

‚ If every such Mi is a complex consisting of free K-modules and has a 0-differential, we
call f a standard cofibration.

‚ If every suchMi is a contractible complex and α = 0, we call f a standard acyclic cofibra-
tion.

Proposition 2.2.4. Every standard cofibration is a cofibration, and every standard acyclic cofi-
bration is an acyclic cofibration.

Remark 2.2.5. In some sense, we will see that these morphisms generate every (acyclic) cofi-
bration.
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Proof. Observe that every standard cofibration may be made iteratively from the chain com-
plexes K[n], and likewise, every standard acyclic cofibration may be made iteratively fromM as
in (H1).

We first prove that if M » K[n], and α : M Ñ A# is any map, then the map A Ñ AxM,αy

is a cofibration; this amounts to show that it has LLP to every acyclic fibration. Suppose that
h : B Ñ C is an acyclic fibration and that there is a commutative square as below.

A B

AxM,αy C

f

a h

g

By the universal property of hA,α, Proposition 2.2.2, it suffices to find a pair (f, t1) P hA,α which
makes the lower triangle commute. That is, t1 :M Ñ B# is homogenous of degree ´1, such that
Bt1 = f#α, and post composing h with the morphism determined by (f, t1) is g. By the existence
of g, there exists a t :M Ñ C# such that Bt = g#a#α = h#f#α. Since h is an acyclic fibration, h#

is a surjective quasi-isomorphism. We assumed M » K[n], so we can consider the morphism
t as an element of (C#)n´1. By surjectivity of h# there is an element u of (B#)n´1 such that
h#(u) = t. Moreover, the difference h#(Bu ´ f#α) = 0, so Bu ´ f#α factors through the kernel
Kerh#, which is assumed to be acyclic. This element is furthermore a cycle, so by acyclicity, there
is another element u1 such that Bu1 = Bu ´ f#α. We may now see that (f, u ´ u1) is our desired
factorization.

Secondly, we see that it is enough to prove that ifM is as in (H1) and α = 0, then the map A Ñ

AxM,αy is an acyclic cofibration. By (H1), we know that the map is already a weak equivalence,
so we show that it has LLP to every acyclic fibration.

Suppose that h : B Ñ C is an acyclic fibration and that there is a commutative square as below.

A B

AxM,αy C

f

a h

g

We will again use 2.2.2, so it suffices to find a t1 such that Bt1 = f#α = 0. By the existence of
g, there is a t : M Ñ C# such that Bt = g#a#α = h#f#α = 0. Since h# is surjective t admits a
linear homogenous lift u : M Ñ B# such that t = h#u. We see that the map Bu factors through
the kernel of h# as h#Bu = Bh#u = Bt = 0. As Bu = 0 is a cycle of Kerh#, there is a u1 such that
Bu1 = Bu. The result follows by picking t1 = u´ u1.
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Given the above proposition, we would like to make somemore convenient notation. IfM » K[n]
and α :M Ñ Zn(A#), s.t. α(1) = a, we write AxM,αy as AxT ; dT = ay instead. Hinich calls this
”adding a variable to kill a cycle.” IfM is the contractible complex as below and α = 0, we write
AxT, S; dT = Sy for AxM ; dT = 0y. This construction can be thought of as ”adding a variable
and a cycle to kill itself.”

... 0 K K 0 ...
id

proof of Theorem 2.2.1. MC1 and MC2 are satisfied. By definition, we also have the first part of
MC3. We start by checking MC4.

Let f : A Ñ B be a morphism in C. Given any b P B#, let Cb = AxTb, Sb; dTb = Sby. We define
gb : Cb Ñ B by the conditions that it acts on A as f , g#b (Tb) = b and g#b (Sb) = db. By adding a
”variable to kill a cycle” for every b P B, we obtain an object C , such that the injection A Ñ C
is an acyclic standard cofibration, and the map g : C Ñ B is a fibration. This is the desired
factorization f = fδ ˝ fγ , where fγ is the injection and fδ = g.

To obtain the other factorization, we want to make a standard cofibration. We already know that
the map A Ñ C is a standard cofibration, so let C0 = C . From here on, we will make each Ci

inductively, such that lim
ÝÑ

Ci has the factorization property we desire. Notice that from C0, there
is a morphism g0 : C0 Ñ B, which is surjective and surjective on every kernel. This morphism
may fail to be a quasi-isomorphism, so it is not an acyclic fibration.

To construct C1 we assign to every pair of elements (c, b), such that c P ZC#
0 and g#0 (c) = db,

a variable to kill a cycle. If (c, b) is such a pair, then we add a variable T such that dT = c and
g#1 (T ) = b. C1 is then the complex where each cycle c has been killed by adding a variable T .
Now, if we suppose that we have constructed Ci, then Ci+1 is constructed similarly by adding a
variable to kill each cycle which is a boundary in the image.

When adding a variable, we have also updated the morphism gi by letting g#i+1(T ) = b. Thus in
each step, we have also made a new morphism gi+1. If g denotes the morphism at the colimit,
it is clear that it is still a fibration and has also become a quasi-isomorphism. We can see this
as every cycle which have failed to be in the homology of B has been killed.

It remains to check the last part of MC3. Suppose that f : A Ñ B is an acyclic cofibration. By
MC4, we know that it factors as f = fδ ˝ fγ , where fδ is an acyclic fibration, and fγ is a standard
acyclic fibration. We thus obtain that f is a retract of fγ by the commutative diagram below.

A C

B B

fγ

f fδ



Chapter 2: Homotopy Theory of Algebras 75

The following corollary will concretize what it means that the standard cofibrations generate
every cofibration. This corollary is an emphasis on the last diagram in the previous proof.

Corollary 2.2.5.1. Any (acyclic) cofibration is a retract of a standard (acyclic) cofibration.

We may immediately apply this theorem to some familiar examples.

Corollary 2.2.5.2. Let A be a dg-algebra over the field K. The category ModA of left modules
is a model category.

sketch of proof. We establish the adjunction by letting FM = A bK . H0 is satisfied as this
category is bicomplete, and we can think of filtered colimits as unions of sets. Moreover, since
ModA is an Abelian category, the forgetful functor # commutes with coproducts, or direct sums,
which makes H1 trivially satisfied.

Corollary 2.2.5.3. The categories Alg‚
K (Alg‚

K,+) are model categories.

Proof. We establish the adjunction by letting F = T (M), the tensor algebra of a cochain com-
plex. For the same reasons as above, H0 is trivially satisfied.

Given a cochain complex N‚, we may consider the free dg-algebra T (N‚). In this case, the
coproduct A ˚ T (N‚) has an easier description. We define a complex

A[N‚] = A‘ (AbN‚ bA) ‘ (AbN‚ bAbN‚ bA) ‘ ¨ ¨ ¨ .

The differential on A[N‚] is the differential induced by the tensor product. We define a multipli-
cation on A[N‚] by the following formula

(a1 b ¨ ¨ ¨ b ai) ¨ (a1
1 b ¨ ¨ ¨ b a1

j) = a1 b ¨ ¨ ¨ b aia
1
1 b ¨ ¨ ¨ a1

j .

Let i : A Ñ A[N‚] denote the inclusion, and ι : T (N‚) Ñ A[N‚] is defined by interspersing the
N‚ tensors with 1s. I.e. ι(n1 b ¨ ¨ ¨ b nj) = 1 b n1 b 1 b ¨ ¨ ¨ b 1 b nj b 1.

To define a map f : A[N‚] Ñ T it is enough by the ring homomorphism property to define a map
g : A Ñ T and a map h : T (N‚) Ñ T . This choice of g and h is unique for any f , establishing
the universal property. I.e. A[N‚] » A ˚ T (N‚).

To see that the map i# : A# Ñ A[M‚]# is a quasi-isomorphism, it is enough to see that con-
tractible complexes are stable under tensoring. Given any contractible complex C‚, there is a
homotopy h : C‚ Ñ C‚ such that Bh = idC . Observe that idN b h : N‚ b C‚ Ñ N‚ b C‚

is a homotopy witnessing idN‚bC‚ „ 0. Since M is acyclic, we know that the homology of the
inclusion is H˚i = idH˚A, which shows H1.

We summarize the last result:
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The category of augmented dg-algebras Alg‚
K,+ is a model category. Let f : X Ñ Y be a

homomorphism of augmented algebras.

‚ f P Ac if f# is a quasi-isomorphism.
‚ f P Fib if f# is an epimorphism (surjective onto every component).
‚ f P Cof if f has LLP with respect to to every acyclic fibration.

The category of augmented dg-algebras has a zero object, and this is the stalk of K. We see
that every object is fibrant, as the forgetful functor preserves the augmentation map and, by
definition, is a split-epimorphism.

Remark 2.2.6. In the process of showing that AlgK,+ is amodel category, we have not cared about
functorial factorization. One may see that we get this from the constructions used to proveMC4.
This is a technical detail which we do not need to care too much about.

2.2.2 A Model Structure on DG-Coalgebras

We now want to equip the category of dg-coalgebras with a suitable model structure. This model
structure should be suitable in the sense that conilpotent dg-coalgebras will have the same ho-
motopy theory as dg-algebras. The bar-cobar construction will be crucial in this construction, as
it is a Quillen adjunction. To this end, we will follow the setup as presented by Lefevre-Hasegawa
[Lef03]. His method modifies Hinich’s paper [Hin01c].

Let f : C Ñ D be a morphism of coalgebras, the category of dg-coalgebras will be equipped
with the three following classes of morphisms:

‚ f P Ac if Ωf is a quasi-isomorphism.
‚ f P Fib if f has RLP with respect to every acyclic cofibration.
‚ f P Cof if f# is a monomorphism (injective in every component).

To see that these classes of morphisms do indeed define a model structure, we will get a better
description of a subclass of weak equivalences. We can only check if a morphism is a weak equiv-
alence by calculating homologies since f is a weak equivalence if and only if H˚cone(Ωf) » 0.
Using spectral sequences to calculate these homologies is not crucial, but it gives us a method
to handle the problems we will face.

Definition 2.2.7. A filtered chain map f : M Ñ N of filtered complexesM and N is a graded
quasi-isomorphism if grf : grM Ñ grN is a quasi-isomorphism of the associated graded com-
plexes.

Lemma 2.2.8. Let f : C Ñ C 1 be a graded quasi-isomorphism between conilpotent dg-
coalgebras, then Ωf : ΩC Ñ ΩC 1 is a quasi-isomorphism.

Proof. We do this by considering a spectral sequence. Endow C with a grading (as a vector
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space) induced by the coradical filtration, i.e., c P C has degree |c| = n if n is the smallest
number such that ∆

n
c = 0. We define a filtration on ΩC by

FpΩC = txc1| ¨ ¨ ¨ |cny | |c1| + ...+ |cn| ď pu

Since C is a dg-coalgebra, the coradical filtration respects the differential. In other words, FpΩC
is still a cochain complex, a subcomplex of ΩC . This filtration is bounded below and exhaustive.
Thus by the classical convergence theorem of spectral sequences, Theorem C.3.1, the spectral
sequence converges to the homology EΩC ñ H˚ΩC .

By definition, the 0’th page is

E0
p,qΩC = (FpΩC)p+q/(Fp´1ΩC)p+q .

Furthermore, notice that on this page we have the following isomorphism E0
p,qΩC » (ΩgrC)(p)p+q ,

where (ΩgrC)(p) = txc1| ¨ ¨ ¨ |cny | |c1| + ...+ |cn| = pu.

Evaluating f at the 0’th page would look like E0Ωf » Ωgrf . By the comparison theorem, Theo-
rem C.2.13, it is enough to check that Ωgrf is a quasi-isomorphism to see that Ωf is a quasi-
isomorphism. We show that Ωgrf is a quasi-isomorphism by inspecting every cochain complex
E0

p,‚ΩC .

Define a filtration Gk on E0
p,‚ΩC as

Gk = txc1| ¨ ¨ ¨ |cny | n ě ´ku.

We see that G0 = E0
p,‚ΩC by definition and G´p´1 » 0 on the coaugmentation quotient C . The

classical convergence theorem of spectral sequences defines a spectral sequence such that
EG ñ H˚E0

p,‚ΩC .

To see that Ωgrf is a quasi-isomorphism, we will show that E0Gf is a quasi-isomorphism for
any p. Notice that E0

l,‚G Ď (grC[´1])bl where the total grading is p. Since f is a graded quasi-
isomorphism, it follows by the Künneth-formula [Theorem 3.6.3 Wei94, p. 88] that E0Gf is a
quasi-isomorphism.

This proof will serve as a template for how we approach many of the proofs we encounter. With
the lemma, to show that f is a weak equivalence, it suffices to show that f is a graded quasi-
isomorphism. However, to show that f is a graded quasi-isomorphism, we first need a good
filtering, and once we have a filtering, we look at its spectral sequence. The mapping lemma
says that it is enough to verify that a morphism becomes a quasi-isomorphism on any page to
see that it is a quasi-isomorphism. We proceed then to calculate a page where we can assert
that f becomes a quasi-isomorphism. If there still are problems with calculations, we look at
complexes within a page on a spectral sequence and define new filtrations on these complexes
to calculate the next page. We will informally call this technique for an iterated spectral sequence
argument.
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For completeness, we include the following statement.

Lemma 2.2.9. Let f : A Ñ A1 be a quasi-isomorphism between dg-algebras, then Bf : BA Ñ

BA1 is a graded quasi-isomorphism.

Proof. Notice that the homology of BA may be calculated from the double complex used to
define BA. In fact, at the 0’th page of the canonical spectral sequence, we have E0

p,‚f » fbp.
It follows that f is a quasi-isomorphism on the 0’th page from the Künneth formula, [Theorem
3.6.3 Wei94, p. 88].

Let A (C) be a filtered dg-algebra (coalgebra). Given an element a P A (c P C) we say that its
filtered degree f-deg(a) (f-deg(c)) is the smallest number such that a P Ff-deg(a)A (c P Ff-deg(c)C)
but not a P Ff-deg(a)´1A (c P Ff-deg(c)´1C). There is then an associated filtration on the bar (cobar)
construction of this complex, defined as

FpBA = t[a1 | ¨ ¨ ¨ | an] |
ÿ

f-deg(ai) ď pu

(FpΩC = txc1 | ¨ ¨ ¨ | cny |
ÿ

f-deg(ci) ď pu).

We will call this the induced filtration on the bar or cobar construction.

Proposition 2.2.10. Let A be an augmented dg-algebra and C a conilpotent dg-coalgebra. The
counit εA : ΩBA Ñ A is a quasi-isomorphism. The unit ηC : C Ñ BΩC is a graded quasi-
isomorphism. Moreover, ΩηC is a quasi-isomorphism.

The following proof is due to [Lef03], but with corrections given by [Kel05b]. Some minor mod-
ifications are given to the proof as it resembles a previous proof, using the method of iterated
spectral sequences.

Proof. We start by showing that the counit is a quasi-isomorphism. Define the following filtration
for A.

F0A = K
F1A = A

FpA = F1A

We see that this filtration endows A with the structure of a filtered dg-algebra. For ΩBA, we will
use the induced filtration from the coradical filtration of BA.

The counit acts on ΩBA as tensor-wise projection, followed by multiplication in A. This mor-
phism respects the filtration, so it is a filtered morphism. Notice that both filtrations are bounded
below and exhaustive, so the classical convergence theorem of spectral sequences applies.

LetErΩBA andErA be the spectral sequences given by these filtrations. We have thatEp
1ΩBA »

grpΩBA and Ep
1A » grpA. For p = 1, both complexes are isomorphic to the same complex, A.
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Moreover, E1
1εA = idA. Whenever p ‰ 1, we get that Ep

1A » 0, so it remains to show that
Ep

1ΩBA » grpΩBA is acyclic for any p ě 2.

Three actions generate the differential ofΩBA: the differential onA, the multiplication onA, and
the comultiplication on BA. With the induced filtration on ΩBA, we see that the multiplication
on A is the only action that maps FpΩBA Ñ Fp´1ΩBA. Thus this action is 0 in the associated
graded and the spectral sequence.

There is a homotopy of the identity given as r : griΩBA Ñ griΩBA, which is 0 except if there is
an element on the form x[a] | [¨ ¨ ¨ ] | [¨ ¨ ¨ ]y. In this case, r is

rx[a] | [¨ ¨ ¨ ] | ¨ ¨ ¨ y = (´1)|a|+1x[a | [¨ ¨ ¨ ] | ¨ ¨ ¨ y

We will show that this is a homotopy by induction on i.

Let i = 2. Then there are two cases we must handle, either an element is on the form x[a1] | [a2]y
or x[a1 | a2]y. We consider the latter case first. If we apply r to this element, we are returned 0.

(r ˝ dΩBA + dΩBA ˝ r)x[a1 | a2]y = r(´1)|a1|+1x[a1] | [a2]y = x[a1 | a2]y

Then we treat the former case

(r ˝ dΩBA + dΩBA ˝ r)x[a1] | [a2]y

= rx[dAa1] | [a2]y + (´1)|a1|rx[a1] | [dAa2]y + dΩBA(´1)|a1|+1x[a1 | a2]y

= (´1)|a1|x[dAa1 | a2]y ´ x[a1 | dAa2]y + x[a1] | [a2]y

+ (´1)|a|+1x[dAa1 | a2]y + x[a1 | dAa2]y = x[a1] | [a2]y.

This homotopy makes idgr2ΩBA null-homotopic.

To extend this argument by induction, we will observe that the terms where the differential is
applied will have opposite signs, such that they cancel. The result follows for any i since the
tensors far enough out to the right are not affected by r.

If C is a dg-coalgebra, we use the same technique as in Lemma 2.2.8. Consider the filtration on
BΩC given as

FpBΩC = t[xsc1,1 | ¨ ¨ ¨ | sc1,n1y | ¨ ¨ ¨ | xscm,1 | ¨ ¨ ¨ | scm,nmy] | |c1,1| + ¨ ¨ ¨ + |cm,nm | ď pu.

This filtration is bounded below and exhaustive, so the classical convergence theorem says
that the associated spectral sequence converges. We denote this sequence as EF , and then
EF ùñ H˚BΩC . Let EC be the spectral sequence associated to C . Since C is conilpotent,
EC ùñ H˚C . The unit ηC : C Ñ BΩC is now a map acting on EC0 as the identity, sending
each element in EC0

p,q to itself in EF
0
p,q .

On each row EF 0
p,‚, we make another filtration called G.

GkEF
0
p,‚ = t[x...y1 | ... | x...yn] | n ě ´ku
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Similarly, as in Lemma 2.2.8, this filtration is bounded below and exhaustive, so we may again
apply the classical convergence theorem to obtain a spectral sequence EpG such that EpG ùñ

H˚EF 0
p,‚ » EF 1

p,‚. Since the unit acts as the identity on EC
0, it descends to a morphism grpC Ñ

EpG
0
k,‚ which is the identity when k = ´1 and 0 otherwise. Notice that this morphism does not hit

every string of length ě 2. However, by employing r as above, we may show that these summands
are acyclic. The unit is thus an isomorphism in homology.

Lemma 2.2.11. Let f : C Ñ D be a morphism of dg-coalgebras, then:

‚ if f is a cofibration, then Ωf is a standard cofibration.
‚ if f is a weak equivalence, then Ωf is as well.

Almost dually, let f : A Ñ B be a morphism of dg-algebras, then:

‚ if f is a fibration, then Bf is a fibration.
‚ if f is a weak equivalence, then Bf is as well.

Proof. First, suppose that f : C Ñ D is a cofibration. We define a filtration on D as the sum of
the image of f and the coradical filtration onD:Di = Imf+FriD. f being a cofibration ensures
us that D0 » C . Since D is conilpotent, we know that D » lim

ÝÑ
Di, and since Ω commutes with

colimits there is a sequence of algebras ΩC Ñ ΩD1 Ñ ... Ñ ΩD. It is enough to show that
each morphism ΩDi Ñ ΩDi+1 is a standard cofibration. The quotient coalgebra Di+1/Di only
has a trivial comultiplication. Thus every element is primitive, and this means that as a cochain
complex, Di+1 is constructed from Di by attaching possibly very many copies of K. We treat the
case when there is only one such K, here Di+1 » Di ‘ Ktxu where dx = y for some y P Di,
which is exactly the condition for the morphism ΩDi Ñ ΩDi+1 to be a standard cofibration.

If f is a weak equivalence, then Ωf is a quasi-isomorphism.

By Lemma 2.1.39, or adjointness, more specifically, the property that B preserves fibrations is a
consequence of Ω preserving cofibrations.

It remains to show that if f : A Ñ B is a quasi-isomorphism, thenBf is a weak equivalence. Now,
Bf is a weak equivalence if and only if ΩBf is a quasi-isomorphism. By Proposition 2.2.10, the
counit A Ñ ΩBA is a quasi-isomorphism, so Bf is a weak equivalence by 2-out-of-3 property.

A B

ΩBA ΩBB

f

εA

ΩBf

εB
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We will need one more technical lemma.

