
ISBN 978-82-326-5779-7 (printed ver.)
ISBN 978-82-326-6320-0 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:115

Jon Martin Fordal

Digitalization of the value chain

Improving value chain performance with
predictionD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2023:115
Jon M

artin Fordal

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g





Jon Martin Fordal

Digitalization of the value chain

Improving value chain performance with 
prediction

Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Mechanical and Industrial Engineering

© Jon Martin Fordal

ISBN 978-82-326-5779-7 (printed ver.)
ISBN 978-82-326-6320-0 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:115

Printed by NTNU Grafisk senter



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“We have a mantra in our team: well done is better than well said.” 

      - Karsten Warholm (athlete) and Leif Olav Alnes (coach)  





 

i 

 

Preface 

This PhD thesis is submitted for the Degree of Philosophiae Doctor at the Department 

of Mechanical and Industrial Engineering at the Faculty of Engineering at the 

Norwegian University of Science and Technology (NTNU). 

My interest in technology goes back as far as I can remember. This interest led me to a 

bachelor's degree in mechanical engineering with specialization in operation and 

maintenance. The bachelor’s thesis investigated standardization of maintenance and was 

written in cooperation with Equinor ASA (Statoil at that time). It gave me the 

opportunity to familiarize myself with the industry and how maintenance processes 

were operated. 

After an MSc in Industrial Engineering, and master’s thesis written in cooperation with 

Elkem ASA, I started working as a maintenance engineer for Elkem Thamshavn AS. I 

learned a lot from Elkem employees about the challenging task of running a smelting 

process and performing maintenance at the same time. I was humbled by the 

opportunity to follow and learn from mechanics and electricians. Their experience and 

knowledge of the machines and critical production equipment was impressive. 

Moreover, the Elkem Business System (EBS) and its Maintenance in Business (MIB) 

concept showed me how the process industry could operate based on the principles from 

the Toyota Production System (TPS). In terms of digitalization, I saw a potential in 

utilizing new technology to a greater extent. This led me to the research project Cyber 

Physical System Plant Perspective (CPS-Plant). The opportunity to contribute to the 

Norwegian approach for the digital manufacturing industry and collaborate with a 

strong consortium motivated me. 

Working on a PhD project during the Covid-19 pandemic has been an interesting 

journey. Overnight, working routines and lives had to change; communication and 

meetings that were once face-to-face were moved online. The duration of this PhD 

project was March 2018 – March 2022, meaning that nearly half of the PhD work was 

carried out under limitations brought by the Covid-19 pandemic. In the big picture, the 

consequences this pandemic has caused my PhD research are negligible compared to the 

much more critical consequences so many others have faced. According to the World 
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Health Organization, by the beginning of March 2022, more than six million deaths 

were due to Covid-19. I salute all healthcare workers for their heroic efforts.  
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Summary 

Industry has high expectations for the possibilities offered by increased use of digital 

data and digital technologies, often referred to as digitalization. Many have highlighted 

digitalization as a key element for succeeding in developing new green markets, 

solutions for handling emissions, and more sustainable manufacturing, as well as 

improving products to be in line with the circular economy and reducing waste through 

enhanced engineering and the application of new technology. Digitalization is also 

claimed to provide major competitive advantages, putting it high on the agenda for top 

manufacturing nations, companies, and academics. 

However, there is still a need for more research in a wide range of fields to reap the 

promised benefits. This PhD thesis investigates how the fields of maintenance, value 

chain, and digitalization relate to this. Success in maintenance becomes increasingly 

important with the introduction of new technology and more complex value chains. The 

thesis objectives are to provide a better understanding and knowledge of the connection 

between maintenance and the value chain, how development of technology, 

maintenance and maintenance management can improve the value chain, and how to 

implement an integrated maintenance and value chain approach. The thesis addresses 

the following research questions (RQs): 

• RQ 1: What is the connection between maintenance and the value chain? 

• RQ 2: How can the development of technology, maintenance and maintenance 

management improve industrialists’ value chain and level of performance? 

• RQ 3: How to implement an integrated maintenance and value chain approach 

in an industrial setting? 

The main contributions of this thesis can be summarized as follows: 

• New knowledge and concepts within digitalizing the value chain, with a focus 

on how this relates to the maintenance function. 

• Providing increased understanding of the connections between maintenance and 

the value chain, and how advancements in technology have increased the 

importance of acknowledging this in a contextual manner. 
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• Presentation of valuable insights into how Industry 4.0 technologies enable 

opportunities for improving existing maintenance practices and expanding the 

role of maintenance management into the value chain. 

• New knowledge on how fundamental maintenance methods can be used as a 

basis for implementing new technology and ways of working. 

• Presentation of new and existing indicators and their position in maintenance 

and value chain, and how the industrial development introduces a need for new 

indicators. 

• A framework for qualification criteria for Operator 4.0 and identification of 

relevant Industry 4.0 technologies, and a discussion on the role of operators, 

maintenance personnel and other relevant job categories in an Industry 4.0 

environment, and how this relates to the value chain perspective. 

Overall, this thesis should provide a better understanding and new knowledge of the 

relationship between maintenance and the value chain, and how digitalization can 

strengthen them and be complementary integrated to improve value chain performance. 

The thesis aspires to support those who either manage or study these areas, individually 

or in combination.  
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Summary in Norwegian 

Industrien har høye forventninger knyttet til muligheter introdusert ved økt bruk av 

digital data og digital teknologi, ofte omtalt som digitalisering. Mange har fremhevet 

digitalisering som et nøkkelelement for å lykkes med utvikling av nye grønne marked, 

løsninger for håndtering av utslipp, mer bærekraftig produksjon, forbedre produkter for 

å være i tråd med sirkulær økonomi, og redusere sløsing gjennom bedre ingeniørarbeid 

og anvendelse av ny teknologi. Det blir også hevdet at digitalisering vil gi store 

konkurransefortrinn, noe som har resultert i at ledende industriland, bedrifter, og 

forskere har plassert temaet høyt på sine agendaer. 

Derimot er det fortsatt behov for mer forskning innen flere områder for å høste de 

lovede konkurransefortrinnene. Denne doktorgradsavhandlingen undersøker hvordan 

områdene vedlikehold, verdikjede, og digitalisering forholder seg til dette. Å lykkes 

med vedlikehold blir stadig viktigere ved innføring av ny teknologi og mer komplekse 

verdikjeder. Målet med avhandlingen er å gi en bedre forståelse og kunnskap om 

sammenhengen mellom vedlikehold og verdikjede, hvordan utvikling av teknologi, 

vedlikehold, og vedlikeholdsstyring kan forbedre verdikjeden, og hvordan 

implementere en integrert vedlikeholds- og verdikjedetilnærming. Avhandlingen tar for 

seg følgende forskningsspørsmål: 

• Forskningsspørsmål 1: Hvilken sammenheng er det mellom vedlikehold og 

verdikjeden? 

• Forskningsspørsmål 2: Hvordan kan utvikling av teknologi, vedlikehold og 

vedlikeholdsstyring forbedre industrialister sine verdikjeder og ytelsesnivå? 

• Forskningsspørsmål 3: Hvordan implementere en integrert vedlikeholds- og 

verdikjedetilnærming i en industriell setting? 

Denne avhandlingen presenterer bidrag til både teori og praksis, som kan oppsummeres 

som følger: 

• Ny kunnskap og konsepter innen digitalisering av verdikjeden, med fokus på 

hvordan dette forholder seg til vedlikeholdsfunksjonen. 
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• Gitt økt forståelse for sammenhengen mellom vedlikehold og verdikjeden, og 

hvordan fremskritt innen teknologi har økt viktigheten av å anerkjenne dette på 

en kontekstuell måte. 

• Presentert verdifull innsikt i hvordan digitale teknologier assosiert med Industri 

4.0 gir muligheter for å forbedre eksisterende vedlikeholdspraksis og utvide 

rollen til vedlikeholdsstyring inn i verdikjeden. 

• Ny kunnskap om hvordan grunnleggende vedlikeholdsmetoder kan brukes som 

grunnlag for implementering av ny teknologi og arbeidsmåter. 

• Presentert nye og eksisterende indikatorer og deres rolle i vedlikehold og 

verdikjede, og hvordan den industrielle utviklingen introduserer behov for nye 

indikatorer. 

• Et rammeverk for kvalifikasjonskriterier for Operatør 4.0 og identifisering av 

relevante digitale teknologier assosiert med Industri 4.0, og en diskusjon om 

rollen til operatører, vedlikeholdspersonell og andre relevante stillingskategorier 

i et arbeidsmiljø assosiert med Industri 4.0, og hvordan dette forholder seg til 

verdikjedeperspektivet. 

Samlet sett bør denne avhandlingen gi en bedre forståelse og ny kunnskap om 

sammenhengen mellom vedlikehold og verdikjeden, og hvordan digitalisering kan 

styrke dem og integreres komplementært for å forbedre verdikjedens ytelse. 

Avhandlingen har som mål å støtte de som enten jobber med eller studerer disse 

områdende, individuelt eller i kombinasjon.  
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Abbreviations 

 

AI  Artificial intelligence 

AR  Augmented reality 

CMMS Computerized maintenance management system 

CPS  Cyber-physical systems 

EAM  Enterprise asset management 

ERP  Enterprise resource planning 

IIoT  Industrial Internet of Things 

IoS  Internet of Services 

IoT  Internet of Things 

ICT  Information and communication technologies 

IT  Information technology 

KPI  Key performance indicator 

MES  Manufacturing execution system 

OEE  Overall equipment effectiveness 

PDCA  Plan – Do – Check – Act 

PdM  Predictive maintenance 

RQ  Research question 

TPM  Total productive maintenance 

TPS  Toyota Production System 

VCM  Value chain management 

VCP  Value chain performance  
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Definitions 

 

Maintenance [1]: 

Combination of all technical, administrative and managerial actions during the life cycle 

of an item intended to retain it in, or restore it to, a state in which it can perform the 

required function. 

 

Required function [1]: 

Function, combination of functions, or a total combination of functions of an item 

which are considered necessary to fulfill a given requirement. 

 

Maintenance management [1]: 

All activities of the management that determine the maintenance requirements, 

objectives, strategies and responsibilities, and implementation of them by such means as 

maintenance planning, maintenance control, and the improvement of maintenance 

activities and economics. 

 

Availability [1]: 

Ability of an item to be in a state to perform as and when required, under given 

conditions, assuming that the necessary external resources are provided. 

 

Predictive maintenance [1]: 

Condition-based maintenance carried out following a forecast derived from repeated 

analysis or known characteristics and evaluation of the significant parameters of the 

degradation of the item. 
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Value chain [2]: 

A value chain is a set of activities that a firm operating in a specific industry performs in 

order to deliver a valuable product or service for the market. 

 

Digitalization [3]: 

The exploitation of digital opportunities.  
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Thesis Structure 

This PhD thesis has two main parts: 

• Part I – Main report: The first part provides a general background and 

introduction to the PhD project. The focus is on research objectives and 

questions, and limitations and scope for the research. Further, theoretical 

background on the research topic and a description of research methodology and 

the applied research design is also given. Finally, main results and discussions 

based on the articles and research findings are presented with concluding 

remarks and suggestions for further research. 

• Part II – Articles: The second part is a collection of articles that represents the 

contributions of the research performed throughout this PhD project. 
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1. Introduction 

This chapter provides an introduction of the PhD project, with a focus on research 

objectives and questions as well as limitations and scope of the research. A general 

background on the research topic and a presentation of the Norwegian research project 

the Cyber Physical System Plant Perspective (CPS-Plant), which the PhD project has 

been a part of, is also given. 

 

1.1 Background 

Industry and the world are changing at a rapid pace. The former is raising the bar when 

it comes to resource and asset utilization in markets with increasingly demanding 

customers, while at the same time trying to incorporate new technology to gain a 

competitive advantage and increase profits. The latter is facing climate change and is 

currently in a race to prevent global warming. In this race, the industry can provide 

major support and be a part of the solution by developing new green markets, solutions 

for handling emissions, and more sustainable manufacturing, as well as improving 

products to be in line with the circular economy and reducing waste through enhanced 

engineering and the application of new technology. Succeeding in this race requires 

advances in research in a wide range of different fields. 

Industry has high expectations for the possibilities offered by increased use of digital 

data and digital technologies, often referred to as digitalization. As a result, the concept 

Industry 4.0 has been highlighted, and is on the lips of many industrialists and 

researchers. One definition of Industry 4.0, also known as the Fourth Industrial 

Revolution, is [4]: “Industry 4.0 is the sum of all innovations derived and implemented 

in a value chain to address the trends of digitalization, autonomization, transparency, 

collaboration and the availability of real-time information of products and processes.” 

In Germany, they have developed a German standardization roadmap for Industrie 4.0. 

In their 2030 vision for Industry 4.0, Autonomy, Interoperability and Sustainability are 

selected as strategic areas of action. Within the area of sustainability, the following has 

been presented on how this will support climate protection [5]: “Industrie 4.0 makes it 

possible to tap additional potentials for resource efficiency. In combination with 
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constructive and process-related approaches, material cycles can be closed over the 

entire product life cycle. Industrie 4.0 is thus a significant enabler for the circular 

economy and environmental and climate protection in general.” Industry 4.0 also 

introduces new opportunities for companies’ maintenance function, and it is discussed 

how the field of maintenance, especially predictive maintenance (PdM), can contribute 

to reaping the promised benefits of Industry 4.0 [5, 6]. 

White paper no. 27 (2016-2017) “A greener, smarter and more innovative industry” 

from the Norwegian government was a milestone for industry in Norway. Here, the 

government's vision for an active industrial policy is presented [7]: “Norway will be a 

world leader in industry and technology.” Further, the following is stated on how to 

achieve this vision [7]: “Updated knowledge at all levels in enterprises is needed in 

order to achieve our visions. Increasing digitalisation and the development of new 

digital technologies affect how enterprises, logistics and value chains are organised, 

and how enterprises develop relationships with customers.” Finally, the focus on the 

need for new value chains and development towards more effective, more precise, and 

more automated production is discussed [7]: “In parallel, we are facing technology 

advancements in the area of digitalisation and other enabling technologies which over 

time will transform Norwegian industry as we know it. This is occurring at a rapid rate. 

New materials are being used, and processes are being changed, automated and 

digitalised. It is a matter of more effective, more precise and more automated 

production, as well as of new products, new value chains and new business models.” 

Summarized, and based on the above, there is a need for development and research in 

these areas, from the perspective of society, industrial companies, government agencies, 

and academia. 

The title of this PhD, “Digitalization of the value chain - improving value chain 

performance with prediction”, consists of several words requiring a definition. First, 

digitalization is defined as [3]: “The exploitation of digital opportunities.” Thus, the use 

of digital technologies to change business processes and provide new revenue and 

value-producing opportunities is in focus. Second, a definition of value chain is [2]: “A 

value chain is a set of activities that a firm operating in a specific industry performs in 

order to deliver a valuable product or service for the market.” Within value chains, 
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there are three types of integration. Horizontal value chain integration is from suppliers 

to business partners, meaning inter-industry value chains and supply chains. Vertical 

value chain integration covers from productivity efficiency to added value, and linkage 

of production processes (inside manufacturing boundaries). Finally, end-to-end value 

chain integration is integration throughout the full life-cycle process (known as Smart 

Products). Further, the goal for any value chain is [2]: “The overall goal is to deliver 

maximum value for the least possible total cost and create a competitive advantage.” 

Here, predictions based on value chain and maintenance data are assumed to provide 

significant competitive advantages and can reduce total cost [8, 9]. Prediction is defined 

as [10]: “A thing predicted; a forecast.” 

Based on the above-mentioned and possibilities introduced with emerging digital 

technologies, this PhD project brings a new view on the fields of maintenance and value 

chain, highlights their importance, and combines them to develop new frameworks, 

tools, and methodology to support process companies in increasing performance and 

resource utilization. The two fields are traditionally seen as independent, and there is a 

lack of knowledge on how maintenance can improve companies’ value chains. The field 

of maintenance has for a long time been seen as a cost center, but findings prove that 

maintenance is a profit-generating function [11, 12]. Further, maintenance is said to 

have a significant impact on capacity, quality, costs, environment, and safety [11], and 

the introduction of Smart Maintenance (digitalization) is assumed to increase this 

impact [5, 13]. In [5, 11, 12, 14], they also suggest further investigation of the 

relationship between maintenance and overall organizational performance to provide a 

more holistic view of maintenance performance benefits. The original value chain 

concept presented by Michael Porter does not include maintenance [2]. Nor is 

maintenance included in more recent value chain frameworks presented by [15, 16]. The 

need for research within this area is underpinned by [17], where they claim there is a 

lack of developed literature within value chain management. Research on maintenance 

and value chain has mainly been carried out independently, and research on how these 

two fields can be combined and utilized to strengthen each other seems to have just 

launched from the start line. 
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1.1.1 CPS-Plant 

This PhD project is linked to the research project CPS-Plant. The CPS-Plant consortium 

consists of three Norwegian industry partners, Norsk Hydro ASA, Benteler Automotive 

Raufoss AS and Hycast AS, while SINTEF Digital and NTNU (Trondheim and Gjøvik) 

are the academic partners. SINTEF Manufacturing AS was the project leader. The 

project duration for CPS-Plant was 01 March 2017 – 28 February 2021. CPS-Plant 

received funding by The Research Council of Norway. 

The overall goal for CPS-Plant was to improve and optimize production systems in 

Norwegian manufacturing and process industries targeting complex products and 

advanced materials by exploring the potential of digitalization. Industry 4.0 combines 

several major innovations in a wide spectrum of digital technologies necessary for 

transforming manufacturing and process industries. The methodology and knowledge 

foundation of the new digitalized manufacturing paradigm include the Internet of 

Things (IoT); Big Data technologies; cyber-physical systems (CPS) for manufacturing; 

advanced robotics; artificial intelligence; sophisticated sensors; cloud computing; zero-

defect manufacturing. This new paradigm is in focus worldwide. However, in a high-

cost country like Norway, it is essential to succeed in this realm for achieving improved 

competitiveness. Industries that lag in innovation tend to resort to outsourcing or lose 

their market share. Studies show that reduction of factor cost is the most common 

motive for manufacturing outsourcing. The observed increase in back-sourcing indicates 

effects of organizational learning in decision-making for international production. It is 

predicted that enterprises that neglect to address the above developments cannot remain 

competitive in the long term. Based on this, CPS-Plant aimed to develop a framework 

for the Norwegian approach for the digital manufacturing industry: A roadmap of new 

digital (Industry 4.0) technologies, and a demonstration and evaluation of new 

technologies for CPS where decision support through simulation capacities improves 

overall plant efficiency. Maintenance was an important element within the project, as 

improving the level of maintenance is linked to improvements in companies’ 

performance. Figure 1.1 shows the project structure for the CPS-Plant project and the 

different work packages (WP). The PhD project was related to WP 5 – Digitalization 

over the value chain. 
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Figure 1.1: CPS-Plant project structure [18]. 

Further, digitalization in manufacturing, or Industry 4.0, has become the international 

strategy for manufacturing. This paradigm is built on CPS standing on a platform of 

embedded systems technologies as well as a strong and vital interaction between actors 

within production systems that can handle the complexity. The CPS-Plant project had a 

focus on the plant perspective (vertical value chain integration), within the factory or 

shop floor where finance, planning, constructions, and recycling are necessary. There 

was also an extension into the horizontal value chain, through the value network and the 

product and production life cycle, for a supplier-customer information flow. As an 

example of a value chain, Figure 1.2 presents the value chain for one of the industry 

partners, Norsk Hydro ASA. 
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Figure 1.2: Hydro’s value chain related to its supply chain [19]. 

 

1.2 Research motivation 

It emerges clearly that there is a need for more research within maintenance and the 

value chain, and how digitalization can support these fields. Based on experience from 

the process industry, personal interest, and the research topic for CPS-Plant, the two 

points at issue, “What is the problem” and “Why is it important”, were used to support 

defining the research for this PhD project. Figure 1.3 presents an overview of the 

problem statement and important outcomes of solving the problems. 
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Figure 1.3: Overview of problem statement and important outcomes. 

The above-mentioned problems are further discussed in the three following subchapters. 

 

1.2.1 Maintenance – traditionally seen as a costly unwanted necessity 

A definition of maintenance is [1]: “combination of all technical and managerial 

actions during the life cycle of an item intended to retain it in, or restore it to, a state in 

which it can perform the required function.” The importance of maintenance is 

underpinned by Okoh et al., who state that a poor level of maintenance has caused 

several organizations significant losses in terms of production unavailability and 

damage to humans, the environment and physical assets [20]. Moreover, within the 

process industry, they claim that many accidents are connected to maintenance 

deficiencies in safety barriers [20]. Wilson [21] supports the above-mentioned, 

commenting that successfully performing maintenance is a comprehensive and 

resource-demanding challenging task for industrialists to handle. 

Industry 4.0 has been on everyone’s lips in recent years, and industrialists have been 

expecting substantial gains in productivity, significantly higher levels of automation, 

and drastic improvements in resource efficiency by putting Industry 4.0 on their agenda. 

The new technology and demands within the industry also require a significant increase 

in the level of maintenance [22], and, as a result, PdM has been highlighted. The work 

on PdM has contributed to changing the traditional view on maintenance, from being a 

costly unwanted necessity to seeing maintenance as a competitive advantage. PdM is 

defined as [1]: ”Condition-based maintenance carried out following a forecast derived 
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from repeated analysis or known characteristics and evaluation of the significant 

parameters of the degradation of the item.”  

PdM aims to maximize the life of equipment and reduce both planned and unplanned 

downtime, and, as a result, minimize maintenance costs. This is possible by analyzing 

data collected from components and equipment and using those analyses to precisely 

predict when a part will fail, enabling to perform maintenance actions at the right time. 

Although a lot of research and work has been done on PdM, succeeding with it and 

gaining the advantages has turned out to be challenging. In fact, the added value of 

stand-alone PdM machine projects is often lower than asserted, as companies have 

extensive experience with wear and tear on their machines. Thus, there is a need for an 

overall concept for using digitalization in an advantageous and holistic manner [23]. 

This underpins the importance of further investigating on how the field of maintenance 

can support industrialists in increasing their performance. 

 

1.2.2 Value chain – lack of maintenance perspective 

The concept of the value chain, as it is known today, was first introduced by Michael E. 

Porter in 1985 [2]. The value chain concept was originally aimed at identifying value 

activities, as these are the building blocks of competitive advantage, and focusing on 

these activities can be used to define improvement needs or opportunities for companies 

[2]. Porter identified two types of activities, namely, primary and support activities. 

First, the primary activities are inbound logistics, operations, outbound logistics, 

marketing and sales, and, finally, service. These are defined as activities within the main 

value creation process for a traditional and general manufacturer. Second, the support 

activities are procurement, technology development, human resource management, firm 

infrastructure. The role of these activities is to create a foundation for enabling and 

improving the function of primary activities [2]. 