Lemma 2.2.12 (Key lemma). Let A be a dg-algebra, D a dg-coalgebra, and p : A Ñ ΩD a
fibration of algebras. The projection morphism BA ˚BΩD D Ñ BA is an acyclic cofibration.

BA ˚BΩD D D

BA BΩD

π x ηD

Bp

This proof has a slightly troubled past. In [Lef03], Lefevre-Hasegawa made a proof which was
a straightforward modification of Hinich’s proof [Hin01c, Key Lemma]. However, this translation
does not behave as well as one would like. Keller points out that this method may sometimes
work but fails in its full generality [Kel06]. The proof presented here is a modification of Vallette’s
proof of ”A technical lemma” [Val20, Appendix B].

Proof. π being a cofibration is immediate by Corollary 2.1.10.1.

To see that π is a weak equivalence, We show that it is a graded quasi-isomorphism by Lemma 2.2.8.
Since we assume p to be a fibration onto a quasi-free algebra, we may realize the algebra A as
the following extension.

¨ ¨ ¨ cone(d1) ΩD[1]

Ker(p)[1] cone(d1)[1] ¨ ¨ ¨

p

d1[1]

Between each of the extensions, there is a connecting morphism d1, which comes from the
differential of cone(d1). As gradedmodules,A » cone(d1) » Ker(p)‘ΩD. We denoteK = Ker(p),
so that the differential of A is then the differential coming from

dK : K Ñ K,

dΩD : ΩD Ñ ΩD and

d1 : ΩD Ñ K .

In the category Alg‚
K,+, ‘ is the product. Since B : Alg‚

K,+ Ñ coAlg‚
K,conil is right adjoint, it

necessarily preserves products. Thus

BA » B(K ‘ ΩD) » BK ˚BΩD and

BA ˚BΩD D » BK ˚D.

Using this identification of the underlying graded modules, we may identify the morphism π with
idBK ˚ ηD . If the differential of BA was not perturbed by d1, then we could have appealed to
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the morphism π being a graded quasi-isomorphism to conclude that it is a quasi-isomorphism.
Instead, we will employ some smart filtrations onto BA and BA ˚BΩD D.

Since BK is quasi-free, by the comonadic presentation of D, we can obtain an identification of
graded modules, BK ˚ D Ď T c(K[1] ‘ D). Likewise, since both BK and BΩD are quasi-free,
we realize the product as BK ˚BΩD » T c(K[1] ‘ (ΩD)[1]).

With this description, we define filtrations as

Fn(BA ˚BΩD D) Ď Fn(T
c(K[1] ‘D)) =

8
à

k=0

ÿ

n1+¨¨¨+nk
ďn

k
â

i=1

(K[1] ‘ FrniD) and

Fn(BA) = Fn(T
c(K[1] ‘ (ΩD)[1])) =

8
à

k=0

ÿ

n1+¨¨¨+nk
ďn

k
â

i=1

(K[1] ‘ ĂFrni(ΩD)[1]).

Here Fr and ĂFr refer to the coradical and induced coradical filtration. This filtration is made to
be agnostic towards K . In other words, morphisms into K are a priori filtered. Thus the part of
the differential coming from dK and d1 are filtered. Likewise, the coradical filtration preserves
the part of the differential coming from dΩD . The differential coming from the multiplication of
K and ΩD is of ´1 filtered degree. ηD preserves this filtration as it acts like the identity.

The associated graded component reduces to the associated graded ofD and BΩD. If we lower
the degree of a ni by 1, this component lands in the lower degree of the filtration. By cocontinuity
of the tensor, we may move the associated graded into each variable. The sum handles every
other component.

grn(BA ˚BΩD D) » BK ˚ grnD

grn(BA) » BK ˚BΩgrnD

In the same manner, the morphism π then acts on each element as idBK ˚ gr(ηD).

These filtrations are bounded below. Since D and BΩD are both conilpotent dg-coalgebras,
the filtrations are also exhaustive. By the classical convergence theorem of filtered spectral
sequences, we obtain spectral sequences E(BA ˚BΩD D) ùñ H˚(BA ˚BΩD D) and
E(BA) ùñ H˚(BA). We want to show that the morphism of spectral sequences idBK ˚BΩD

grηD : E(BA˚BΩDD) Ñ E(BA) eventually becomes a quasi-isomorphism, and this will happen
on the first page.

To obtain this on the first page, we will define another spectral sequence rE such that rE ùñ E1.
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We start by defining new filtrations,

rFn(BK ˚ grD) Ď

8
à

k=0

ÿ

n1+¨¨¨+nk+k
ďn

k
â

i=1

(K[1] ‘ grni
D) and

rFn(BK ˚BΩgrD) =
8

à

k=0

ÿ

n1+¨¨¨+nk
ďn

k
â

i=1

(K[1] ‘ (
8

à

t=1

ÿ

m1+¨¨¨+mt+t
ďni

t
â

j=1

grmj
D[´1])[1]).

Again, these filtrations are agnostic towardsK , so both parts of the differential that comes from
dK and d1 are filtered. The part of the differential which comes from dD naturally goes from grni

D
to itself. The differential coming from the multiplication has already been dealt with, so these
filtrations respect our differential. The morphism idBK ˚gr(ηD) also preserves this filtration, as it
acts like the identity on elements. In other words, the first filtered object is naturally a subobject
of the second filtered object by identifying the elements d with [xdy].

At the 0’th page of rE, we want to show that the part of the differential coming from d1 acts like 0.
This is the same to say that Imd1 |FnĎ Fn´1. We calculate the 0’th page of the double spectral
sequence as below.

rE´n
0 (BK ˚ grD)[´n] Ď grn(BK ˚ grD) »

8
à

k=0

ÿ

n1+¨¨¨+nk+k
=n

k
â

j=1

(K[1] ‘ grni
D)

rE´n
0 (BK ˚BΩgrD)[´n] = grn(BK ˚BΩgrD)

»

8
à

k=0

ÿ

n1+¨¨¨+nk
=n

k
â

i=1

(K[1] ‘ (
8

à

t=1

ÿ

m1+¨¨¨+mt+t
=ni

t
â

j=1

grmj
D[´1])[1])

We now pick an element ([k1]+d1)b¨ ¨ ¨b([kk]+dk) P grn(BK˚grD). Then |d1|+¨ ¨ ¨+|dk|+k = n.
The differential from d1 is the alternate sum of d1 at each tensor argument. We illustrate what
happens at the i’th argument.

rd1(([k1] + d1) b ¨ ¨ ¨ b ([ki] + di) b ¨ ¨ ¨ b ([kk] + dk))

=([k1] + d1) b ¨ ¨ ¨ b ([ki] + d1(di)) b ¨ ¨ ¨ b ([kk] + dk)

Since |[k] + d1(di)| = 0, the total degree of this element goes down at least 1 if di ‰ 0. If di = 0,
then d1(di) = 0 anyway. In this manner, this morphism does not survive at the rE0 page. Likewise,
given an element on the form [k1 + xd1,1 | ¨ ¨ ¨ | d1,t1y | ¨ ¨ ¨ | kk + xdk,1 | ¨ ¨ ¨ | dk,tky], then
|d1(xdi,1 | ¨ ¨ ¨ | di,tiy)| = 0. So the phenomenon occurs at the other spectral sequence as well.

In this way gr(idBK ˚ grηD), is in fact a quasi-isomorphism between the sequences rE(BK ˚

grD) Ñ rE(BK ˚BΩgrD) just as Lemma 2.2.10. By the classical convergence theorem, this as-
sembles into a quasi-isomorphism on the E1 page of the previous spectral sequences, showing
that π is a graded quasi-isomorphism.
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Theorem 2.2.13. The category coAlg‚
K,conil is a model category with the classes Ac, Fib and Cof

as defined above.

Proof. The axioms MC1 and MC2 are immediate. Also, fibrations having RLP with respect to
acyclic cofibrations is by definition.

We showMC4 first. Let f : C Ñ D be a morphism of coalgebras. There is a factorizationΩf = pi
of morphisms between algebras, where i is a cofibration, p is a fibration, and at least one of i and
p are quasi-isomorphisms. Applying the bar construction, we get a factorization BΩf = BiBp,
where Bp is a fibration, and at least one of Bi and Bp are weak equivalences.

ΩC ΩD

A

Ωf

i p ù

BΩC BΩD

BA

BΩF

Bi Bp

We construct a pullback with Bp and ηD . By Lemma 2.2.12, the morphism π is an acyclic cofibra-
tion. We collect our morphisms in a big diagram. The dashed arrow exists since the rightmost
square is a pullback.

BA ˚BΩD D

C D

BA

BΩC BΩD

q
x

j

f

ηC ηD

Bp

BΩf

Bi

First, notice that q is a fibration since fibrations are stable under pullbacks. j is a cofibration, or
a monomorphism, as the composition Bi ˝ ηC is a monomorphism. Thus it remains to see that
if Bi (Bp) is a weak equivalence, then j (q) is as well. We know this from the 2-out-of-3 property,
as η is a natural weak equivalence, π is a weak equivalence, and Bi (Bp) is a weak equivalence.

We now showMC3. Suppose there are morphisms as in the square below, where i is a cofibration,
and t is an acyclic cofibration.
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E C

F D

i t

We can factor t as t = qj by MC4. Notice that t is a retract of q, i.e., there is a commutative
diagram below.

C C

BA ˚BΩA D D

j t

q

To find a lift to C , we may find a lift to BA˚BΩDD. Since p is an acyclic fibration by construction
and Ωi is a cofibration by Lemma 2.2.11, there is a lift h : ΩE Ñ A of algebras. We obtain our
desired lift from the bar-cobar adjunction and the universal property of the pullback.

E BA ˚BΩD D BA

F D BΩD

i q

π

x
BphT

ηD

ú

ΩE A

ΩF ΩD

Ωi p
h

We restate the corollary of the adjunction.

Corollary 2.2.13.1. The bar-cobar construction Ω : coAlg‚
K,conil é Alg‚

K,+ : B as a Quillen
equivalence.

Proof. We first observe that (B,Ω) is a Quillen adjunction by Lemma 2.2.11. Moreover, since the
unit and counit are weak equivalences by Proposition 2.2.10, it follows by either Proposition 2.1.43
or its Corollary 2.1.43.1 that (B,Ω) is a Quillen equivalence.

2.2.3 Homotopy theory of A8-algebras

This section aims to finalize the discussion of the homotopy theory of A8-algebras. We will look
at the homotopy invertibility of every strongly homotopy associative quasi-isomorphism and
its relation to ordinary associative algebras. This discussion will end with mentioning different
results, which gives a more explicit description of fibrations, cofibrations, and homotopy equiv-
alences. This section follows Lefevre-Hasegawa [Lef03]. Before we get to the main theorem, we
start by discussing a non-closed model structure on the category of Alg8.
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Let f : A ù B be a morphism between A8-algebras, the category of A8-algebras will be
equipped with the three following classes of morphisms:

‚ f P Ac if f is an 8-quasi-isomorphism, i.e. f1 is a quasi-isomorphism.
‚ f P Fib if f1 is an epimorphism.
‚ f P Cof if f1 is a monomorphism.

This category does not make a model category in the sense of a closed model category, as we
lack many finite limits. It does, however, come quite close to being such a category.

Theorem 2.2.14. The category Alg8 equipped with the three classes as defined above satisfies:

a The axioms MC1 through MC4.
b Given a diagram as below, where p is a fibration, then its limit exists.

A

B C

p

Before we are ready to prove this theorem, we will need some preliminary results. We will only
prove the first lemma.

Lemma 2.2.15. letA be anA8-algebra, andK an acyclic complex considered as anA8-algebra.
If g : (A,mA

1 ) Ñ (K,mK
1 ) is a cochain map, then it extends to an 8-morphism f : A ù K .

Proof. We construct each fi inductively. The case i = 1 is degenerate as we have assumed
f1 = g.

Assume that we have already constructed f1 through fn. We observe that the sum below is a
cycle of Hom˚

K(A,K).

ÿ

p+1+r=k
p+q+r=n

(´1)pq+rfk ˝p+1 m
A
q ´

ÿ

kě2
i1+...+ik=n

(´1)emB
k ˝ (fi1 b fi2 b ...b fik)

Thus sinceK is acyclic, Hom˚
K(A,K) is acyclic, and there exists some morphism fn+1 such that

B(fn+ 1) is the sum above, and this says that this extension does satisfy (reln+1).

Lemma 2.2.16 ([Lemma 1.3.3.3 Lef03, p. 44]). Let j : A ù D be a cofibration of A8-algberas,
and then there is an isomorphism k : D ù D1 such that the composition k ˝ j : A ù D1 is a
strict morphism of A8-algebras.

Dually, if j : A ù D is a fibration, then there is an isomorphism l : A1 ù A such that the
composition j ˝ l : A1 ù D is a strict morphism of A8-algebras.
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We will need the following lemma.

Proof of Theorem 2.2.14. We start by showing (b). Suppose we have a diagram of A8-algebras,
such that g1 is an epimorphism.

A

A1 A2

g

f

First, notice that as dg-coalgebras, this pullback exists and defines a new dg-coalgebraBA˚BA2

BA1.

Since g1 is an epimorphism,A[1] as a graded vector space splits intoA2[1]‘K , whereK = Kerg1.
The pullback is then naturally identified with BA

ś

BA2 BA1 » T
c
(K)

ś

T
c
(A1[1]) as graded

vector spaces. Since the cofree coalgebra is right adjoint to forget, it commutes with products,
and we get T

c
(A1[1])

ś

T
c
(K) » T

c
(A1[1] ‘ K). Thus the pullback is isomorphic to a cofree

coalgebra as a graded coalgebra, i.e., an A8-algebra.

We now prove (a). MC1 and MC2 are immediate, so we will not prove them.

We start by proving MC3. Suppose that there is a square of A8-algebras as below, where j is a
cofibration, and q is a fibration.

A B

C D

f

j q

g

By Lemma 2.2.16, we may assume that both j and q are strict morphisms. We can assume that
q is an 8-quasi-isomorphism since the proof will be analogous if j is an 8-quasi-isomorphism
instead.

Our goal is to construct a lifting in this diagram inductively. Having a lift means finding an 8-
morphism a : C ù B, such that the following hold for any n ě 1:

‚ a satisfy (reln).
‚ an ˝ j1 = fn.
‚ q1 ˝ an = gn.

We start by showing there is such an a1. Consider the diagram below of chain complexes over
K.
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A B

C D

j1

f1

q1

g1

a1

The lift exists since the category Ch(K) is a model category, Corollary 2.2.5.2. Here j1 is a cofi-
bration, while q1 is an acyclic fibration, so the lift a1 exists.

We now wish to extend this. Suppose that we have been able to create morphisms a1 up to an,
all satisfying the above points. A naive solution to make an+1 is
b = fn+1r

bn+1 + sgn+1 ´ sq1fn+1r
bn+1, where r : C Ñ A is a splitting of j1 and s : D Ñ B

is a splitting of q1. Notice that this morphism satisfies the two last points by definition. We will
augment b to get an an+1 which also satisfies (reln+1).

For our own convenience, let ´c(f1, ..., fn) denote the right hand side of (reln+1) formula. Since
both j and q are strict 8-morphisms we get the following identites:

(Bb+ c(a1, ..., an)) ˝ j1 = B(b ˝ j1) + c(a1 ˝ j1, ..., an ˝ j1) = Bfn+1 + c(f1, ..., fn) = 0

q1 ˝ (Bb+ c(a1, ..., an)) = B(q1 ˝ b) + c(q1 ˝ a1, ..., q1 ˝ an) = Bgn+1 + c(g1, ..., gn) = 0

We thus obtain that the cycle Bb + c(a1, ..., an) factors through the cokernel of j and the kernel
of q. Let us say that it factors like the diagram below:

C Cokj1 Kerq1 D
p c1 i

Now, c1 is amorphism between twoA8-algebras. Since q is assumed to be an8-quasi-isomorphism,
it follows that Kerq1 is acyclic. Since c1 is a cycle in Hom˚

K(Cokj1,Kerq1), it necessarily has to be in
the image of the differential. Let h be a morphism such that Bh = c1, and define an+1 = b´i˝h˝p.
One may check that this morphism satisfies all three properties.

We will now show MC4. Since the two properties have similar proofs, we will only show one
direction. Let f : A ù B be an 8-morphism, an C = cone(idB[´1]), where the complex C
is considered as an A8-algebra. Let j : A ù A

ś

C be the morphism induced by idA and
0 : A Ñ C . The canonical projection q1 : A‘ C Ñ B gives a lift of the following diagram.

A B

A‘ C 0

f1

j1
q1

Since we have a morphism of chain complexes lodged between an acyclic cofibration and a
fibration, we use the same technique as above to construct an 8-morphism q : A

ś

C Ñ B. q is
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a fibration by construction. The morphism f may be factored as f = q ˝ j, where j is an acyclic
cofibration, and q is a fibration.

This model structure can characterize the fibrant and cofibrant conilpotent dg-coalgebras.

Proposition 2.2.17. Let C be a conilpotent dg-coalgebra. Then C is cofibrant, and C is fibrant
if and only if there is a cochain complex V , such that C » T c(V ) as complexes.

Proof. To see thatC is cofibrant is the same as to verify that themapK Ñ C is a monomorphism,
but this is clear.

We start by assuming that C is fibrant. Then there is a lift in the square below, making the unit
split-mono.

C C

BΩC K

ηC εC

εBΩC

r

Define the morphism pC1 : C Ñ Fr1C as pC1 = Fr1r ˝ p1 ˝ ηC , where p1 : BΩC Ñ Fr1BΩC is
the canonical projection on the filtration induced by the coradical filtration on C . The morphism
r makes p1 into a universal arrow in the category of conilpotent coalgebras, so C » T c(Fr1C).

Assuming that C is isomorphic to T c(V ) as coalgebras for some cochain complex V . Note that,
by definition, C is an A8-algebra. We have a commutative square of A8-algebras. Since every
A8-algebra is bifibrant, we know that this diagram has a lift, exhibiting C as a retract of BΩC .

C C

BΩC K

We know that ΩC is fibrant since the map ΩC Ñ K is epi. By Lemma 2.2.11, we know that the
bar construction preserves fibrations, so BΩC is fibrant. Thus C is fibrant as well.

The model structure of A8-algebras is compatible with the model structure of conilpotent dg-
coalgebras in the following sense. If f : A ù A1 is an 8-morphism, we denote its dg-coalgebra
counterpart as Bf : BA Ñ BA1. Remember that the bar construction is extended as an equiv-
alence of categories on its image. We use this to realize Alg8 as a subcategory of coAlgK to
obtain two different model structures on this category. The following proposition tells us that
these structures do not differ.

Lemma 2.2.18. Let A and A1 be A8-algebras. Suppose that f : A ù A1 is an 8-morphism
and Bf : BA Ñ BA1 is a graded quasi-isomorphism, then f is an 8-quasi-isomorphism.
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Proof. Given Bf : BA Ñ BA1, we may reconstruct fi = s ˝ πB[1]Bf ˝ (ω ˝ ιA)
bi.

We know that the unit ηBA is a graded quasi-isomorphism from Proposition 2.2.10. The inverse
of the bar construction restricts this morphism to the first filtered degree, together with some
shift; B´1ηBA : A Ñ ΩBA, which is is again a quasi-isomorphism by assumption.

Proposition 2.2.19. Let f : A ù A1 be an 8-morphism. Then we have the following:

‚ f is an 8-quasi-isomorphism if and only if Bf is a weak equivalence.
‚ f1 is a monomorphism if and only if Bf is a cofibration.
‚ f1 is an epimorphism if and only if Bf is a fibration.

Proof. Suppose that f : A Ñ A1 is an 8-quasi-isomorphism. The Künneth theorem shows that
Bf : BA Ñ BA1 is a graded quasi-isomorphism.

Suppose that Bf : BA Ñ BA1 is a weak equivalence. Then BΩBf : BΩBA Ñ BΩBA1 is a
graded quasi-isomorphism. By Proposition 2.2.10, we know that ηBA and ηBA1 are both graded
quasi-isomorphism. By Lemma 2.2.18, we get that the 8-morphismsΩBf ,B´1ηBA andB´1ηBA1

are 8-quasi-isomorphisms. By the 2-out-of-3 property, we get that f has to be as well.

The cofibrations of coAlg‚
K,conil are monomorphisms. Since B is an equivalence of categories, it

must preserve and reflect monomorphisms.

Suppose thatBf is a fibration. Then it has RLP to acyclic cofibrationsBg. By the previous points,
we know that g1 is a quasi-isomorphism and a monomorphism; in particular, f has RLP to g.

Suppose that f1 is an epimorphism and that there exists morphism fitting inside a commutative
diagram as below.

BC BA

BD BB

Bh

Bg Bf

Bi

Assume that Bg is an acyclic cofibration. We want to show that Bf has RLP to Bg, then Bf has
to be a fibration. Notice that BA and BA1 are fibrant, so the terminal morphism is a fibration.
We find the lifting by considering the following diagram.
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BC BA

BΩBC

BD BB

BΩBD

Bh

Bg

BηBA

Bf

BΩBg

Bi

BηBD

2.3 The Homotopy Category of Alg8

We now have many different notions of homotopy, coming from either homological algebra or
the model categorical structure. In the case for A8-algebras, these notions will luckily coincide.