Technological development, the competitive environment, and the way products are 

manufactured and sold, and their capabilities, have changed significantly since 1985. In 

a newer article from 2014, written by Michael E. Porter and James E. Heppelmann, they 

claim that [24]: “Smart, connected products offer exponentially expanding 
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opportunities for new functionality, far greater reliability, much higher product 

utilization, and capabilities that cut across and transcend traditional product 

boundaries. The changing nature of products is also disrupting value chains, forcing 

companies to rethink and retool nearly everything they do internally.” This underpins 

the rapid development of products and value chains, which is also connected to the field 

of maintenance. Smart and connected products enable real-time data being available for 

the manufacturer, supporting PdM and optimization of both the product and the value 

chain process [9, 24]. 

Even though a lot of research has been conducted within value chains [15, 17, 25-35], 

research on the link and integration to the field of maintenance seems lacking. However, 

within IoT and servitization there is research presenting how companies create value by 

improving operational reliability as well as through big data and business analytics, 

increased performance of equipment and optimized maintenance resulting in lower 

operating expense, and improved asset utilization [36]. Utilization of maintenance and 

value chain data in products, and, especially, in the value chain process for improving 

the maintenance function is an area to be further investigated. 

 

1.2.3 Integrating the fields of maintenance and the value chain 

Advancements in technology, increased competition, and customers demanding more 

bang for the buck require industrialists to continuously improve resource utilization and 

their products and services. The need for improvements goes for both the field of 

maintenance and the value chain, and, additionally, the integration between the two 

fields. Thus, there is a need to conduct research and work with the overall goal of 

further developing competence within the development of a digitalized and integrated 

value chain. Figure 1.4 presents three conceptual stages with coherent elements seen as 

important to success when moving towards a digitalized and integrated value chain. 
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Figure 1.4: Three conceptual stages towards a digitalized and integrated value chain. 

The three conceptual stages are divided into hindsight, insight, and foresight to indicate 

the way of working. Stage 1, “Connected”, targets creating a data foundation based on 

connected data gathered from raw materials, equipment, products, and process. This 

creates a foundation for decision support in stage 2, “Balanced”. Here, the data 

foundation is analyzed to provide an accurate and deep understanding of the current 

situation. Thus, setup of machines and process can be balanced based on need, 

anomalies, and managing variance to keep processes under control and stable. Finally, 

stage 3, “Predictive”, aims at predicting future need, setup and design of both value 

chain process and final products. Stage 3 should also enable PdM for critical equipment 

and utilize contextualized value chain and maintenance data with predictive capabilities 

for decision-making. Research has been carried out within elements related to the three 

stages presented above. However, there is still a need for more research and competence 

within such an extensive realm, especially regarding the maintenance perspective on 

horizontal and vertical system integration, which is underpinned by [37]. 

 

1.3 Research objectives and questions 

Motivated by the challenges, potential, and overview of the problem statement outlined 

above, the research in this PhD focused on investigating the fields of maintenance and 

value chains. There are several unanswered questions and unexplored areas within each 

of these fields, but this PhD research mainly investigates the areas related to how these 
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fields can be integrated and their connection, how advancements in technology and the 

realm of maintenance can improve industrialists’ value chain, and how to implement an 

integrated approach for the two fields in practice. The objectives of this PhD research 

are to provide a better understanding and knowledge of: 

• Understanding the connection between maintenance and the value chain. 

• How can development of technology, maintenance and maintenance 

management improve the value chain? 

• How to implement an integrated maintenance and value chain approach? 

The following defined research problem for this PhD is: 

How to integrate the fields of maintenance and value chain, in order to increase 

industrialists’ level of performance? 

Based on this, the following research questions (RQs) were defined to guide the 

research process: 

RQ 1: What is the connection between maintenance and the value chain? 

RQ 2: How can the development of technology, maintenance and maintenance 

management improve industrialists’ value chain and level of performance? 

RQ 3: How to implement an integrated maintenance and value chain approach in an 

industrial setting? 

In addition to the research objectives, research problem, and research questions, two 

research goals were defined. Figure 1.5 presents the research questions and their link to 

the research goals. 
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Figure 1.5: Research questions and research goals. 

 

1.4 Limitations and scope 

This PhD project covers three main topics. The first main topic is maintenance, which 

includes maintenance frameworks, maintenance management, and PdM. The second 

main topic is value chains, which includes value chain performance, value chain 

management, and value chain frameworks. The third main topic is digitalization, which 

includes Industry 4.0 and the development towards a digitalized and integrated value 

chain.  

This PhD is part of the Norwegian research project CPS-Plant. The goal of the CPS-

Plant project is to improve and optimize production systems in Norwegian 

manufacturing and process industries, targeting complex products and advanced 

materials by exploring the potential of digitalization. The findings of the research in this 

PhD will mainly be targeting applications within the manufacturing and process 

industry, applicable to both stand-alone machines and complete production lines. The 

findings are not limited to Norwegian industry. 
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The PhD project will be focused on the topics identified as part of the scope. In 

addition, as the first main topic, maintenance has different perspectives, generally said 

to be the maintenance optimization perspective (focusing on predicting remaining useful 

life (RUL) and optimizing maintenance intervals) and the organizational perspective 

(focusing on a holistic view of the maintenance function and value creation), this PhD 

will focus more on the organizational perspective. The research in this PhD is 

complementary rather than competing. 

When planning the PhD project, it was not expected that a global pandemic would 

spread midway into the project. The Covid-19 pandemic introduced some unplanned 

limitations. The rapid expansion of Covid-19 led to travel restrictions and social 

distancing, and many companies shut their gates to reduce risk. Both CPS-Plant and this 

PhD project have faced challenges due to these restrictions. Yet it is difficult to imagine 

how different the final result would have turned out compared to the original plan. 

Evaluation of research quality is further described in Chapter 3.3. 

 

1.5 Outline of thesis  

This thesis is structured in two parts: Part I constitutes the main report of the thesis and 

Part II is the collection of appended articles. Part I is based on the research that has been 

presented in the articles. It presents relevant theory, provides an overview of the 

research process and integrates the contributions of the independent articles in a 

coherent argument. 

Part I is organized as follows: 

Chapter 1 introduces the general background and the PhD project, followed by a 

presentation of CPS-Plant. Further, Chapter 1 focuses on research motivation, research 

objectives and questions, and limitations and scope for the research.  

Chapter 2 presents the theoretical background relevant to the research topic of 

maintenance, value chain, and digitalization. It includes relevant theory within 

maintenance management, predictive maintenance, value chain performance and 

indicators, Industry 4.0 and reference architectures from top manufacturing nations. 
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Chapter 3 provides a description of research methodology and the applied research 

design. Evaluation of research quality and ethical aspects of the research is also given.  

Chapter 4 presents the main results and the contribution from the appended articles is 

presented and discussed. Implications for practitioners are also given. 

Chapter 5 marks the end of the thesis, presents concluding remarks and proposes 

suggestions for further research. 

Figure 1.6 illustrates the thesis outline and links the chapters with the commonly used 

structure in scientific writing, namely, introduction, methods, results, and discussion 

(IMRaD). 

 

Figure 1.6: Outline of thesis according to the commonly used IMRaD structure.  

Part II includes the articles that were written to disseminate the results of this PhD 

project. It contains the following seven articles: 

1. Fordal J.M., Rødseth H., Schjølberg P. (2019) Initiating Industrie 4.0 by 

Implementing Sensor Management – Improving Operational Availability. In: Wang 

K., Wang Y., Strandhagen J., Yu T. (eds) Advanced Manufacturing and Automation 

VIII. IWAMA 2018. Lecture Notes in Electrical Engineering, vol. 484. Springer, 

Singapore. 
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2. Fordal J.M., Bernhardsen T.I., Rødseth H., Schjølberg P. (2020) Balanced

Maintenance Program with a Value Chain Perspective. In: Wang Y., Martinsen K.,

Yu T., Wang K. (eds) Advanced Manufacturing and Automation IX. IWAMA 2019.

Lecture Notes in Electrical Engineering, vol. 634. Springer, Singapore.

3. Fordal, J.M. (2019) Indicator for measuring performance of planned maintenance

stops – an enabler for continuous improvement. In: Beer M., Zio E. (eds)

Proceedings of the 29th European Safety and Reliability Conference (ESREL).

4. Fordal, J.M., Rødseth, H., Schjølberg, P., Santini, F. (2019) Enhancing value chain

performance with maintenance indicators – an overview of advancements. In: Jyoti

K. Sinha (ed), Proceedings of 4th International Conference on Maintenance

Engineering (IncoME-IV 2019) (pp.113-122). Manchester, UK: University of 

Manchester. 

5. Rødseth H., Fordal J.M., Schjølberg P. (2019) The Journey Towards World Class

Maintenance with Profit Loss Indicator. In: Wang K., Wang Y., Strandhagen J., Yu

T. (eds) Advanced Manufacturing and Automation VIII. IWAMA 2018. Lecture

Notes in Electrical Engineering, vol. 484. Springer, Singapore. 

6. Rødseth H., Eleftheriadis R., Lodgaard E., Fordal J.M. (2019) Operator 4.0 –

Emerging Job Categories in Manufacturing. In: Wang K., Wang Y., Strandhagen J., 

Yu T. (eds) Advanced Manufacturing and Automation VIII. IWAMA 2018. Lecture 

Notes in Electrical Engineering, vol. 484. Springer, Singapore.

7. Fordal J.M., Schjølberg P., Helgetun H., Skjermo T.Ø., Wang Y., Wang C. (2023) 

Application of sensor data based predictive maintenance and artificial neural 

networks to enable Industry 4.0. Advances in Manufacturing.

https://doi.org/10.1007/s40436-022-00433-x.
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2. Theoretical Background 

This chapter presents the relevant theoretical background for this research study. It will 

focus on the fields of maintenance, value chain, and digitalization. First, the 

development of maintenance, emphasizing PdM, and maintenance indicators are 

introduced. Maintenance management and maintenance management models are also 

presented. Second, the area of value chains, value chain performance and indicators, and 

continuous improvement in the value chain is discussed. Third, digitalization is 

described with a focus on Industry 4.0 and moving towards a digitalized and integrated 

value chain. Figure 2.1 positions the next chapters and the three fields in the context of 

maintenance and maintenance support during the life cycle, as presented in IEC 60300-

3-14:2004 [38]. In addition to scientific articles, books, reports, and national industrial 

strategic documents, the following standards have supported the foundation for this 

theoretical background: 

• EN 13306:2017 Maintenance – Maintenance terminology 

• EN 15341:2019 Maintenance – Maintenance Key Performance Indicators 

• EN 15628:2014 Maintenance - Qualification of maintenance personnel 

• EN 16646:2014 Maintenance - Maintenance within physical asset management 

• EN 17007:2017 Maintenance process and associated indicators 

• EN 50126-1:2017 Railway applications - The Specification and Demonstration 

of Reliability, Availability, Maintainability and Safety (RAMS) Part 1: Generic 

RAMS Process 

• IEC 62264-1:2013 Enterprise-control system integration Part 1 

• IEC 60300-3-14:2004 Dependability management - Part 3-14: Application guide 

- Maintenance and maintenance support 

• IEC PAS 63088:2017 Smart manufacturing – Reference architecture model 

industry 4.0 (RAMI 4.0) 

• ISO 13374 family - Condition monitoring and diagnostics of machines – Data 

processing, communication and presentation 

• ISO 13379-1:2012 Condition monitoring and diagnostics of machines — Data 

interpretation and diagnostics techniques — Part 1: General guidelines 
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• ISO 13381-1:2015 Condition monitoring and diagnostics of machines — 

Prognostics — Part 1: General guidelines 

• ISO 14224:2016 Petroleum, petrochemical and natural gas industries — 

Collection and exchange of reliability and maintenance data for equipment 

• ISO 17359:2018 Condition monitoring and diagnostics of machines — General 

guidelines 

• ISO 18095:2018 Condition monitoring and diagnostics of power transformers 

o ISO/TC 108 – several standards on condition monitoring 

• ISO 55000 family - Asset management 

• Maintenance baseline study - The Norwegian Petroleum Directorate May 1. 

1998 

• NORSOK Z-008:2017 Risk based maintenance and consequence classification 
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Figure 2.1: Positioning body of knowledge in this thesis within IEC 60300-3-14:2004 [38]. 
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2.1 Maintenance 

The field of maintenance is broad both in terms of industrial and social applicability, 

and research area. While there are many different definitions and viewpoints on this 

field, it is clear that the importance of succeeding in maintenance has increased with the 

introduction of digitalization and more complex production systems [5]. As an example, 

acatech – German Academy of Science and Engineering has estimated that machinery 

availability and productivity gains enabled by industrial maintenance translate into a 

saving of one trillion euros a year for German industry, and that maintenance can serve 

as a driver of innovation by analyzing large volumes of data relating to machines and 

systems introduced with Industry 4.0 technologies [39]. 

The importance of maintenance is also highlighted in the perspective of asset 

management, and in [40], part of the reason is presented as follows: “Ever-increasing 

competition caused by factors such as globalization puts more pressures on the 

effectiveness, efficiency and productivity of the production equipment in question and as 

a consequence forces companies to make early replacements or to increase the OEE, 

availability or dependability of the production system.” Increased environmental and 

safety requirements also demand similar improvements, underpinning maintenance as a 

key area for companies. Maintenance is further discussed in the context of asset 

management in [41-43], and a definition of physical asset management is given in the 

standard EN 16646:2014 Maintenance – Maintenance within physical asset 

management [44]: “the optimal life cycle management of physical assets to sustainably 

achieve the stated business objectives.” 

A common understanding and use of maintenance terminology, and an advantageous 

selection and implementation of maintenance types supports a successful maintenance 

function. Figure 2.2 gives an overview of some of the main maintenance types. 
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Figure 2.2: Development of maintenance types [37, 45-48]. 

The first way of performing maintenance is known as fire-fighting, or reactive 

maintenance, and was the most common way of performing maintenance in the first 

years of industrialization [49]. This is named corrective maintenance and is defined by 

EN 13306:2017 as follows [1]: “Maintenance carried out after fault recognition and 

intended to restore an item into a state in which it can perform a required function”. 

Thus, this is maintenance carried out when the ability of an item to be in a state to 

perform as and when required is already lost. On the other hand, preventive 

maintenance emerged as experience and understanding of the value in avoiding 

breakdowns was gained with the introduction of more advanced machinery and 

assembly lines [49]. Corrective maintenance can further be subdivided into immediate 

and deferred corrective maintenance [1]. Preventive maintenance is defined as [1]: 

“Maintenance carried out intended to assess and/or to mitigate degradation and reduce 

the probability of failure of an item.” Preventive maintenance can further be categorized 

into predetermined maintenance or condition-based maintenance, where the latter can 

be divided into PdM and non predictive condition based maintenance [1]. 
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PdM, also known as Maintenance 4.0 [49], has received a lot of attention with the 

introduction of Industry 4.0, and many industrialists have had this term on their agenda 

[6]. A definition of PdM is [1]: “Condition-based maintenance carried out following a 

forecast derived from repeated analysis or known characteristics and evaluation of the 

significant parameters of the degradation of the item.” It is claimed that reactive and 

periodic preventive maintenance strategies will increasingly be replaced by PdM 

strategies moving towards Industry 4.0 [5]. PdM is further presented in Chapter 2.1.2. 

Moreover, development in technology and research has resulted in introducing 

prescriptive maintenance, which adds a new dimension to PdM by including a 

prescribed recommendation, or a course of action, for the predicted failure [49]. As an 

example, PdM aims to answer [50]: “What will happen when?”, while prescriptive 

maintenance aims to answer [50]: “How can we control the occurrence of a specific 

event? (How should it happen?)”. Finally, self-maintenance has also been introduced 

and a definition is given in [51]: “Self-maintenance refers to the ability to carry out 

regular quality and safety checking by the machine itself, to detect anomaly, and to 

make immediate repairs when needed by using stocked spare parts to avoid potential 

catastrophic loss.” Thus, the aim for self-maintenance is to have self-maintaining 

machines which can monitor and diagnose themselves, and when any failure or 

degradation occurs, it can still maintain the required function for a while [51]. This 

maintenance type can be seen as part of the top level in the CPS 5C architecture 

presented in [46], which is further discussed in Chapter 2.3.1. Combined, PdM, 

prescriptive maintenance, and self-maintenance can be seen under the umbrella of Smart 

Maintenance, which can be defined as [52]: “an organizational design for managing 

maintenance of manufacturing plants in environments with pervasive digital 

technologies.” According to [52], Smart Maintenance is a multidimensional concept 

consisting of the dimensions data-driven decision-making, human capital resource, 

internal integration, and external integration. 

Summarized, there are many different definitions of the above-mentioned and a lack of 

common ground, especially regarding the Smart Maintenance umbrella. However, 

agreement on a set of functional capabilities for characterizing maintenance in smart 
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factories is starting to be established. As an example, five capabilities in this regard are 

presented as follows in [50]: 

• Prediction capability to monitor, analyze and anticipate hidden patterns and 

anomalies and accordingly predict critical and unexpected events (i.e., moment 

of failure) 

• Optimization capability to achieve an optimal point in maintenance planning 

through economically efficient use of human and physical resources as well as 

knowledge assets 

• Adaptation capability to conform to (unexpected) changes and reconfigurations 

in work-orders and production plans 

• Learnability to continuously learn from former experiences (i.e., failure events 

and former decision-making instances) 

• Capability of intelligent actions and self-direction to (completely) automatise 

maintenance workflow and decision-support systems (i.e., autonomous 

maintenance management) 

Germany has started several initiatives for guiding companies on their digital 

transformation process and towards smart factories, e.g., acatech Industrie 4.0 Maturity 

Index [53], Platform Industrie 4.0 [54], German Standardization Roadmap Industrie 4.0 

[5], and The Standardization Roadmap of Predictive Maintenance for Sino-German 

Industrie 4.0/Intelligent Manufacturing [6]. Six maturity stages for Industrie 4.0, with 

their objectives, and their position within digitalization, Industry 4.0, and predictive 

maintenance in the development towards Smart Maintenance are given in Figure 2.3 

[53, 55, 56]. 
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Figure 2.3: Positioning central stages, and their objectives, within digitalization, Industry 4.0, 

and predictive maintenance in the development towards Smart Maintenance, adapted from [53, 

55, 56]. 

 

2.1.1 Maintenance management 

A definition of maintenance management is [1]: “All activities of the management that 

determine the maintenance requirements, objectives, strategies and responsibilities, and 

implementation of them by such means as maintenance planning, maintenance control, 

and the improvement of maintenance activities and economics.” There are many 

models, definitions, work processes, and different perspectives on maintenance 

management. In Norway, the standard NORSOK Z-008:2017 Risk based maintenance 

and consequence classification [57] is used by several big companies in the process 

industry to help guide their activities within maintenance and maintenance management. 

Here, a maintenance management model is described, which is inspired by the 

maintenance baseline study performed by The Norwegian Petroleum Directorate [58]. 

The standard describes important steps within each of the elements in the model, e.g., 

how the process of performing consequence classification creates a foundation for the 

element named “Maintenance programme” and, further, how this can support the 

element “Planning”. Figure 2.4 presents this maintenance management model [57, 58]. 
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Figure 2.4: Maintenance management model, adapted from [57, 58]. 

Outside of Norway, a more established standard is the IEC 60300-3-14:2004 

Dependability management part 3-14: Application guide - Maintenance and 

maintenance support [38], which presents activities within maintenance management 

and the connection to other central maintenance processes. Figure 2.5 shows this 

linkage between maintenance management and other important maintenance processes 

[38]. 

 

Figure 2.5: Maintenance management linked to essential maintenance processes [38]. 

The standard EN 17007:2017 Maintenance process and associated indicators [59] 

presents an overview of the overall maintenance process. Additionally, to help in 

identifying other maintenance processes, the standard has classified three main process 

families [59]: First, “management process” includes determining the objectives and 

policy to be implemented to achieve them, beneficial use of company funds and 
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allocation of resources. This ensures coherence with the other two process families; it 

includes measuring and monitoring the process system and using the results to improve 

performance. Second, “realization process” concerns those who directly contribute to 

achieving expected results and is designed to ensure that customer needs are satisfied; it 

encompasses all activities related to the realization cycle of the product or service. 

Third, “support processes” ensure functioning of the other processes and provides them 

with necessary resources, including activities within human resources, financial 

resources, material resources and their maintenance, and information processing. Figure 

2.6 presents this overall maintenance process with the management process at the top of 

the figure, realization process in the center, and support processes at the bottom of the 

figure [59]. 

 

Figure 2.6: Overall maintenance process, adapted from [59]. 

One common characteristic for the models, processes, and definition of maintenance 

management presented above is the inclusion of continuous improvement. Within 

continuous improvement, a well-known concept is the Plan-Do-Check-Act (PDCA) 

cycle. Continuous improvement and the PDCA cycle are further described in Chapter 

2.2.2. 
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Moreover, succeeding with maintenance management is a comprehensive and 

challenging task [20, 21]. Maintenance departments must coordinate a wide variety of 

actions and activities. As an example, Figure 2.7 presents an overview of activities 

necessary for a maintenance department to handle and coordinate, while focusing on 

minimum total cost and being effective, safe, and legal [21]. 

 

Figure 2.7: Overview of important elements a maintenance department should manage, adapted 

from [21]. 

In addition, the complexity of performing maintenance increases significantly when 

there is a continuous production process being maintained [21]. Figure 2.8 illustrates 

three phases for a maintenance engineering task, taking plant availability into account. 
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Figure 2.8: Three main phases of a maintenance engineering task, adapted from [21]. 

Combined, Figure 2.7 and Figure 2.8 underpin the need for handling maintenance in a 

logical fashion. In large companies, several hundred maintenance tasks can occur each 

day. The challenges involved in avoiding chaos, transferring information, coordinating 

and controlling maintenance tasks have resulted in increased use of computer-based 

planning systems, known as computerized maintenance management system (CMMS) 

or enterprise asset management (EAM), to help organizations stay in control. Moreover, 

for a maintenance department to perform valuable maintenance analysis, handle the 

workload in an effective manner, and ensure smooth operation, utilizing these systems 

capabilities is essential [60]. 

In general, the field of maintenance management has increased its scope, supported by 

the impact of IT, and will need to be further integrated with operation management in 

the future [60]. Studies also show that the traditional practice of making maintenance 

and production decisions independently can increase cost and that it is beneficial to 

make these decisions in an integrated fashion for strengthening preventive activities, 
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quality improvements, and manufacturing capabilities [60-62]. The expanding scope of 

maintenance is also seen in recent standards, e.g., the standard EN 16646:2014 

Maintenance - Maintenance within physical asset management [44], further describes 

the connection between maintenance and operation. Figure 2.9 presents the relationship 

between the maintenance process and the operation process with an overview of inputs 

from the processes “operate assets” and “maintain assets” [44]. 