Proposition 2.3.1 ([Proposition 1.3.4.1 Lef03, p. 49]). Let C and D be two conilpotent dg-
coalgebras, where f, g : C Ñ D are two morphisms. Then:

‚ If f „ g by an (f, g)-coderivation h, then they are left homotopic.
‚ IfD is fibrant, then f „ g by an (f, g)-coderivation if and only if f and g are left homotopic.

Sketch of proof. We construct a cylinder object for C . Consider the cochain complex below,
called I ,

¨ ¨ ¨ Kteu Kte1, e2u ¨ ¨ ¨

 1

´1



concentrated in degree ´1 and 0. Its comulitplication is given as

∆(e0) = e0 b e0, ∆(e1) = e1 b e1, ∆(e) = eb e1 + e0 b e

The object Cb I is now a cylinder object of C . To define a left homotopy from f to g is the same
as finding a morphism H making the diagram below commute.
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C

C
š

C C ^ I D

C

i0

f

p0 H

i1

g

Since we assume that f and g are homotopic, there is then an (f, g)-coderivation h : C Ñ D.
To define H , there are essentially three different components we have to consider. Let H be
defined as

H |Cbe0= f, H |Cbe1= g, and H |Cbe= h

We see that this morphism respect the comulitplication, as h is an (f, g)-coderivation. We see
that it respects the differential since Bh = f ´ g, and that f and g are morphism of cochain
complexes. Moreover, any such morphism H : C b I Ñ D defines an (f, g)-coderivation. This
concludes that null homotopic morphisms are left homotopic.

To see it the other way around if D is fibrant, and the morphisms f and g are left homotopic, we
may promote this homotopy to a homotopy H : C b I Ñ D. The result follows by extracting the
homotopy as h = H |Cbe.

Remark 2.3.2. In the category Alg8, we are now able to say that the homotopies as defined in
Section 1.3 are exactly the model categorical homotopies. This follows from the fact that bifibrant
objects may promote their left homotopies to right homotopies, and right homotopies to left
homotopies. By the above proposition, we know as well that left homotopies, may be promoted
to ordinary homotopies.

Due to this result, we may know think of homotopies to actually belong to the model categorical
structure. We will make little distinction between these notions going forward.

Theorem 2.3.3. In the category Alg8 we have the following:

‚ Homotopy equivalence is an equivalence relation.
‚ A morphism is an 8-quasi-isomorphism if and only if it is a homotopy equivalence.
‚ By abuse of notation, let AlgK Ď Alg8 be the full subcategory consisting of dg-algebras
considered as A8-algebras. AlgK has an induced homotopy equivalence from Alg8, and
the inclusion AlgK Ñ AlgK Ă Alg8 induces an equivalence in homotopy Alg[Qis´1] »
AlgK/„.

Proof. We observe the first point from Corollary 2.1.28.2, and the second point is Whitehead’s
theorem, Theorem 2.1.30.
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To see the final point, observe that the inclusion functor is given by the bar construction B. By
Corollary 2.2.13.1, we know that the bar construction induces an equivalence on the homotopy
categories, i.e., HoAlg » HocoAlg. Moreover, we know that by Theorem 2.1.31 that HocoAlg »

Alg8/„. Notice that the image of B is AlgK, so in homotopy, we get that the image AlgK/„ is
equivalent to the essential image HoAlg8.





Chapter 3

Derived Categories of Strongly
Homotopy Associative Algebras

In this chapter, we wish to study the derived categories of A8-algebras. This category lies at the
heart of homological algebra, so it is only natural to ask what this category looks like in the case
of anA8-algebra. In Chapter 2, we studied the relationship between the category of dg-algebras
and dg-coalgebras to understand how quasi-isomorphisms betweenA8-algebras worked. In this
chapter, we will instead examine the relationship between module and comodule categories
to understand how quasi-isomorphisms between A8-modules will work. Twisting morphisms
α : C Ñ A will reappear, allowing us to study the relationship between ModA and coModC .

From twisting morphisms we obtain functors Lα : coModC Ñ ModA and Rα : ModA Ñ coModC ,
which creates an adjoint pair of functors. This adjoint pair will become a Quillen equivalence
whenever the twisting morphism α is acyclic.

We wish to reuse all the methods we have gained and acquired throughout this thesis. The first
part of this chapter will mostly be reformulations and recontextualizations of previous definitions,
concepts, and techniques. In this chapter, we will mainly follow Lefèvre-Hasegawa [Lef03] to
obtain our desired results.

3.1 Twisting Morphisms

Twisting morphisms were introduced in Chapter 1, representing the bar and cobar construction.
We now want twisting morphisms and twisting tensors to play a more significant role. To define
the functors Lα and Rα, the choice of a given twisting morphism will be crucial.

95
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3.1.1 Twisted Tensor Products

Let A be an augmented dg-algebra, C a conilpotent dg-coalgebra, and α : C Ñ A a twisting
morphism. In this chapter, we choose to switch the handedness of the twisted tensor. We make
this choice in the hope that it lessens confusing notation. The right (left) twisted tensor product
is the complex A bα C (C bα A) together with the differential d‚

α = d‚
CbA + drα. Since we want

the right twisted tensor to be associated with a right adjoint, we redefine the right perturbation
as

drα = (∇A b idC) ˝ (idA b α b idC) ˝ (idA b ∆C).

If M is a right A-module and N is a left C-comodule then the tensor product M bK N exists
and is a K-module with differential dMbN . We may define a perturbation to this differential as

drα = (µM b idN ) ˝ (idM b α b idN ) ˝ (idM b νN ).

By using the same line of thought as in Proposition 1.2.5, there is a twisted tensor productMbαN
with differential d‚

α = dMbN + drα.

Remark 3.1.1. Adjointness forces us to define the differential of the left twisted tensor product
as d‚

α = dNbM ´ dlα. The necessity of this sign will be evident in the proof of Proposition 3.1.4.

Definition 3.1.2. Suppose that M P ModA (M P ModA) and N P coModC (N P coModC ), then
the left (right) twisted tensor product is the K-moduleM bα N (N bα M ).

We see now that right-handedness and left-handedness for the twisted tensor product are dis-
tinct, as we only have an action or coaction from one of the chosen sides. Trying to force the
other-handedness on the twisted tensors would be ill-defined.

Definition 3.1.3. Let A be an augmented dg-algebra and C a conilpotent dg-coalgebra, such
that there is a twisting morphism α : C Ñ A. Given a linear map f : N Ñ M between a right
C-comodule N and a right A-moduleM we say that it is an α right twisted linear morphism if it
satisfies

Bf + f ‹ α = 0.

If the handedness is unambiguous, we call it a twisted linear morphism.

This definition essentially describes a functor Twr
α : coModC ˆ ModA Ñ ModK, which is the

collection of right twisted linear homomorphisms between a comodule and module.

Suppose that α : C Ñ A is a twisting morphism. Define the functor Lα = bα A : coModC Ñ

ModA as an arbitrary right twisted tensor product withA. This functor hits ModA by using the free
right A-module structure on A. Likewise, we define a functor Rα = bα C : ModA Ñ coModC

as an arbitrary left twisted tensor product with C . This functor also hits right C-comodules by
using the cofree right C-comodule structure on C .
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Proposition 3.1.4. Suppose that α : C Ñ A is a twisting morphism. The functor Lα and Rα

form an adjoint pair of categories.

coModC ModA

Lα

K

Rα

Proof. This proof boils down to showing coModC(N,Rα(M)) » Twr
α(N,M) » ModA(Lα(N),M),

which is a routine calculation, much like the proof for Theorem 1.2.13.

By Corollary 1.1.61.1, we have an isomorphism between K-linear chain maps and A-linear chain
maps,

f : N Ñ M ÞÑ F = µM (f bA) : LαN Ñ M , and

F : LαN Ñ M ÞÑ f = (N b 1A)
˚F : N Ñ M .

Consider first that we have an A-linear morphism F : LαM Ñ M . Then BF = dMf ´fdLαN = 0.
We write this electronically as

BF =
F

´
F

´
F

+
α

F

= 0

The first three circuits will together make up the ordinary differential of ModA(N bK A,M), so
we will only need to consider the final circuit. Replacing F with µM (f b idA) we get

α

F

=
α

f

=
f α

= µM ((f ‹ α) bA)

By sending in the identity of A in the rightmost string at each summand, we get the condition
that f is α right twisted,

Bf + f ‹ α = 0.

This is because dA(1A) = 0, µM (m ¨ 1?) = m, and f(m) = F (m, 1A).

By the abovementioned isomorphism, we are now able to deduce that any α right twisted mor-
phism f : N Ñ M defines an A-linear morphism F = µM (f bA) : LαN Ñ M .
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Notice that by turning every circuit upside-down, we get equations establishing the natural iso-
morphism

Twr
α(N,M) » coModC(N,RαM).

Let A be a dg-algebra, and M a right A-module. Recall that by the cobar-bar adjunction, The-
orem 1.2.13, there exists a universal twisting morphism πA : BA Ñ A. We define the bar con-
struction of M as BAM = RπAM = M bπA BA. Likewise, given a conilpotent dg-coalgebra C
and N a right C-comodule we define the cobar construction as ΩCN = LιCN = N bιC ΩC . In
these cases we obtain adjunctions ΩBA % BA and ΩC % BΩC .

Let A and B be two algebras, and f : A Ñ B is an algebra morphism. Then f induces a functor
between the module categories by restriction: f˚ : ModB Ñ ModA. Since A and B considered
as categories are small, and the category of abelian groups is cocomplete, the left Kan extension
(induction) along this functor exists. This result can, for instance, be found in Riehl [Rie14].

ModB ModA
f˚

f!

Dually, if C and D are two coalgebras and g : C Ñ D is a coalgebra morphism. Then g induces
a functor between the module categories by composing: g˚ : coModC Ñ coModD . Since C and
D considered as categories are small, and the category of abelian groups is complete, the right
Kan extension (coinduction) along this functor exists.

coModC coModD
g˚

g!

Lemma 3.1.5. Let τ : C Ñ A be a twisting morphism. The adjunction (Lτ , Rτ ) factors as
(fτ !, f

˚
τ ) ˝ (LιC , RιC ) or (LπA , RπA) ˝ (gτ˚, g

!
τ ).

Proof. This follows from Corollary 1.2.14.1, that is τ = fτ ˝ ιC = πA ˝ gτ .

Definition 3.1.6. A twisting morphism f : C Ñ A is called acyclic if the counit of the adjunction
Lα % Rα is a pointwise quasi-isomorphism.

Lemma 3.1.7. Let A be an augmented dg-algebra and C a conilpotent dg-coalgebra. The uni-
versal twisting morphisms πA and ιC are acyclic.
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Proof. We start with πA. Recall that πA is constructed as the twisting morphism corresponding
to idBA. This morphism is then the projection onto the first dimension of BA, that is:

πAsa = a

πA(sab ...) = 0

We say that πA is acyclic if the counit ε : LπARπA ñ IdModA at each object M is a quasi-
isomorphism.

For each M in ModA, LπARπAM = M bπA BA bπA A. We may split the differential into two
summands, dv and dh. dv is the ordinary differential on the tensor product, while dh = (´dlπA

b

A) +M b d2 b A + drπA
. Since (dv + dh)

2 = 0 and d2v = 0 we can observe that dvdh = ´dhdv
and d2h = 0. We may see this as dv changes the homological degree while dh does not, so if the
two first equations are true, the last two must be true. We obtain an anticommutative double
complex.

... M bBA(i) bA ... M bBA(1) bA M bA 0
dh dh

dv

dh dh

dv

0

dv

The total complex of this anticommutative double complex is LπARπAM . Moreover, the counit
induces an augmentation to this complex resolution ofM , denoted as cone(εM ).

... M bBA(i) bA ... M bBA(1) bA M bA M 0
dh dh

dMbBA(i)bA

dh dh

dMbBA(1)bA

εM

dMbA dM

0

To see that this is a resolution, we define a morphism h : cone(εM ) Ñ cone(εM ) of degree ´1.
It works by the following formula:

h(mb (sa1 b ...b san) b a) = mb (sa1 b ...b san b sa) b 1

It is clear that idcone(εM ) = dhh´ hdh and dvh = hdv . Thus to see that the cone is acyclic we let
c P cone(εM ) be a cycle, that is (dv + dh)(c) = 0. Our goal is to show that h(c) is a preimage of
c along dv + dh.

(dv + dh) ˝ h(c) = dv ˝ h(c) + dh ˝ h(c) = h ˝ dv(c) + c+ h ˝ dh(c) = h ˝ (dv + dh)(c) + c = c

Next up, we show that ιC is acyclic. Equipping C with its coradical filtration induces a filtration
FpΩC . We will freely use | | to denote the filtered degree of every element.

FrpC = tc | |c| ď pu

fpΩC = txc1 | ¨ ¨ ¨ | cny | |c1| + ¨ ¨ ¨ + |cn| ď pu
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LetM P ModΩC , we equip this module with a trivial filtration,

FpM =M .

M ’s associated graded is then quite trivial, gr0M » M and every other » 0.

All of these three filtrations together induces a filtration on LιCRιCM ,

FpLιCRιCM = tmb cb xc1 | ¨ ¨ ¨ | cny | |m| + |c| + |c1| + ¨ ¨ ¨ + |cn| ď pu.

We calculate the associated graded of this module.

gr0LιCRιCM » M

grpLιCRιCM »
à

i1+i2=p

M b gri1C b gri2ΩC

The graded counit grpε : grpLιCRιCM Ñ grpM becomes the identity on M when p = 0. To see
that grε is a quasi-isomorphism, it is enough to show that grpLιCRιCM is acyclic for every p ě 1.

Consider the graded differential component grpd
l
ιC
when it acts as a morphism gri1Cbgri2ΩC Ñ

gri1+i2ΩC , which can be considered a morphism

ρ :
à

i1+i2=p

gri1C[´1] b gri2ΩC Ñ grpΩC ,

which is an isomorphism by reversing the operation.

ρ(scb x¨ ¨ ¨ y) = xc | ¨ ¨ ¨ y,

ρ´1(xc | ¨ ¨ ¨ y) = scb x¨ ¨ ¨ y.

Since ρ is an isomorphism, cone(ρ) is then acyclic. By construction, we have that
cone(ρ) » grpLιCRιCM .

3.1.2 Model Structure on Module Categories

Let A be an augmented dg-algebra. By Corollary 2.2.5.2, we have a model structure on ModA

defined as follows:

‚ f P Ac is a weak equivalence if f is a quasi-isomorphism,
‚ f P Fib is a fibration if f# is an epimorphism,
‚ f P Cof is a cofibration if it has LLP to acyclic fibrations.

Every object in this category is fibrant as the morphism 0 :M Ñ 0 is always an epimorphism.
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3.1.3 Model Structure on Comodule Categories

Unless stated otherwise, in this section, we fixA to be an augmented dg-algebra,C as a conilpo-
tent dg-coalgebra, and τ : C Ñ A as an acyclic twisting morphism. We endow coModCconil with
three classes of morphisms:

‚ f P Ac is a weak equivalence if Lτf is a quasi-isomorphism.
‚ f P Cof is a cofibration if f# is a monomorphism.
‚ f P Fib is a fibration if it har RLP to acyclic cofibrations.

Theorem 3.1.8. The category coModCconil with the three classes as above form a model category.
Every object is cofibrant, and those objects, which is a direct summand of RτM for some M P

ModA, are fibrant. The adjoint pair (Lτ , Rτ ) is a Quilllen equivalence.

We will call this model structure for the canonical model structure on coModCconil. Under the
hypothesis of this theorem, we may observe that every object of coModCconil is cofibrant. Since
everyM P ModA is fibrant, andRτ preserves fibrant objects, we know thatRτM is fibrant as well.
By the retract argument, every direct summand of RτM is fibrant. If N P coModCconil is fibrant,
then it is a direct summand of RτLτN , which shows that the bifibrant objects of coModCconil is
exactly the thick image of Rτ .

To be able to prove this, we will need some lemmata. This proof is essentially the same as
the case for dg-coalgebras. The main difference is to show independence of the choice of
twisting morphisms τ . To this end, we must establish the relationship between graded quasi-
isomorphisms and weak equivalences and a technical lemma.

Recall that given a coaugmented coalgebra C , we have a filtration called the coradical filtration,
defined as FriC = Ker(∆̄C)

i. If N is a right C-comodule we may define the coradical filtration
of N as FriN = Ker(ω̄i

N ). This filtration is admissable, meaning it is exhaustive and Fr0N = 0.

Lemma 3.1.9. Let C be a conilpotent dg-coalgebra,M and N be right C-comodules. Then any
graded quasi-isomorphism f :M Ñ N is a weak equivalence.

Proof. This proof is identical to Lemma 2.2.8.

Lemma 3.1.10. LetM andN be two objects of ModA. The functorRτ sends a quasi-isomorphism
f :M Ñ N to a weak equivalence Rτf : RτM Ñ RτN .

The unit of the adjunction η : IdcoModC Ñ RτLτ is a pointwise weak equivalence.

Proof. Rτf is a weak equivalence if LτRτf is a quasi-isomorphism. By the naturality of the
counit, we have the following commutative diagram.
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M LτRτM

N LτRτN

f LτRτf

εM

εN

From the assumption, we know that all three of f , εM , and εN are quasi-isomorphisms. It follows
by the 2-out-of-3 property that LτRτf is also a quasi-isomorphism.

To show that η : IdcoMod Ñ LτRτ is a pointwise weak equivalence, we must show that Lη is a
pointwise quasi-isomorphism. Since Lτ is left adjoint to Rτ we know that η is split on the image
of Lτ , i.e.

εLτ ˝ Lτη = idLτ

Since we know that the natural isomorphisms ε and id are pointwise quasi-isomorphisms, we
get by the 2-out-of-3 property that Lη is a pointwise quasi-isomorphism as well.

Lemma 3.1.11. The functor Lτ preserves cofibrations and sends weak equivalences to quasi-
isomorphisms.

Proof. This proof is essentially the same as Lemma 2.2.11.

With the above lemmata, we have now established that the adjunction (Lτ , Rτ ) forms a Quillen
equivalence if coModC is a model category.

Lemma 3.1.12 ([Lemma 2.2.2.9 Lef03, p. 74]). Let M be a right A-module and N a right C-
comodule. Let p : M Ñ LτN be a fibration of modules. The projection j : RτM

ś

RτLτN
N Ñ

RτM is an acyclic cofibration of comodules.

Proof. Let K = Kerp. Then since Rτ is a right adjoint, it preserves kernels, so RτK » KerRτp.
Consider the pullback square with the horizontal kernels

RτK RM
ś

RτLτN
N N

RτK RτM RτLτN

» j ηN

Since LτN is a quasi-free module, we get that M » K ‘ LτN as a graded module. In other
words, the short exact sequences above are split when considered as graded sequences. If we
apply Lτ this sequence, then Lτ has to preserve exactness at the graded level since it is additive.
Thus we obtain a morphism of exact sequences, and Lτ j is a quasi-isomorphism by 5-Lemma.
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LτRτK Lτ (RM
ś

RτLτN
N) LτN

LτRτK LτRτM LτRτLτN

» Lτ j ηN

Proof of Theorem 3.1.8. With the above lemmata established, this proof is identical to the proof
of Theorem 2.2.13.

3.1.4 Triangulation of Homotopy Categories

In this section, we will show that the homotopy categories are triangulated. If we look at the
category ModA, we will observe that the category HoModA is the derived category D(A). It is
not the same for the category coModC . Here we want HocoModC to be equivalent to the derived
category of a ring, so we will see that the derived category is a further localization of HocoModC .

Furthermore, by employing the theory of triangulated categories, we will show that the model
structure on coModC is independent of the choice of acyclic twisting morphism. Thus, every
acyclic twisting morphism induces an equivalence between derived categories, as done by Keller
in [Kel94].

ModA is an abelian category, where we employ the maximal exact structure E 1 consisting of
short exact sequences in ModA. In other words, these short exact sequences are those which
are degree-wise short exact. However, this category also has an exact structure E , which makes
ModA into a Frobenius category, which we will now describe.

Let f :M Ñ N be a chain map fromM to N . Then E contains a conflation on the form:

N cone(f) M [1]

We define E as the smallest exact structure on ModA, which contains every conflation arising
from a chain map f . Observe that these conflations are exactly the short exact sequences of
ModA such that they are split when regarded as graded modules, i.e., forgetting the differential.
Thus the smallest such E is exactly the collection of every conflation arising from a chain map
f .

Recall that an objectM is projective (injective) if the represented functor ModA(M, ) (ModA( ,M))
is exact. For the category (ModA, E)

Proposition 3.1.13. LetM be an object of ModA. The following are equivalent:
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‚ M is E-projective
‚ M is E-injective
‚ M is contractible

Proof. This proposition is a well-known statement from literature. See Krause [Kra21], Happel
[Hap88], or Bühler [Büh10] for an account of this result.