 

Figure 2.9: Relationship between the maintenance process and operation process, adapted from 

[44]. 

The Operate assets process provides the following information and input to the 

maintenance process [44]: 

• Operational modes and production plans – which are established for the plant 

over a given period. These involve operating profiles for each asset, specifying 

the number of units of use, e.g., hours, starts/stops, that can cause degradation. 

This information determines the required periods during which invasive 

preventive maintenance actions shall not be done. Further, this information shall 

be used in maintenance plans to calculate and schedule intervals for maintenance 

activities. 
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• Environmental conditions – these conditions depend on where and when the 

assets are being operated and can have an impact on the failure mechanisms of 

the assets.  

• Operator maintenance – involving operators in monitoring and maintenance is 

important for the maintenance process, as operators can perform first line 

maintenance on routine maintenance actions effectively and detect degradations 

and failures. 

• Operational modes in degraded states – shall be known in order to assess the 

criticality of the failures. The possibility of running at non-nominal operating 

conditions can reduce the consequences of a failure. Acceptable thresholds, such 

as vibration levels, and acceptable times to repair without needing shutdown are 

important information for the maintenance process.  

• External factors impacting operation process – these may be strikes, social 

conflicts, change or lack of raw materials, and changes in organizational 

patterns. 

• Emergency procedures – can require particular conditions for asset 

performance and maintenance tasks to test these procedures shall be done 

regularly. 

• Risk analysis – performed by the operation team provides valuable information 

which should be used in the maintenance process to identify failure modes of the 

assets and their criticality. 

On the other hand, the Maintain assets process provides information and input to the 

operation process [44]: 

• Operating constraints – given on items to avoid or to reduce the acceleration of 

failure mechanisms. In addition to constraints due to physical quantities, such as 

acceleration, velocity, or temperature gradients, specified by the manufacturer, 

maintenance personnel can add constraints based on observations of degradation 

levels higher than expected. 

• Time to restoration after a failure – which includes time for fault detection, 

logistic support, repair and restart of the asset, shall be known by operators. 
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Time for preventive maintenance impacting availability or the operating mode 

shall also be known. These times are evaluated by the operators to manage 

operations during down states or degraded states. 

• Preventive maintenance schedule – is communicated and discussed with the 

operating team. The dates for carrying out maintenance tasks should be fixed 

considering the expected operating mode. 

• Allocate maintenance tasks to operators – who are better positioned to detect 

symptoms of failure modes. These maintenance tasks may be monitoring or 

inspections and are identified through the maintenance plans, and operators are 

requested to perform them.  

• Safety procedures for maintenance execution – when a maintenance action 

causes a safety risk, a demand is sent by maintenance personnel with safety 

procedures needed to be performed by operating staff. 

The standard IEC 62264-1:2013 Enterprise-control system integration also supports the 

importance of maintenance within production, and highlights the role of maintenance 

information, preventive maintenance information, and predictive maintenance 

information in the context of production capability information, as shown in Figure 2.10 

[63]. 

 

Figure 2.10: Maintenance information within production capability information, from [63]. 
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2.1.2 Predictive maintenance 

The work on PdM has contributed to changing the traditional view on maintenance, 

from being a costly unwanted necessity to seeing maintenance as a competitive 

advantage. For industrial maintenance, PdM is widely discussed both by practitioners 

and academics. The two main objectives for industrial maintenance are to deliver a high 

availability of production equipment and low maintenance costs [64]. PdM is expected 

to have a significant impact on these objectives, but PdM is also showing its relevance 

to a wide range of fields, e.g., PdM for home appliances is presented in [65]. 

An overview of PdM system architectures, purposes and approaches is given in [66]. 

PdM aims to maximize the life of equipment and reduce both planned and unplanned 

downtime, and, as a result, minimize maintenance costs. This is possible by analyzing 

data collected from components and equipment, then using those analyses to predict 

when a part will fail, enabling performance of maintenance actions at the right time. In 

terms of Industry 4.0, PdM is claimed to be central for asset utilization, services and 

after-sales [55]. For asset utilization, PdM is expected to decrease total machine 

downtime by 30% to 50%, and extend operation lifetime by 20% to 40% [55]. PdM 

combined with remote maintenance for services and after-sales is assumed to reduce 

maintenance cost by 10% to 40% [55]. Thus, the expected outcomes are significant, but 

several studies show that PdM seems to fall short of its possibilities to deliver what it 

promises [23, 67]. In fact, the added value of stand-alone PdM machine projects is often 

lower than asserted, as companies have extensive experience with wear and tear on their 

machines. Thus, there is a need for an overall concept for using digitization in an 

advantageous and holistic manner [23]. This is also supported by a Sino-German 

working group on PdM for Industry 4.0 [6, 68], where they conclude that the increasing 

flexibility and heterogeneity of future manufacturing systems requires a systematic 

approach for PdM with a modular architecture. In more detail, the architecture should 

enable easy adding or enhancing of functional components for sensing, condition status 

assessment, diagnosis, and prediction [6, 68]. In addition to these functional 

components, there should be a flexible deployment of findings to different resources – 

e.g., data from a sensor can both be visualized in a dashboard at the equipment and used 
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in a cloud center for conducting analyses with other contextual data [6, 68]. Figure 2.11 

shows the overall structure for PdM, which is considered to be settled in [68], and 

further elaborated in [6]. 

 

Figure 2.11: Structure for predictive maintenance, adapted from [68]. 

The PdM structure presented in [68] consists of seven interconnected elements. First, 

“Sensing” focuses on sensor modality and strategy for sensor placement. The selection 

of sensor technology and sensor placement are essential tasks for creating the most 

representative picture of asset condition, i.e., asset health. Further, sensing techniques 

can be categorized into direct sensing (measuring actual quantities directly indicating 

asset condition, e.g., toolmaker’s microscope) and indirect sensing (measuring 

symptoms caused by degradation or a defect, e.g., change in vibration or temperature). 

Indirect sensing methods are often cheaper, less complex, and enable continuous 

measurement without interrupting operation [6]. Second, “Condition status assessment” 

is about assessing the collected data to determine asset health state, which creates a 

foundation for determining the current status on asset condition, i.e., an asset health 

indicator. The indicator can be visualized in the form of a traffic light, providing a fast 

and simple overview. Asset condition status on a whole system, or comprehensive 

equipment, can be given by aggregating the condition status of its functional 

components [6]. Third, “Fault diagnosis” (which can be divided into fault detection, 

fault location, fault isolation, and fault recovery) and “Fault prediction” (predicting the 

fault and RUL of an asset or a system) are both challenging tasks and consist of several 

possible methods based on analytical models, qualitative empirical knowledge, and 
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data-driven methods. These are coherent elements which provide a basis for the 

optimum “Repair measures”, element four, and time for executing the “Maintenance 

actions”, element five [6]. The last element, “Maintenance management” is where the 

information from the other elements is used for decision-making in terms of developing 

an economical maintenance schedule, cost-effective maintenance strategy, and resource 

allocation (people, spare parts, tools, and time). Further, a linkage between maintenance 

management and operations management should also be present, as data from 

operations can improve PdM capabilities, but PdM can also support rapid and data-

driven decision-making across operations [6]. 

Prediction of RUL, which is defined as [69]: “RUL is the useful life left on an asset at a 

particular time of operation”, serves as one major challenge within predictive 

maintenance. Uncertainty in data creates difficulties for RUL predictions. Challenges 

that must be overcome include missing data/outliers/noisy data, but also different 

sampling times and data lengths, e.g., huge amounts of data collected at different life 

cycles of a central asset, meaning data have different lengths for different batches at 

time-varying operational conditions [69, 70]. In addition to RUL, anomaly detection has 

received increased attention and delivered promising results, as focusing on an early 

warning of potential harmful events and failures has proven to provide value by 

reducing latencies from an event until a maintenance action takes effect [71, 72]. Figure 

2.12 illustrates latencies which can be reduced with anomaly detection [53]. 
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Figure 2.12: Anomaly detection reducing latencies between an event and action, adapted from 

[53]. 

Table 2.1 presents examples of measurements and parameters used for diagnostics in 

condition monitoring from the standard ISO 13379-1:2012 Condition monitoring and 

diagnostics of machines – Data interpretation and diagnostics techniques, which is also 

relevant for anomaly detection [73]. 

Table 2.1: Examples of measurements and parameters relevant for anomaly detection [73]. 
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2.2 Value chain 

The value chain concept was first introduced by Michael E. Porter in 1985, and can be 

defined as [2]: “A value chain is a set of activities that a firm operating in a specific 

industry performs in order to deliver a valuable product or service for the market.” The 

value chain concept was originally aimed at identifying value activities, as these are the 

building blocks of competitive advantage, and focusing on these activities can be used 

to define improvement needs or opportunities for companies [2]. Porter also introduced 

two other concepts linked to the value chain concept, namely, “five forces” and “generic 

strategy.” The five forces concept allows a firm to assess both the attractiveness of its 

industry and its competitive position within that industry, with the five forces being the 

threat of new entrants to the industry, the threat of substitute products, the power of 

buyers or customers, the power of suppliers, and, finally, the degree and nature of 

rivalry among companies in the industry [74]. The generic strategy concept is based on 

an analysis of the five forces, and can provide a generic competitive strategy for an 

organization with differentiation or cost leadership, capable of delivering superior 

performance through an appropriate configuration and coordination of its value chain 

activities [74]. Together, these three concepts can be regarded as the major analytical 

frameworks of the competitive positioning paradigm and are central elements within 

business strategy courses [74].  

Each value chain activity consists of two components, namely, a physical and an 

information processing component. The former includes the physical tasks required to 

fulfill the activity, and the latter consists of the steps required to capture, manipulate, 

and channel data necessary to perform the activity [2, 36]. The value chain includes all 

those activities that contribute to the final value of an organization’s product [74], and 

Porter identified two types of activities called primary and support activities. First, the 

primary activities are inbound logistics, operations, outbound logistics, marketing and 

sales, and, finally, service. These are defined as activities within the main value creation 

process for a traditional and general manufacturer, and directly contribute to the 

production of the good or services and its provision to the customer [74]. Second, the 

support activities are firm infrastructure, human resource management, technology 

development, and procurement. The role of these activities is to create a foundation for 
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enabling and improving the function of primary activities, and they do not directly add 

value themselves [2, 74]. Margin is the difference between total value and the collective 

cost of performing the value activities, and can be measured in several ways [2]. Figure 

2.13 shows the value chain concept, as introduced in [2]. 

 

Figure 2.13: The generic value chain, redrawn from [2]. 

A description of the five generic primary activities is given as follows [2]: 

• Inbound logistics – Activities associated with receiving, storing, and 

disseminating inputs to the product, such as material handling, warehousing, 

inventory control, vehicle scheduling, and returns to suppliers. 

• Operations – Activities associated with transforming inputs into the final 

product form, such as machining, packaging, assembly, equipment maintenance, 

testing, printing, and facility operations. 

• Outbound logistics – Activities associated with collecting, storing, and 

physically distributing the product to buyers, such as finished goods 

warehousing, material handling, delivery vehicle operation, order processing, 

and scheduling. 

• Marketing and sales – Activities associated with providing a means by which 

buyers can purchase the product and inducing them to do so, such as 
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advertising, promotion, sales force, quoting, channel selection, channel 

relations, and pricing. 

• Service - Activities associated with providing service to enhance or maintain the 

value of the product, such as installation, repair, training, parts supply, and 

product adjustment. 

On the other hand, the four generic support activities are described as follows [2]: 

• Firm infrastructure – consists of a number of activities including general 

management, planning, finance, accounting, legal, government affairs, and 

quality management. 

• Human resource management – consists of activities involved in the 

recruiting, hiring, training, development, and compensation of all types of 

personnel. 

• Technology development – every value activity embodies technology, be it 

know-how, procedures, or technology embodied in process equipment. 

Technology development consist of a range of activities that can be broadly 

grouped into efforts to improve the product and process. 

• Procurement – refers to the function of purchasing inputs used in the firm’s 

value chain, not to the purchased inputs themselves. Purchased inputs include 

raw materials, supplies, and other consumable items as well as assets such as 

machinery, laboratory equipment, office equipment, and buildings. 

As a result of the introduction of the value chain concept, the term value chain 

management (VCM) has also been introduced. VCM targets the improvement of overall 

performance of the entire value chain through an analysis of each link and process in a 

systematic manner to see how speed, certainty and cost-effectiveness can be enhanced 

[30]. A definition of VCM is provided by [15]: “Value chain management is a 

coordinating management process in which all of the activities (and their suppliers) 

involved in delivering customer value satisfaction are integrated such that customer 

satisfaction is maximised and the objectives of the stakeholders involved (the suppliers 

of activities, processes, facilitating services, etc.) are optimised such that no preferable 

solution may be found.” 
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With the introduction of Industry 4.0 and new technology, many industries have 

reshaped their value chain and focused on higher information content in both products 

and processes [2, 9]. Moreover, three key features are seen as essential to success in 

implementing Industry 4.0. These features are prerequisites expected to be the reality in 

future production networks and are defined as three types of value chain integration. 

Combined, they focus on how new technology can be utilized to improve the overall 

value chain, with expected benefits being higher sales thanks to a larger market, 

increased customization, improved resource efficiency and productivity, and reduction 

of internal operating costs. The three types of integration are [75-77]: 

• Vertical integration of hierarchical subsystems to create flexible and 

reconfigurable manufacturing systems. 

• Horizontal integration as a basis for developing inter-company value chains and 

networks. 

• Digital end-to-end engineering across the entire value chain of both the product 

and the associated manufacturing system. 

For vertical integration, the importance of integrating the various information 

subsystems at different levels in the company is underpinned by [76]. This is also 

discussed in [77], where it is claimed to be essential with: “vertical integration of 

actuator and sensor signals across different levels right up to the enterprise resource 

planning (ERP) level to enable a flexible and reconfigurable manufacturing system.” 

Figure 2.14 shows elements of a vertical value chain [78, 79]. 
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Figure 2.14: Elements of a vertical value chain in a company, adapted from [78, 79]. 

Further, horizontal integration should focus on inter-corporation collaboration where 

information and material can flow fluently, enabling new value networks and business 

models [76, 77]. Figure 2.15 shows an example of a horizontal value chain layout [78, 

79]. 

 

Figure 2.15: Example of a horizontal value chain layout, adapted from [78, 79]. 
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The end-to-end integration across the entire value chain will include cross-linking of 

stakeholders, products and equipment, from raw material acquisition to end of life [76]. 

The development towards a more digitalized and integrated value chain is further 

described in Chapter 2.3.2. 

 

2.2.1 Value chain performance and indicators 

There seems to be a lack of a clear and unified definition of value chain performance 

(VCP). However, the term value is defined in the standard EN 1325:2014 Value 

Management as follows [80]: “measure which expresses how well an organization, 

project, or product satisfies stakeholders’ needs in relation to the resources consumed.” 

Moreover, a definition of performance management is provided by [81]: “Performance 

management is a continuous process of identifying, measuring, and developing the 

performance of individuals and teams and aligning performance with strategic goals of 

the organization.” Within the definition of performance management, performance 

measurement is also covered, which is about measuring the performance itself. To 

support gathering and utilization of performance information, an effective performance 

management system is required for aiding improved decision-making [82, 83]. 

Performance management refers to several activities initiated by organizations to 

improve performance of individuals and units, with the overall goal of improving 

organizational effectiveness. These activities may be the setting of corporate, 

departmental, team, and individual targets, and the use of appraisal systems, bonus 

strategies, training schemes and individual career plans [82]. In [84], they claim that 

performance management is a dynamic and iterative process which aims to maintain or 

alter patterns in organizational activities. Along with their employees, managers use 

performance management to define goals, measure and review results and honor 

achievements or plan necessary actions, to improve performance, with the overall goal 

of enhancing the organization’s success. Further on, the same authors present three 

elements to describe the process of performance management [84]: 

• Performance planning and implementation - This step is about making 

decisions on metrics, targets, measurement intervals and review periods. 
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Procedures regarding data collection, metric calculation and how results will be 

presented and discussed are also areas of focus in this step. 

• Performance measurement - Measurements of performance, within the given 

metrics, at predetermined intervals. 

• Performance evaluation, corrective action and continuous improvement - In 

order to provide correct feedback, the performance must be evaluated and 

compared to its associated targets. Action plans must be compiled when 

deliverables are insufficient. Additionally, good results need to be recognized 

and celebrated. 

Based on the above-mentioned, VCP can be seen as a measure of competitiveness in the 

utilization of available resources and stakeholders’ satisfaction. Figure 2.16 shows the 

process for using key performance indicators (KPIs) and benchmarking for improving 

business performance, as presented in the standard ISO 14224:2016 Petroleum, 

petrochemical and natural gas industries – Collection and exchange of reliability and 

maintenance data for equipment [85]. 

 

Figure 2.16: Benchmarking and KPIs for improving business performance [85]. 

To quickly assess measurements, suitable indicators are often used. A number of 

standardized indicators acknowledged as KPIs are used by organizations to provide 

benchmarking, evaluate current performance, and visualize the road to improved 

performance. KPIs are defined as [86]: “A metric measuring how well the organization 

or an individual performs an operational, tactical or strategic activity that is critical for 

the current and future success of the organization.” Hence, organizations should select 

and link KPIs to their defined main objectives, to work towards the overall strategy and 

vision. The use of KPIs has become more important for the success of manufacturers, 

and many are seeking guidance to improve on performance management and to utilize 
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benchmarking in their industry as a benefit [87]. The importance of establishing 

indicators that describe the past, the present and the future status of the value chain is 

also underpinned by [25]. Figure 2.17 shows steps of improvement in the maintenance 

process based on KPIs, as presented in the standard EN 15341:2019 Maintenance – 

Maintenance Key Performance Indicators [88], linked to the concept of PDCA. 

 

Figure 2.17: Improvement steps for the maintenance process based on KPIs linked to PDCA, 

adapted from [88]. 

Indicators are critical for supporting and managing production improvements [89]. 

Overall equipment effectiveness (OEE) is one example of a well-known and accepted 

indicator in this context, and has been adopted by several managers and directors 

desiring to improve their production systems [90]. The OEE indicator provides a 

quantitative metric based on availability, performance and quality, in order to measure 

the performance effectiveness, and reliability [91], of individual equipment or entire 

processes [92]. Possessing an OEE of 85% is acknowledged as a World Class 

Maintenance (WCM) level [93]. WCM is a collection of best maintenance practices 
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implemented by various organizations with the overall goal of transforming themselves 

into a world class manufacturer [94]. Within the concept of WCM, a set of WCM 

indicators is proposed by [94]: 

• Preventive maintenance (PM) to corrective maintenance ratio. 

• Annual maintenance cost as a percent of replacement asset value. 

• Maintenance schedule compliance. 

• Equipment availability. 

• Percent of PM or predictive maintenance hours to total hours. 

• Store service level. 

• Reactive hours as a percent of total hours. 

Currently, these indicators, along with more established indicators such as failure rate, 

mean time to failure/repair, downtime, OEE, and maintenance cost, are mainly the 

indicators used by maintenance managers [94]. Further, key figures of industrial 

maintenance are classified in a hierarchical manner and presented as follows in [64]: 

1) External business-oriented objective variables – Business-oriented key 

figures such as return on investments and OEE. 

2) Internal objective variables for maintenance – Metrics for the effectiveness 

of maintenance operations, e.g., availability of machinery, and the sum of lost 

production and maintenance costs. 

3) Exogenous variables (external conditions) – Indicators helping management 

to interpret variables and to evaluate the state of affairs, e.g., utilization rate of 

production equipment, amount of production equipment, and integration level of 

production. 

4) Intermediate internal objective variables (follow-up variables) – 

Performance indicators providing information about development needs that 

may act as intermediate objective variables towards reaching the main objective, 

e.g., mean time to repair is an intermediate objective for the main objective of 

minimizing lost production. 
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5) Action variables of maintenance function – Tools that maintenance managers 

can use to help achieve the objectives, such as outsourcing and operator 

maintenance. 

6) Internal explanatory variables – Give additional information, e.g., about cost 

and organization structure, cost level and capital intensity of the maintenance 

function. 

In the years to come, with the development of Industry 4.0 and maintenance, there will 

also be a need for developing indicators responding to these advancements, e.g., the 

profit loss indicator (PLI) [14, 95]. Table 2.2 presents examples of relevant KPIs for 

maintenance management from EN 15341:2019 and EN 17007:2017 [59, 88], overall 

reliability and maintenance effectiveness from ISO 14224:2016 [85], and maintenance 

function and processes from EN16646:2014 [44]. 

Table 2.2: Examples of KPIs (from left to right) within maintenance management [59, 88], 

overall reliability and maintenance effectiveness [85], and maintenance function and processes 

[44]. 
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2.2.2 Continuous improvement in the value chain 

Several companies from fields such as aerospace, consumer products, industrial 

products, and metals processing have tried to imitate the Japanese multinational 

automotive manufacturer Toyota and implement elements of TPS into their own 

business system [96]. TPS (known as the precursor of Lean thinking, which was the 

term John Krafcik coined in 1988 [97], also referred to as Lean manufacturing) was 

invented by Sakichi Toyoda, the founder of Toyota Industries, his son Kiichiro Toyoda 

and the production engineer Taiichi Ohno. TPS is seen as the source of Toyota’s 

outstanding performance as a manufacturer and enabler for continuous improvement 

[96]. TPS can also be seen up against the value chain aspect, as a well-functioning and 

well-implemented business system can be an essential enabler for succeeding with 

continuous improvement throughout the value chain. 

Industrialists and researchers worldwide have investigated Japan’s management 

philosophy, especially TPS, which has received much attention for its competitive 

success. With the book The Key to Japan’s Competitive Success from 1986, the term 

Kaizen was introduced. Translated from Japanese, Kaizen means “continuous 

improvement” and the Japanese word can generally be defined as [98]: “the process of 

continuous improvement in any area of life, personal, science, home, or work.” In terms 

of business, Kaizen can be defined as [98]: “the process of gradual and incremental 

improvement in a pursuit of perfection of business activities.” Kaizen is known as “the 

Japanese way” and the philosophy behind the model is that “not a single day should go 

by without some kind of improvement being made somewhere in the organization” [98]. 

Kaizen serves as a cornerstone in TPS. 

There are several ways of classifying improvement, but breakthrough and continuous 

improvement are often used [99]. The former is also known as innovation-based 

improvement and is about performing radical changes in how the operation works. Such 

changes could be to implement a new and more efficient machine in a plant or change 

other types of essential assets within an organization. Generally, breakthrough 

improvements provide an immediate effect on operational procedures and performance. 

However, these changes are usually connected to high costs and significant investments. 