To see that (ModA, E) has both enough projectives and injectives, we consider the following
conflation:

M cone(idM ) M [1]

The complex cone(idM ) is contractible for any complexM . By lettingM vary, we can find inflation
or deflation from the identity cone to or from any complex. This concludes that (ModA, E) is a
Frobenius category.

Let Mod
A
denote the injectively stable module category. Let I(M,N) denote the set of chain

maps from M to N , which factors through an injective object. We define the injectively stable
category as the quotient of abelian groups Mod

A
(M,N) = ModA(M,N)/I(M,N).

Theorem 3.1.14. Suppose that (C, E) is a Frobenius category, then the injectively stable cat-
egory C is triangulated. The additive auto-equivalence is given by cosyzygy, and the standard
triangles are the conflations’ images into the quotient.

Proof. This theorem is well-known in the literature. An account for it may also be found in Krause
[Kra21], Happel [Hap88], or Bühler [Büh10].

We thus obtain a triangulated category Mod
A
associated to the Frobenius pair (ModA, E). This

category is commonly denoted asK(A), and we will do this as well. Notice that with the structure
given by E , the cosyzygy is defined by the shift functor [1]. Every standard triangle is also on
the form:

M N cone(f) M [1]
f

To define the derived category D(A) of A we will consider the localization ofK(A) at the quasi-
isomorphisms,D(A) = K(A)[Qis´1]. To see that the derived category is triangulated, we realize
it as a Verdier quotient of K(A).

Proposition 3.1.15. The derived category of A is equivalent to the Verdier quotient K(A)/Ac,
where Ac denotes the image of acyclic objects in K(A).
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Proof. Proof may be found in Bühler [Büh10].

There is another way of telling the story of the derived categoryD(A). That is to localize it at the
quasi-isomorphisms directly. We may directly see that D(A) » ModA[Qis´1] which we know is
HoModA by definition.

Theorem 3.1.16. The homotopy category of ModA is triangulated; moreover, it is the derived
category D(A).

Proof. This theorem follows from the discussion above.

The triangulated construction for the category HocoModC closely resembles that of HoModA. We
start by studying the Frobenius pair (coModC , E), where E is the same exact structure. Notice that
this exact structure only considers the underlying category of chain complexes, so this follows
from the above description.

We define the injectively stable category coMod
C

= K(C) in the same manner. The standard
triangles and the additive auto-equivalence stay the same.

At this point, things start to differ. The definition for the homotopy category HocoModC is
coModC [Ac´1], here Ac denotes the class of weak equivalences in coModC . By abuse of no-
tation, we also let Ac Ă K(C) be the collection of objects which are cones of weak equiva-
lences. This subcategory is equivalent to the preimage of acyclic objects Ac Ă K(A) along
Lτ : coModC Ñ ModA. To see this, look at the image of the triangle where the cone is in Ac.
For this identification, it suffices to show that Ac Ă K(C) is a triangulated subcategory. In this
manner, HocoModC is the category K(C)/Ac, which is a triangulated category.

Remark 3.1.17. We may show that Ac Ă K(C) is a subcategory of acyclic objects, and we get
thatD(C) » HocoModC [Qis´1]. This is done in Lefevre-Hasegawa as [Proposition 1.3.5.1 Lef03,
p. 51] [Lemma 2.2.2.11 Lef03, p. 75]. This result follows from the fact that we have an equiva-
lence of categories coModC [fQis´1] » HocoModC , where fQis means the collection of graded
quasi-isomorphisms. Since every graded quasi-isomorphism is a quasi-isomorphism, we get the
inclusion of triangulated subcategories xcone(fQis)y Ď xcone(Qis)y Ď K(C).

Let τ : C Ñ A and υ : C Ñ A1 be two acyclic twisting morphisms. These independently
defines two different model structures on coModC by the adjunctions (Lτ , Rτ ) and (Lυ, Rυ). By
Lemma 3.1.5 we have the identification (Lτ , Rτ ) = (fτ !, f

˚
τ )(LιC , RιC ) = (fτ !LιC , RιCf

˚
τ ), and

likewise for υ. To show that τ and υ define equivalent model structures on coModC , it is enough
that both define the same structure as ιC . By symmetry, we may assume that υ = ιC . From
Lemma 3.1.7, we know that ιC is acyclic, so this assumption is well-founded.

Since we already know that (Lτ , Rτ ) and (LιC , RιC ) are Quillen equivalences, it remains to show
that (fτ !, f˚

τ ) is a Quillen equivalence. We get this if f
˚
τ is a right Quillen functor, and it induces

a triangle equivalence between D(A) and D(ΩC).
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We know that f˚
τ preserves fibrations (epimorphisms) because, on morphisms, this functor acts

as the identity. It only changes the ring action, so epimorphisms stay epimorphisms.

It remains to show that the functor preserves quasi-isomorphisms, and we will show this by
identifying the derived categories. We follow the methods given by Keller in [Kel94].

Let A be a dg-algebra. A is then free in the enriched sense; i.e. for any right A-module M ,
Hom‚

A(A,M) » M . Recall that P is projective if it is a direct summand of An for some n P N.

Given a right bounded complexM , we know how to construct a projective resolution p : pM Ñ M .
Associated with this resolution is a triangle in K(K) consisting of the complexes M , pM , and
aM , where aM is an acyclic complex.

M pM aM M [1]
p

In this sense, we obtain an identificationM » pM in D(K)´. By following Keller’s construction,
we can weaken this identification to all of D(K) by weakening the structure of the projective
resolution. In Keller’s paper, he calls these complexes of property (P). We will refer to them
as homotopically projective complexes since they are built up from projective complexes in a
manner respecting homotopy colimits.

Definition 3.1.18. Let P be a complex of ModA. We say that P is homotopically projective if
there exists a complex P 1, a homotopy equivalence P » P 1 and a filtration of P 1.

0 = F0 Ď F1 Ď ... Ď Fn Ď ... Ď P 1

The filtration should satisfy these properties:

(F1) P 1 is the colimit of the filtration.
(F2) Each inclusion in : Fn Ď Fn+1 is split as graded modules.
(F3) The quotient Fn+1/Fn is projective.

Remark 3.1.19. The properties (F1) and (F2) may be reformulated to require that P 1 should be
the homotopy colimit of the filtration, see Krause [Kra21]. Thus there is a canonical triangle in
K(A):

À

Fn
À

Fn P 1
À

Fp[1]
Φ

Φ is the unique morphism that acts as the identity and the inclusion on each summand of
À

Fp:

Φn =

(
idFn

´in

)
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In defining a homotopically projective complex, we have required that each quotient is strictly
projective. If only this were true, these objects would be ill-behaved in the homotopy category. We
can weaken this assumption to (F3’): the quotient Fn+1/Fn is homotopy equivalent to a projective
complex.

Lemma 3.1.20. If P is the colimit of a filtration admitting (F2) and (F3’), then P is homotopically
projective.

Proof. Let tFnu denote the filtration on P . Showing that P is homotopically projective is the
same as finding a homotopy equivalence to a complex P 1, such that P 1 is the homotopy colimit
of a filtration admitting (F3).

Suppose that Fn+1/Fn » Qn+1, where each Qn+1 is projective. We wish to inductively define
a filtration tF 1

nu which has (F2) and (F3) and a pointwise homotopy equivalence of filtrations
f : tFnu Ñ tF 1

nu. The object P 1 is defined as the homotopy colimit of this new filtration.

Define F 1
0 = Q0, and let f0 : F0 Ñ F 1

0 be the projection onto Q0. By assumption f0 is a homo-
topy equivalence, and we have a commutative square where the vertical arrows are homotopy
equivalences. Moreover, each horizontal arrow splits as a graded arrow.

0 F0

0 Q0

0

0 f0

0

Suppose that we can construct this filtration up to F 1
p. By using our known homotopy equiva-

lences, there is an isomorphism of Ext groups:

ExtA(Fp/Fp´1, Fp´1) » ExtA(Qp, F
1
p´1)

Given the triangle consisting of Fp´1, Fp and Fp/Fp´1 there is an associated triangle with the
morphisms as follows:

Fp´1 Fp Fp/Fp´1 Fp´1[1]

F 1
p´1 F 1

p Qp F 1
p´1

fp´1 „ fp´1[1]

By the morphism axiom, there is a morphism fp : Fp Ñ F 1
p, which is also a homotopy equivalence

by the 2-out-of-3 property.



108 Thorbjørnsen: Derived SHA

This defines a filtration tF 1
pu, with (F3) and P 1 as its homotopy colimit. To see that P is homotopy

equivalent to P 1, we use the maps fp constructed to obtain a homotopy equivalence by the
morphism axiom and the 2-out-of-3 property.

À

Fp
À

Fp P
À

Fp[1]

À

F 1
p

À

F 1
p P 1

À

F 1
p[1]

‘fp

Φ

‘fp „ ‘fp[1]

Φ1

The projective complexes are the complexes generated by the free module A in the sense that
they are all in the smallest thick triangulated subcategory of K(A) containing A. By definition,
we may see that the homotopically projective complexes are the complexes in the smallest thick
triangulated subcategory of K(A), which is closed under well-ordered homotopy colimits and
containsK(A). By devissage we may extend the fully faithful property of functors on the set tAu

to the class of homotopically projective objects.

Lemma 3.1.21 (Devissage). Let F : T Ñ U be a triangulated functor between triangulated
categories, which commutes with arbitrary coproducts. Suppose S Ď T is a class of objects
closed under shift, and denote xSy for the smallest thick triangulated subcategory (closed under
well-ordered homotopy colimits). If F |S is fully faithful, then F |xSy is fully faithful as well.

Proof. The first part follows from Yoneda’s lemma, Yoneda embeddings, and the 5-lemma. More
details may be found in [Kra21].

To get closed under homotopy colimits, we also need that F commutes with infinite direct sums
and that the set tSu only contains small objects.

Lemma 3.1.22. Suppose we have F and S as above. If F |S = 0, then it is 0 on all of xSy.

Proof. The same argument as above, except we have to squeeze out zeros from exact sequences.

The acyclic assembly lemma is the final ingredient to construct a homotopically projective res-
olution for our complexes.

Lemma 3.1.23 (Acyclic assembly, [Lemma 2.7.3 Wei94, p. 59]). Suppose that C is a double
complex of R-modules. Then Tot‘C is acyclic if either:

‚ C is a lower half-plane complex with exact rows.
‚ C is a left half-plane complex with exact columns.
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Proof. We omit the proof as the following proof is in some sense very similar.

Corollary 3.1.23.1. Suppose that C is a double complex of R-modules such that every column
is exact and that the kernels along the rows give rise to exact columns, then Tot‘C is acyclic.

Proof. We want to realize the images along the rows as the coimage along the horizontal differ-
ential. Write Zn(C) for the n-th horizontal kernel and Bn(C) for the n-th horizontal image. We
have a short exact sequence of complexes:

Zn(C)˚ Cn,˚ Bn(C)˚

Given that Cn,˚ is acyclic, we get that Zn(C)˚ is acyclic if and only if Bn(C)˚ is acyclic.

Assuming that all of these three constructions are acyclic, wemake a filtration onC . Let FnC
p,˚ =

C if p P [´n, n´ 1], FnC
n,˚ = ZnC and FnC

p,˚ = 0 otherwise.

This filtration is bounded below and exhaustive as colimits commute with colimits.

Tot‘C = Tot‘ lim
ÝÑ

FnC » lim
ÝÑ

Tot‘FnC

We should be a bit careful here as the total complex is not a coproduct, but since coproducts
and cokernels are calculated pointwise, we obtain the commutativity.

We apply the classical convergence theorem to the filtration to obtain a converging spectral
sequenceEF2C ùñ H˚(Tot‘C), but since we assume each column to be exact in the filtration,
the second page is 0, so H˚(Tot‘C) » 0 as desired.

Theorem 3.1.24. Suppose thatP is homotopically projective, andN is acyclic. ThenK(A)(P,N) »

0.

Given any module M , there is a homotopically projective object pM and an acyclic object aM ,
giving rise to a triangle in K(A).

pM M aM pM [1]

Proof. We assume that P » A. By a devissage argument we may extend the isomorphism to all
homotopically projective P .

K(A)(A,N) » H0Hom‚
A(A,N) » H0N » 0

We want to construct two complexes, pM and aM , by taking the total complexes. We show that
aM is acyclic by using Corollary 3.1.23.1. We will construct an exact sequence of complexes
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satisfying the assumptions to be able to use the corollary. As described by Mac Lane [Mac95],
there is an exact structure E on ModR such that the collections on conflations are the short exact
sequences such that the kernel functor is exact.

L M N

Z˚L Z˚M Z˚N

f g

Z˚f Z˚g

Since limits commute with limits, the kernel functor preserves any limit. Thus the kernel is left
exact, and its only obstruction for exactness is to preserve cokernels. We may thus characterize
the conflations by inflations and deflations, which are monomorphisms and epimorphisms pre-
served by the kernel functor. Mac Lane calls these deflations for proper epimorphisms instead.

We want to construct E-projectives to be on the form of homotopically projective complexes.
A[´n] is E-projective by the following isomorphism,

Z0Hom‚
A(A[´n],M) » Mn.

Define the trivialization trivM ofM be the underlying graded moduleM endowed with a trivial
differential. This trivial differential is the inclusion of gradedmodules into chain complexes. Thus
we have the following isomorphism on hom-sets:

ZiHom‚
A(trivM, trivN) » Homi

A(M,N)

triv is then well-defined as a functor, as every morphism between chain complexes uniquely
defines a morphism between their trivializations. By using the isomorphisms from Keller [Kel94]
Section 2.2. we get that:

Z0Hom‚
A(cone(idtrivA),M) » Z0Hom‚

A(cone(idtrivA[´1])[1],M)

» Hom˚
A(trivA, trivM [´1])0 » Hom˚

A(A,M)´1 » M´1.

This shows that if P is homotopically projective, then P and cone(idtrivP ) are E-projective. To
see that there are enough E-projectives, pick an arbitrary module M . Since we know there are
enough projectives, let P be a projective such that there is an epimorphism p : P Ñ M . We
don’t know if this morphism is a deflation, so pick another projective Q such that there is an
epimorphism q : Q Ñ Z˚M . Since Z˚M has a trivial differential, we know that dQq = 0. Thus this
morphism extends to q1 =

[
q 0

]
: cone(idtrivQ) Ñ M such that Z˚q1 is an epimorphism. The

morphism
[
p q1

]
: P ‘ cone(idtrivQ) Ñ M is thus a deflation. P 1 = P ‘ cone(idtrivQ) shows that

we have enough projectives. Moreover every cone(idtrivQ) is contractible, so P 1 » P in K(A).

Since we have enough E-projective, we may construct an E-projective resolution P 1˚,˚ of M in
the standard way. This would be analogous to taking projective covers of the kernels; see Keller
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[Kel90] for details. Such resolutions are then double complexes, and the augmented resolution
below is E-acyclic.

... P 1
1 P 1

0 M 0
0

Having an E-acyclic resolution means that each row is exact, and taking kernels along the
columns preserves the exactness of the rows.

Denote the augmentation of P 1˚,˚ bym : P 11,˚ Ñ M . We define the complexes pM = Tot‘(P 1˚,˚)
and aM = Tot‘(cone(m)).

pM carries a natural filtration FnpM from the double complex structure. Let FnpM be the trun-
cated complex:

... 0 P 1n,˚ ... P 11,˚ P 10,˚ 0 ...

The filtration FnpM satisfies (F1) and (F2) by construction. The quotients Fn+1pM/fnpM » P 1
n

which is homotopy equivalent to a projective. By Lemma 3.1.20, pM is homotopically projective.

The complex cone(m) satisfies the conditions for Corollary 3.1.23.1, aM is acyclic, and there is
a triangle in K(A) as desired.

Corollary 3.1.24.1. LetM be an arbitrarymodule. IfP is homotopically projective, thenK(A)(P,M) »

K(A)(P, pM). If N is acyclic, then K(A)(M,N) » (aM,N).

a and p are well-defined functors that commute with infinite direct sums.

Corollary 3.1.24.2. Let xAy denote the smallest thick triangulated subcategory of D(A), which
is closed under homotopy colimits and contains tAu. Then D(A) » xAy.

Corollary 3.1.24.3. Suppose that f : A Ñ B is a dg-algebra homomorphism and a quasi-
isomorphism between the dg-algebras, then D(A) » D(B).

Proof. f endows B with both a left and right A-module structure. We will consider B as a left
A-module and a right B module. There is then a natural hom-tensor adjunction between the
differential graded enriched categories.

ModA ModB

f!

K

f˚
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The restriction functor f˚ can naturally be identified with the hom functor Hom‚
A(B, ), and then

it is evident to realize f! as bA B. In this way, f!(A) » B, so f! : Hom‚
A(A,A) Ñ Hom‚

B(B,B)
is given by f . Since we assume f to be a quasi-isomorphism, it follows that Lf! : D(A) Ñ D(B)
is fully faithful on tAu.

By devissage, the functor Lf! is fully faithful on all of D(A) since D(A) » xAy. As f! hits all of
D(B)’s generators, Lf! is essentially surjective as well.

Remark 3.1.25. We have ignored smallness conditions for objects. This technique does not al-
ways work, as it depends on some unstated isomorphisms, whose existence is implied by the
smallness of A and B. This detail is given more care in Keller [Kel94].

With this result, we can show that HoModA and HoModΩC are equivalent. Since we assumed
the morphism τ : C Ñ A to be acyclic, we would expect the morphism fτ : ΩC Ñ A to be a
quasi-isomorphism. If this is the case, we know that D(ΩC) » D(A).

3.1.5 The Fundamental Theorem of Twisting Morphisms

In this section, we aim to finish what we started in Chapter 1. We will prove a characterization
for the acyclic twisting morphisms.

Theorem 3.1.26 (Fundamental Theorem of Twisting Morphisms). Let τ : C Ñ A be a twisting
morphism between augmented objects. The following are equivalent:

1. τ is acyclic, i.e. the natural transformation ε : LτRτ ùñ IdModA is a pointwise quasi-
isomorphism.

2. The unit transformation η : IdcoModC ùñ RτLτ is a pointwise weak equivalence.
3. The counit at A is a quasi-isomorphism, i.e. εA : LτRτA Ñ A is a quasi-isomorphism.
4. The unit at K is a weak equivalence, i.e. the algebra unit υA and coaugmentation υC as-

sembles into a weak equivalence: υA b υC : K Ñ Abτ C .
5. The morphism of algebras fτ : ΩC Ñ A is a quasi-isomorphism.
6. The morphism of coalgebras gτ : C Ñ BA is a weak equivalence.

Proof. Notice that 1. is equivalent to 2. since LL and RR are quasi-inverse. 3. is a special case
of 1. and 4. is a special case of 2. Observe that 5. and 6. are equivalent since the cobar-bar-
adjunction is a Quillen equivalence, which is Corollary 2.2.13.1.

We show 3. implies 1. Let T Ď D(A) be the full subcategory consisting of objects M where εM
is a quasi-isomorphism. This subcategory is, by assumption, non-empty and contains A. By the
5-lemma, making triangles (and smallness of A), this subcategory contains the smallest thick
triangulated subcategory closed under homotopy colimits which contains A. We know this to be
all of D(A) by Corollary 3.1.24.2.
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To show 4. implies 5. we consider the twisting morphism ιC . Since ιC is acyclic, we know that
the counit at A is a quasi-isomorphism.

LιCRιCf
˚
τ A Ñ f˚

τ A

By assumption the unit morphism ηK : K Ñ A bτ C is a weak equivalence, so the morphism
LιCηK : ΩC Ñ LιCRτA = LιCRιCf

˚
τ A is a quasi-isomorphism. Let ε1 denote the counit of

LιC % RιC , then we see that fτ = ε1
A ˝ LιCηK, so fτ is a quasi-isomorphism by the 2-out-of-3

property.

It remains to show that 5. implies 1. Let the counit of fτ˚ % f˚
τ be denoted as ε̃. Since fτ is

a quasi-isomorphism, f˚
τ descends to an equivalence between the derived categories, which is

Corollary 3.1.24.3. Thus ε̃ : fτ !f
˚
τ ùñ Id is a pointwise quasi-isomorphism. Observe that the

counit factors as

ε = ε̃ ˝ fτ !ε
1
f˚
τ

By the 2-out-of-3 property, it follows that ε is a quasi-isomorphism.

Corollary 3.1.26.1. There is only one canonical model structure on coModC defined by the
acyclic twisting morphisms τ : C Ñ A, for any algebra A. I.e., each acyclic twisting morphism
defines the same model structure for coModC .

Proof. Apply the fundamental theorem of twisting morphisms, Theorem 3.1.26, to the discussion
of Section 3.1.4.

3.2 Polydules

3.2.1 The Bar Construction

In Section 1.3, we saw that we could extend the domain of the bar construction to obtain an equiv-
alence of categories. This converse led us to the definition of an A8-algebra and recognizing
them as quasi-free dg-coalgebras. By employing the adjunction Lτ : coModC é ModA : Rτ , we
can do something similar for modules.