In addition, it is often necessary to shut down the current ongoing workings of the 
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operation and to make changes in the product/service or process technology [99]. The 

latter is defined by Bhuiyan and Baghel as follows [100]: “A culture of sustained 

improvement targeting the elimination of waste in all systems and processes of an 

organization. It involves everyone working together to make improvements without 

necessarily making huge capital investments.” Moreover, continuous improvement is 

about performing many small incremental improvement steps to enhance the level of 

performance. An example of this could be to change the way a product is mounted on a 

machine to reduce changeover time. Traditionally, these changes are not automatically 

going to result in new improvement steps, but this is what the continuous improvement 

philosophy is targeting: to ensure the organization is continually hunting for ways to 

improve, and, most importantly, perform necessary activities to address these 

possibilities for improvement [99]. A central part of continuous improvement is to 

repeatedly question the relevant activity or process. This cyclical questioning is often 

referred to as the concept of improvement cycles. The PDCA cycle, also known as the 

Deming cycle, and the Define-Measure-Analyze-Improve-Control (DMAIC) cycle are 

the two that are mostly used. The PDCA cycle consist of four steps [99, 101]: 

• Plan – This step is about investigating a present problem or method. Collection 

and analyses of data within the problem area are used to compile a plan for 

making improvement measures. 

• Do - Here, the plan compiled in the first step is put into action. It is often 

necessary to involve several micro PDCA cycles to handle upcoming problems 

which occur during implementation. 

• Check – The implemented measures are evaluated in this step. 

• Act – This stage of the cycle aims to decide whether the implementation has 

been successful or not. If successful, the actions are standardized and used to 

improve other areas. If not successful, valuable lessons are learned and utilized 

when starting the PDCA cycle again. 

Figure 2.18 shows the concept of the PDCA cycle exemplified with value chain 

activities [99, 101]. 
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Figure 2.18: The PDCA cycle linked to value chain activities, inspired by [99, 101]. 

Succeeding with continuous improvement in an organization requires great efforts and 

depends highly on the inclusion of its employees. The following statement from the 

book Toyota Culture - The Heart And Soul Of The Toyota Way, underpins the 

importance of including employees in TPS [102]: “The key to success is to have a 

production system that highlights problems and a human system that produces people 

who are able and willing to identify and solve them.” 

Value stream mapping is a popular Lean tool and mapping a process from raw materials 

to finished goods to discover non-value-adding activities is seen as an effective way to 

reduce waste and improve processes. Lean tools focus on the product value stream but 

pay little to no attention to one of the most critical value streams within an organization, 

namely, the people value stream. At Toyota, the product value stream and the people 

value stream are intertwined into a system. Contrary to Lean, TPS focuses more on 

employees and how to involve them in problem solving. An essential part of Toyota’s 

culture is just that, involving employees in problem solving. It is the continual focus on 

discovering new problems and involving employees to solve them which connects the 

two value streams [102]. As a process industry example in this regard, the evolution and 

success of Elkem ASA are often traced back to the strategic initiative in the 1990s that 

involved the development of EBS, which focuses a lot on continuous improvement and 
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empowering Elkem employees through TPS principles. This focus serves as a central 

element in Elkem, and can be seen in the EBS concept of the double integrated value 

chain, as shown in Figure 2.19 [103]. 

 

Figure 2.19: The double integrated value chain in Elkem, as presented in [103]. 

The idea of the double integrated value chain is that world-class quality products require 

world-class performers, and is summarized in [103] as follows: 

• Only people can identify and solve problems. 

• Continuous improvement and problem solving are the best way to develop 

people. 

• More problem solvers mean more problems solved. 

• Competent people implement strategies. 

• Learning organization – skilled and motivated workers. 

Moving towards a more digital value chain and new ways of working, a prerequisite for 

staying competitive and succeeding with continuous improvement in a digital 

environment is to enable new digital competence in the workforce and ensure the 

necessary digital tools are well-implemented [104, 105]. 

 

2.3 Digitalization 

There are several definitions and meanings regarding the term digitalization and its role 

within industry, especially Industry 4.0. In recent years, both industrialists and 
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researchers have increased their use of the terms digitization, digitalization, and digital 

transformation. However, there seems to be a lack of unified definition and common 

understanding of these terms. Some use them interchangeably, while others state there 

is a major difference [106]. In general, and as a result of new embedded usage of digital 

technology, companies succeeding in this area can potentially optimize resource 

utilization, reduce costs, increase employee satisfaction and improve work efficiency 

[3]. To give some clarifications on how this PhD project view is on the mentioned three 

concepts, the following definitions are provided: 

• Digitization [106]: “The conversion from an analog format into a digital 

format.” 

• Digitalization [3]: “The exploitation of digital opportunities.” 

• Digital transformation [106]: “Creating new business opportunities through 

the use of digital data and technology.” 

Figure 2.20 provides an overview of the relationship between digitization, digitalization, 

and digital transformation [106]. 

 

Figure 2.20: Digitization, digitalization, and digital transformation, adapted from [3, 106]. 

The promised benefits and opportunities connected to the above-mentioned terms are 

significant in a wide range of fields, and the importance of succeeding on the digital 

journey is acknowledged not only by big companies, but also by nations and unions that 

are putting this on their agenda. Examples include the European Union 7.5 billion EUR 

“Digital Europe Programme” [107] and the China initiative “Made in China 2025”, also 

called “China Manufacturing 2025”, which focuses on accelerating development of 

intelligent manufacturing equipment and products, and advanced manufacturing process 

intelligence [68, 108]. The USA has “Advanced Manufacturing” as its strategic plan, 
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aiming to develop and transition new manufacturing technologies, educate, train, and 

connect the manufacturing workforce, and expand the capabilities of the domestic 

manufacturing supply chain [109]. Common to these initiatives is the acceptance of the 

significant changes digitalization will have for society and industry, and the importance 

of adopting new technology for utilizing the imminent changes as opportunities to gain 

competitiveness. There is also a widely accepted understanding on the importance of 

managing data in the years to come, e.g., in White Paper no. 22 (2020-2021) “Data as a 

resource – Data-driven economy and innovation” the Norwegian Government has 

presented four national principles for sharing and using data, translated as follows 

[110]: 

1. Data shall be open when they can and shielded when required. 

2. Data should be available, retrievable, usable, and compatible with other data. 

3. Data shall be shared and used in a way that provides value for the business 

community, the public sector and society. 

4. Data shall be shared and used so that fundamental rights and freedoms are 

respected, and Norwegian societal values are preserved. 

In [110], they also present five main technological drivers, namely, Cloud services, 

Sensor technology and Internet of Things (IoT), Big Data, Artificial Intelligence (AI), 

and High Performance Computing. These technologies are also seen as central elements 

in Industry 4.0, and [111] have defined these, in addition to Analytics, as base 

technologies for Industry 4.0. 

 

2.3.1 Industry 4.0 

There are several definitions of Industrie 4.0/Industry 4.0, supplementing the one 

presented in Chapter 1.1. A more detailed definition of Industry 4.0, first presented in 

[112] and later used in [76], goes as follows: “Industry 4.0 is a collective term for 

technologies and concepts of value chain organization. Within the modular structured 

smart factories of Industry 4.0, cyber-physical systems (CPS) monitors physical 

processes, creates a virtual copy of the physical world and makes decentralized 

decisions. Over the internet of things (IoT), CPS communicates and cooperates with 
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each other and humans in real-time. Via the internet of services (IoS), both internal and 

cross-organizational services are offered and utilized by participants of the value 

chain.” Industrie 4.0 was first introduced at the Hannover Messe in 2011, a German 

industrial fair, as an illustration of the new trend towards the networking of traditional 

industries [108], and it is now seen as the Fourth Industrial Revolution. Industrie 4.0 

was included in the German “High-Tech Strategy 2020 Action Plan” and is defined as a 

necessity for German companies aiming to be world class in the years to come. Figure 

2.21 presents the evolution from the First Industrial Revolution to the Fourth Industrial 

Revolution with their main characteristics and timeline [113-116]. 

 

Figure 2.21: The evolution from the First Industrial Revolution to the Fourth Industrial 

Revolution, adapted from [113-116]. 

The First Industrial Revolution began at the end of the eighteenth century and marked 

the beginning of the transition from an economy based on agriculture and handcraft to 

industry. It was initiated by mechanical manufacturing systems utilizing water and 

steam power, and the inventions of the power loom, steam engine, and machine tools 

were central contributors [113]. The Second Industrial Revolution focused on 

implementing electricity into production processes and producing in high volumes, 
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enabled by assembly lines and interchangeable parts which reduced manufacturing cost 

and increased output [113, 114]. The introduction of automation and microelectronic 

technology to manufacturing is known as the start of the Third Industrial Revolution. 

Advancements within ICT resulted in widespread adoption of computer numerical 

control machines and industrial robots, which both significantly contributed to 

automating previously manually performed activities [113, 114]. Finally, the Fourth 

Industrial Revolution represents the age of CPS and utilization of Industry 4.0 

technologies [113, 114, 117]. Despite a lack of clarity in the terms and how to define 

Industry 4.0, it emerges clearly that a technology push and a company pull are fueling 

Industry 4.0 as a hot topic. The former push represents the availability, affordability, 

and increased awareness of possibilities with new technologies such as IIoT, AR, 3D 

printing, AI, wireless sensors, and big data analytics. The latter pull describes 

companies, especially those located in high-cost countries, never-ending quest to 

improve resource and asset utilization in a market increasingly driven by more 

demanding customers, while at the same time pursuing possibilities for competitive 

advantages [56, 105, 113, 114, 117]. As an example, in [32] they investigated the role 

and impact of Industry 4.0 and IoT on the business strategy of the value chain in 

Hungarian companies. 

Industry 4.0 technologies are developing at a rapid pace. Among researchers, there 

seems to be an agreement on nine main technological pillars of Industry 4.0, which are 

presented in [37]: 

• Industrial Internet of Things (IIoT) – Extends the concept of IoT to an 

industrial field with connected devices. The IIoT enables interconnections of 

physical objects through sensors using standard internet protocols. This is also 

seen as the basic technology of CPS, building a bridge between the physical and 

digital world by transferring data without human-to-human or human-to-

computer interaction. 

• Big Data and Analytics – Provides support for real-time decision-making, 

powerful computation capacity, and high bandwidth of data transmission. The 

basis is data collected through the CPS and customer-management system. Big 
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Data consists of four parts, known as the 4 V’s: Volume of data, Variety of data, 

Velocity of generation of new data and analysis, Value of data. 

• Simulation – Refers to digital tools supporting the design of smart 

manufacturing systems and validation of engineering design choices. These 

tools can also be used to predict the behavior of real manufacturing systems, 

supporting operational and maintenance decisions. 

• Cloud computing – Allows sharing of processing resources and other devices 

on demand, meaning users and companies can process data through a shared 

pool of configurable computing resources such as networks, servers, storage 

solutions, applications, and services. Cloud technology also enables sharing of 

information between systems, e.g., from a production line to the entire plant, and 

offsite analysis.  

• Horizontal and vertical system integration – Represents the connection 

between all actors in a highly dynamic manufacturing system. System 

integration is central in enabling the three key value chain integrations for 

Industry 4.0, as discussed in Chapter 2.2. 

• Augmented Reality (AR) – Extends the concept of Virtual Reality (VR) by 

superimposing digital data onto reality. This serves as a human-machine 

interaction technology and can provide operators with real-time information, 

such as maintenance data and technical drawings or instructions, through smart 

devices as wearable AR or head mounted devices. 

• Autonomous Robots – Capable of interacting with other robots and systems, 

can help operators (autonomous robots serving as cobots) to perform their tasks. 

• Additive manufacturing – Refers to converting a digital design to a physical 

object, e.g., a 3D computer-aided design drawing physically constructed with a 

3D printer. 

• Cybersecurity – Concerns technology providing protection of information and 

CPS from cyberattacks. Cybersecurity is essential for stable operation of 

systems and reliable manufacturing in an Industry 4.0 environment. 
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Figure 2.22 presents a possible positioning of these technologies in the context of 

maintenance management and its main processes as given in IEC 60300-3-14:2004 

Dependability management part 3-14, and discussed in Chapter 2.1.1 [37, 38]. 

 

Figure 2.22: Possible positioning of Industry 4.0 technologies in the context of maintenance 

management and its main processes, adapted from [37, 38]. 

It emerges clearly that Industry 4.0 technologies have the capability of radically 

changing the way industrialists operate and conduct maintenance [37]. As shown in 

Figure 2.22, IIoT as well as Big Data and Analytics are highly relevant to the field of 

maintenance. The former is especially concerning the use of sensors, including off-the-

shelf sensors, custom sensors, and virtual sensors, for collecting complex information, 

e.g., regarding machine status, for enabling advanced maintenance activities [118, 119]. 

The latter is expected to bring several advantages such as achieving near zero 

downtime, ensuring PdM, improving maintenance planning and decision-making [37]. 

In [120], they have discussed the future of maintenance and presented perspectives and 

several interesting provocative questions within maintenance, such as; “Is it cybernetic 

or is it human?”, “Real-time communication in maintenance?”, “Explicit modeling or 

data-driven pragmatics?”, “How to apply Virtual Reality and Augmented Reality?”, 

“Service robotics for maintenance?”. These are examples of questions providing input 
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to how implementation of new technologies will change maintenance practices and 

strategies going forward.  

Another central element in Industry 4.0 is CPS, as presented in the Industry 4.0 

definition introducing this chapter. This is supported by [121], where CPS and IIoT are 

believed to have a major role in the emerging Industry 4.0. Both IoT and CPS 

emphasize the interaction between the cyber and physical world, but CPS is referred in 

[122] as: “the system that can efficiently integrate both cyber and physical components 

through the integration of the modern computing and communication technologies, 

aiming to changing the method of interaction among the human, cyber and physical 

worlds. CPS emphasizes the interactions between cyber and physical components and 

has a goal of making the monitoring and control of physical components secure, 

efficient, and intelligent by leveraging cyber components.” The term “Cyber” means 

using modern sensing, computing, and communications technologies to effectively 

monitor and control physical components. “Physical” represents the physical 

components in the real world, and “System” reflects the complexity and diversity [122]. 

A set of capabilities of a CPS is presented in [123]: 

• Enhancement of physical entities with Cyber capabilities; 

• Networked at multiple and extreme scale; 

• Dynamic behavior (plug and unplug during operation); 

• High degrees of automation, the control loops are typically closed; 

• High degree of autonomy and collaboration to achieve a higher goal; and 

• Tight integration between devices, processes, machines, humans and other 

software applications. 

Moreover, the objective of CPS is presented as follows in [122]: “to measure the state 

information of physical devices and ensure the secure, efficient, and intelligent 

operation on physical devices. In CPS, the sensor/actuator layer, communication layer, 

and application (control) layer are present. The sensor/actuator layer is used to collect 

real-time data and execute commands, communication layer is used to deliver data to 

upper layer and commands to lower layer, and application (control) layer is used to 

analyze data and make decisions.” Based on these three layers, CPS can be seen as a 
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vertical architecture. On the other hand, IoT can be seen as a horizontal architecture, 

emphasizing a networking infrastructure to integrate communication layers of CPS 

applications for achieving interconnection. The main objective of IoT is presented in  

[122] as follows: “The main objective of IoT is to interconnect various networks so that 

the data collection, resource sharing, analysis, and management can be carried out 

across heterogeneous networks. By doing so, reliable, efficient, and secure services can 

be provided.” The vertical architecture perspective of CPS is supported by [46], where a 

5C architecture for CPS is presented, as shown in Figure 2.23. This 5C architecture is 

further elaborated in an Industry 4.0 environment in [121] and can also be seen in the 

context of the five-level functional hierarchy, addressing the interface between plant 

production scheduling and operation management and plant floor coordination, 

presented in the standard IEC 62264-1:2013 Enterprise-control system integration [63]. 

 

Figure 2.23: 5C architecture for CPS with description of each level, adapted from [46, 121]. 

The 5C architecture is discussed in [124], and claimed to be focused more on vertical 

value chain integration and less on horizontal integration. As a response, an 8C 

architecture is proposed, adding 3C facets to the established 5C architecture. The 3C 

facets are expected to increase both vertical and horizontal value chain integration, and 

are presented as follows [124]: 
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• Coalition – Focuses on the value chain integration and production chain 

integration among different parties involved in the production process. Alliance 

partners co-schedule production lines to yield specific products in a more 

flexible and timely manner. 

• Customer – Represents the customer’s role in the design and production 

process, and after-sales service of the product. This can be seen as part of the 

shift from mass production to mass customization. 

• Content – Describes all production information, such as raw materials, 

parameters on production process/environment/shipment, and especially after-

sales service details such as maintenance and parts replacement. This provides 

feedback to the manufacturing process, production design, customer service, 

and prediction of product market trends. 

For the field of maintenance, CPS shows promising results for enabling predictive and 

proactive maintenance, e.g., the MANTIS project focusing on a platform for proactive 

maintenance of industrial machines [120, 125], and the CPS-Plant project including an 

asset management strategy and maintenance perspective for Norwegian industries [126]. 

Summarized, Industry 4.0 technologies and CPS are seen as central in enabling the three 

key value chain integrations for Industry 4.0 [121], as discussed in Chapter 2.2. 

 

2.3.2 Digitalized and integrated value chain 

The age of CPS and Industry 4.0 technologies is radically changing the requirements for 

companies aiming to lead the way in their industry. Advancements in technology, tools, 

machines, and capabilities of smart products are examples of areas making it necessary 

to adapt and rethink the way of working [9, 24]. Being best in class requires a 

seamlessly integrated value chain that leverages these opportunities, put together with a 

workforce possessing a digital and continuous mindset of improvement. 

The accessibility of data and sensors has increased significantly, and the importance of 

competence on utilizing the generated data for gaining competitive advantages is 

underpinned by practitioners and academics [22]. However, a common challenge for 

industrialists is connected to managing big data and the capability to extract and utilize 
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relevant data from multiple data sources [23, 127]. For data and sensors to provide 

value, analyses and competence within data contextualization are crucial for enabling 

data-driven decision-making [77]. Contextual data focuses on unlocking organizational 

and technological data silos, and aims to integrate and make data from a range of 

sources available such as real-time streams of sensor data from equipment and process, 

historic behavioral data from historians, and information from third parties on external 

factors [128]. The journey towards information governance for smart manufacturing is 

discussed in [129], where three pillars of information governance are presented: 

• Data quality and information reliability – Data quality can be evaluated in 

terms of accuracy, completeness, consistency, and validity. Good principles of 

data governance reduce opportunities for errors in the first place and provide a 

basis for testing to find those introduced. 

• Semantic context for data analysis and decision-making – Providing 

metadata, data that provides information about other data, to capture the 

context and meaning of the data. E.g., in smart manufacturing, data from 

equipment and sensors at different points in time need to be combined with 

data from other sources to provide context. 

• System context to enable integration, validation, and verification – All 

data is created within a system context and its use outside of that context must 

be carefully controlled to avoid inappropriate use. E.g., performance data does 

not necessarily generalize beyond the specific machine on which it was 

generated, such as to the type of machine. 

A survey [128] with 160 decision makers in IT and operations roles in global industrial 

companies showed that over 80% of the firms recognized the importance of industrial 

data in driving their business decisions and innovation. On the other hand, 83% 

experienced challenges in utilizing the data for delivering insights across their 

organization. A key finding from the survey was that data contextualization will be 

crucial for succeeding with this challenge [128]. This is also supported by [77], where 

deep convergence and comprehensive connections are presented as two of six technical 

features for smart factory production systems. Further, these six features are presented 

and compared to a traditional production line in [77], as shown in Figure 2.24. 
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Figure 2.24: Technological features of a smart factory production system compared to a 

traditional production line, adapted from [77]. 

The smart factory is under the umbrella of smart manufacturing, which is the United 

States equivalent of Industrie 4.0 in Germany [130], and is defined as follows in [131]: 

“Smart factory is an intelligent production system which utilizes the integration of 

manufacturing and services. It integrates communication process, computing process, 

and control process to meet the industrial demands.” In [132], they define the smart 

factory as: “A manufacturing cyber-physical system that integrates physical objects 

such as machines, conveyers, and products with information systems such as 

manufacturing execution system and enterprise resource planning to implement flexible 

and agile production.” In terms of Industry 4.0, the smart factory is claimed to be 

enabling vertical integration, which in turn supports horizontal integration through value 

networks, and end-to-end digital integration of engineering [77, 132]. The role of the 

smart factory in Industry 4.0 is also investigated in [130], where they state that: “The 

fourth industrial revolution is characterized by the introduction of the Internet of things 

(IoT) and Internet of services concepts into manufacturing, which enables smart 

factories with vertically and horizontally integrated production systems.” Although the 

term smart factory lacks a unified definition, and there are different viewpoints on the 



 

61 

 

matter, the smart factory can be seen as a plant level conceptualization for the three 

types of value chain integration for Industry 4.0 presented in Chapter 2.2. 

To close the gap between a smart factory and traditional production line, and realize the 

potential of Industry 4.0 outlined above, significant work has been done in several 

nations and unions to provide guidance and direction for companies and researchers. A 

frequently emphasized factor is the importance of standardization and usage of 

standards, as this provides common ground for companies, service providers and a 

unified understanding between practitioners and academics. According to [133, 134], 

the top four countries by share of global manufacturing output (2019 numbers with 

output measured on a value-added basis in current US dollars) are listed as follows: 

1. China – 28.7% 

2. United States – 16.8% 

3. Japan – 7.5% 

4. Germany – 5.3% 

The following pages will present each nation’s main reference architecture relevant for 

the transition to a more digitalized and integrated value chain. In Germany, the 

Reference Architecture Model Industrie 4.0 (RAMI 4.0) is well established. RAMI 4.0 

was first developed as part of their initiatives on Industrie 4.0, serving as a uniform 

conceptual and methodological structure forming a basis for ensuring that experts in 

various disciplines master the complexity and speak the same language while showing 

standardization status and gaps. RAMI 4.0 is now published in IEC PAS 63088:2017 

Smart manufacturing – Reference architecture model industry 4.0 (RAMI 4.0) [135], 

and seems to be becoming established in Europe. The following description of RAMI 

4.0 is given in [5]: ”RAMI 4.0 serves as an orientation framework for the stakeholders 

and classification of applications in the industrial sector. RAMI 4.0 introduces all 

elements and IT components in a layer and life cycle model and divides complex 

processes into manageable packages - including data protection and IT security. The 

reference architecture can be regarded as a model pattern, i.e. an ideal-typical model 

for the class of architectures to be modelled. Industrie 4.0 does not specify “the” 

architecture per se with RAMI 4.0, but only the framework with minimum requirements. 
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This includes the definition of terms and a methodology with rules for describing the 

physical world for the purpose of mirroring (reflection) into the information world.” 

Thus, RAMI 4.0 focuses on value chains in the manufacturing industry and can be seen 

as a holistic representation of main aspects within the comprehensive realm of Industry 

4.0, through a three-dimensional model consisting of three main axes [5, 121, 136]. 

Figure 2.25 shows the RAMI 4.0 model, as presented in [135]. 