Let A be an augmented dg-algebra. The bar construction of A gives us a universal adjunction
LπA : coModBA é ModA : RπA . We will call RπA( [1]) = [1] bπA BA for BA, the bar construc-
tion on ModA. In this manner, every A-moduleM gives rise to a quasi-free BA-comodule BAM ,
but does the converse of this construction work?

Let us first look at whatBA does to anA-moduleM .BAM is the dg-comodule which as a graded
comodule is the free comodule M [1] b BA. The differential of BAM is given by the A-module
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structure ofM . That is, every elementary element m1 of BAM is an element ofM together with
a finite string of elements of A.

m1 = [m || a1 | ... | an]

The differential acts onm1 by using the differential of dM [1]bBA and multiplication from the right.

dBAM (m1) = dM [1]bBA(m
1) + (´1)|m|+|a|[m ¨ a1 || a2 | ... | an]

By using delooping, we see that dBAM defines anA-module structure forM . We may decompose
BAM as:

BAM =M [1] ‘M [1] b Ā‘M [1] b Āb2 ‘ ...

Let πM : RπAM Ñ M be the linear map that kills anything not on the form [m]. We denote
(dBAM )i by dBAM ˝ ιi, where ιi : M [´1] b Ābi´1 ãÑ BAM . Proposition 1.1.43 tells us that we
may recover the structure of M from the differential dBAM , which is done by conjugating the
components of dBAM with desuspension and applying projections appropriately. We recover the
maps as follows:

1. The differential ofM is dM = s ˝ πM [1] ˝ (dBAM )1ω
2. The right multiplication from A is µM = s ˝ πM [´1] ˝ (dBAM )2 ˝ ωb2

3. For i ě 3 we have 0 = s ˝ πM [1] ˝ (dBAM )i ˝ ωbi

Now, let rN be a quasi-free BA-comodule. That is, rN = N [1] b BA as a graded comodule. We
would now like that N to carry an A-module structure. Unfortunately, this does not happen in
general. However, like in the case of algebras, this defines a notion ofA8-modules to the algebra
A. If we try to recover the same structure, we obtain the following structure morphisms for N :

A differential of degree 1: m1 = dN = s ˝ πN (d
rN
)1 ˝ ω

A 2-ary operation of degree 0: m2 = s ˝ πN (d
rN
)2 ˝ ωb2

A 3-ary operation of degree ´ 1: m3 = s ˝ πN (d
rN
)3 ˝ ωb3

A 4-ary operation of degree ´ 2: ...

Let rmi be the looped versions of the mi. Then the sum
ř

rmi : rN Ñ N [1] extends to dBAN by
Proposition 1.1.43, i.e.

dBAN = (
ÿ

rmi b idBA)(idN b ∆BA) +N [1] b dBA.

Since d2BAN = 0 we get the relations (reln) as defined in Section 1.3 imposed on the morphisms
mi. We summarize this in the next definition.

Definition 3.2.1 (A-polydule). Let A be a dg-algebra andM be a graded K-module. We say that
M is a right A-polydule if there are morphisms

mi :M bAbi´1 Ñ M (3.1)
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of degree |mi| = 2 ´ i for any i ě 1. Furthermore, the morphisms should satisfy the relations

(reln) B(mn) = ´
ÿ

n=p+q+r
k=p+1+r
ką1,qą1

(´1)pq+rmk ˝p+1 m
?
q ,

where m?
q is meant as either mq or mA

q , that which is appropriate.

A left A-polydule is defined analogously. If M is an A-polydule, it has the structure of an A-
module where associativity is only well-defined up to strong homotopy.m3 is a homotopy for the
associator for m2, and m4 is like a homotopy for the associator of m3, and so on.

The category ofA-polydules is denoted as ModA8. We have defined its objects in correspondence
to the bar construction. Thus every object has been uniquely defined from a quasi-free B(A+)-
comodule. Likewise, we will uniquely define every morphism to come from B(A+)-comodule
morphisms. In this manner BA+ defines a fully faithful functor BA+ : ModA8 Ñ coModB(A+)

which is an isomorphism on the full subcategory of quasi-free B(A+)-comodules.

Definition 3.2.2 (8-morphisms). Let A be a dg-algebra, and let M and N be two right A-
polydules. We say that f :M ù N is an 8-morphism if there are morphisms

fi :M bAbi´1 Ñ N

of degree |fi| = 1 ´ i for any i ě 1. Furthermore, the morphism should satisfy the relations

(reln)
ÿ

p+q+r=n

(´1)pq+rfp+1+r ˝p+1 m
M
q =

ÿ

p+q=n

mN
p+1 ˝1 fq

Suppose that we have the A-polydules M , N and P . If f : M ù N and g : N ù P are
8-morphisms, then their composition is defined as

(gf)n =
ÿ

p+q=n

gp+1 ˝1 fq .

To illustrate what the bar construction does, suppose that f : M ù N is an 8-morphism. The
bar construction on f is then defined as

bA+f

where bA+f =
ř

s ˝ fi ˝ ωbi.
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There is a natural inclusion on objects i : ModA Ñ ModA8. This functor acts as the identity on
each object, letting every higher mi = 0:

i : ModA Ñ ModA8,

(M,dM , µM ) ÞÑ (M,dM , µM , 0, 0, ¨ ¨ ¨ ).

Suppose that f : M Ñ N is a morphism between the A-modules M and N . Then this defines
an 8-morphism i˝f :M ù N , such that if1 = f and ifn = 0 for every n ě 2. Thus i : ModA Ñ

ModA8 is a functor.

Definition 3.2.3 (strict 8-morphisms). Let f : M ù N be an 8-morphism. We say it is strict
if fi = 0 for every i ě 2.

The category ModA8,strict is the non-full subcategory of Mod
A
8 such that every 8-morphism are

strict.

3.2.2 Polydules of SHA-algebras

In the last section, we developed the notion of a polydule for augmented and ordinary algebras.
We extend this notion to any A8-algebra.

Suppose that A is an A8-algebra. Recall the bar constructionBA, and that this is a quasi-cofree
coalgebra on the form

BA =
8

à

i=1

A[1]bi,

where the differential comes from themi : A
bi Ñ A. To define the A-polydules, we will consider

the quasi-free comodules in coModBA. This construction will be completely analogous to how it
worked for ordinary dg-algebras.

Definition 3.2.4 (A-polydule). Let A be an A8-algebra, andM a graded K-module. We say that
M is a right A-polydule if there exists morphisms

mi :M bAbi´1 Ñ M ,

where the degree |mi| = 2 ´ i for any i ě 1. Furthermore, the morphisms should satisfy the
relations

(reln) B(mn) = ´
ÿ

n=p+q+r
k=p+1+r
ką1,qą1

(´1)pq+rmk ˝p+1 mq .

Definition 3.2.5 (8-morphisms). Let A be an A8-algebra, and let M and N be two right A-
polydules. We say that f :M ù N is an 8-morphism if there are morphisms

fi :M bAbi´1 Ñ N
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of degree |fi| = 1 ´ i for any i ě 1. Furthermore, the morphism should satisfy the relations

(reln)
ÿ

p+q+r=n

(´1)pq+rfp+1+r ˝p+1 m
M
q =

ÿ

p+q=n

mN
p+1 ˝1 fq

Definition 3.2.6. Let A be an A8-algebra. The category ModA8 has A-polydules as objects and
8-morphisms as morphisms.

The quasi-isomorphisms in ModA8 are the 8-morphisms f such that f1 is a quasi-isomorphism.

Remark 3.2.7. The isomorphisms of ModA8 are the 8-morphisms f where f1 is an isomorphism.

We say that an 8-morphism is strict if fi = 0 for any i ě 2. The category ModA8,strict is the non-full
subcategory of ModA8 restricted to strict 8-morphisms.

Suppose now thatA is instead a strictly unitalA8-algebra; see Definition (1.3.13). We may define
strictly unital A-polydules as an A-polyduleM such that

mM
2 ˝ (idM b υA) = idM

@i ě 3 mM
i ˝ (idM b ...b υA b ...b idA) = 0

An 8-morphism f :M ù N is strictly unital if

@i ą 2 fi(idM b ...b υA b ...b idA) = 0

We define the categories of strictly unital polydules with strictly unital morphisms suModA8 and
suModA8,strict. These categories are non-full subcategories of Mod

A
8.

Given an augmented A8-algebra A, see Definition 1.3.14, we obtain an equivalence of cate-
gories. Recall that the categories Alg8 and Alg8,+ were equivalent by taking the kernel of the
augmentation and applying the free augmentation as its quasi-inverse. In the same manner,
given a strictly unital A-polyduleM , then it defines a strictly unital Ā-polydule M̄ by restricting
the structure maps to Ābn, and this defines an equivalence of categories.

suModA8 ModA8

+

We may call its quasi-inverse for the free strict unitization. This functor takes an A-polyduleM
and turns it into a strictly unital A-polydule by defining the structure morphism as 0 on the unit.

The reduced bar construction allows us to translate an A-polydule M to a quasi-free BA-
comodule. We let BAM = M [1] b BA, together with the differential coming from each mn :
M bAbn´1 Ñ M

dBAM = (
ÿ

rmi b idBA)(idM [1] b ∆BA) + idM [1] b dBA = dm + idM [1] b dBA.
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Likewise, we may take a quasi-free BA-comodule to obtain an A-polydule by doing the reverse
bar construction, like in Proposition 1.1.43.

We will mostly restrict our attention to augmented A8-algebras. The reason for this is that if A
is an arbitrary A8-algebra, then studying ModA8 would be the same as studying suModA

+

8 . We
extend the bar construction along this equivalence to a fully faithful functor BA : suModA8 Ñ

coModBA. By abuse of equivalence we may write BA+ : ModA8 Ñ coModBA.

We may also lift homotopies between quasi-free BA-comodules and A-polydules. A homotopy
BA+h : BA+M Ñ BA+M is a morphism of degree ´1. Thus the collection hn :M bAbn´1 Ñ N
has morphisms of degree ´i. Moreover, h : M ù N defines a homotopy of f, g : M ù N if
we have

fn ´ gn =
ÿ

p+q

(´1)pmN
p+1 ˝1 hq ´

ÿ

p+q+r=n

(´1)pq+rhp+1+r ˝p+1 m
M
q

We say that a homotopy is strictly unital if it is a strictly unital 8-morphism.

Definition 3.2.8. Suppose there are two8-morphisms f, g :M ù N between twoA-polydules,
then f is homotopic to g, written as f „ g, if there is a homotopy h :M ù N as above.

3.2.3 Universal Enveloping Algebra

Given any augmented A8-algebra A, there is a universal enveloping algebra UA. This algebra
is universal in the sense that given any augmented algebra A1 and an 8-morphism A1 Ñ A,
then this factors through UA by an algebra map A1 Ñ UA. By the cobar-bar adjunction, there is
essentially only one way to define this algebra.

Definition 3.2.9. Let A be an A8-algebra. The universal enveloping algebra is the algebra
defined as ΩBA.

Remark 3.2.10. In this definition, we have used the extended bar construction to A8-algebras
and the cobar construction on dg-coalgebras.

Lemma 3.2.11. There is an isomorphism of categories i : ModUA Ñ suModA8,strict given by
delooping.

Proof. This lemma is immediate by the definition of a UA-module. To have a UA-moduleM [1],
we must have structure maps mM

i : M b Abi´1 Ñ M of degree 2 ´ i for any i ě 2. Unwinding
this definition and using the adjunction data establishes this isomorphism.

We can generalize the universal enveloping algebra to the case ofA8-algebras. This construction
is very non-trivial and requires using the universal enveloping algebra relative to an operad. The
necessary definitions may be found in Kriz and May [KM95].
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Given an A8-algebra, we will denote its universal enveloping algebra UA. We have the following
proposition due to Kriz and May.

Proposition 3.2.12 ([Proposition 4.10 KM95, p. 19]). LetA be anA8-algebra. There is an equiv-
alence of categories

i : ModUA Ñ suModA8,strict.

With the established equivalences, we can now pull themodel structure onModUA onto suModA8,strict.
Recall that this is the model structure defined in Theorem 2.2.1.

3.2.4 Bipolydules

We will look at bipolydules over twoA8-algebrasA andA1. This construction will be analogous to
that ofA-A1-bimodules, and by considering the tensor product, it is similar to ordinary polydules.

Definition 3.2.13 (A-A1-Bipolydule). Suppose that A and A1 are A8-algebras, and that M is a
graded K-module.M is an A-A1-bipolydule if there are morphisms

mi,j : A
bi bM bA1bj

Ñ M ,

such that the degree |mi,j | = 1´ i´j for any i, j ě 0. Furthermore, the morphisms should satisfy
the relations

(reln)
ÿ

n=p+q+r
p+1+r=s+t

q=u+v
s,t,u,vě0

(´1)pq+rms,t ˝p+1 mu,v = 0

Definition 3.2.14 (Strictly Unital A-A1-Bipolydule). Suppose that A and A1 are strictly unital
A8-algebras, and thatM is an A-A1-bipolydule. We say thatM is strictly unital if

mi,j(id
bp b υ? b idbq) = 0;

where ? is either A or A1, p ‰ i and (i, j) ‰ (0, 1) nor (i, j) ‰ (1, 0). Lastly,

m1,0(υA b idM ) = m0,1(idM b υA1) = idM .

A morphism of bipolydules is a bit more complicated than right polydules because the left mod-
ule structure induces some more signs.

Definition 3.2.15 (8-morphisms). Let A and A1 be two A8-algebras and let M and N be two
A-A1-bipolydules. An 8-morphism f :M ù N is a collection of morphisms

fi,j : A
bi bM bA1bj

Ñ N ,
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where the degree |fi,j | = ´i ´ j for any i, ,ě 0. Furthermore, the morphisms should satisfy the
following relations

(reln)
ÿ

n=p+q+r
q=s+t

(´1)p(´s´t)mp,q ˝p+1 fs,t =
ÿ

n=p+q+r

(´1)pq+rfp,r ˝p+1 m
?
q ,

where m?
q means the appropriate structure morphism.

This definition is well-defined. If m?
q is supposed to mean mq1,q2 : Abq1 bM bBbq2 Ñ M , then

q1 and q2 are not uniquely determined. However, the sum will span every possibility of q1 and q2.

We say that an 8-morphism is strict if f0,0 is the only non-zero component.

The polydules assemble into categories ModA
1

A,8, Mod
A1

A,8,strict, suMod
A1

A,8 and suModA
1

A,8,strict
like in the usual sense. These definitions may seem somewhat more complicated. However, they
almost reduce to the ordinary case by considering the category coModBAopbBA1

. Wemay derive a
2-sided bar-construction BA+´A1+ : ModA

1

A,8 Ñ coModBA1

BA . However, we know that coModBA1

BA »

coModBAopbBA1

. In this manner, we may argue about bipolydules with the techniques we have
developed for comodules.

3.2.5 A Tensor and a Hom on ModA
8

To understand the category ModA8, we would like to construct a tensor product and a hom-functor
on it. In its most generality, the tensor will be a bifunctor:

b8
A1 : ModA

1

A,8 b ModA
2

A1,8 Ñ ModA
2

A,8.

In the usual sense, given a bipolyduleM P ModA
1

A,8, it will act as a morphism

b8
A M : ModA8 Ñ ModA

1

8 .

In particular, this functor will be a left adjoint to its corresponding hom-functor. In its most
general form, the hom functor will be a bifunctor:

Hom8
A1 : ModA

1

A,8 b ModA
1

A2,8 Ñ ModAA2,8.

We start by describing the tensor product in the simplest case. Let A be an A8-algebra, and let
M and N be a right and left A-polydule, respectively. We defineM b8

A N as a cochain complex

M b8
A N =M b T c(A[1]) bN .

Its structure comes from the cotensor product of quasi-free coalgebras. Consider instead the
right and left BA dg-comodules BA+M =M [1] bBA and BA+N = BAbN [1].

BA+M ˝BA BA+N = Ker(ωr
BA+M bBA+N ´BA+M b ωl

BA+N )
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Then BA+M ˝BABA+N is aK dg-module. Taking the cotensor, we restrict our attention to solely
those parts of this tensor in which comultiplication from the left is the same as comultiplication
from the right. An element may then be seen to be of the form

[m || a1 | ¨ ¨ ¨ | an] b [n]

+[m || a1 | ¨ ¨ ¨ | an´1] b [an || n]

+ ¨ ¨ ¨

+[m || a1] b [a2 | ¨ ¨ ¨ | an || n]

+[m] b [a1 | ¨ ¨ ¨ | an || n].

There is an evident isomorphism to M [1] b BA b N [1] by sending each of the elements above
to the elements

[m || a1 | ¨ ¨ ¨ | an || n].

Its differential is induced by the restriction of the differential on the cochain complex BA+M b

BA+N . Since dBA+MbBA+N is well-defined on each element in BA+M b BA+N , the restricted
differential dBA+M b idN [1] + idM [1] b dBA b idN [1] + idM [1] b dBA+N on M [1] b BA b N [1] is
well-defined as well.

Definition 3.2.16 (The tensor product). Let A be an A8-algebra, and let M and N be respec-
tively a right and a left A-polydule. The tensor M b8

A N = M b BA b N is a cochain complex
with differential

(sb idBA b s)(dBA+M b idN [1] + idM [1] b dBA b idN [1] + idM [1] b dBA+N )(ω b idBA b ω).

An element ofM b8
A N may be written on the form

m[a1 | ¨ ¨ ¨ | an]n.

Given A-polydules M , M 1, N and N 1 and 8-morphisms f : M ù M 1 and g : N ù N 1, we
define f b8

A g as

f b8
A g(m[a1 | ¨ ¨ ¨ | an]n) =

ÿ

p+q+r=n+2

(´1)sfp(m, a1, ¨ ¨ ¨ )[¨ ¨ ¨ ]gr(¨ ¨ ¨ , an, n),

where s is the appropriate sign derived from Koszul’s sign rule. Note that as a K-polydule, this
morphism is a strict 8-morphism. This fact will not change, even in the more general cases.

We will extend this tensor to bipolydules. Suppose that N now has the structure of an A-A1-
bipolydule. The cotensor BA+M ˝BA BA+´A1+N » (BA+M ˝BA BA+N) b T c(A1[1]) as graded
comodules. When we thus recover the structure morphisms, we may recover them at T c(A1[1]).
In other words,m0,n : NbA1bn´1 Ñ N induces morphismsmn :Mb8

A NbA1bn´1 Ñ Mb8
A N .

Thus, given a bipolydule such as N , we obtain a functor

b8
A N : ModA8 Ñ ModA

1

8 .
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We will now describe the hom functor in the simplest case. Let A be an A8-algebra, and letM
and N be right A-polydules. We define Hom8

A (M,N) as a cochain complex

Hom8
A (M,N) = Hom˚

BA(BA+M,BA+N).

Its differential is the usual hom differential, i.e. given f P Hom˚
BA(BA+M,BA+N) then

Bf = dBA+N ˝ f ´ (´1)|f |f ˝ dBA+M .

Functoriality is given by post- and pre-composition in the usual sense for dg-comodules. If
we are given 8-morphisms, we will instead consider the dg-comodule counterpart and define
functoriality purely through that. Because of this, when we regard this as K-polydule, post-, and
pre-composition is a strict 8-morphism.

To be able to get to a more complicated case, we first need a new way to encode the data
of an A-polydule. The K-module HomBA(BA+M,BA+N) carries a natural bimodule structure.
There are actions on HomBA(BA+M,BA+N) on the right from the dg-endomorphism algebra
End(BA+M), and on the left from End(BA+N) by composition. If we consider these dg-algebras
as A8-algebras, then we may give HomBA(BA+M,BA+N) the structure of a bipolydule. The
following lemma connects representations of A8-algebras to A-polydules.

Lemma 3.2.17 (Representation lemma, [Lemme 5.3.0.1 Lef03, p. 140]). LetA be anA8-algebra,
and letM be a graded K-module. The following are equivalent:

‚ There is an 8-morphism of A8-algebras φ : A ù End(M),
‚ M is a left A-polydule.

Proof. We will only establish the bijection map. Proof of well-definedness may be found in
[Lef03].

The bijection is given by the transpose of the tensor. Notice that asK-linear morphisms we have
the following bijections

HomK(A
bn´1,End(M)) » HomK(A

bn´1 bM,M).

Thus if φ : A Ñ End(M) is an 8-morphism, then we may define

mn : Abn´1 bM Ñ M

(a1 b ¨ ¨ ¨ b an´1) bm ÞÑ φ(a1 b ¨ ¨ ¨ b an´1)(m).

On the other hand, if we have structure morphisms mn : Abn´1 bM Ñ M , then we may define
φ by uncurrying:

φn : Abn Ñ End(M),

a1 b ¨ ¨ ¨ b an ÞÑ (m ÞÑ mn+1(a1 b ¨ ¨ ¨ b an bm)).
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Remark 3.2.18. This lemma is well-known and holds in many other aspects as well. One may, for
example, recognize this in the representation theory of finite groups. A more general account of
this lemma may be found as [Proposition 5.2.2. LV12, p. 139].