 

Figure 2.25: The German RAMI 4.0 model, as presented in [135]. 

The three main axes are described as follows in [135]: 

• The architecture axis “Layers” – Describes the architecture in terms of 

properties and system structures with their functions and function-specific data 

in the form of the following six layers (including examples of basic business 

idea questions): 

o Business layer – Is the commercial view, e.g., mapping business models 

and processes, monetary conditions, and ensuring integrity of functions 

in the value-added chain. What is the customer willing to pay for? 
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o Functional layer – Describes (logical) functions of an asset (technical 

functionality) and its role within the Industry 4.0 system. What should 

the product do? 

o Information layer – Concerns the data that is used, generated or modified 

by the technical functionality of the asset. What data does the product 

have to provide? 

o Communication layer – Describes Industry 4.0-compliant access to 

information and functions of a connected asset by other assets. Hence, 

describing which data is used, where it is used and when it is distributed. 

How to access the data? 

o Integration layer – Represents the transition from the physical world to 

the information world. An event in the real world generates an event in 

the integration layer. This is where the properties and process-related 

functions that make the asset usable for its intended purpose are stored, 

e.g., a human-machine interface. Which parts of the product are digitally 

available in the network? 

o Asset layer – The assets, including humans, that exist in the physical 

world. The material reality which is virtually represented in the layers 

above it. How to integrate the product with the process to move it in the 

real world? 

• The “Life Cycle Value Stream” axis – Describes an asset at a particular point 

in time during its lifetime. The asset is characterized by its state at a particular 

time at a particular location. 

• The “Hierarchy Levels” axis – Is based on the reference architecture model for 

a factory along the lines of IEC 62264-1 Enterprise-control system integration 

and IEC 61512-1 Batch control. The terms “Enterprise”, “Work centers”, 

“Station”, and “Control device” are from the two mentioned standards. 

“Connected world” (the relationship between an asset or combinations of 

assets), “Field device” (e.g., sensors and actuators), and “Product” (refers to the 

product being integrated to the Industry 4.0 network, meaning smart product 

capabilities such as feedback to design and operation and maintenance) are 

modified and supplemented to reflect the prerequisites for enabling Industry 4.0. 



 

64 

 

China has presented the China Intelligent Manufacturing System Architecture (IMSA) 

as part of the strategic initiative China Manufacturing 2025, also known as Made in 

China 2025. The IMSA model is aligned with RAMI 4.0, as Germany and China 

initiated a sub-working group on Intelligent Manufacturing/Industrie 4.0 of the Sino-

German Standardisation Cooperation Commission in 2015 [137]. As a result of this, the 

IMSA model emphasizes several of the same topics and viewpoints as RAMI 4.0. 

Figure 2.26 shows the IMSA model, as presented in [137]. 

 

Figure 2.26: The China IMSA model, as presented in [137]. 

The IMSA model consists of three main dimensions. First, “Lifecycle” refers to the 

connected value creation activities from initial product prototype research and 

development to product recycling and remanufacturing. The lifecycle-activities are 
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divided into design, manufacturing, logistics, sales, and service (including recycling), 

with capability for iterative optimization involving characteristics such as sustainable 

development in all activities [137]. The lifecycle reflects end-to-end value chain 

integration and can be compared to the Life Cycle Value Stream in RAMI 4.0 [137, 

138]. Second, the System Hierarchy dimension represents the hierarchy division of the 

organizational structure related to the enterprise’s manufacturing activities. These are 

described as follows [137, 138]: 

• Equipment – The hierarchy for how the enterprise utilizes sensors, instruments 

and meters, machines and devices to realize, perceive and control the physical 

process. 

• Control – Is about how the enterprise achieves information processing and 

monitors and controls the physical process, e.g., including programmable logic 

controllers (PLC) and supervisory control and data acquisition (SCADA) 

systems. 

• Workshop – Represents the production management of the workshop or 

factory, including the manufacturing execution system (MES). 

• Enterprise – Concerns structuring effective enterprise management and 

operation management, including enterprise resource planning (ERP), supply 

chain management (SCM), and customer relationship management (CRM). 

• Cooperation – Focuses on interconnection and sharing of internal and external 

information to enable coordinated research and development, precise logistics 

and intelligent service realized by different enterprises. 

The first four levels of the System Hierarchy dimension reflect vertical value chain 

integration, while the cooperation level can be seen as horizontal value chain integration 

[138]. Finally, the Intelligent Functions dimension includes five layers and represents 

the introduction of ICT to manufacturing activities and enabling intelligent functions. 

Capabilities such as self-sensing, self-learning, self-decision, self-execution, and self-

adaptation are examples of the intelligent functions, and they are described for each 

layer as follows [137, 138]: 
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• Resources Elements – Refers to resources and tools used in the manufacturing 

process to achieve the digital process. Seven kinds of resource element are 

strategy and organization, employee, equipment, energy, raw materials, 

knowledge and market. 

• System Integration – Focuses on integrating manufacturing resources. This can 

realize the integration of intelligent equipment in the intelligent production unit, 

intelligent production line, digital workshop, intelligent factory, and intelligent 

manufacturing system from small to large scale. Vertical integration within the 

enterprise refers to integration of intelligent equipment, instrument and meter, 

automatic control system, MES and ERP system. Horizontal integration refers to 

information integration of product design, manufacturing, logistics, and after-

sales service for the whole product life cycle. End-to-end integration between 

enterprises refers to the capacity for managing the supply of materials and spare 

parts automatically through the integration of information system. 

• Interconnection – Represents the connection of machines, equipment and 

control systems between enterprises through wired, wireless and other 

communication technology. 

• Information Fusion – Is about realizing collaborative information sharing 

through system integration and with new technology such as cloud computing 

and big data. Seven functions related to information fusion are the data fusion 

platform, data cleaning and data quality improvement, data safety, workshop-

level data fusion, factory-level data fusion, enterprise-level data fusion and 

integration of virtual reality and the physical world. 

• New Business Pattern – Refers to performing value chain integration between 

enterprises to create new industry conformations by the enterprise. Five 

important new business patterns are personal customization, networked 

collaborative, intelligent marketing, remote operation of equipment and 

products, and industrial cloud and big data service. Remote operation includes 

online monitoring, fault forecast and diagnosis, and health status assessment. 

Summarized, in terms of value chain integration, the key of IMSA is presented as [137]: 

“to achieve vertical integration through the enterprise equipment hierarchy, control 
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hierarchy, workshop hierarchy, factory hierarchy, cooperation hierarchy at different 

hierarchies, the horizontal integration across resources, interconnection and 

interworking, information fusion, system integration and new business pattern at 

different hierarchies, as well as the end-to-end integration of covering design, 

manufacture, logistics, sales and service.” 

In Japan, the Industrial Value Chain Reference Architecture Next (IVRA Next) was 

published in 2018 by the Industrial Value Chain Initiative (IVI), a forum to promote and 

define smart manufacturing with over 260 companies involved, such as Toyota, Sony, 

and Siemens [139]. Additionally, Japan has a cooperation with Germany on Industrie 

4.0, IIoT, and the Japanese initiatives Connected Industries and Society 5.0 [140]. The 

latter is defined as [141]: “A human-centered society that balances economic 

advancement with the resolution of social problems by a system that highly integrates 

cyberspace and physical space.” Society 5.0 represents the new society following the 

four earlier types of societies: the hunting society, the agrarian society, the industrial 

society, and the information society. It looks beyond Industry 4.0 by transferring the 

radical technological advancements and progress of ICT into building a super-smart 

society [142], including responsible economic development and solving of 

sustainability issues [141]. The IVRA Next includes aspects of Society 5.0 but 

emphasizes smart manufacturing, where the IVRA Next is defined as the structure that 

can realize smart manufacturing [139]. Figure 2.27 shows the smart manufacturing unit 

(SMU) of the IVRA Next, as presented in [139]. 
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Figure 2.27: The Japan IVRA Next SMU, as presented in [139]. 

The SMU is divided into three main views. First, the Asset view shows valuable assets 

to the manufacturing organization, which executes activities proactively and on-

demand. Personnel assets are defined as the personnel working at production sites, and 

they perform operations to produce a product in the physical world. Plant assets refer to 

equipment, machines and devices used for manufacturing, including tools, jigs, and 

subsidiary materials. Product assets are products created as an outcome of 

manufacturing and materials used during production. Materials that become a part of a 

product, such as components and assemblies, are also seen as product assets. Process 

assets describe manufacturing sites’ valuable knowledge of operation, such as 

production processes, methods, and know-how. This knowledge about processes is seen 

as an asset for manufacturing [139]. Second, the Management view concerns control of 

assets and activities in terms of quality, cost, delivery, and environment, which can be 

managed independently but examined together to determine whether the SMU is 

optimized. Quality measures how the characteristic of a product or service meets the 

needs of the customers. Quality improvements include product quality, quality of plants 

or equipment, and the value of methods and personnel. Cost is the sum of financial 

resources and goods spent, directly and indirectly, for an SMU to provide a product or 

service, including materials, services invested for operating equipment, energy 

consumption, and financial resources and goods indirectly spent to maintain and 
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manage plants. Delivery accuracy indicates whether the time required to deliver the 

product or service meets the needs of the SMU’s customers. Environment is an index 

measuring the degree to which an SMU’s activities harmonize with the environment 

without unnecessarily stressing the natural world, including maintaining a good 

relationship with the environment and neighboring regions, managing emissions, 

material flows, and optimizing energy consumption [139]. Third, the Activity view 

covers the activities performed by SMUs at manufacturing sites in the real world, which 

can be seen as a dynamic cycle continuously improving targeted issues proactively. 

Value created in the SMU is from the outcome of human and machine activity. All 

types of activities are composed of the cycle of four key activity classes, namely, 

“Plan”, “Do”, “Check”, and “Act”. This refers to the PDCA cycle, which is discussed in 

Chapter 2.2.2. Moreover, “Plan” is the activity of making a list of action items to be 

executed within a given time, which can include the goal of behaviors for completing a 

given mission or achieving the objectives of an SMU. “Do” refers to actions performed 

to achieve a certain goal by executing defined activities at the actual site in the physical 

world. These actions can create new assets or change the state of existing assets. 

“Check” comprises activities to evaluate whether the goal set in the Plan activities has 

been accomplished. These include analytically measuring changes in the physical world 

based on the executed planned actions and investigating causes if some goals have not 

been accomplished. “Act” refers to Kaizen, as presented in Chapter 2.2.2, and 

improving the function of an SMU by defining the ideal situation and tasks for fixing 

any problems in achieving the target. This includes changing the structure or system of 

the SMU itself to fill any gaps. An SMU with human intervention changes its 

mechanism autonomously [139]. Summarized, the Japan IVI have defined three 

required elements for all companies and factories attempting to achieve smart 

manufacturing [139]: 

• Value chain by connected factories – Each manufacturing site has the means 

required for connecting to the digital world and suppliers, increasing value to the 

customer. Manufacturers synchronize with the needs of their customers and 

markets, and provide value in a timely manner.  



 

70 

 

• Autonomous systems on loosely defined standard – The parts of individual 

companies that contribute to their competitiveness are kept closed, but common 

areas are boldly opened. To find common ground on areas to connect between 

companies, loosely defined standards that recognize individual company 

differences are adopted. Strict standards are avoided, and characteristics of 

individual companies are maintained. 

• Ecosystem on data-driven platforms – In addition to physical locations, 

physical goods, and realities that form the analog aspects of manufacturing, the 

ratio of cyber and digital worlds will increase. Platforms allowing various 

activities to be connected in the digital world must be mutually linked as a 

decentralized ecosystem (system of systems), and should grow while also 

involving stakeholders with diverse values. 

The ecosystem element is also seen on the other side of the Pacific Ocean, where the 

National Institute of Standards and Technology (NIST), a non-regulatory agency of the 

United States Department of Commerce, has presented a Smart Manufacturing 

Ecosystem. The NIST Smart Manufacturing Ecosystem was first presented in 2015 in 

[143], and further elaborated in 2016 [144]. Figure 2.28 shows the NIST Smart 

Manufacturing Ecosystem, as presented in [129]. 
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Figure 2.28: The NIST Smart Manufacturing Ecosystem, as presented in [129]. 

Many companies have invested in off-the-shelf MES and ERP systems to help utilize 

their data and to manage complexity and data in specific functional areas. However, 

with the transition to digitalization of manufacturing, value can be increased by using 

data more cross functionally and integrating system providers. Moreover, the need for 

more open information management is summarized in four motivating factors [129]: 

• Sharing data across system boundaries within an organization. 

• Interacting with multiple partners in a supply chain. 

• Archiving the digital version of the product. 

• Qualifying production processes. 

The NIST Smart Manufacturing Ecosystem serves as a standard landscape and 

ecosystem that identifies standards, such as those from ISO, IEC, American Society for 

Testing and Materials (ASTM), and American Society of Mechanical Engineers 

(ASME), which companies can consider in their process of integrating elements of a 
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smart manufacturing system. Thus, it provides a conceptual overview emphasizing 

manufacturing applications and provides a manufacturing planning perspective [129, 

143, 144]. As shown in Figure 2.28, the three dimensions production, product, and 

business are included and positioned in their own life cycles. The production life cycle 

refers to the collection of machines, equipment, and auxiliary systems organized to 

create goods and services from various resources. The main life-cycle phases for a 

production system are Design, Build, Commission, Operation and Maintenance (O&M), 

and Decommission & Recycling. E.g., for the O&M phase the NIST Smart 

Manufacturing Ecosystem has listed standards that define data processing, 

communication and presentation standards for condition monitoring and diagnostics of 

machines such as the ISO 13374 family [129, 143, 144]. The product life cycle 

represents the information flows and controls beginning at the early product design 

stage and continuing through the end-of-life of the product. It consists of the phases 

Design, Process Planning, Production Engineering, Manufacturing, Use & Service, and 

Recycling [129, 143, 144]. The business life cycle consists of the Source – Plan – Make 

– Deliver & Return cycle for managing the manufacturing supply chain, and 

information exchange between stakeholders. To enhance supply chain efficiency and 

manufacturing agility, standards are essential as they ensure smoothness for interactions 

between manufacturers, suppliers, customers, partners, and, sometimes, competitors, 

including manufacturing specific modeling standards and corresponding message 

protocols [129, 143, 144].  

Combined, the production, product, and business life cycles are integrated in the 

Manufacturing Pyramid (Mfg Pyramid). This is the core of the Smart Manufacturing 

Ecosystem, and several standards are critical for supporting integration from machine to 

plant to enterprise systems. Integration is vital for manufacturers to [143]: 1) access 

field and plant data for making quick decisions and optimizing production throughput 

and quality, 2) provide accurate measures for energy and material use, and 3) improve 

shop floor safety and to enhance manufacturing sustainability. The standard ISA95, 

which has been included in IEC 62264-1:2013 Enterprise-control system integration, 

positions the standards in their relevant hierarchy in the Mfg Pyramid. For a smart 

operation, autonomous and intelligent machine behaviors, including self-awareness, 
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reasoning and planning, and self-correction are important, but information resulting 

from these behaviors must flow up and down the Mfg Pyramid. Summarized, smart 

manufacturing enables integration across the three dimensions by using cloud-based 

service and data integration capabilities. Some examples are shown by the digital thread 

across life cycles in Figure 2.28, and are described as follows [129]: 

• Production data can be used for continuous product design improvement (CPI), 

e.g., features requiring an extraordinary amount of energy or time in fabrication 

should be modified to improve efficiency, reduce cost, and reduce the 

environmental impact. 

• Continuous Commissioning (CCX) engages ongoing monitoring, diagnosis, 

prognosis of production equipment and can be used to develop more 

sophisticated maintenance strategies and improve production system 

performance. 

It emerges clearly that the presented reference architectures from China, United States, 

Japan, and Germany are aligned when it comes to the need for standards and ensuring 

common ground for practitioners and academics, when moving towards a more 

digitalized and integrated value chain. This is also underpinned by the various 

collaboration initiatives between the nations, and in other organizations such as the 

Industry IoT Consortium [145] with their Industrial Internet Reference Architecture 

(IIRA) [121], and the Open Connectivity Foundation [146], the most influential IoT 

standard organization [147], which has provided input to the ISO/IEC 30118-1:2021 

Information technology – Open Connectivity Foundation (OCF) Specification [148] 

(including the other seventeen parts of ISO/IEC 30118). The conclusion in the report 

from NIST [144] is that standards are a fundamental component of the evolution to 

smart manufacturing, but existing manufacturing standards are insufficient to fully 

enable smart manufacturing. They also stress that standards development organizations, 

national manufacturing initiatives, and industrial consortiums are identifying 

requirements for new smart manufacturing standards [144]. The technical report 

ISO/IEC TR 30166:2020 Internet of things (IoT) – Industrial IoT can be seen as a 

response to this development [149]. 
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Several studies have investigated the above-mentioned reference architectures in an 

Industry 4.0 environment, e.g., [121] performed a literature review on RAMI 4.0, the 

5C architecture, and the IIRA for IIoT applications in Industry 4.0, and concluded that 

future works should explore a clearer and unified standardization solution capable of 

ensuring interoperability among different industrial systems. Further, future work 

should also include trending technologies such as wireless sensor networks, 5G, 

Blockchain, and Future Internet in Industry 4.0 reference architectures design [121]. 

Another study [150] presented the state of the art and future trends for Industry 4.0 

reference architecture including RAMI 4.0, IIRA, and IVRA Next, and concluded that 

reference architectures could become the backbone for the full realization of the fourth 

industrial revolution if their maturity and sustainability are increased, but currently 

[150]: “the existing reference architectures are not completely suitable yet to support 

Industry 4.0 processes, mainly due to their high level of abstraction and/or missing of 

detailed documentation, together with a lack of completely automated support, which 

makes it difficult to instantiate them to real-world Industry 4.0 projects.” Thus, there is 

an agreement on the need for further investigating the mentioned reference architectures 

from both a practitioner and an academic perspective. 

To an increasing extent, the transition to a more digitalized and integrated value chain 

calls for close cooperation between the partners along the value chain. For the field of 

maintenance, the need for close cooperation among different service providers also 

applies, because maintenance types such as preventive and corrective maintenance are 

increasingly being replaced by predictive ones in forthcoming Industry 4.0 

environments. A prerequisite for succeeding in this field is providing sufficient scope 

for machine manufacturers, operators, and industry service providers, to enable 

evaluation of maintenance-related data in the context of predictive maintenance [5, 13]. 

Figure 2.29 shows the interactions for maintenance in an Industry 4.0 environment, 

which is also discussed in [5, 13]. 
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Figure 2.29: Maintenance interactions in an Industry 4.0 environment, adapted from [5, 13].  
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3. Methodology 

A commonly used definition of research is presented as follows [151]:“Research is a 

scholarly, scientific, and systematic investigation to establish facts or principles, or to 

collect information on a subject to be presented in a detailed and accurate manner”. 

Moreover, having a sound research methodology is important, as it will enable others to 

scrutinize and evaluate the research. This chapter presents the research methodology 

and research design chosen for this PhD project. First, the scientific method and 

different research methods are presented. Second, a description of the research design 

applied in this PhD project is given. Finally, reflections on research quality, limitations, 

and ethical aspects are provided. 

 

3.1 Research methods 

This PhD project follows the main concepts of the scientific method, shown in Figure 

3.1. The first phase starts with the idea from the researcher, which is inspired from prior 

theoretical knowledge and observations from the researchers’ field. This idea is then 

defined and formulated into a problem/hypothesis. In the second phase, the experiment 

is designed with a suitable research methodology. The third phase is where the designed 

experiment is conducted, and the problem/hypothesis is tested. This includes collection, 

processing, and analysis of data. The result of the testing decides the next step for the 

researcher, as a rejected hypothesis means returning to the first phase and making 

modifications, while a successfully proven hypothesis is the way to the last phase. This 

is where theory is refined, to clarify the conclusion, highlight research contributions and 

make suggestions for further work [151]. 
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Figure 3.1: Research phases based on the scientific method, inspired by [151]. 

There are many ways of conducting research, and it is common to distinguish between 

two research strategies, namely, qualitative research and quantitative research [152]. 

Qualitative research can be defined as [152]: “Research approach that examines 

concepts in terms of their meaning and interpretation in specific contexts of inquiry.” 

On the other hand, quantitative research can be defined as follows [152]: “Research 

approach that examines concepts in terms of amount, intensity, or frequency.” These 

two research strategies both have their pros and cons, and it is common to use a mix of 

the strategies in research projects [152]. Further, the research approach can be divided 

into deduction and induction. The deduction approach entails theories that predict one 

or more outcomes, which are tested through experiments, i.e., rationalism. On the other 

hand, the induction approach involves making observations that lead to the generation 

of new theory and conclusions, i.e., empiricism [152]. In [153], they also present 

abduction, also called retroduction, as an approach. Here, instead of moving from theory 

to data (deduction) or data to theory (induction), the abductive approach combines the 

two and goes back and forth. Different combinations of the approaches can be used 

within the same piece of research and this is often advantageous, as no approach is 

better than the others, but some may be more suitable in different areas. The selection 



 

79 

 

should thus be based on research emphasis, research philosophy, and the nature of the 

research topic [153]. An overview of the approaches is given in Table 3.1 [153]. 

Table 3.1: Approaches to theory development, adapted from [153]. 

 

Another common way of positioning the type of research is case study or case research. 

This type is often recommended when the planned research is of an exploratory nature, 

and when investigating contemporary events while being unable to manipulate 

behavioral events [154]. A definition of a case study is presented in [154]: “The essence 

of a case study, the central tendency among all types of case study, is that it tries to 

illuminate a decision or set of decisions: why they were taken, how they were 

implemented, and with what result.” This definition introduces different types of case 

studies, which are also discussed in [152], where they present the following three main 

types of case research: 

• Case research as theory generation – the main driving force is induction. 

Generating theory using empirical analysis.  

• Case research as theory testing – the main driving force is theoretical deduction 

but is not exclusively limited to it. Propositions are derived from theory. 

• Case research as theory elaboration – Similar to theory testing but strives to 

elaborate instead of testing the logic.   
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Defining and positioning a research project in terms of the research method and type of 

research can sometimes be challenging. The variety of definitions, classifications and 

methodologies within this realm is comprehensive, and deciding to lock on an absolute 

research method can also hinder the research. In general, all research projects start with 

a research basis, a knowledge interest, and research questions which together lead to 

research results. As a guidance tool within this matter, a case research decision tree, 

focusing on the type of theory emphasis, is shown in Figure 3.2 [152]. 