Corollary 3.2.18.1. Let A and A1 be two A8-algebras, and let M be an A-A1-bipolydule. Then
there is an A8-morphism φ : A ù End(BA1+M). In particular, any End(BA1+M)-modules is an
A-polydule.

Proof. By Lemma 3.2.17 we obtain the 8-morphism φ : A ù End(BA1+M) by transposing the
structure morphisms

mi,j : A
bi bM bA1bj Ñ M .

In other words,

φn : Abn Ñ End(BA1+M),

a1 b ¨ ¨ ¨ b an ÞÑ (

[m || a1
1 | ¨ ¨ ¨ | a1

l] ÞÑ dBA+´A1+M ˝ (ωbn b idM [1] b idbl
A1[1])(a1 b ¨ ¨ ¨ b an b [m || a1

1 | ¨ ¨ ¨ | a1
l])).

We are now ready to describe the hom-functor. Suppose that A and A1 are A8-algebras, and
thatM is an A-A1-polydule and N a right A1-polydule. We define the A-polydule

Hom8
A1(M,N) = Hom˚

BA1(BA1+M,BA1+N),

with structure map φ : A ù End(BA1+M) defined by the above corollary. In this way, we obtain
a functor

Hom8
A1(M, ) : ModA

1

8 Ñ ModA8.

Lemma 3.2.19 (Hom-Tensor adjunction, [Lemme 4.1.1.4 Lef03, p. 115]). Let A and A1 be two
A8-algebras andM an A-A1-bipolydule. There is an adjoint pair of functors

ModA8 ModA
1

8K

b8
AM

Hom8
A1 (M, )

Proof. We establish the natural bijection. We refer to [Lef03, Lemme 4.1.1.4] to see that it is
well-defined.

Consider an 8-morphism f : Lb8
A M ù R of right A1-polydules. By consider the bar construc-

tion of A1, this morphism is in correspondance withBA1+f : Lb8
A BA1+M Ñ BA1+R. Through the

ordinary tensor-hom adjunction we get a correspondance fTi : LbAbi Ñ HomBA1(BA1+M,BA1+R).
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3.2.6 Homologically Unital SHA-Algebras and Polydules

This section will define the notion of homologically unital A8-algebras and polydules. These
notions will be weaker than strictly unitary objects, but their definition may be easier to use.
As we will see, these notions almost coincide with homotopy. This section will be given without
proof.

IfA is anA8-algebra, orM is anA-polydule, we will use H˚A and H˚M to denote their homology.
Note that H˚A is an associative algebra, asmi for i ě 3 are homotopies, witnessing associativity
of H˚m2. In the same fashion, H˚M , becomes a H˚A-module, by considering H˚mM

2 .

Definition 3.2.20 (Homologically unital A8-algebra). Let A be an A8-algebra. A morphism
υA : K Ñ A is called a homological unit, if H˚υA : K Ñ H˚A is a unit in homology. We say that
A equipped with a homological unit υA is a homologically unital A8-algebra.

An 8-morphism f : A ù A1 is homologically unital if it preserves the unit in homology, i.e.,
H˚f : H˚A Ñ H˚A1 is also a morphism of graded algebras.

Given two 8-morphisms f, f 1 : A ù A1, they are homotopically unital if there is a homotopy
h : A ù A1 between f and f 1 which is strictly unital with respect to the homological unit υA.

We let suAlg8 denote the non-full subcategory of strictly unital A8-algebras with strictly uni-
tal 8-morphisms, huAlg8 denote the non-full subcategory of homologically unital A8-algebras
with homologically unital 8-morphism, and uAlg8 denote the full subcategory of strictly unital
A8-algebras with 8-morphisms. Note that if A is a strictly unital A8-algebra, then it is also
homologically unital. Thus we see that suAlg8 Ď huAlg8.

To obtain a stronger relationship between homologically unital A8-algebras and strictly unital
A8-algebras, we need minimal models.

Definition 3.2.21 (Minimal SHA-algebra/polydule). Let A be an A8-algebra, and M an A-
polydule. We say that A is minimal if mA

1 = 0, and likewiseM is minimal if mM
1 = 0

Definition 3.2.22 (Minimal model). Let A and A1 be A8-algebras. We say that an 8-quasi-
isomorphism f : A1 ù A is a minimal model of A.

Theorem 3.2.23 ([Corollaire 1.4.1.4 Lef03, p. 54]). Let A be an A8-algebra. The injection from
the homology H˚A into A is a minimal model of A.

Proof. We will only construct the first component of this injection.

Since ModK is semi-simple, A splits naturally as A » H˚A ‘ K . By definition, K is acyclic, and
the inclusion H˚A Ñ A is a quasi-isomorphism.

We now state the following relationship between homologically unital and strictly unital A8-
algebras.
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Theorem 3.2.24 ([Theoreme 3.2.1.1 Lef03, p. 99]). Anyminimal homologically unitalA8-algebra
is isomorphic to a minimal strictly unital A8-algebra.

Corollary 3.2.24.1 (Unital strictification of A8-algebras, [Corollaire 3.2.1.2 Lef03, p. 99]). Any
homologically unital A8-algebra is homotopy equivalent to a strictly unital A8-algebra.

Proof. We obtain this result by combining Theorem 3.2.23 and Theorem 3.2.24.

Theorem 3.2.25 (Unital strictification of 8-morphisms, [Theoreme 3.2.2.1 Lef03, p. 103]). A ho-
mologically unital 8-morphism of strictly unital minimal A8-algebras is homotopic to a strictly
unital 8-morphism.

Theorem 3.2.26 (Unital strictification of homotopies, [Theoreme 3.2.3.1 Lef03, p. 104]). Let
A and A1 be two minimal strictly unital A8-algebras. Let f, g : A ù A1 be strictly unital 8-
morphisms that are homotopic, and then there is a strictly unital homotopy witnessing the ho-
motopy f „ g.

Corollary 3.2.26.1. Let A and A1 be two A8-algebra, and let f : A ù A1 be a strictly unital
homotopy equivalence. Thus, there is a strictly unital homotopy equivalence g : A1 ù A1, with
strictly unital homotopies witnessing that g is the homotopy inverse of f .

With the above results, we learn that the homotopic information of strictly unital A8-algebras
is essentially controlled by strictly unital 8-morphism. In other words the non-full inclusion
suAlg8 Ñ uAlg8 induces an equivalence of categories

suAlg8/„ » uAlg8/„.

We also get that the unital strictification of homologically unital A8-algebras induces an equiv-
alence

huAlg8/„ » suAlg8/„.

We also have similar results for polydules.

Definition 3.2.27. Let A be a homologically unital A8-algebra, and letM be an A-polydule. We
say thatM is homologically unital if H˚M is a unital H˚A-module.

LetM and N be two homologically unital A-polydules, and f :M ù N be an 8-morphism. We
say that f :M ù N is homologically unital if H˚f1 : H˚M Ñ H˚N is a H˚A-linear morphism.

We denote the category of homologically unitalA-polydules with homologically unital8-morphisms
by huModA8. This category is a non-full subcategory of Mod

A
8. Recall that we also have suMod

A
8,

the category of strictly unital A-polydules with strictly unital 8-morphism. Let uModA8 denote
the full subcategory of ModA8 consisting of strictly unital A-polydules. We have the same kind of
results as for A8-algebras.
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Theorem 3.2.28 (Unital strictification of A-polydules, [Theoreme 3.3.1.2 Lef03, p. 109]). Let A
be a strictly unital A8-algebra. Any minimal homologically unital A-polydule is isomorphic to a
strictly unital A-polydule.

Corollary 3.2.28.1 ([Corollaire 3.3.1.3 Lef03, p. 109]). Let A be a minimal strictly unital A8-
algebra. Any homologically unitalA-polydule is homotopy equivalent to a strictly unitalA-polydule.

Theorem 3.2.29 (Unital strictification of 8-morphisms, [Theoreme 3.3.1.4 Lef03, p. 109]). Let
A be a strictly unital A8-algebra, and let M and N be minimal strictly unital A-polydules. Any
8-morphism f :M ù N is homotopic to a strictly unital 8-morphism.

Theorem 3.2.30 (Unital strictification of homotopies, [Theoreme 3.3.1.5 Lef03, p. 109]). Let
A be a strictly unital A8-algebra, and let M and N be minimal strictly unital A-polydules. Let
f, g :M ù N be homotopic 8-morhpisms, then there is a strictly unital homotopy between f
and g.

Proposition 3.2.31 (Minimal models, [Proposition 3.3.1.7 Lef03, p. 109]). Let A be a strictly
unital A8-algebra, and let M be a strictly unital A-polydule. Then there is a minimal strictly
unital A-polydule N together with a strictly unital minimal model f : N ù M . In particular, f1
is a quasi-isomorphism.

Suppose that A is a minimal strictly unital A8-akgebra. With the above results, we are now able
to deduce that the non-full inclusion suModA8 Ñ uModA8 induces an equivalence

suModA
8/„ » uModA

8/„,

and the non-full inclusion huModA8 Ñ suModA8 induces an equivalence

huModA
8/„ » suModA

8/„.

3.2.7 H-Unitary SHA-Algebras and Polydules

In this section, we will define notions that will help us to calculate homologies. We will define a
twisting morphism between an augmented A8-algebra and a conilpotent dg-coalgebra. For the
second part, we will define H-unitary A8-algebras and polydules.

Definition 3.2.32. LetA be an augmentedA8-algebra, and letC be a conilpotent dg-coalgebra.
τ : C Ñ A is a twisting morphism if it is of degree 1, it is 0 on the augmentation ideal and the
coaugmentation quotient and

ÿ

iě1

mi b (τbi) b ∆i
C = 0.

LetM be an A-polydule, and N a C-comodule. Given a twisting morphism τ : C Ñ A, we define
the twisted tensor products

bτ C : ModA8 Ñ coModC ,

bτ A : coModC Ñ ModA8.
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The perturbations are

drτ =
8
ÿ

i=1

(mi b C)(M b τbi´1 b C)(M b ∆i
C),

dlτ =
8
ÿ

i=1

(N bmi)(N b τbi´1 bA)(νiN bA).

We define the perturbed differential of the cochain complexesM b C and N bA as

d‚
τ = dMbC + drτ , and

d‚
τ = dNbA ´ dlτ .

Definition 3.2.33 (Twisted tensor products). Let A be an augmented A8-algebra, let C be a
conilpotent dg-coalgebra, and let τ : C Ñ A be a twisting morphism. Given an A-polyduleM (a
C-comodule N ), we define the right (left) twisted tensor product asM bτ C (N bτ A) together
with the perturbated differential d‚

τ .

Pick an augmented A8-algebra A. The morphism

τ = i ˝ s ˝ π1 : BA Ñ A

is a twisting morphism. Here π1 : BA Ñ A[1] is the projection onto first component, and i : A Ñ

A is the inclusion.

Lemma 3.2.34. The morphism εBA bτ εA : BAbτ A Ñ K is a quasi-isomorphism.

Proof. We have already seen this in Lemma 3.1.7.

Twisting morphisms will be important in understanding H-unitary A8-algebras and polydules.

Definition 3.2.35. Let A be an A8-algebra. We say that A is H-unitary if the bar construction
BA is acyclic.

Lemma 3.2.36. Let A be a minimal strictly unital A8-algebra, and then it is H-unitary.

Proof. The unit map idBA b υA[1] : BA Ñ BA is a morphism of degree ´1 and is a homotopy
of the identity.

Corollary 3.2.36.1. Any homologically unital A8-algebra is H-unitary.

Proof. Pick any homologically unital A8-algebra A. By Corollary 3.2.24.1, there exists a strictly
unital A8-algebra A1 and an 8-quasi-isomorphism f : A1 ù A. Applying the bar construction
yields a quasi-isomorphism Bf : BA1 Ñ BA. By Lemma 3.2.36, BA1 is acyclic, so BA has to be
acyclic.
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We have the same kind of relationships between polydules.

Definition 3.2.37. Let A be an augmented strictly unital A8-algebra. Any A-polydule M is H-
unitary if BAM is acyclic.

Lemma 3.2.38. Let A be a strictly unital A8-algebra. An A+-polydule M is H-unitary if and
only if it is homologically unital as an A-polydule.

Proof. Suppose first that M is a homologically unital A-polydule. Then by Corollary 3.2.28.1,
there is a strictly unital A-polydule M 1 together with an 8-quasi-isomorphism M 1 ù M . It is
enough to show that BA+M 1 is acyclic. The unit υA defines a homotopy of the identity

idBA+M 1 b υA[1] : BA+M 1 Ñ BA+M 1.

For the other direction, suppose thatM is an H-unitary A+-polydule. Note that we have an exact
sequence

0 A A+ K 0

Recall that τ = i ˝ s ˝ π1 : BA Ñ A+. This sequence induces an exact sequence on the twisted
tensors

0 M bτ BAbτ A M bτ BAbτ A
+ M bτ BAbτ K 0

By assumption M bτ BA bτ K » (M [1] bτ BA)[´1] » (BA+M)[´1] which is acyclic by as-
sumption. Thus M bτ BA bτ A is quasi-isomorphic to M bτ BA b A+. By Lemma 3.2.34,
M bτ BAbA+ » M bτ K » M . Thus,M » M bτ BAbτ A is a strictly unital right A-polydule
by freeness.

3.3 The Derived Category D8A

3.3.1 The Derived Category of Augmented SHA-Algebras

In this section, we wish to define the derived category of strictly unital polydules of an augmented
A8-algebra. If Qis denote the class of 8-quasi-isomorphisms, we want the derived category to
be the localization at 8-quasi-isomorphisms, e.g.

D8A = suModA8[Qis´1].

Like in the case of algebras, we may understand the quasi-isomorphisms better. The category
suModA8 is not complete, but we may give it a model structure without limits in the same sense
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as before. Within this structure, we already know that every object is cofibrant, and the goal is
to show that every object is also fibrant. With this, we can lift every 8-quasi-isomorphism to
homotopy equivalence, and we may see that the identity gives the localization from K8A Ñ

D8A.

Within the category suModA8 we define three classes of morphisms:

‚ f P Ac is a weak equivalence if f1 is a quasi-isomorphism,
‚ f P Cof is a cofibration if f1 is a monomorphism,
‚ f P Fib is a fibration if f1 is an epimorphism,

Theorem 3.3.1. The category suModA8 is a model category without enough limits. Moreover,
every object is bifibrant.

Proof. This result is more or less identical to the proof of Theorem 2.3.3.

Like in the case of algebras, Proposition 2.3.1, we may consider ordinary homotopies of co-
modules as left homotopies. In this way, we can think of the homological homotopies as model
categorical homotopies. Since polydules are exactly the bifibrant comodules, we get that the
homological homotopies are exactly the model categorical homotopies.

Corollary 3.3.1.1. Homotopy equivalence defined in suModA8 is an equivalence relation, and
every 8-quasi-isomorphism is a homotopy equivalence.

Proof. This corollary follows from the above discussion, as the homological homotopies coin-
cide with the model categorical homotopies. It is thus an equivalence relation, and Whitehead’s
theorem, Theorem 2.1.30, gives us a lift to an 8-quasi-isomorphism.

We now want this model structure on suModA8 to respect the model structure on the category
coModBA

conil. In other words, we want the functor BA : suModA8 Ñ coModBA
conil to preserve and

reflect the model structure of both categories.

Lemma 3.3.2. Let M be an object of suModA8. The unit BAM Ñ RιBALιBABAM is a quasi-
isomorphism on the primitive elements.

Proof. This proof uses the same trick as Lemma 3.1.7. Equip M , the trivial filtration, BA the
coradical filtration and ΩBA = UA the induced filtration.

FpM =M ,

FrpBA = t[a1 | ¨ ¨ ¨ | an] | n ď pu,

FpUA = tx[a11 | ¨ ¨ ¨ | an1 ] | ¨ ¨ ¨ | [a1k | ¨ ¨ ¨ | ank
]y | n1 + ¨ ¨ ¨ + nk ď pu.
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We see that gr0M [1] » M [1] and otherwise » 0. In the same way, gr0η acts as the identity on
M [1]. By the similar lemma, we know that each grpM [1] b BA b UA is acyclic for p ě 1. Thus
grη is a graded quasi-isomorphism on the primitives.

Proposition 3.3.3. Let M and M 1 be objects of suModA8, together with an 8-morphism f :
M Ñ M 1.

‚ f is an 8-quasi-isomorphism if and only if BAf is a weak equivalence.
‚ f is a fibration if and only if BAf is a fibration.
‚ f is a cofibration if and only if BAf is a cofibration.

Proof. Recall from Theorem 3.1.8 that the morphism ιBA : BA Ñ UA is an acyclic twisting
morphism. Thus the adjoint pair (LιBA , RιBA) defines a Quillen equivalence.

We show only the first bullet point. The last two are identical to the proof of proposition 2.2.19.

If f1 is a quasi-isomorphism, then BAf is a graded quasi-isomorphism. So suppose that BAf
is a weak equivalence instead. The unit transformation gives us a natural square.

BAM RιBALιBABAM

BAM
1 RιBALιBABAM

1

BAf RιBA
LιBA

BAf

In this case, RιBA = BAi, so this diagram is in the image of BA. Since BA is fully faithful, we
consider this diagram in suModA8 instead.

M iLιBABM

M 1 iLιBABM
1

f iLιBA
Bf

Since BAf is a weak equivalence, iLιBABAf is an 8-quasi-isomorphism by definition. By the
above lemma, the horizontal maps are 8-quasi-isomorphisms. Thus by the 2-out-of-3 property,
f is an 8-quasi-isomorphism.

There is a homotopy category associated with every augmented A8-algebra. Since homotopy
equivalence „ in suModA8 defines a congruence relation, we may construct the homotopy cate-
gory K8A.
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Corollary 3.3.3.1. The identity gives the localization K8A Ñ D8A. Moreover, K8A = D8A.

Remark 3.3.4. The name homotopy category comes from homological algebra and has a priori
nothing to do with the homotopy category Ho(suModA8). However, in this particular case, these
naming conventions coincide.

Lemma 3.3.5. The composition J : ModUA Ñ suModA8,strict Ñ suModA8 given by J = ι ˝ i,
induces an equivalence of categories:

DUA » D8A.

Proof. Consider the commutative square:

ModUA suModA8,strict

coModBA suModA8

RιBA

i

ι

BA

Since the three functors RιBA , i, and BA all induce equivalences on the derived categories, then
ι has to as well.

To summarize, we have established an equivalence between 5 different categories:

‚ D8A, derived category of A;
‚ K8A, the homotopy category associated to A;
‚ suModA8,strict[Qis

´1], derived category of A with only strict morphisms;
‚ DBA, derived category of BA as a dg-coalgebra;
‚ DUA derived category of the universal enveloping algebra of A.

We may see that within the derived category, all of the higher homotopic data of each morphism
have been collapsed by the homotopy.

The triangulated structure on D8A may be lifted along these equivalences, making them tri-
angulated as well. Note that RιBA is already triangulated, and there is only one way of forcing
the triangulated structure on suModA8. Since suModA8 isn’t complete, it isn’t easy to obtain a
description of the triangles along any 8-morphism f . However, this problem does not appear
in suModA8,strict, so one should think of only strict morphisms instead, but in this case, we are
already working in the category ModUA.

If we let A to be an ordinary associative augmented algebra, we can obtain a similar character-
ization. Notice first that by Lemma 3.2.11 and Proposition 2.1.43, there is a quasi-isomorphism
UA Ñ A. By Corollary 3.1.24.3, we get that their derived categories have to be equivalent. In
other words, the six categories below are equivalent:
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‚ DA, the derived category of A;
‚ D8A, the derived category of A considered as an A8-algebra;
‚ K8A, the homotopy category associated to A considered as an A8-algebra;
‚ suModA8,strict[Qis

´1], the derived category of A considered as an A8-algebra considering
only strict morphisms;

‚ and DUA, the derived category of UA.

3.3.2 The Derived Category of Strictly Unital SHA-Algebras

In this section, we will generalize the construction of the derived category to any strictly unital
A8-algebra. Consider the strictly unital A8-algebra A. If we look at the augmented algebra A+,
then the augmentation εA : A+ Ñ K gives K the structure of an A+-polydule. We construct the
following functor

b8
A+ K : ModA

+

8 Ñ Mod8
K .

We may observe that this functor maps strictly unital objects into strictly unital objects

b8
A+ K : uModA

+

8 Ñ uMod8
K .

The derived category D8A
+ is equivalent to uModA+

8 /„. Since the functor above preserves 8-
quasi-isomorphisms, it induces a functor between the derived categories

b8
A+ K : D8A

+ Ñ D8K.

Definition 3.3.6. Let A be an A8-algebra. We define the derived category as the kernel

D8A = Ker( b8
A+ K : D8A

+ Ñ D8K).