 

81 

 

 

Figure 3.2: Case research decision tree, adapted from [152]. 
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3.2 Research design 

For this PhD project, the main research design is presented in Figure 3.3. The research 

design is inspired by the scientific method described in Chapter 3.1. Step 1 in the figure 

is to perform a literature review, and, additionally, through the CPS-Plant project and 

other industrial projects, meet the industry to understand industrial challenges and 

possibilities. The author’s work experience from the process industry will also support 

Step 1. Combined, this forms the research basis and knowledge interest. The 

development of theoretical assumptions to Step 2 is not a straightforward logic path, but 

also consists of creative intuition by the author. Further, Step 2 will consist of concepts, 

frameworks, and tools relevant to the problem and research questions presented in 

Chapter 1.3. Step 3 is to perform conceptual testing and industrial testing. The testing 

will mainly be driven by deduction, based on derivation from the theoretical 

assumptions in Step 2. In the last step, Step 4, the theory and conclusion are refined 

towards new knowledge, and a scientific contribution within the scope of this PhD, as 

described in Chapter 1.4, is given. 

 

Figure 3.3: Research design for this PhD project. 

In terms of the case research decision tree presented in Figure 3.2, theory-testing and 

theory-elaborating emphasis will be the focus for this PhD. Moreover, there will be 

some variations in research methodology in the different articles included in this PhD. 

In general, the research is based on a qualitative approach, but not exclusively limited to 

it, and utilizes the collective forces, sharing of insights, and interaction between 

academia and industry throughout the CPS-Plant project, focusing on doing 

collaborative problem solving while having a research interest in mind. Finally, and of 
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high relevance for research projects conducted during the Covid-19 pandemic, in terms 

of defining a research method it is also claimed that [155]: “researchers cannot 

definitively state the unit of analysis at the outset of the research; it must come into 

focus as the research progresses.” 

 

3.3 Evaluation of research quality 

Being a PhD candidate is in many ways like an expedition in unknown land. There is a 

high degree of uncertainty in what to expect, a wide range of challenges that are 

necessary to overcome, and a test of patience and persistence, but a great sense of 

accomplishment and character-building learning outcomes when the finish line gets 

closer. With this metaphor in mind, the time as a PhD candidate has provided a lot of 

knowledge on the process of conducting research through PhD courses, discussions 

with supervisors and colleagues, feedback on articles, and reading books and reports, to 

mention some examples. The research design shown in Figure 3.3 has guided the 

research for this PhD, but as time went on, there was sometimes a need to take a step 

back and readjust. The research process itself thus involved several iterative loops. As 

the finish line approaches, looking back on the path and evaluating how things could be 

done differently and better is a natural part of the journey. This PhD is no exception to 

this, and reflections on research quality are provided below. 

Research quality lacks a unified definition, and the available scientific literature on the 

topic is scarce [156]. As a contribution within this realm, a concept hierarchy of 

research quality has been developed by [156], as shown in Figure 3.4. 
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Figure 3.4: Research quality, adapted from [156]. 

The description of research quality includes four main elements, namely, Credible, 

Contributory, Communicable, and Conforming, which are further connected to other 

concepts for a more detailed evaluation of research quality [156]. First, Credible is 

defined as [156]: “Research that is coherent, consistent, rigorous and transparent.” As 

an example, research in a university is often very transparent and open, while research 

in an industrial company may be more closed, meaning the importance of this particular 

concept may differ based on the researcher’s perspective. Second, Contributory is 

defined as [156]: “Research that is original, relevant and generalizable.” Here, the 

focus is on the importance of originality in the research, relevancy for the target group, 

and that the new knowledge is practically or theoretically useful. Third, Communicable 

is defined as [156]: “Research that is consumable, accessible and searchable.” This 

means that the research needs to be understandable, easily accessible, and well-

structured for the target group. Finally, Conforming is defined as [156]: “Research that 

is regulatory aligned, ethical and sustainable.” Hence, a high degree of research quality 

also depends on alignment with relevant regulations, ethical standards, and sustainable 

development aspects. 
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The research questions and problem addressed in this PhD project have been developed 

under the framework of the research project CPS-Plant, and industrial partners in the 

consortium and supervisors have both inspired and supported their development. To the 

best of our knowledge, the research questions and problem, as well as the results, are in 

line with the four main elements of research quality presented above. In terms of 

credible, the PhD has followed the scientific method and a research design which is in 

relation to the context and questions at hand, providing a link between existing and new 

knowledge. Transparency of the research and sharing of results has also been a focus 

area throughout this PhD, and publishing articles, participation in conferences, and 

seminars with the CPS-Plant project has provided valuable input. When it comes to 

being contributory, the research is original as it is positioned in an area between 

maintenance and the value chain, where previous research has mainly focused on one of 

these two fields. By adding digitalization and integration between these fields, the 

research is relevant to industrialists and researchers investigating Industry 4.0, and the 

knowledge is also generalizable to contexts other than the CPS-Plant project. For the 

communicable part, the research has focused on being structured and understandable, 

and results have been made available by publishing articles in searchable forums. 

Moving over to conforming, the research is under the umbrella of the CPS-Plant project, 

meaning that reporting of the research conducted is a requirement and includes 

alignment with Norwegian regulations. The CPS-Plant project also embrace 

sustainability, as this is part of the strategy for the industrial partners in the consortium. 

Ethical aspects are of high importance when conducting research, and these are 

discussed further in Chapter 3.4. 

 

3.4 Ethical aspects of the research 

The research in this PhD has been conducted in accordance with the NTNU code of 

ethics [157], and requirements for ethical standards in research given by The Research 

Council of Norway [158], as this PhD has been within the framework of CPS-Plant. 

Supervisors and expertise available in this framework have provided valuable guidance 

and helped in assuring the scientific quality of the research conducted in this PhD.  
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Ethical aspects are of great importance when conducting research. For this PhD project, 

the following ethical aspects have been considered: environmental aspects, ethical 

issues on digitalization in the industry, potential conflict of interest.  

One of the overall goals of this PhD has been to investigate how industrialists can 

increase their performance. This can lead to more production, which can result in 

increased use of energy and raw materials, meaning an increased potential for 

contributing to global warming. On the other hand, the performance improvements this 

PhD focuses on are mainly connected to the fields of the value chain and maintenance. 

Improvements in these areas can support sustainability and the environment [159], and 

especially the field of PdM has been linked to these matters, as presented in [160]: “A 

new sustainable world is envisioned on the foundation of new technology, new 

strategies and solutions, and new business models, and this vision holds particularly 

true for the manufacturing sector. Predictive maintenance can be considered to 

illustrate the primary discipline to be used for this goal.” Further, the NTNU code of 

ethics says the following about environmental aspects [157]: “Employees must be 

aware of how their behaviour and decisions might affect the external environment and 

sustainable development, in terms of research, education, operations or 

administration.” It is not expected that this PhD project will have a negative effect on 

the environment, but environmental awareness has been maintained in the work with 

this PhD. 

The PhD project focuses on digitalization and new ways of working. The debate on 

whether digitalization, with robots, AI, and increased automation, is putting jobs at risk 

is something to be aware of. At the same time, industrialists need to follow the 

technological development to stay competitive in their field and produce in a more 

sustainable manner. 

The author confirms that he has no conflict of interest related to this PhD project.  



 

87 

 

4. Main Results and Discussions 

This chapter will discuss the main results of this PhD project. The first part discusses 

the contribution to science and revisits the research questions, presenting results on 

possible underlying factors explaining the findings for each research question. The next 

part presents implications for practitioners. General recommendations regarding 

maintenance and how the transition to a more digitalized value chain should be 

approached are also included. Table 4.1 provides an overview of the research problem 

and research questions related to the articles, with main results, included in this PhD 

thesis. 

Table 4.1: Research problem and research questions related to the articles included in this PhD 

thesis. 

Research problem: How to integrate the fields of maintenance and value chain, in 

order to increase industrialists’ level of performance? 

RQ 1:                                              

What is the 

connection 

between 

maintenance and 

the value chain? 

RQ 2:                                                                                        

How can the development of technology, 

maintenance and maintenance 

management improve industrialists’ 

value chain and level of performance? 

RQ 3:                                       

How to implement 

an integrated 

maintenance and 

value chain 

approach in an 

industrial setting? 

Article 

number 
Main results Related RQ 

Article 1 

An overview of sensor management and trends 

within maintenance is presented. A novel 

concept for sensor management, its linkage to 

maintenance and improvement of operational 

availability is given. 

RQ 2 
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Article 2 

New knowledge on how maintenance programs 

can benefit from including a value chain 

perspective. A concept for balanced maintenance 

programs in asset-intensive industrial plants is 

also presented. 

RQ 1, RQ 2, RQ 3 

Article 3 

A concept for an indicator measuring the level of 

performance of planned maintenance stops, and 

a discussion on how this indicator will support 

continuous improvement. The article also 

discusses the industrial development and need 

for new indicators within maintenance 

management and performance management. 

RQ 2 

Article 4 

The article evaluates maintenance and value 

chain management in a new perspective, 

focusing on how maintenance indicators can be 

used to enhance value chain performance. An 

overview of the development of standards within 

maintenance and development of, and need for, 

new maintenance indicators is also provided. 

RQ 1, RQ 2 

Article 5 

An overview of trends within World Class 

Maintenance and a discussion on the role of 

maintenance management in the value chain is 

given. Positioning the Profit Loss Indicator in the 

context of World Class Maintenance and a 

proposed structure for its effect on a company 

value chain is also presented. 

RQ 1, RQ 2, RQ 3 
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Article 6 

The article investigates the role of operators, 

maintenance personnel and other relevant job 

categories in an Industry 4.0 environment. The 

article also presents a framework for 

qualification criteria for Operator 4.0 and 

identifies relevant Industry 4.0 technologies. 

RQ 3 

Article 7 

A discussion on how maintenance and value 

chain data can be used to improve value chain 

performance through prediction is given. The 

article also presents a case of a company that has 

chosen to apply a predictive maintenance 

platform, the implications and determinants of 

this decision. 

RQ 2, RQ 3 

 

4.1 Contribution to science 

 

4.1.1 The connection between maintenance and the value chain 

The first research question aimed at investigating the connection between the field of 

maintenance and the value chain: 

RQ 1: What is the connection between maintenance and the value chain? 

To answer this research question, investigation of existing literature, conceptual 

development, experiences from process industry and CPS-Plant formed the foundation 

used to address RQ 1. Articles 2, 4, and 5 present results related to RQ 1. Based on this, 

main findings related to RQ 1 can be summarized as follows: 

Main findings RQ 1: The connection between maintenance and the value chain seems 

to have changed along with increased industrial digitalization and the introduction of 

Industry 4.0 technologies. Initially, maintenance was seen as a hindrance in the value 

chain and equipment maintenance was an unwanted necessity, making firefighting the 

primary way of conducting maintenance. Currently, maintenance has evolved to a field 
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serving as a toolbox for enabling Industry 4.0, supporting sustainable production, and 

encouraging value chain integrations, by aiding the connection between the physical 

and digital world and complementary integrating machines, systems, and humans in a 

value-adding fashion. 

Articles 2, 4, and 5 go further into discussing the underlying factors that may explain 

these findings. The literature agrees on the previous view of maintenance being an 

unwanted and costly necessity, resulting in a reactive way for practitioners to conduct 

maintenance. This view can be connected to a lack of technological readiness, supported 

by low availability and high cost of technology required for enabling more sophisticated 

maintenance strategies. Consequently, the connection between maintenance and the 

value chain has been rudimentary, not seeing maintenance as an opportunity for adding 

value to the value chain. For many companies, the lack of contextual and predictive 

capabilities results in a silo mentality isolating fields such as production and 

maintenance, resulting in suboptimal value chain performance. Several studies have 

investigated the lack of integration and connection, and its associated performance 

reductions, between production and maintenance in different perspectives, e.g., 

integrated maintenance planning in [95]. With the introduction of Industry 4.0, 

significant performance increasements have been expected for industrialists. This calls 

for increased integration between several fields and new connections throughout the 

companies’ value chain. Maintenance can be seen as an essential enabler for reaping the 

promised benefits of Industry 4.0 and for ensuring availability in complex Industry 4.0 

systems. Additionally, maintenance can act as a driver for innovation through acquiring 

knowledge by analyzing large volumes of data from machines, systems, and products, 

causing the opportunity for a new value-adding connection between maintenance and 

the value chain.  

It is interesting to see how national initiatives by leading manufacturing nations, within 

the transition to a more digitalized and integrated value chain, connect maintenance to 

their reference architectures. E.g., the German perspective is quite clear on how the 

maintenance function will need to interact with other service providers in an Industry 

4.0 environment, where it serves as a connection hub between machine manufacturer, 

industry service, and operator, and allows sharing of maintenance data [5, 13]. This 
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underpins both the imminent changes in how industrialists will conduct maintenance 

going forward and the role and connection that maintenance has in the value chain for 

these industrial stakeholders. Another example is the United States NIST Smart 

Manufacturing Ecosystem, which sees continuous commissioning as engaging ongoing 

monitoring, diagnosis, and prognosis of production equipment, allowing development 

of more sophisticated maintenance strategies, and improving production system 

performance [129]. The need for and importance of standards is shared between all the 

national initiatives presented, and this can be seen as a fundamental element in 

providing quality for the interaction between stakeholders, and the connection between 

maintenance and the value chain. An overview of advancements for maintenance 

standards is given in Article 4. 

Article 2 discusses the connections between maintenance and the value chain and 

presents the internal and external value chain effects of six maintenance program 

objectives experienced in the process industry, as shown in Figure 4.1. 

 

Figure 4.1: Internal and external value chain effects of maintenance program objectives. 
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The six objectives underpin the relationship between maintenance and the value chain. 

In terms of Smart Maintenance, adaptability is one desirable objective of a maintenance 

program and facilitates a dimensioned maintenance and high availability, benefiting the 

customer through increased flexibility in product, volume, and delivery. The objective 

of cost focuses on having a cost-efficient maintenance program and is affected by the 

other objectives. Thus, improving in the other objectives will improve value chain 

productivity, enabling lower product prices for customers and/or higher margins for the 

company. Next, a maintenance program should enable dependability. This will provide 

reliable processes, which the customer will experience as dependable deliveries. 

Further, a maintenance program is an important element in ensuring compliance with 

health, safety and environment (HSE) regulations. Internally, a focus on HSE will 

support a safe work environment, while the external image of the company will be 

corroborated as an attractive workplace and business partner. Quality in maintenance 

execution supports zero-defect manufacturing internally, and on-specification products 

and services for the customer. Finally, effectiveness in maintenance execution increases 

availability, which internally means increased throughput, and shorter delivery time is 

an external value chain effect. Figure 4.1 can be seen as a contribution to the functional 

connections between maintenance management and manufacturing operations 

management presented in the standard IEC 62264-1:2013 [63]. Article 4 goes further 

into the six objectives and discusses advancements in the maintenance function and how 

maintenance will play an even more important role in the value chain for future years. 

The maintenance function is described as a combination of several disciplines and 

resources, such as knowledge, methodologies, technologies, processes, and 

competences to create and develop an appropriate mix of actions to maintain the 

required level of functionalities of physical assets and achieve the assigned company 

objectives. This shows the importance of maintenance and underpins its role in moving 

towards more complex Industry 4.0 systems, supporting [39, 52]. Article 5 also presents 

trends in manufacturing and world class maintenance, discussing how the role of 

maintenance has changed. Another result presented in Article 5 is that maintenance has 

direct effects on the total operating cost of manufacturing and production plants, 

meaning that measuring maintenance performance is a way to find potentials in 

increasing value chain performance. For measuring maintenance performance, a set of 
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maintenance indicators are structured in a focus diagram in Article 5, as shown in 

Figure 4.2, where output represents the effect on the value chain. Summarized, this 

highlights connections between maintenance and the value chain, which can be seen as 

input to the element “Goals and requirements” in the maintenance management model 

in the standard NORSOK Z-008:2017 Risk based maintenance and consequence 

classification [57]. 

 

Figure 4.2: Focus diagram of maintenance with indicators. 

 

4.1.2 Technology and maintenance improving value chain performance 

The second research question targeted investigating how the development of 

technology, maintenance and maintenance management could improve industrialists’ 

value chain and performance:  

RQ 2: How can the development of technology, maintenance and maintenance 

management improve industrialists’ value chain and level of performance? 

To address this research question, investigation of existing literature, conceptual 

development, experiences from process industry and CPS-Plant, and a case study 

formed the foundation used to address RQ 2. Articles 1, 2, 3, 4, 5, and 7 present results 
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related to RQ 2. Based on the discussions and results from this, main findings related to 

RQ 2 can be summarized as follows: 

Main findings RQ 2: The rapid development in technology has expanded the role of 

maintenance and maintenance management in industrialists’ value chain. Industry 4.0 

technologies such as IIoT, big data and analytics, and system integration provide 

numerous opportunities to improve existing maintenance practices and maintenance 

management. Predictive and contextual capabilities for monitoring, analyzing, and 

detecting trends and anomalies, and consequently predicting critical and unexpected 

events, can be used to develop more sophisticated maintenance strategies and improve 

value chain performance. 

From the literature point of view, the role of maintenance and maintenance management 

is starting to be positioned within Industry 4.0 technologies and succeeding in 

combining these fields is acknowledged to provide performance improvements in 

several areas, e.g., within sustainability [5, 6, 49, 160]. Another example is the study by 

[37], positioning Industry 4.0 technologies in the maintenance process, as presented in 

the standard EN 17007:2017 Maintenance process and associated indicators [59], and 

presenting how succeeding in maintenance is becoming a prerequisite for succeeding 

with Industry 4.0. From an industrial point of view, interest and willingness to adapt 

new technology and ways of working have been established for many, but the path from 

deciding on a digital initiative to seeing value added is still challenging for the majority. 

Article 7 discusses how maintenance management and operations management must be 

integrated to balance decisions involving strategic investments, production plan, quality 

control and risk management, with the overall goal of improving value chain 

performance. Further, for decision-making, the article also shows how contextualized 

data is a prerequisite, as data from operations can improve PdM capabilities, but 

maintenance data can also support decisions across operations, e.g., by indicating 

utilization of machine capacity and whether the required function is available when 

desired. The findings in Article 7 regarding contextualization are in line with the three 

pillars of information governance for smart manufacturing presented in [129]. The 

article also shows the journey for a company deciding on investing in sensor technology 
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and to seeing return on investment. As another contribution on utilizing new technology 

within maintenance, Article 1 presents a concept for sensor management, which can be 

positioned under the umbrella of IIoT, as shown in Figure 4.3. 

 

Figure 4.3: Novel concept for sensor management within maintenance. 

Article 1 discusses sensor management and its applicability to maintenance. It also 

provides the following definition of sensor management: “Sensor management aims to 

optimize a configuration of sensors, with the goal of improving operational availability 

for a given system”. The concept can be seen in light of the three elements 

“Maintenance execution”, “Technical condition”, and “Reporting” in the maintenance 

management model in NORSOK Z-008:2017 [57], and the element “Maintenance 

execution” presented in IEC 60300-3-14:2004 Dependability management part 3-14: 

Application guide - Maintenance and maintenance support [38]. How the concept can 

increase operational availability is also presented, where the technical condition of a 

given equipment/system is evaluated based on data collected by off-the-shelf wireless 

sensors. Use of cloud storage makes the technical condition, historical data, and trends 

(along with notifications) directly available on smartphones/tablets/web apps. 

Adjustable control limits with an alarm function, which notifies maintenance personnel 

immediately when deviations occur, result in reduced time for initiating maintenance 

execution. The effect of the performed action can then be evaluated directly, by 
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comparing historical data with the continuous stream of new measurements from the 

sensors. Summarized, the concept focuses on simplicity and ease of implementation, 

and does not include advanced prediction analytics or decision support, but instead 

strives to maximize the value of the maintenance personnel’s experience and 

knowledge. 

Article 2 presents a concept linked to the element “Maintenance programme” in the 

maintenance management model in NORSOK Z-008:2017 [57]. It shows how 

traditional maintenance programs can benefit from including machine learning to create 

a balanced maintenance program. The concept provides decision support for how the 

maintenance program should be adjusted, based on the parameters “machine 

anomalies”, i.e., anomaly detection, and “machine load”. Combining these parameters 

will enable adaptability in the maintenance program, meaning a more flexible, 

dimensioned, and predictive maintenance is possible. Figure 4.4 shows the concept for a 

balanced maintenance program, as presented in Article 2. 

 

Figure 4.4: Concept for a balanced maintenance program. 

The four different actions can be linked to Figure 4.1, and evaluation of different 

measures may be seen in the context of how they will internally and externally affect 

the value chain. For example, if the machine load is high and the suggested action is to 

control the process, an evaluation of dependability must be done, considering the high 



 

97 

 

machine load against the risk of reduced process reliability, and a dependable delivery. 

This gives a more holistic view to how maintenance affects the value chain, and 

underpins the importance of integrated maintenance planning, as discussed in [95]. 

Moreover, Articles 3, 4, and 5 investigate new and existing indicators and their position 

in maintenance and the value chain, and how industrial development introduces a need 

for new KPIs, which confirms that indicators for measuring industrialists’ performance 

are more important than ever. Article 3 provides an overview of indicators within 

maintenance management and performance management and presents a concept for the 

overall stop effectiveness (OSE) indicator, which measures the performance of planned 

maintenance stops. This can be seen as a contribution regarding continuous 

improvement in the value chain. Article 4 discusses the approach for developing KPIs 

within predictive maintenance related to the six maturity stages for the development 

towards Smart Maintenance, as shown in Figure 2.3, and is a contribution in terms of 

how industrialists can enable new areas of performance improvements with the use of 

new technology such as sensors, ERP and MES systems. Finally, Article 5 discusses 

how, for a company aiming to lead the way in its market, the maintenance function must 

be at a WCM level. The article also investigates how the onset of digitalization and the 

breakthrough technologies introduced with Industry 4.0 leads to expectations of more 

advanced analytics for WCM. As a contribution in this regard, PLI has shown 

promising results in measuring several parameters, such as time losses in production in 

monetary terms. Together with other maintenance indicators, PLI can provide an 

indication of the value chain performance, highlighting opportunities for improvement. 

As presented in Article 5, Figure 4.5 shows a proposed structure (DuPont) of PLI and 

how it can be related to the company level and its effect on the value chain, e.g., how 

lack of life extensions, i.e., suboptimal maintenance, in assets requires investments in 

new equipment, ultimately leading to loss in asset and reduced value chain performance. 
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Figure 4.5: Proposed structure of PLI related to the value chain. 

 

4.1.3 Integrated maintenance and value chain approach 

The third research question aimed at exploring the implementation perspective of an 

integrated maintenance and value chain approach: 

RQ 3: How to implement an integrated maintenance and value chain approach in an 

industrial setting? 

Investigation of existing literature, conceptual development, experiences from process 

industry and CPS-Plant, and a case study formed the foundation used to address RQ 3. 

Articles 2, 5, 6, and 7 present results related to RQ 3. As a result of this, the main 

findings related to RQ 3 can be summarized as follows: 

Main findings RQ 3: An advantageous selection and implementation of maintenance 

types enables a robust maintenance function. Introducing Industry 4.0 technologies to 

the maintenance function allows for vertical and horizontal integration in the value 

chain. Combined, these actions support continuous improvement of the value chain’s 

performance, new business opportunities, and an adaptable approach to the industrial 

setting in question. 

For industrialists to meet the potentials presented in this thesis, such as bridging the gap 

between a smart factory and a traditional production line, realizing the opportunities of 

Industry 4.0, and moving towards a more digitalized and integrated value chain, 

comprehensive changes and new implementation processes are required. This 
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extensiveness is underpinned by the complex reference architectures created by several 

nations and unions to provide guidance and direction for their companies and 

researchers involved in the industrial evolution. The presented reference architectures 

from China, the United States, Japan, and Germany are aligned when it comes to the 

need for standards and ensuring common ground for practitioners and academics, 

defining this as a key element going forward. This is also underpinned by the several 

collaboration initiatives between the nations and the creation of other organizations such 

as the Industry IoT Consortium and the Open Connectivity Foundation. However, as 

concluded in [144], standards are a fundamental component of the evolution to smart 

manufacturing, but existing manufacturing standards are insufficient to fully enable and 

implement smart manufacturing. Thus, there is a need to further develop standards 

following the technological development. The reference architectures mentioned are 

also investigated in the literature, and there seems to be an agreement that reference 

architectures can become the backbone for the full realization of Industry 4.0 if their 

maturity and sustainability are increased, but currently they are not completely suitable 

to support implementation of Industry 4.0 technologies, mainly due to their high level of 

abstraction and/or lack of detailed documentation [121, 150]. Hence, they can provide a 

vision for practitioners and academics to gather on, but more specific entry-level 

solutions for building up digital capabilities are required for a successful 

implementation. As a contribution in this regard, Article 7 targets this gap for the field 

of maintenance and the value chain, exploring how a PdM platform can be implemented 

and improve value chain performance. Figure 4.6 shows the generalized approach for 

implementing a PdM platform, as presented in Article 7. 

 

Figure 4.6: Generalized approach for implementing a PdM platform. 

The first step is to ensure a foundation by performing consequence classification, 

according to the standard NORSOK Z-008:2017 Risk based maintenance and 
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consequence classification [57], as an initial step for determining what assets are to be 

prioritized to the PdM platform and creating an overview of critical assets in the value 

chain. This step also supports understanding the process and agreeing on the required 

function for the critical assets. Next, determining the data collection and selection of 

sensor type and placement is based on a thorough analysis such as failure mode effects 

(and criticality) analysis (FME(C)A) and/or failure mode and symptoms analysis 

(FMSA), as presented in the standards ISO 17359:2018 [161], ISO 13379-1:2012 [73], 

and ISO 13381-1:2015 [162]. Additionally, the sensor management guidelines 

presented in Article 1 can be used to support this step. Further, the implementation of 

the PdM platform follows the structure presented in Chapter 2.1.2. Article 7 can also be 

seen as a contribution to bridging the gap between the generic overall PdM structures 

presented in [6, 68] and implementation of a PdM solution in an industrial setting. The 

importance and value of performing established maintenance methods, such as 

consequence classification and FME(C)A and FMSA, in the initial phase of digital 

initiatives is emphasized. Moreover, the PdM platform presents examples of 

technologies to be used and relevant integrations with other systems, providing a 

possible solution for implementing the two initial levels in the 5C architecture discussed 

in Chapter 2.3.1. Suggestions for standards and methods relevant to implementation and 

use of the PdM platform are given to aid users. Figure 4.7 shows the implemented PdM 

platform, as presented in Article 7. 

 

Figure 4.7: PdM platform. 
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The PdM platform is divided into five parts supporting the overall structure. After the 

raw data have been collected, the data arrive in the IIoT cloud and are processed, 

labeled, stored, and, if desirable, pushed to other clouds through an application 

programming interface (API). Here, technical condition analysis combines the sensor 

data with historical data and previous experience to set alarm limits qualitatively and 

manually. The sensor data and alarm limit thresholds are monitored by computer 

algorithms, which immediately act if limits are breached or anomalies are detected, and 

provide the maintenance request. For fault diagnosis, the FME(C)A and/or FMSA 

together with a root cause analysis can form a qualitative approach to pinpoint possible 

repair measures. Further, the triggered alarms, maintenance request and repair measures 

are presented to the user. Depending on the degree of importance, this may be in the 

form of an alarm pushed by email, text message, or dashboard with further integration, 

through API, to e.g., an EAM system. The next step concerns a cost-benefit selection of 

repair measures, planning and scheduling of maintenance execution. The PdM platform 

also underpins the need for maintenance management and operations management to be 

integrated, for balancing decisions involving strategic investments, production plan, 

quality control and risk management with the overall goal of improving value chain 

performance. This is in line with [77], where the importance of deep convergence and 

comprehensive connections is underpinned for a smart factory production system. 

Further, data can be integrated through an API between e.g., the EAM system and MES, 

supporting horizontal integration of value chain data, which can be seen as an 

exemplification of the Mfg Pyramid in the NIST Smart Manufacturing Ecosystem 

presented in Chapter 2.3.2.  Finally, and as a link to continuous improvement and 

PDCA, executed maintenance actions are registered and serve as input for improving 

technical condition analysis and raw data collection, increasing understanding of the 

asset behavior and its implications for value chain performance. This also supports the 

feedback loop from maintenance execution to maintenance improvements emphasized 

for maintenance management in Figure 2.4 and Figure 2.5. 

A key element in any implementation process is to ensure that the workforce affected by 

the imminent changes is motivated, supported, and provided with the necessary training 

and tools to meet the new workday. In this regard, Article 6 provides a contribution on 
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how this will affect and set new requirements for maintenance personnel and operators, 

collectively named Operator 4.0, in a cyber-physical production plant, ultimately 

supporting implementation of Industry 4.0 technologies. This can be seen in the context 

of [5], where the importance of considering how actions of human actors are taken into 

account in a PdM system is highlighted. For the operators in Article 7, the sensor data 

provided a better understanding of the technical condition, and how maintenance actions 

and changes in machine load could affect this. Moving from decisions based on 

guesswork to real-time data enabled the operators to perform their job more efficiently. 

The degree of ownership also increased, as their actions could be seen as changes in the 

data and connected to the mentioned improvements. For the maintenance management 

team, the successful application of the PdM platform provided motivation for scaling 

the solution and including other production equipment. It is also interesting to see the 

clear expectations regarding how the transition to a more digitalized and integrated 

value chain calls for close cooperation among different service providers within the 

field of maintenance, as presented in [5, 13]. A prerequisite for the success of these 

interactions is that machine manufacturers, operators, and industry service providers 

have implemented a high degree of digital capabilities to seamlessly utilize each other’s 

expertise and strengths. 

Most of the studies presented in this thesis regarding the implementation perspective are 

of a conceptual nature. In addition, the technological readiness level among most 

practitioners often lags behind the rapid development for Industry 4.0 technologies. 

Hence, to provide relevance for practitioners, the need for more empirically based 

studies in an industrial setting is emphasized. With this in mind, the concept for a 

balanced maintenance program and connections between maintenance and the value 

chain presented in Article 2 can be used as motivation for further investigation of the 

implementation perspective. As an element to measure the success of an 

implementation, relevant indicators should be investigated and applied. Article 5 

contributes to this by presenting trends within WCM, indicators, and how this also 

applies to the value chain. 
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4.2 Implications for practitioners 

In addition to the theoretical contributions to science, the findings presented in this PhD 

thesis should also provide practical relevance for practitioners interested in applying 

new technology to improve their value chain and how their maintenance function can 

support this. 

The transition to a more digitalized and integrated value chain as well as trends related 

to Industry 4.0 are being closely followed by managers and industry leaders around the 

world. The largest manufacturing nations also have extensive projects to take advantage 

of the opportunities introduced with new technology, and research on how this can 

strengthen their companies’ position in the global market is a key goal for national 

industrial strategies. However, achieving the promised benefits of digitalization and the 

vision of Industry 4.0 is not a straightforward task. This PhD thesis presents new 

knowledge and concepts relevant to practitioners starting the journey on digitalizing 

their value chain, with a focus on how this relates to the maintenance function. 

The findings in this PhD thesis highlight the connections between maintenance and the 

value chain, and how advancements in technology have increased the importance of 

acknowledging this in a contextual manner. The insights on how maintenance has 

evolved and can aid the connection between the physical and digital world and integrate 

machines, systems, and humans in a value chain should be used by practitioners 

developing roadmaps for outlining the direction to successfully meet their long-term 

strategic goals. Article 1 and Article 2 present different examples of how maintenance 

and Industry 4.0 technologies can be integrated. These articles also provide valuable 

insights into how Industry 4.0 technologies enable opportunities for improving existing 

maintenance practices and expanding the role of maintenance management. The 

opportunities for monitoring, analyzing, and detecting trends and anomalies, as well as 

predicting critical and unexpected events, can support practitioners in developing more 

sophisticated maintenance strategies and improving value chain performance. However, 

it might be tempting for many to focus only on implementing new technology at the 

expense of attention to more basic maintenance, but Article 7 indicates that fundamental 

maintenance methods such as consequence classification and FME(C)A and FMSA can 

be used to advantage as a basis for implementing new technology and ways of working. 
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The need for thoroughly understanding the process in question, what the required 

function is, and the importance and value of building a foundation with basic 

maintenance practices, supplementing digitalization efforts, is a take-home message for 

practitioners. 

In the shift towards a more digital value chain and introducing new ways of working, a 

prerequisite for staying competitive and succeeding with continuous improvement is to 

enable new digital competence in the workforce and ensure the necessary digital tools 

are well-implemented. Hence, maintenance personnel must be thoroughly prepared for 

the tasks involved in ensuring the functionality and integrity of Industry 4.0 systems. 

These tasks should form part of the training requirements for maintenance personnel, 

and it will be essential to create appropriate training modules to take full advantage of 

the potential with Industry 4.0 technologies. These challenges are discussed in Article 6, 

and managers can use the discussion on Operator 4.0, which includes the role of 

operators, maintenance personnel and other relevant job categories in an Industry 4.0 

environment, and the framework for qualification criteria for Operator 4.0 and its 

relevant technologies for competency mapping and guidance for how this can be further 

improved in the organization. 

The traditional view on the maintenance function in a value chain must develop in line 

with the introduction of Industry 4.0 technologies. Increased collaboration and 

interactions within the field of maintenance require that machine manufacturers, 

operators, and industry service providers possess digital capabilities for smooth 

communication and seek to comply with standards to ensure common ground. 

Practitioners should also contribute to the development of standards and define 

cooperation platforms emphasizing sharing data and knowledge. Article 4 shows the 

structure for the maintenance function and can be used for mapping standards and 

specifications relevant to a company. Combined, this will support utilizing expertise and 

strengths between the different actors involved in the maintenance function, supporting 

companies to achieve more sustainable processes and products, and to reduce waste. 

In the years to come, increased availability of technology, such as sensors, will enable 

practitioners to measure what previously has been unmeasurable. This requires the 
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development of indicators that respond to the new data and opportunities for 

improvement. Articles 3, 4, and 5 investigate new and existing indicators and their 

position in maintenance and the value chain, and how the industrial development 

introduces a need for new indicators. Practitioners should ensure that digitalization 

initiatives are not implemented at the expense of focus on established indicators and 

continuous improvement, but instead are used to measure the success of digital 

initiatives, discovering new areas of measurements, ultimately combined to improve 

value chain performance.  
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5. Conclusion 

This chapter marks the end of this PhD thesis by first presenting a short summary of the 

results together with some concluding remarks. Next, the thesis is concluded with 

proposals for further research. 

 

5.1 Concluding remarks 

In this thesis, the field of maintenance, value chain, and industrial digitalization have 

been investigated. Previous research has mainly studied these areas individually. This 

thesis has provided a thorough presentation of the development in each area and how 

they can be combined to improve value chain performance. This has been done through 

different research approaches, such as literature review, conceptual development, case 

study, and participation in the Norwegian research project CPS-Plant. 

The objectives of this PhD research are to provide a better understanding and 

knowledge of the connection between maintenance and the value chain, how can the 

development of technology, maintenance and maintenance management improve the 

value chain, and how to implement an integrated maintenance and value chain 

approach. The research problem is: How to integrate the fields of maintenance and 

value chain, in order to increase industrialists’ level of performance? The research 

goals have been to contribute to filling a competence gap between the fields of 

maintenance and the value chain, and develop frameworks, tools, and methodology 

which builds on the new competence. Based on this, three research questions were 

defined and answered through seven articles, briefly outlined as follows:  

RQ 1: What is the connection between maintenance and the value chain? 

Concluding remarks: 

• Article 2: Proposed internal and external value chain effects of six maintenance 

program objectives. 

• Article 4: Evaluation of maintenance and value chain management in a new 

perspective. 
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• Article 5: New knowledge on the role of maintenance management in the value 

chain. 

RQ 2: How can the development of technology, maintenance and maintenance 

management improve industrialists’ value chain and level of performance? 

Concluding remarks: 

• Article 1: Proposed concept for sensor management, including its linkage to 

maintenance and improvement of operational availability. 

• Article 2: Proposed concept for a balanced maintenance program with a value 

chain perspective. 

• Article 3: Proposed concept for an indicator measuring the level of performance 

of planned maintenance stops, including new knowledge on how industrial 

development requires new indicators within maintenance management and 

performance management. 

• Article 4: An overview on the development of the maintenance function and 

standards within maintenance. New knowledge on how maintenance indicators 

can be used to enhance value chain performance. 

• Article 5: A discussion on how the maintenance function for top performing 

companies requires possessing a WCM level. 

• Article 7: Proposed concept for a PdM platform and how it can improve value 

chain performance. 

RQ 3: How to implement an integrated maintenance and value chain approach in an 

industrial setting? 

Concluding remarks: 

• Article 2: The concept for a balanced maintenance program and connections 

between maintenance and the value chain can be used as a framework for further 

investigating into the implementation perspective. 

• Article 5: Overview of trends within manufacturing and WCM, and how 

indicators can be used to measure the success of an implementation in the value 

chain. 
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• Article 6: A framework for qualification criteria for Operator 4.0 and 

identification of relevant Industry 4.0 technologies, including new requirements 

for maintenance personnel and operators to support implementation of Industry 

4.0, and how this relates to the value chain perspective. 

• Article 7: A proposed generalized approach for implementing a PdM platform. 

In addition to articles and theoretical contributions to science, the findings presented in 

this PhD thesis should also provide relevance for practitioners. This thesis provides new 

knowledge and concepts relevant to practitioners starting the journey towards 

digitalizing their value chain, with a focus on how this relates to the maintenance 

function. Findings suggest that digitalization initiatives should be supported by 

complementary maintenance practices to improve value chain performance. New 

technology should not be implemented at the expense of a thorough understanding of 

the process in question, and what the required function is. The main contributions of 

this thesis can be summarized as follows: 

• New knowledge and concepts within digitalizing the value chain, with a focus 

on how this relates to the maintenance function. 

• Provided increased understanding of the connections between maintenance and 

the value chain, and how advancements in technology have increased the 

importance of acknowledging this in a contextual manner. 

• Presentation of valuable insights into how Industry 4.0 technologies enable 

opportunities for improving existing maintenance practices and expanding the 

role of maintenance management into the value chain. 

• New knowledge on how fundamental maintenance methods can be used as a 

basis for implementing new technology and ways of working. 

• Presentation of new and existing indicators and their position in maintenance 

and the value chain, and how the industrial development introduces a need for 

new indicators. 

• A framework for qualification criteria for Operator 4.0 and identification of 

relevant Industry 4.0 technologies, and discussion on the role of operators, 
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maintenance personnel and other relevant job categories in an Industry 4.0 

environment, and how this relates to the value chain perspective.  

 

5.2 Further research 

Based on the theory, articles, and contributions to science presented in this thesis, 

several remarks regarding further research are proposed: 

• Article 1: Further development of the sensor management concept and 

discovery of ways in which it can adopt other technologies for condition 

assessment and diagnostics and prognostics. 

• Article 2: Development of the balanced maintenance program concept, and 

further research on how a value chain perspective can support and improve the 

maintenance function in a company. 

• Article 3: Defining the main and sub-elements of the proposed indicator and 

investigating how it can be tested and evaluated.  

• Article 4: Further research to develop maintenance indicators utilizing product-

usage data in the value chain, and how to perform implementation, testing, and 

evaluation. 

• Article 5: Testing new approaches for calculating PLI in case studies as well as 

relating it to other maintenance indicators that affect the value chain. 

• Article 6: Further work on the proposed framework of Operator 4.0 and 

elaboration of relevant Industry 4.0 technologies. 

• Article 7: Further development of the PdM platform and how other Industry 4.0 

technologies can be added. More detailed investigation of how the PdM 

platform can integrate maintenance management and operations management 

for enabling contextualized data-driven decision-making throughout the value 

chain. 

Moreover, all the seven articles highlight the need for conducting case studies in 

different industries and companies for further testing and evaluation. Generally, 

involving industry to a greater extent is seen as a prerequisite for bridging the gap 
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between contributions to science and implications for practitioners, and should be 

prioritized in further research. 

Further research should continue to investigate how new technology affects the value 

chain and how the field of maintenance can utilize the possibilities introduced by 

emerging digital technologies for improving value chain performance. The rapid 

development and availability of technology, and the possible change in the perception 

of industrial digitalization, underpin the value of follow-up studies to investigate the 

holistic understanding of maintenance and the value chain. Further research should also 

investigate the three following proposed directions regarding the implementation 

perspective, first, by continuing studies regarding Operator 4.0 and how the role of 

operators and maintenance personnel will be impacted by increased use of Industry 4.0 

technologies. Second, the reference architectures presented in this thesis should provide 

guidance for practitioners and academics, but research is needed to determine how these 

can be implemented in practice and provide value. Hence, more studies of entry-level 

solutions and standards reflecting the development can aid their maturity and 

technological readiness level. Third, more research should be conducted on value chain 

integrations and technology enabling new opportunities for companies’ maintenance 

function and how the field of maintenance can best be applied to contribute to 

sustainability. As research in this realm advances, an imperative step should be to 

establish an implementation framework for how the industry can better handle 

emissions, enable more sustainable manufacturing, improve products and services to be 

in line with a circular economy, and reduce waste by enhanced engineering and 

utilization of new technology, ultimately supporting the Sustainable Development 

Goals.  
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Abstract - With the imminence fourth industrial revolution and the 
nonstop increase in global competition, industrialists faces new 
challenges such as how to stay sustainable for future years, 
continuously improve value chain performance (VCP), and keep up 
with the technological development. This development applies equally 
to the field of maintenance, which also is developing rapidly. The 
maintenance function has traditionally been regarded as a costly 
necessary evil. Currently, with the possibilities predictive 
maintenance and smart maintenance introduces, maintenance is now 
regarded by many as an opportunity for gaining a competitive 
advantage. The concept of value chain management (VCM) is 
becoming prevalent among industrialists. However, the development 
of literature within the field is lacking, especially on how maintenance 
can be included into VCM and utilized to enhance VCP. Thus, the aim 
of this paper is to evaluate maintenance and VCM in a new 
perspective, focusing on how maintenance indicators can be used to 
enhance VCP. The paper will also present an overview on the 
development of standards within maintenance and development of, 
and need for, new maintenance indicators. 

Keywords  Value chain performance, value chain management, maintenance 
management, performance management, maintenance indicators 

1. INTRODUCTION

The fourth industrial revolution has introduced enabling technologies such as wireless sensor 
networks, Big Data, Digital Twin, Internet of Things, and cloud computing into the manufacturing 

-Tech
-Physical

System (CPS) which integrated production facilities, warehousing systems, logistics and, and social 
requirements to establish global value creation networks. Following, similar strategies were soon 

(Wang, Wan et al., 2016). 
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industrialists, and succeeding with implementing Industrie 4.0 is acknowledged as a significant 
competitive advantage (Brenna Snidermann, 2016, René Waslo, 2017). In order to successfully 

lementing the strategic 
(Kagermann, Helbig et al., 

2013): 
 

 Development of inter-company value chains and networks through horizontal integration 
 Development, implementation and vertical integration of flexible and reconfigurable 

manufacturing systems within businesses 
 Digital end-to-end engineering across the entire value chain of both the product and the 

associated manufacturing system 

 
The three key features focuses on how new technology can be utilized to improve the value chain, 
and presents two accompanying potential benefits. First, one potential benefit will be higher sales 
thanks to a larger market and higher customer satisfaction. Second, reduction of internal operating 
costs through digital end-to-end integration of the value chain is also an expected benefit 
(Kagermann, Helbig et al., 2013). A definition of value chain is presented by (Walters and Lancaster, 
2000) The value chain is a tool to disaggregate a business into strategically relevant activities. This 
enables identification of the source of competitive advantage by performing these activities more 
cheaply or better than its competitors. Its value chain is part of a larger stream of activities carried out 
by other members of the channel-suppliers, distributors and customers .  
 
Further on, value chain management (VCM) targets the improvement of overall performance of the 
entire value chain through an analysis of each link and process in a systematic manner to see how 
speed, certainty and cost-effectiveness can be enhanced (McGuffog, 1997). The following definition 
of VCM is provided by (Walters and Lancaster, 2000): Value chain management is a coordinating 
management process in which all of the activities (and their suppliers) involved in delivering customer 
value satisfaction are integrated such that customer satisfaction is maximised and the objectives of 
the stakeholders involved (the suppliers of activities, processes, facilitating services, etc.) are 
optimised such that no preferable solution may be found.  
 
Another area expected to provide a significant potential benefit and to improve industrialists level of 
performance is the field of maintenance. Along with predictive maintenance and smart maintenance, 
the maintenance function has evolved from the perception of being a hindrance for throughput and 
scheduling, to an opportunity for gaining a competitive edge by predicting and being one-step ahead 
of failures (Fordal, Rødseth et al., 2019). The maintenance cost can represent 10% to 25% of the 
costs of goods produced in some industries, and underpins the potential. For future years, with more 
automation and new technologies, maintenance will increasingly be more important for improving 
availability, product quality, fulfillment of safety requirements, and plant cost-effectiveness (Han and 
Yang, 2006). Maintenance is defined in the standard EN 13306:2017 Therminology as (Standard, 
2017) combination of all technical, administrative and managerial actions during the life cycle of an 
item intended to retain it in, or restore it to, a state in which it can perform the required function.  
 