Theorem 3.3.7. Let A and A1 be two A8-algebras, and let f : A Ñ A1 be an 8-quasi-
isomorphism. The restriction

f˚ : ModA
1

8 Ñ ModA8

induces an equivalence on the derived categories

f˚ : D8A
1 Ñ D8A.

Proof. We have already seen a variant of this. Consider the diagram

DA1

8 D8A
1+ D8K

D8A D8A
+ D8K

f˚ (f+)˚ »
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By Lemma 3.3.5, we have a commutative square

DU(A1+) D8A
1+

DU(A+) D8A
+

»

U((f+)˚)» (f+)˚

»

Since U((f+)˚) is an equivalence by Corollary 3.1.24.3, ((f+)˚) is an equivalence as well. By the
first diagram, f˚ has to be an equivalence by the kernel property.

A valuable property of the 8-tensor is that it behaves like the ordinary tensor up to homotopy.

Lemma 3.3.8. Let A be an A8-algebra. Let M be a strictly unital A-polydule. In the category
uModA8 we have the following:

‚ There is an 8-quasi-isomorphismM b8
A A ù M ,

‚ and there is an 8-quasi-isomorphismM ù Hom8
A (A,M).

Proof. Since the second point is the transpose of the first point, we will only prove thatMb8
A ù

M is an 8-quasi-isomorphism.

We define the multiplication morphism componentwise

gi,j :M b8
A A Ñ M ,

mb [a1 | ¨ ¨ ¨ | aj ] b ab a1
1 b ¨ ¨ ¨ b a1

i´1 ÞÑ m1+j+1+i´1(m, a1, ¨ ¨ ¨ , aj , a, a
1
1, ¨ ¨ ¨ , a1

i),

so that gi =
ř8

j=1 gi,j .

To see that g defines an 8-quasi-isomorphism we calculate the homology of cone(g1).

One may observe that the morphism

idM b υA[1] b idA :M b (A[1])bi bA Ñ M b (A[1])bi+1 bA

induces a homotopy between idcone(g1) and 0, so g1 is indeed a quasi-isomorphism.

We are now going to define other categories which will look very similar to the derived category
in the augmented case. It is also true that these categories will be equivalent to the derived
category in the strictly unital case.

Definition 3.3.9 (Compactly generated triangulated category). Let A be a strictly unital A8-
algebra. We let xAy denote the smallest thick triangulated subcategory category of D8A

+ con-
taining A which is closed under infinite sums.
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Definition 3.3.10 (Homotopy category). Let A be a strictly unital A8-algebra. Let the homotopy
category be

K8A = suModA
8/„,

where „ is a homotopy equivalence.

We are not sure if the congruence relation generated by the homotopy equivalence is strictly
greater than homotopy equivalences. However, by considering the restriction map

r =
(
idA υA

)
: A+ Ñ A,

we obtain a faithful functor

r˚ : suModA8 Ñ suModA
+

8 ,

which respects homotopy equivalences. This functor also induces a fully faithful functor

r˚/„ : K8A Ñ K8A
+.

Since homotopy equivalence is a congruence relation in the latter category, it necessarily has
to be that in the former category.

Theorem 3.3.11. Let A be a strictly unital A8-algebra. The following categories are equivalent:

‚ D8A
‚ xAy

‚ K8A
‚ suModA8[Qis´1]
‚ Ho(suModA8,strict)

Proof of D8A » xAy. To see this, we would like to have an exact sequence of triangulated cat-
egories

xAy D8A
+ D8K

By [Proposition 3.2.8 Kra21, p. 81] it suffices to show that for any A+-polyduleM , in the triangle

M b8
A+ A M M b8

A+ K (M b8
A+ A)[1]

the objectsM b8
A+ A P xAy andM b8

A+ K are xAy-local. An object ofM P D8A
+ is said to be

xAy-local if for any L P xAy

D8A
+(L,M) = 0.
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We start by observing thatM bA+ A =M bBA+ bA, soM b8
A+ A is in fact contained in xAy.

To see thatM bA+ K is xAy-local, we start by considering the following triangle

Ab8
A+ K A+ b8

A+ K K b8
A+ K (Ab8

A+ K)[1]

By assumption, A is strictly unital, so it is also homologically unital, even if considered as an
A-polydule. By Lemma 3.2.38, A is H-unitary as an A+-polydule. Notice that A bA+ K = A b

BA+ bK » BA+A. Since A isH-unitary, we get that Ab8
A+ K is acyclic. Moreover, by thickness,

any L P xAy has the property that

Lb8
A+ K » 0.

By acyclicity of Ab8
A+ K, we obtain an 8-quasi-isomorphism

A+ b8
A+ K Ñ K b8

A+ K.

If we consider the projection

A+ bA+ K Ñ K,

we see that this is an 8-quasi-isomorphism, since the cone is the bar construction of A+. BA+

is acyclic, as A+ is strictly unital and thus H-unitary.

By composing these morphisms in the derived category D8A
+, we get an isomorphism

K Ñ K b8
A+ K.

Now, pick an arbitrary morphism f : L Ñ Mb8
A+ K. We have the following commutative diagram

L M b8
A+ K

Lb8
A+ K M b8

A+ K b8
A+ K

f

»

As Lb8
A+ K » 0, the morphism f factors through 0. Thus f = 0.

Proof of D8A » K8A. LetM be an A+-polydule. We evaluateMb8
A+K =MbBA+ = BA+M .

In other words,M is H-unitary if and only ifMb8
A+ K is acyclic. By definition,D8A is thus made

up of every H-unitary A+-polydules. By Lemma 3.2.38, we know that D8A is then formed by
the homologically unital A-polydules. By Corollary 3.2.28.1, every such A-polydule is 8-quasi-
isomorphic to a strictly unital A-polydule.

For the augmented A8-algebra A+ we know already thatK8A
+ » D8A

+. ThusK8A is exactly
the kernel in the following diagram
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K8A K8A
+ D8K

as the inclusion sends strictly unital polydules to H-unitary polydules.

Proof of K8A » suModA8[Qis´1]. Since there is a fully faithful functor

K8A K8A
+

it follows that every8-quasi-isomorphism in suModA8 is a homotopy equivalence. Thus suModA8[Qis´1] »

K8A.

We prove the final statement first in the case of ordinary associative algebras.

Lemma 3.3.12. Let A be a differential graded algebra. The inclusion i : ModA Ñ suModA8
induces an equivalence of categories

DA » suModA8[Qis´1],

where b8
A A gives the inverse.

Proof. LetM be anA-polydule, and then we already know that there is an 8-quasi-isomorphism
M b8

A A ù M .

Let insteadM be an A-module. Then we can consider it an A-polydule by letting the higher mul-
tiplication mi = 0 for any i ě 3. Thus we see that the 8-morphism g defined as in Lemma 3.3.8
is a strict morphism. In other words, g = g1 defines a morphism of algebras.

We have already seen that the component g1 is a quasi-isomorphism, so there is a quasi-
isomorphism of modules i(M) b8

A A Ñ M . Thus we have proved that the derived categories
D8A and DA composing the functors are isomorphic to applying the identity functors. Thus we
get an equivalence

DA » D8A.

Before the last proof, we will need some technical lemmata.

Lemma 3.3.13 ([Proposition 7.5.0.2 Lef03, p. 171]). Let A be a strictly unital A8-algebra, then
there is a dg-algebra A1 and a strictly unital acyclic cofibration

A ù A1.
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Lemma 3.3.14. [Proposition 3.2.4.5 Lef03, p. 106] Let A and A1 be two strictly unital A8-
algebras. If i : A ù A1 is a strictly unital acyclic cofibration, then there is a strictly unital
acyclic fibration p : A1 Ñ A, such that p ˝ i = idA and i ˝ p „ idA1 .

Lemma 3.3.15. [Lemme 4.1.3.15 Lef03, p. 128] Let A and B be two unital differential graded
algebras. Let f, f 1 : A Ñ B be two morphisms of algebras, such that they are right homotopic
f „r f

1. The restriction functors

f˚, f 1˚ : ModB Ñ ModA (3.2)

induces equivalent functors on the derived category

f˚ » f 1˚ : DB Ñ DA.

Proof of suModA8[Qis´1] » Ho(suModA8,strict). Assume first that A is a differential-graded asso-
ciative algebra. We have the following chain of faithful inclusions

ModA suModA8,strict suModA8.

By Lemma 3.3.12, the composition is an equivalence on the derived categories and then nec-
essarily essentially surjective and fully faithful. The last inclusion is, by definition, essentially
surjective and fully faithful on the derived categories. In this manner, all three categories are
equivalent.

We will now suppose that A is an A8-algebra. By Lemma 3.3.13, there exists a dg-algebra A1

and an acyclic cofibration

p : A ù A1.

By Lemma 3.3.14, there also exists an acyclic fibration q : A1 ù A, splitting p as q ˝p = idA and
p ˝ q „ idA1 .

If we are using the model structures on suModA8,strict and suMod
A1

8,strict induced by the universal
enveloping algebras, the morphisms p and q induces functors

Ho(p˚) : Ho(suModA
1

8,strict) Ñ Ho(suModA8,strict) and,

Ho(q˚) : Ho(suModA8,strict) Ñ Ho(suModA
1

8,strict).

If we have that

Ho(p˚)Ho(q˚) » IdHo(suModA
8,strict)

and

Ho(q˚)Ho(p˚) » IdHo(suModA1

8,strict)
,

then we would be done. This is because p˚ : D8A
1 Ñ D8A induces an equivalence by Theo-

rem 3.3.7. Thus we may consider the following commutative diagram
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Ho(suModA8,strict) Ho(suModA
1

8,strict)

D8A D8A
1

»

»

»

Here the equivalence on the right-hand side is given by the case for ordinary algebras treated
earlier. Finally, by previous results we know that D8A » suModA8[Qis´1].

To see that we have the equivalences as claimed, we first note that the first one is automatic by
the equation q˝p = idA. Wemust show that p˝q is isomorphic to the identity on Ho(suModA

1

8,strict).
By the earlier argument, proving this will be the same as proving that p ˝ q induces an equiva-
lence onDA1. Since p˝q is homotopic to idA1 , they induce isomorphic morphisms in the category
HocoAlgK by the bar construction and Proposition 2.3.1. By Corollary 2.2.13.1, there are isomor-
phisms of categories

HoAlgK » HocoAlgK.

Thus p ˝ q is isomorphic to idA1 in HoAlgK. We replace this morphism by taking the universal
enveloping algebra. Thus there is a morphism r : U(A1) Ñ U(A1) which is isomorphic to idU(A1)

and p ˝ q in HoAlgK. Since U(A1) is bifibrant r lifts from a weak equivalence to a homotopy
equivalence by Whitehead’s theorem, Theorem 2.1.30. We get by Lemma 3.3.15 that r induces
the identity functor

r˚ » IdDU(A1) : DU(A1) Ñ D(A1).

Moreover, p ˝ q has to induce the identity as well,

(p ˝ q)˚ » IdA1 : DA1 Ñ D(A1).
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Appendix A

Monads

This appendix is a short exposition on the theory of monads and comonads. The results we use
may be found in Riehl [Rie16] or Mac Lane [Mac71].

A.1 Monads and Categories of Algebras

Definition A.1.1 (Monad). Let C be a category. We say that an endofunctor T : C Ñ C together
with

‚ a multiplication µ :M ˝M ñ M
‚ and a unit η : IdC ñ M

is a monad, if the following diagrams commute

M ˝M ˝M M ˝M

M ˝M M

M(µ)

µM µ

µ

M ˝ IdC M ˝M IdC ˝M

M

M(η)

µ

ηM

In other words, a monad is a monoid in the category of endofunctors, (T, µ, η) P (EndC, ˝, IdC).

Lemma A.1.2 (Monads from adjunctions, [Lemma 5.1.3. Rie14, p. 155]). Given an adjunction
F % G : C Ñ D and

‚ a unit η : IdC ñ GF
‚ and a counit ε : FG ñ IdD ,
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there is an associated monad (T, µ, η). Let T = GF , together with

‚ a multiplication given by the counit µ = G(εF ) : T ˝ T ñ T
‚ and the unit η : IdC ñ T ,

is a monad on C.

Given any monad (T : C Ñ C, µ, η), we say that an objectM P C is a T -algebra if there exists a
morphism m : T (M) Ñ M such that the following diagrams commute

T ˝ T (M) T (M)

T (M) M

T (m)

εM m

m

M T (M)

M

ηM

m

If M and N are two T -algebras, then we say that a morphism f : M Ñ N is a T -algebra
morphism if the following diagram commute

T (M) T (N)

M N

T (f)

m n

f

Definition A.1.3 (Eilenberg-Moore category). The Eilenberg-Moore category or the category of
algebras CT is the category having

‚ objects asM as T -algebras
‚ and morphisms f :M Ñ N as T -algebra morphisms.

There is a free functor from C to T -algebras

F T : C Ñ CT ,

M ÞÑ (T (M), µM ).

By forgetting the T -algebra structure, we obtain a forgetful functor

UT : CT Ñ C,
(M,m) ÞÑ M .

The next lemma justifies calling these functors free and forgetful.

Lemma A.1.4 (Adjunctions frommonads, [Lemma 5.2.8 Rie14, p. 162]). Given anymonad (T, µ, η) :
C Ñ C, then the pair of functors F T and UT defines an adjunction

F T % UT : C Ñ CT .
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Definition A.1.5 (Free T -algebra). (M,m) is a free T -algebra if there is an object N P C and
an isomorphism (M,m) » F T (N).

In the category of algebras CT , we may approximate every T -algebraM by free T -algebras. This
means that we may construct a canonical free resolution of any T -algebraM .

Proposition A.1.6 (Free resolutions, [Proposition 5.4.3 Rie14, p. 169]). Given any T -algebraM ,
then

((T ˝ T )(M), µTM ) (TM,µM ) (M,m)
Tm

µM

m

is a colimit diagram in CT .

It is useful to recognize when a category is a category of some algebra. Then every object is
generated by every free object, which may arise from a simpler category.

Definition A.1.7 (Monadicity). Suppose that there is an adjunction F $ G : C Ñ D and that
T = GF . We say that the adjunction, or G : D Ñ C, is monadic if there exists an equivalence of
categories K : D Ñ CT such that there are natural isomorphisms G » UT ˝K and F T » K ˝F .

D CT

C
G

K
»

UTF

FT

Many of the categories which we consider are monadic.

Example A.1.8 (Ab is monadic over Set, [Corollary 5.5.3 Rie14, p. 174]). Consider the adjoint pair
of functors Z % forget : Set Ñ Ab, where we define

Z : Set Ñ Ab,

M ÞÑ ZM .

The binary operation on the group is given by formal linear combinations. This adjoint pair is
monadic.

Example A.1.9 (ModR is monadic over ModK). The adjoint pair of functors bK R % forget :
ModK Ñ ModR is monadic.

Example A.1.10 (AlgK,+ is monadic over ModK). The adjoint pair T % forget : ModK Ñ AlgK,+,
where T is the tensor algebra, is monadic.

Definition A.1.11. Let F : C Ñ D be a functor. We say that a functor G : D Ñ E creates limits, if
the composite GF : C Ñ E has a limit E, then the limit cone λ : ∆E ñ GF lifts to a limit cone
pλ : ∆D ñ F such that G reflects the limit E to D.
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One very good property about categories of algebras is that their small limits are well-behaved.
These are created by limits as in C. We have the following result:

Theorem A.1.12 ([Theorem 5.6.5 Rie14, p. 181]). A monadic functor G : D Ñ C

‚ creates any limits which C has,
‚ and creates any colimits C has and which are preserved by the monad T and its square
T ˝ T .

A.2 Comonads and Categories of Coalgebras

In this section, we will dualize the definitions and results from the last section. One could think
of the dual themselves, but we do this for clarity.

Definition A.2.1 (Comonad). Let C be a category. We say that an endofunctor W : C Ñ C
together with

‚ a comultiplication ν :W ñ W ˝W
‚ and a counit ε :W ñ IdC

is a comonad, if the following diagrams commute

W ˝W ˝W W ˝W

W ˝W W

W (ν)

νW

ν

ν

W ˝ IdC W ˝W IdC ˝W

W

W (ε) εW

ν

Lemma A.2.2 (Comonads from adjunctions). Given an adjunction F % G : C Ñ D with

‚ unit η : IdC ñ GF
‚ and a counit ε : FG ñ IdD ,

there is an associated comonad (W,ν, ε). LetW = FG, together with

‚ a comulitplication given by the unit ν = F (ηG) :W ñ W ˝W
‚ and the counit ε :W ñ IdD

is a comonad on D.

Given any comonad (W : D Ñ D, ν, ε), we say that M is a W -coalgebra if there exists a mor-
phism w :M Ñ W (M) such that the following diagrams commute
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W ˝W (M) W (M)

W (M) M

W (w)

νM

w

w

M W (M)

M

εM

w

Given two W -coalgebras M and N we say that a morphism f : M Ñ N is a W -coalgebra
morphism if the following diagram commutes

W (M) W (N)

M N

W (f)

w

f

u

Definition A.2.3 (Category of coalgebras). The category of coalgebras CW is the category having

‚ objectsM asW -coalgebras
‚ and morphisms f :M Ñ N asW -coalgebra morphisms.

There is a cofree functor from D toW -coalgebras

FW : D Ñ DW ,

M ÞÑ (W (M), νM ).

By forgetting theW -coalgebra structure, we obtain a forgetful functor

UW : DW Ñ D,
(M,w) ÞÑ M .

Lemma A.2.4 (Adjunctions from comonads). Given any comonad (W,ν, ε) : D Ñ D, the the
pair of functors UW and FW defines an adjunction

UW % FW : DW Ñ D.

In the category of coalgebras DW , every object may be cogenerated from cofreeW -coalgebras.

Definition A.2.5 (Cofree W -coalgebras). (M,w) is a cofree W -coalgebra if there is an object
N P D and an isomorphism (M,w) » FW (N).

Proposition A.2.6 (Cofree resolutions). Given anyW -coalgebraM , then

(M,m) (W (M), νM ) (W ˝W (M), νW (M))
w

W (w)

νM
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is a limit diagram in DW .

Definition A.2.7 (Comonadicity). Suppose that there is an adjunction F % G : C Ñ D such
that W = FG. We say that the adjunction, or the F : C Ñ D, is comonadic if there exists an
equivalence of categories K : DW Ñ C such that there are natural isomorphisms F ˝ K » FW

and K ˝ UW » G.

As we would expect, we have the comonadic categories.

Example A.2.8 (coModC is comonadic over ModK). The adjoint pair of functors forget % bKC :
coModC Ñ ModK is comonadic.

Example A.2.9 (coAlgK,conil is comonadic over Mod
K). The adjoint pair of functors forget % T c :

coAlgK,conil Ñ ModK.

Theorem A.2.10. A comonadic functor F : C Ñ D

‚ creates any colimits which D has
‚ and creates and limits D has and which are preserved by the comonad W and its square
W ˝W .

A.3 Canonical Resolutions

As described by MacLane [Mac71, p. 180]: ”Monads and their duals, the comonads, play via ∆
a central role in homological algebra, ...”. We will here look at a method to construct resolutions
associated with comonads.

Let (W,ν, ε) be a comonad over an abelian category D, then this is a comonoid in the category
of endofunctors (EndD, ˝, IdD). By Proposition B.1.5, there is then a strong monoidal functor,
which we denote by W ˝?, W ˝? : ∆op

+ Ñ EndD. Using the standard representation of simplicial
objects, we see that the face and degeneracy maps are given as

IdD W W ˝2 W ˝3 ¨ ¨ ¨
ν

W (ν)

νW

IdD W W ˝2 W ˝3 ¨ ¨ ¨ε

W (ε)

εW

LetM be an object of D. EvaluatingW ˝? atM gives us a functorW ˝?(M) : ∆op
+ Ñ D. This may

be made into a cochain complex by Example 1.1.50,

¨ ¨ ¨ W ˝3(M) W ˝2(M) W (M) M 0 ¨ ¨ ¨ .
εM
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Definition A.3.1 (CanonicalW -resoultion). The cochain complex, as defined above, is the canon-
icalW -resolution atM .

This canonical resolution is more of a recipe to see how a comonad on an abelian category
induces a resolution.

Example A.3.2 (Free resolution). Let R be a K-algebra. Then there is an adjunction bK R %

forget : ModK Ñ ModR. The comonad bK R : ModR Ñ ModR induces free R-resolutions on
every right R-moduleM .

¨ ¨ ¨ M bK R
b3 M bK R

b2 M bK R M 0 ¨ ¨ ¨





Appendix B

Simplicial Objects

B.1 The Simplex Category

The simplex category is, in some sense, the categorification of the standard topological sim-
plices, ∆n. This category carries the necessary data in order to define concepts such as homol-
ogy or homotopy. This section will give a brief review of this category.

Definition B.1.1 (The simplex category). The simplex category ∆ consists of ordered sets [n] =
t0, ..., nu for any n P N. A morphism f P ∆([m], [n]) is a monotone function, i.e.

a ď b P [m] ùñ f(a) ď f(b) P [n].

Definition B.1.2 (The augmented simplex category). ∆+ is called the augmented simplex cat-
egory, where we add an initial object [´1] = H.

Definition B.1.3 (The reduced simplex category). ∆inj is called the reduced simplex category.
The morphisms consist only of the injective morphisms in ∆.

Inspired by the topological simplices, the simplex category has coface and codegeneracy mor-
phisms. The coface maps are the injective morphisms δi : [n] Ñ [n+1], while the codegeneracy
maps are the surjective morphisms σi : [n] Ñ [n´ 1].

δi(k) =

"

k, if kăi
k+1, otherwise σi(k) =

"

k, if kďi
k´1, otherwise

Proposition B.1.4 ([Lemma Mac71, p. 177]). Every morphism in∆ factors into coface and code-
generacy maps.

This result tells us that understanding how these morphisms work in tandem will be very impor-
tant in understanding the simplex category. Luckily, there are five identities that characterize
these maps. These are called cosimplical identities.
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1. δjδi = δiδj´1, if i ă j

2. σjδi = δiσj´1, if i ă j

3. σjδi = id, if i = j or i = j + 1

4. σjδi = δi´1σj , if i ą j + 1

5. σjσi = σiσj+1, if i ď j

If we want amore visual description of the simplex category, wemay think of them in this manner.
An inductive tower with an increasing amount of morphisms.

[ ´ 1] [0] [1] [2] ...
δi δi δi

[ ´ 1] [0] [1] [2] ...
σ0

σi σi

The augmented simplex category has a universal monoid. Let+ : ∆+ˆ∆+ Ñ ∆+ be the functor
acting on objects and morphisms as:

[m] + [n] = [m+ n+ 1]

(f + g)(k) =

"

f(k), if kďm
g(k)+m, otherwise

(∆+,+, [´1]) becomes a monoidal category. Unitality is satisfied as [´1] + [m] = [1 +m´ 1] =
[m] = [m] + [´1]. Associativity follows from the associativity of addition. Since addition acts
on morphisms by juxtaposition, we get that the maps id[0] : [0] Ñ [0], δ0 : [´1] Ñ [0] and
σ0 : [1] Ñ [0] allows us to express any morphism in ∆ by summing them.

Since the object [0] is terminal, it automatically becomes a monoid in (∆,+, [´1]). The unit is the
unique map δ0 : [´1] Ñ [0], and the multiplication is the uniqe map σ0 : [1] Ñ [0]. Associativity
and unitality are automatically satisfied by the uniqueness of any morphism f : [n] Ñ [0].

Proposition B.1.5 ([Proposition 1 Mac71, p. 175]). Let (C,b, Z) be a monoidal category. If
(C, η, µ) is a monoid in C, then there is a strong monoidal functor : ∆+ Ñ C, such that F [0] » C ,
Fδ´1 » η and Fσ0 » µ.

B.2 Simplicial Objects

To exert the properties of the simplex category on another category C, we look at functors from
∆ into C.
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Definition B.2.1 (Simplical object). A simplicial object in C is a functor S : ∆op Ñ C.

Such an object may be viewed as a collection of objects tSnunPN together with face maps di :
Sn Ñ Sn´1 and degeneracy maps si : Sn Ñ Sn+1. Additionally, these maps must satisfy the
simplicial identities, which are dual to the cosimplical identities.

Definition B.2.2 (Augmented simplical object). An augmented simplicial object is then a functor
S : ∆op

+ Ñ C.

The restricted functor S̄ : ∆op Ñ C is called the augmentation ideal of S.

Definition B.2.3 (Semi-simplicial object). A semi-simplicial object is a functor S : ∆inj Ñ C.

Observe that a semi-simplicial object may be considered as a collection of objects tSnu such
that we only have face maps satisfying the 1st simplicial identity.

Definition B.2.4 (cosimplical object). A cosimplicial object is a functor S : ∆ Ñ C.

Such an object may be regarded as a collection of objects together with coface and codegen-
eracy maps satisfying the cosimplicial identities.

Simplicial objects are studied across many different fields of mathematics.

Example B.2.5 (Simplicial sets). A simplicial set S is a collection of sets together with face and
degeneracy maps. This is a functor S : ∆op Ñ Set. The category of simplicial sets is usually
denoted as sSet or Set∆.

Example B.2.6 (The standard topological n-simplex). The topological n-simplex∆n is a topolog-
ical space. Abstracting away the n we get a functor∆ : ∆ Ñ Top. In this manner, the collection
of standard n-simplicies is a cosimplical object of Top.

Example B.2.7 (Rings). Any ring R is, by definition, a monoid in the category of abelian groups.
By the above proposition, this monoid is uniquely determined by a strong monoidal functor
R : ∆+ Ñ Ab. Thus any ring is a cosimplical object of Ab.





Appendix C

Spectral Sequences

Here we will summarize spectral sequences and the classical convergence theorem of filtered
spectral sequences. For a thorough account, look in Weibel [Wei94].

C.1 Filtrations

Let A be an abelian category. Given two objects A and B, we denote an inclusion B Ñ A by
B Ď A. This section is devoted to filtration terminology.

Definition C.1.1 (Filtration). A filtration on an object A is a possibly infinite collection of inclu-
sions

¨ ¨ ¨ Ď Ai Ď Ai+1 Ď Ai+2 Ď ¨ ¨ ¨ Ď A.

Definition C.1.2 (Bounded filtration). We say that a filtration on A is bounded below if there is
an integer s P Z such that

0 = As Ď As+1 Ď ¨ ¨ ¨Ai Ď ¨ ¨ ¨ Ď A.

We say that a filtration on A is bounded above if there is an integer n P Z such that

¨ ¨ ¨ Ď Ai Ď ¨ ¨ ¨ Ď At = A.

A filtration is bounded, or finite, if it is both bounded below and above, i.e., the filtration is finite;

0 = As Ď ¨ ¨ ¨ Ď Ai Ď ¨ ¨ ¨ Ď An = A.

Definition C.1.3 (Exhaustive filtrations). A filtration on A is said to be exhaustive if limÝÑ
i
Ai » A,
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¨ ¨ ¨ Ai Ai+1 ¨ ¨ ¨
lim
ÝÑ
i
Ai » A.

Definition C.1.4 (Hausdorff filtrations). A filtration on A is called Hausdorff if lim
ÐÝ

Ai » 0.

Every bounded below filtration is Hausdorff by definition.

Definition C.1.5 (Complete filtrations). Let A/Ai = lim
ÝÑ

(Ai Ñ A). A filtration on A is called

complete if limÐÝ
i
A/Ai » A,

A »
lim
ÐÝ
i
A/Ai ¨ ¨ ¨ A/Ai

A/Ai+1 ¨ ¨ ¨

We denote the completion of A by limÐÝ
i
A/Ai » pA, and we denote the completion of each subobject

by pAi =
lim
ÐÝ
jďi

Ai/Aj There is a filtration on pA given by

¨ ¨ ¨ Ď pAi Ď pAi+1 Ď ¨ ¨ ¨ Ď pA.

C.2 Spectral Sequence

For this section, we will let A be an abelian category. To be more precise, one should assume
that A is bicomplete, that arbitrary coproducts of epis are epi, and that arbitrary products of
monos are mono. Categories such as ModR for a ring R have these properties.

A spectral sequence is a method in which one may calculate the homology of chain complexes.
For instance, there is a spectral sequence associated with each filtered chain complex. The
spectral sequence will be defined in terms of pages.

Definition C.2.1 (Homology spectral sequence). A homology spectral sequence E starting at
page a is

‚ a collection of objects Er
p,q for any p, q P Z and r ě a,

‚ morhpisms drp,q : E
r
p,q Ñ Er

p´r,q+r´1 such that d
r ˝ dr = 0

‚ and isomorphisms between page r + 1 and the homology of page r,

Er+1
p,q » Kerdr

p,q/Imdr
p+r,q´r+1.

We refer to the collection of objectsEr
‚,‚ for the r’th page of the spectral sequenceE. A homology

spectral sequence starting at the second page may be illustrated as
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E2:

...
...

...
...

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

...
...

...
...

ù E3:

...
...

...
...

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ¨ ¨ ¨

...
...

...
...

where we go from the second page to the third page by taking homology. At page r, each line
along the form (´r, r ´ 1) defines a chain complex in Ch(A).

Definition C.2.2 (Cohomology spectral sequence). A cohomology spectral sequence E starting
at page a is

‚ a collection of objects Ep,q
r P A for any p, q P Z and r ě a,

‚ morphisms dp,qr : Ep,q
r Ñ Ep+r,q´r+1

r such that dr ˝ dr = 0
‚ and isomorphisms between page r + 1 and the homology of page r,

Ep,q
r+1 » Kerdp,q

r /Imdp´r,q+r´1
r

We divide a spectral sequence into diagonals. The objectEr
p,q is said to be of degree n if n = p+q.

Definition C.2.3 (Bounded spectral sequence). A homology spectral sequence E starting at
page a is said to be bounded if there are only finitely many non-zero terms of every degree n.

Given a bounded spectral sequence E, there is a page r0, such that for any r ě r0 p and q,
Er

p,q » Er+1
p,q . This stable, unchanging page will be denoted as E8 = Er .

Definition C.2.4 (Bounded convergence). A bounded homology spectral sequence is said to
converge to H˚ if, for each n, there is a finite filtration

0 = FsHn Ď ¨ ¨ ¨ Ď FiHn Ď ¨ ¨ ¨ Ď FtHn = Hn,

such that E8
p,q » FpHp+q/Fp´1Hp+q . We write this as

Ea
p,q ñ Hp+q .

Suppose that we have a bounded homology spectral sequence E starting at page a, such that
it converges Ea ñ H . To calculate each Hn, one would then have to solve extension problems.
For instance, there is a short exact sequence

0 Fs+1Hn Fs+2Hn E8
s+2,n´s´2 0.

In this manner, given some extra information, we could calculate the homology in terms of the
8-page.
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Definition C.2.5 (Collapse). We say that a homology spectral sequence collapse at page r ě 2
if there is at most one non-zero column or row in Er .

Whenever a spectral sequence collapse at page r, this is automatically the 8-page. If a spectral
sequence converges Ea ñ H , then Hn is the unique non-zero object of degree n in E8.

Definition C.2.6 (8-page). Let E be a homology spectral sequence starting at page a. Define
Zr
p,q = Kerdrp,q and B

r
p,q = Imdrp,q , then E

r+1
p,q » Zr

p,q/Br
p,q . We define the 8-page in terms

Z8
p,q =

lim
ÐÝ
aďr

Zr
p,q and

B8
p,q =

lim
ÝÑ
aďr

Br
p,q ,

such that

E8
p,q = Z8

p,q/B8
p,q .

Definition C.2.7 (Morphism of spectral sequences). A morphism of homology spectral se-
quences f : E Ñ F is a collection of morphisms f rp,q : E

r
p,q Ñ F r

p,q such that f
r ˝ drE = drF ˝ f r ,

and H˚f
r » f r+1.

Lemma C.2.8 (Mapping lemma, [Lemma 5.2.4 and Exercise 5.2.3 Wei94, p. 123]). Let f : E Ñ F
be a morphism of spectral sequences. If f r : Er Ñ F r is an isomorphism, then f r

1

: Er1

Ñ F r1

is an isomorphism for any r1 ě r, and f8 : E8 Ñ E8 is an isomorphism as well.

Proof. The first statement is immediate from the functoriality of taking homology, as isomor-
phisms are sent to isomorphisms.

Suppose instead that for any page r ě a, there is an isomorphism f r : Er Ñ F r . Restricting this
morphism to the kernels yields an isomorphism by the 5-lemma,

ZEr
p,q Er

p,q Er
p´r,q+r´1

ZF r
p,q F r

p,q F r
p´r,q+r´1.

Zfr
p,q »

drp,q

»

drp,q

Likewise, there is an isomorphism Bf rp,q : BEr
p,q Ñ BF r

p,q . In this manner, we obtain isomor-
phisms of diagrams

¨ ¨ ¨ ZEr ¨ ¨ ¨ ZEa

¨ ¨ ¨ ZF r ¨ ¨ ¨ ZF a

Zfr Zfa
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BEa ¨ ¨ ¨ BEr ¨ ¨ ¨

BF a ¨ ¨ ¨ BF r ¨ ¨ ¨

Bfa Bfr

Thus the limits ZE8 and ZF8 and the colimits BE8 and BF8 exhibit the same universal
property, respectively. By the 5-lemma, we obtain the isomorphism on the 8-page

BE8 ZE8 E8

BF8 ZF8 F8

Bf8» Zfr» f8»

Definition C.2.9 (Bounded below spectral sequences). A homology spectral sequence E start-
ing at page a is said to be bounded below if, for each degree n, there is an integer s such that
if p+ q = n, then Ea

p,q = 0 for any p ă s.

Definition C.2.10 (Regular spectral sequences). A homology spectral sequence E is said to be
regular if there is an r such that for any r1 ě r, we have that dr = 0. In other words, Z8 » Zr .

Definition C.2.11 (Weak convergence). A homology spectral sequence E weakly converges to
H˚ if each Hn has a filtration

¨ ¨ ¨ Ď FiHn Ď ¨ ¨ ¨ Ď Hn

such that there are isomorphisms E8
p,q » FpHp+q/Fp´1Hp+q .

A problem with weak convergence, which we did not have with bounded convergence, is that
the spectral sequence cannot detect the elements which may be found in either lim

ÐÝ
FiHn or

lim
ÝÑ

FiHn. This problem is amended if the filtration is exhaustive and Hausdorff; in this case, we
say that the spectral sequence approaches H˚.

Definition C.2.12 (Convergence). A homology spectral sequence E converges to H˚ if it ap-
proaches H˚, E is regular and every Hn is complete, Hn » pHn.

In this definition, we require regular because of practical reasons. One may observe that every
bounded below spectral sequence which approaches H˚ converges to H˚. Completeness is
assumed for the following theorem.

Theorem C.2.13 (Comparison Theorem, [Theorem 5.2.12 Wei94, p. 126]). Let E and E1 be ho-
mology spectral sequences converging toH˚ andH 1

˚, respectively. Suppose that there is a mor-
phism h : H˚ Ñ H 1

˚, which is compatible with a morphism of spectral sequences f : E Ñ E1. If
f r : Er Ñ F r is an isomorphism, then h is an isomorphism as well.
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Proof. There are short exact sequences and a morphism between them,

0 Fp´1Hn/FsHn
FpHn/FsHn E8

p,n´p 0

0 Fp´1H 1
n/FsH 1

n
FpH 1

n/FsH 1
n E18

p,n´p 0

»

by weak convergence. Since we assume f8 to be an isomorphism, we get the isomorphism on
the last component. If we fix s ě 0, then by doing induction on p ě s the 5-lemma tells us that
there are isomorphisms,

FpHn/FsHn » FpH
1n/FsH

1n.

Since we assume FpHn to be exhaustive, it follows that

Hn/FsHn » H 1
n/FsH

1
n.

Moreover, since FpHn is complete, we get that Hn » H 1n by taking the limit over s.

C.3 Spectral Sequence of a Filtration

Associated with a filtration F on a chain complex C , there is a homology spectral sequence
E starting at page 0. We define E0

p,q = FpCp+q/Fp´1Cp+q , where the differential is induced by
the associated graded. The 1-page is then the homology along each associated graded piece,
E1

p,q = H˚(E
0
p,˚).

One may observe that the spectra sequence arising from C is the same as the spectral sequence
arising from its completion pC .

We describe the spectral sequence in more detail. Let πp : FpC Ñ FpC/Fp´1C. We let

Ar
p = tc P FpC | d(c) P Fp´rCu

be the collection of cycles modulo Fp´rC . Then we define the complexes in E0

Zr
p,˚ = πp(A

r
p) and

Br+1
p´r,˚ = πp´r(d(A

r
p)).

Every page may then be described as Er
p = Zr

p/Br
p .

The important takeaway is the following theorem.

Theorem C.3.1 (Classical convergence theorem, [Theorem 5.5.1 Wei94, p. 135]). Let C be a
chain complex.
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‚ Suppose that the filtration on C is bounded. Then the spectral sequence E is bounded
and E1

p,q ñ Hp+q(C).
‚ Suppose that the filtration on C is bounded below and exhaustive. Then the spectral se-
quence E is bounded below and E1

p,q ñ Hp+q(C).

This convergence is also natural in the sense that given any morphism of chain complexes
f : C Ñ D. Then the morphism in homology H˚f : H˚C Ñ H˚D is compatible with the
morphism of spectral sequences E1f : EC1 Ñ ED1.





Appendix D

Symmetric Monoidal Categories

D.1 Monoidal Categories

Here we will give a brief summary of symmetric monoidal categories. More detailed accounts
may be found in Mac Lane [Mac71], Riehl [Rie14], or Kelly [Kel05a].

Definition D.1.1 (Monoidal category). We say that a category C is a monoidal category if it comes
equipped with

‚ a bifunctor

b : C ˆ C Ñ C,

‚ a natural isomorphism in three variables

αA,B,C : Ab (B b C) Ñ (AbB) b C ,

‚ a unit object Z P C
‚ and natural isomorphisms

λA : Z bA Ñ A,

ρA : Ab Z Ñ A.

Moreover, these maps should satisfy some coherence relations. The following diagrams should
commute,

163
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Ab (B b (C bD))

Ab ((B b C) bD) (AbB) b (C bD)

(Ab (B b C)) bD ((AbB) b C) bD

AbαB,C,D

αA,B,CbD

αA,BbC,D

αAbB,C,D

αA,B,CbD

Ab (Z bB) (Ab Z) bB

AbB

αA,Z,B

AbλB

ρAbB

The coherence diagrams allow us to think of the monoidal product b as an associative and unital
product. If the identities give α, λ, and ρ, we say that the monoidal category is strict.

Definition D.1.2 (Lax monoidal functors). Let (C,b, Z) and (D,b,W ) be monoidal categories.
A functor F : C Ñ D is monoidal if it comes equipped with

‚ a natural transformation

µA,B : F (A) b F (B) Ñ F (AbB)

‚ and a morphism of units

υ :W Ñ F (Z).

Furthermore, the following diagrams should commute.

F (A) b (F (B) b F (C)) (F (A) b F (B)) b F (C)

F (A) b (F (B b C)) F (AbB) b F (C)

F (Ab (B b C)) F ((AbB) b C)

αD
F (A),F (B),F (C)

F (A)bµB,C

µA,BbF (C)

µA,BbC

µAbB,C

F (αC
A,B,C)

F (A) bW F (A)

F (A) b F (Z) F (Ab Z)

ρD
F (A)

F (A)bυ

µA,Z

F (ρCA)

W b F (A) F (A)

F (Z) b F (A) F (Z bA)

λD
F (A)

υbF (A)

µZ,A

F (λC
A)

The monoidal functor is said to be strong monoidal if µ is a natural isomorphism and υ is an
isomorphism. If the morphisms µ and υ are given by identities, then we say that the functor is
strict monoidal.
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Definition D.1.3 (Monoidal natural transformation). Let F,G : C Ñ D be lax monoidal functors
between monoidal categories. We say that a natural transformation θ : F ñ G is a monoidal
natural transformation if the following diagrams commute

F (A) b F (B) F (AbB)

G(A) bG(B) G(AbB)

µA,BF

θAbθB θAbB

µG
A,B

F (Z)

W

G(Z)

θZ

υF

υG

Definition D.1.4 (Braided monoidal category). Let C be a monoidal category. We say that the
category is braided if it comes equipped with natural isomorphisms

βA,B : AbB Ñ B bA,

which has the following commutative diagrams for any A, B and C .

Ab Z Z bA

A

βA,Z

ρA

λA

(AbB) b C C b (AbB)

Ab (B b C) (C bA) bB

Ab (C bB) (Ab C) bB

α´1
A,B,C

βA,BbC

αC,A,B

AbβB,C

βC,AbB

αA,C,B

Ab (B b C) (B b C) bA

(AbB) b C B b (C bA)

(B bA) b C B b (Ab C)

αA,B,C

βA,BbC

α´1
B,C,A

βA,BbC

BbβC,A

α´1
B,A,C

Definition D.1.5 (Symmetric monoidal category). A braided monoidal category C is called sym-
metric if the braiding β is chosen so that it has its own inverses, i.e., the following diagram
commutes.

AbB AbB

B bA

βA,B βB,A

In the case of symmetric braiding, one only has to check that either one of the braiding hexagons
commutes, as the other follows from symmetry.
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Definition D.1.6 (Braided lax monoidal functor). We say that a monoidal functor F : C Ñ D
between braided categories is braided if it commutes with braiding in the sense of the following
commutative diagram.

F (A) b F (B) F (B) b F (A)

F (AbB) F (B bA)

µA,B

βD
F (A),F (B)

µB,A

F (βC
A,B)

Definition D.1.7 (Closed symmetricmonoidal category). A symmetricmonoidal category (C,b, Z)
is said to be closed if for any C P C, the functor bC : C Ñ C has a right adjoint [C, ] : C Ñ C.
The object [C,D] is usually called the internal hom of C .
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