The potential benefits within maintenance are strengthened by the introduction of smart, connected 
products, which have the built-in capability of transferring product-usage data back to the 
manufacturer. According to  (Porter and Heppelmann, 2015), this new capability and having 
accessibility to data will reshape and alter every activity in the value chain. Further on, performing 
analytics on this data can contribute in identifying patterns and areas of improvement, which can help 
organizations to sense and react to supply risk, predict delivery, asset utilization, improve 
maintenance and products, productivity, and sales forecast (Arunachalam, Kumar et al., 2018). Fig. 1 
shows how the new digital value chain regard maintenance as value-added, and focuses on utilizing 
data and connectivity for improving automation, predictive maintenance and services. 
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Fig. 1 Predictive maintenance in the digital value chain, adopted from (Berger, 2017)  

 
It emerges clearly, that the development within maintenance and value chain competence can 
provide great benefits if implemented and utilized correctly, and not only for improving industrialists 
performance, but also in terms of circular economy towards more sustainable economic growth by the 
3R principles of reduce, reuse, and recycle (Ranta, Aarikka-Stenroos et al., 2018). However, the 
development of literature within VCM is claimed by (Al-Mudimigh, Zairi et al., 2004) to be lacking, and 
the maintenance function is not included in value chain frameworks proposed by (Porter, 1985, 
Walters and Lancaster, 2000, Bowman and Ambrosini, 2010). On the other hand, findings by 
(Sutarmin and Jatmiko, 2016), shows that the original generic value chain framework presented by 
(Porter, 1985) differs from the value chain framework of their case company, which includes 
maintenance. Thus, there is a need to further evaluate maintenance and VCM in a new perspective, 
which is the aim of this paper - along with discussing how maintenance indicators can be used to 
enhance VCP. The paper will also present an overview on the development of standards within 
maintenance and development of, and need for, new maintenance indicators. 
 
The structure of this article is as follows: Section 2 presents an overview within VCP and 
maintenance indicators. Section 3 discusses the advancements within standards and the 
maintenance function, and, lastly, Section 4 gives concluding remarks.  
 
 
2. VALUE CHAIN PERFORMANCE AND MAINTENANCE INDICATORS 
 
2.1 Value chain performance 
 
There seem to be lack of a clear definition of the term value chain performance in the literature. 
However, the term value is defined in the standard EN 1325:2014 Value Management as follows 
(Standard, 2014): satisfies 

 Further on, a definition of performance 
management is provided by (Aguinis, 2013): Performance management is a continuous process of 
identifying, measuring, and developing the performance of individuals and teams and aligning 

 Within the definition of performance 
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management, performance measurement is also covered, which is about measuring the performance 
itself. In order to quickly assess measurements, indicators are used. Moreover, a number of 
standardized indicators acknowledged as Key Performance Indicators (KPIs) are used by 
organizations to provide benchmarking, evaluate current performance, and visualize the road to 
improved performance. KPIs are defined as (Kerzner, 2011): A metric measuring how well the 
organization or an individual performs an operational, tactical or strategic activity that is critical for the 
current and future success of the organization  Hence, organizations should select and link KPIs to 
their defined main objectives, in order to work towards the overall strategy and vision. Based on the 
above-mentioned, the authors propose the following meaning of value chain performance: Value 
chain performance is a measure of competitiveness on utilization of available resources and 

 
 
With this meaning of value chain performance and the development within maintenance and the 
industry, it emerges clearly, that product-usage data will be an important resource to utilize for 
maximizing value chain performance. The feedback of data will especially be of value for the 
maintenance function, where predictive maintenance and smart maintenance have proven to give 
competitive advantages (DIN and DKE, 2018). In order to support that utilization of maintenance data 
receive focus in the value chain, maintenance indicators targeting this matter should be developed 
and implemented. This suggestion is underpinned by the concept o

- meaning the selection of indicators and measurement system strongly affects the organizations 
strategical choices and employee behavior (Kaplan and Norton, 1992).  
 
2.2 Maintenance indicators  a need for development  
 
Fig. 2 illustrates the maturity development model towards smart maintenance (Rødseth, Schjølberg et 
al., 2017, Schuh, Anderi et al., 2017). To develop KPIs for predictive maintenance, several stages in 
this approach must be performed. 
 

 
Fig. 2 Maturity model towards smart maintenance (Rødseth, Schjølberg et al., 2017, Schuh, 

Anderi et al., 2017) 
 
The starting point towards smart maintenance is digitalization in terms of computerization and 
connectivity in stage 1 and stage 2. First, computerization will require sensors connected to the PLC-
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systems that can further perform the necessary computation in e.g. data-ware house. In this stage, a 
 is possible to be calculated. An example of such a KPI could be preventive 

maintenance costs/total maintenance costs. Second, the next stage in digitalization is to ensure 
connectivity to enable remote access in terms of e.g. remote maintenance. 
 
When the digitalization phase has been completed the Industry 4.0 phase can start. The visibility 
capability for the company is developed at stage 3 and will result in an up-to-date digital model of the 
plant. This model is referred to as the digital shadow of the company. A main function for the digital 
shadow is to allow all data to be integrated. Instead of only collecting data for specific analysis, it is 
more interesting to integrate all relevant data with different sources of sensors and data sources such 
as ERP and MES systems. Regarding the KPIs, it is in this stage possible to rapidly present real-time 
KPIs and dashboards for example to adjust the production planning when future possible problems 
occurs. 
 
At stage 4, the company understands the reasons why something is happening, and use company 
insight to create knowledge with root cause analysis (RCA). This knowledge can be used in carrying 
out condition monitoring of machinery, and will also be an important requirement for predictive 
maintenance. In this step, the indicator referred to as profit loss indicator (PLI) is introduced, which 
has proven its importance in understanding the tradeoff between speed losses and material utilization 
in a saw mill (Rødseth, Skarlo et al., 2015). PLI has also a foundation from the maintenance 
philosophy total productive maintenance (TPM), where the aim of TPM is to (Japan Institute of Plant, 
2017): 

. To ensure this pursue for maximum possible efficiency, the elimination of 
the 16 big losses in the company is pivotal. The calculation of PLI is therefore related to all of the 16 
big losses.  
 
At Stage 5 and Stage 6, the predictive maintenance capability will be developed including two 
important functions: 

 Prediction of future degradation and future failures. For KPIs, this can be an early warning 
indicator (EWI) (Rødseth and Andersen, 2013). 

 Adaptability, 
operation. For these advices, the KPIs must be presented with different uncertainty 
measures. 

 
 
3. OVERVIEW OF ADVANCEMENTS 

 
As mentioned in the introduction, the maintenance function will play an even more important role in 
the value chain for future years. The maintenance function is a combination of several disciplines and 
resources, such as knowledge, methodologies, technologies, processes and competences to create 
and develop an appropriate mix of actions to maintain the required level of functionalities of physical 
assets and achieve the assigned company objectives. Moreover, the maintenance function is 
operating in various industrial plants, facilities, infrastructures, different frameworks and contexts with 
different size, structure, objectives, specific constraints and influencing factors. Fig. 3 illustrates the 
Maintenance Function and the core framework as defined by CEN TC 319 Maintenance. 
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Fig. 3 The structure of the Maintenance function and core framework, CEN TC 319 

 
The importance of standards within maintenance is underpinned in (DIN and DKE, 2018), where they 
claim that standards and specifications are essential tools in the transition process maintenance is 
facing. Thus, the maintenance function must ensure that its own strategy, organization and 
management adapt to this transition. Standards and specifications can support this matter, as they 
contribute in regulating the cooperation between the various actors involved in maintenance, and 
provide a common understanding of terminology and the maintenance process. Fig. 4 presents an 
overview of advancements within maintenance standards in CEN TC 319 Maintenance.   

 

 
Fig. 4 CEN TC 319 Maintenance activities working groups 
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5. CONCLUDING REMARKS 
 
This article has provided an evaluation of maintenance and VCM in a new perspective. Traditionally, 
maintenance has been regarded as an unwanted cost and is not included in several value chain 
frameworks. Currently, smart maintenance and predictive maintenance can be seen as enablers for 
Industrie 4.0 and has proven to provide competitive advantages, as these maintenance 
methodologies are responsible for ensuring that CPS are kept efficient and that equipment provides 
the required function at any time. Further, both smart maintenance and predictive maintenance are 
dependent on big amounts of data to perform meaningful analytics. Thus, in terms of enhancing value 
chain performance, the article fills what seem to be a gap in the literature, by focusing and 
highlighting the need for developing and implementing maintenance indicators for measuring the 
utilization of product-usage data in the value chain. 
 
An overview of advancements within maintenance standards is given. Standards and specifications 
are essential tools in the transition process maintenance is facing, as they contribute in regulating the 
cooperation between various actors involved in maintenance, and provides a common understanding 
of terminology and the maintenance process. Development of the maintenance function is also 
described. 
 
Summarized, further research is needed to develop maintenance indicators, which can measure the 
utilization of product-usage data in the value chain. Research on how these indicators can be 
implemented, tested and evaluated is also proposed. Case studies on the importance of maintenance 
and maintenance indicators in modern value chains are also suggested for further work.   
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Abstract  Possessing an efficient production line relies 
heavily on the availability of the production equipment. 
Thus, to ensure that the required function for critical 
equipment is in compliance, and unplanned downtime is 
minimized, succeeding with the field of maintenance is 
essential for industrialists. With the emergence of advanced 
manufacturing processes, incorporating predictive main-
tenance capabilities is seen as a necessity. Another field 
of interest is how modern value chains can support the 
maintenance function in a company. Accessibility to data 
from processes, equipment and products have increased 
significantly with the introduction of sensors and Indus-
try 4.0 technologies. However, how to gather and utilize 
these data for enabling improved decision making within 
maintenance and value chain is still a challenge. Thus, the 
aim of this paper is to investigate on how maintenance 
and value chain data can collectively be used to improve 
value chain performance through prediction. The research 
approach includes both theoretical testing and industrial 
testing. The paper presents a novel concept for a predic-
tive maintenance platform, and an artificial neural network 
(ANN) model with sensor data input. Further, a case of a 

company that has chosen to apply the platform, with the 
implications and determinants of this decision, is also pro-
vided. Results show that the platform can be used as an 
entry-level solution to enable Industry 4.0 and sensor data 
based predictive maintenance.

Keywords  Predictive maintenance (PdM) platform · 
Industry 4.0 · Value chain performance · Anomaly 
detection · Artificial neural networks (ANN)

1  Introduction

Industry 4.0, predictive maintenance (PdM), and advanced 
manufacturing are examples on terms which have been 
prominent on industrialist’s agenda for the last years. Addi-
tionally, national and union initiatives, e.g., the European 
Union 7.5 billion EUR “Digital Europe Programme” [1], 
targeting the mentioned terms is witnessed worldwide, 
underpinning the importance of succeeding with the digi-
tal transformation. Industry 4.0, or Industrie 4.0, was first 
introduced at the Hannover Messe in 2011, a German indus-
trial fair, as an illustration for the new trend towards the 
networking of traditional industries [2], and is now seen as 
the fourth industrial revolution. Further, Industry 4.0 was 
included in the German “High-Tech Strategy 2020 Action 
Plan”. China initiated “Made in China 2025”, also called 
“China Manufacturing 2025”, which focused on accelerat-
ing development of intelligent manufacturing equipment and 
products, and advanced manufacturing process intelligence 
[2, 3]. Moreover, USA has “Advanced Manufacturing” as 
their strategic plan, aiming to develop and transit new manu-
facturing technologies, educate, train, and connect the manu-
facturing workforce, and, lastly, expand the capabilities of 
the domestic manufacturing supply chain [4].
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To successfully implement Industry 4.0, three key fea-
tures are seen as essential. These are prerequisites expected 
to be the reality in future production networks and are 
defined as three types of value chain integration. Com-
bined, they focus on how new technology can be utilized 
to improve the overall value chain, with expected benefits 
being higher sales thanks to a larger market, increased cus-
tomization, improved resource efficiency and productivity, 
and reduction of internal operating costs. The three types of 
integration are as follows [5–7].

	 (i)	 Horizontal integration as a basis for developing inter-
company value chains and networks;

	 (ii)	 Vertical integration of hierarchical subsystems to 
create flexible and reconfigurable manufacturing sys-
tems;

	(iii)	 Digital end-to-end engineering across the entire value 
chain of both the product and the associated manufac-
turing system.

The accessibility to data has increased significantly with 
the introduction of Industry 4.0 technologies, e.g., Internet 
of Things and Big Data, and the importance of competence 
on utilizing this data for gaining competitive advantages is 
underpinned by practitioners and theorists [8]. Examples of 
data-demanding technologies are cloud computing, artificial 
intelligence (AI) and PdM. Together with new smart tech-
nology, cloud computing is contributing to radically chang-
ing the manufacturing industry and reshaping enterprises 
worldwide. Cloud computing aims to offer on-demand com-
puting services and, for industrialists, access to business-
critical data and analytics will be essential for moving the 
focus from hindsight to foresight. Further on, cloud com-
puting can form intelligent factory networks who support 
and enhance the level of collaboration throughout the value 
chain [9]. AI is a technology under rapid development, and 
with a wide application area. For example, AI is seen as 
central for data-driven methods within Industry 4.0, and in 
the field of maintenance, a model for deep digital mainte-
nance with an AI module providing predictions of remain-
ing useful life (RUL) is proposed [10]. AI applications for 
failure diagnosis, failure prognosis and lifetime estimation 
of wind turbines are also showing promising results [11, 12]. 
Another field delivering valuable opportunities is artificial 
neural network (ANN), which is an encouraging method for 
fault detection, diagnosis, prognosis, prediction, and classi-
fication. ANN models emulate a biological neural network, 
i.e., the central nervous systems of animals, particularly 
the brain [13, 14]. These models can deal with complex 
problems without sophisticated and specialized knowledge, 
provide an effective classification technique, and deal with 

nonlinear systems and low operational response time after 
the learning phase [15]. ANN models have been applied to 
a wide range of fields [12–17], but it is still of interest to 
explore ANN models into PdM and especially with sensor 
data as the main input.

For PdM, which aims to predict when an equipment fail-
ure might occur [14], there has been conducted numerous 
studies and the promised cost savings with successful imple-
mentation of PdM have been significant [10]. More develop-
ment of PdM is expected, but currently, PdM seems to fall 
short of its possibilities in order to deliver what it promises 
[18, 19]. In general, a common challenge for industrialists 
to realize the promised advantages with PdM, is connected 
to manage big data and the capability to extract and utilize 
relevant data from multiple data sources [18, 20]. The found-
ing bricks in accessing data and connecting the physical and 
digital world are sensors, and, as a result, they are one of the 
most critical factors for succeeding with Industry 4.0 and 
PdM [14, 19, 21]. However, for sensors and data to provide 
value, analyses and competence within data contextualiza-
tion are crucial for enabling data-driven decision making 
[7]. Contextual data focus on unlocking organizational and 
technological data silos, and aim to integrate and make data 
from a range of sources available such as real-time streams 
of sensor data from equipment and process, historic behav-
ioral data from historians, and information from the third 
parties on external factors [22]. In Ref. [22], they conducted 
a survey with 160 decision makers in IT and operation roles 
in global industrial companies, which showed that over 80% 
of the firms recognized the importance of industrial data in 
driving their business decisions and innovation. On the other 
hand, 83% experienced challenges with utilizing the data 
for delivering insights across their organization. A key find-
ing from the survey, was that data contextualization will be 
crucial for succeeding with this challenge [22]. This is also 
supported by Ref. [7], where deep convergence and compre-
hensive connections are presented as two out of six technical 
features for smart factory production systems.

As shown in Refs. [23, 24], there exists numerous 
suppliers who provide sensors, data analytical services 
and other digital solutions. Additionally, in Ref. [25] 
they conducted a review on industrial wireless networks 
within Industry 4.0, showing the large number of appli-
cations. However, succeeding with contextualizing and 
utilizing data for enabling data-driven decision making 
within maintenance and value chain remains a challenge 
for many [7, 24], and design of successful applications is 
still lacking [25, 26]. To provide an Industry 4.0 vision for 
practitioners and academics to gather on, reference archi-
tectures such as the German reference architectural model 
Industrie 4.0 (RAMI 4.0) [27] and the China intelligent 
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manufacturing system architecture (IMSA) [28] can be 
used. These reference architectures can become the back-
bone for full realization of Industry 4.0 if their maturity 
and sustainability are increased, but currently they are not 
completely suitable to support implementation of Industry 
4.0 technologies, mainly due to their high level of abstrac-
tion and/or lack of detailed documentation [29, 30]. The 
need for more entry-level solutions for building up digi-
tal capabilities is required for successful implementation. 
Thus, a gap has been witnessed between the literature 
point of view, and the lack of empirical implementation 
experiences in practice. Based on this, the overall research 
question for this paper is: “How to develop an entry-level 
solution to enable Industry 4.0 and sensor data based pre-
dictive maintenance?”. This paper investigates on how 
maintenance and value chain data can collectively be used 
to improve value chain performance through prediction, 
and presents a novel concept for a PdM platform and an 
ANN model using sensor data as input. A case study on a 
company that has chosen to apply the PdM platform and 
the ANN model, with the implications and determinants 
of this decision, is also given. Research outcomes are 
expected to provide concrete suggestions regarding how 
such a PdM platform and ANN model can be constructed, 
implemented, and give examples of benefits. Solution for 
scaling and application to other companies and processes 
is also discussed.

The structure of this article is as follows. Section 2 dis-
cusses how Industry 4.0 is changing the view on mainte-
nance and value chain, and presents the novel concept for a 
PdM platform. Section 3 provides the case study and ANN 
model, and Section 4 discusses the case study findings. 
Lastly, Section 5 concludes the paper.

2 � Literature background

A definition of Industry 4.0 is presented in Ref. [6] as: 
“Industry 4.0 is a collective term for technologies and con-
cepts of value chain organization. Within the modular struc-
tured smart factories of Industry 4.0, cyber-physical system 
(CPS) monitor physical processes, create a virtual copy of 
the physical world and make decentralized decisions. Over 
the internet of things (IoT), CPS communicates and cooper-
ates with each other and humans in real-time. Via the inter-
net of services (IoS), both internal and cross-organizational 
services are offered and utilized by participants of the value 
chain.” Industry 4.0 has been on everyone’s tongue during 
the last years, and industrialists have been expecting substan-
tial gains in productivity, significantly higher levels of auto-
mation, and drastic improvements in resource efficiency by 
putting Industry 4.0 on their agenda [31]. However, reaping 

the promised Industry 4.0 benefits is challenging [31]. The 
following two sections present how developments within 
the field of maintenance and value chain can contribute in 
overcoming this challenge.

2.1 � Predictive maintenance

The introduction of Industry 4.0, new technology and 
demands within the industry, also requires a significant 
increase in the level of maintenance [8], and, as a result, 
PdM has been highlighted. The work on PdM has contrib-
uted in changing the traditional view on maintenance, from 
being a costly unwanted necessity into seeing maintenance 
as a competitive advantage. The two main objectives for 
industrial maintenance are to deliver a high availability 
of production equipment and low maintenance costs [32], 
and PdM is expected to have a significant impact on these 
objectives with the introduction of Industry 4 technologies. 
PdM is also showing its importance to lean manufactur-
ing and total productive maintenance (TPM). Lean manu-
facturing seeks to improve on productivity, quality, focus 
on the elimination of waste and to be customer oriented, 
and share similar goals as Industry 4.0 [33, 34]. TPM also 
includes the goal of elimination of waste, reduces costs and 
downtime through an improved maintenance function [35]. 
For both lean manufacturing and TPM, PdM can provide 
several ways of performance improvements, e.g., through 
better predictions reducing unnecessary maintenance, such 
as early replacement of components (identifying RUL) or 
increased production downtime due to equipment failures. 
PdM can also improve maintenance plans and procedures 
[36]. An overview of PdM system architectures, purposes 
and approaches is given in Ref. [37], and a definition of 
PdM is provided by EN 13306:2017 [38]: “Condition-based 
maintenance carried out following a forecast derived from 
repeated analysis or known characteristics and evaluation of 
the significant parameters of the degradation of the item.” 
The standard EN 13306:2017 [38] classifies PdM under the 
umbrella of preventive maintenance and condition-based 
maintenance (CBM), but PdM goes beyond CBM by add-
ing a forecast to the maintenance being carried out.

PdM aims to maximize the life of equipment and reduce 
both planned and unplanned downtime, and, as a result, 
minimize maintenance costs. This is possible by analyzing 
data collected from components and equipment and using 
those analyzes to predict when a part will fail, enabling to 
perform maintenance actions at the right time. In terms of 
Industry 4.0, PdM is claimed to be central for asset utiliza-
tion, services and after-sales [10]. For asset utilization, PdM 
is expected to decrease total machine downtime from 30% to 
50%, and extend operation lifetime from 20% to 40% [10]. 
PdM combined with remote maintenance for services and 
aftersales, is assumed to reduce maintenance cost from 10% 
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to 40% [10]. Thus, the expected outcomes are significant, 
but several studies show that PdM seems to fall short of its 
possibilities in order to deliver what it promises [18, 39]. In 
fact, the added value of stand-alone PdM machine projects 
is often lower than asserted, as companies have extensive 
experience with wear and tear on their machines. Thus, 
there is a need for an overall concept for using digitization 
in an advantageous and holistic manner [18]. This is also 
supported by a Sino-German working group on PdM for 
Industry 4.0 [3, 40], where they conclude that the increasing 
flexibility and heterogeneity of future manufacturing sys-
tems, requires a systematic approach for PdM with a modu-
lar architecture. In more detail, the architecture shall enable 
easy adding or enhancing functional components for sens-
ing, condition status assessment, diagnosis, and prediction 
[3, 40]. In addition to these functional components, it should 
be a flexible deployment of findings to different resources, 
e.g., data from a sensor can be visualized both in a dash-
board at the equipment and used in a cloud center for con-
ducting analyses with other contextual data [3, 40]. Figure 1 
shows the overall structure for PdM, which is considered to 
be settled in Ref. [3], and further elaborated in Ref. [40].

The PdM structure presented in Ref. [3], consists of seven 
interconnected elements. First, “Sensing” focuses on sensor 
modality and strategy for sensor placement. The selection of 
sensor technology and sensor placement are essential tasks 
for creating the most representative picture of asset condi-
tion, i.e., asset health. Further, sensing techniques can be 
categorized into direct sensing (measuring actual quantities 
directly indicating asset condition, e.g., toolmaker’s micro-
scope) and indirect sensing (measuring symptoms caused 
by degradation or a defect, e.g., change in vibration or tem-
perature). Indirect sensing methods are often cheaper, less 

complex, and enable continuous measurement without inter-
rupting operation [40]. Second, “Condition status assess-
ment” is about assessing the collected data to determine 
asset health state, which creates a foundation for determin-
ing the current status on asset condition, i.e., an asset health 
indicator. The indicator can be visualized in the form of 
a traffic light, providing a fast and simple overview. Asset 
condition status on a whole system, or comprehensive equip-
ment, can be given by aggregating the condition status of its 
functional components [40]. Third, “Fault diagnosis” (which 
can be divided into fault detection, fault location, fault isola-
tion, and fault recovery) and “Fault prediction” (predicting 
the fault and RUL of an asset or a system) are both chal-
lenging tasks and consist of several possible methods based 
on analytical models, qualitative empirical knowledge, and 
data-driven methods. The premise of RUL prediction is the 
definition and identification of failure modes, and RUL of 
a manufacturing system can be defined as [41]: “The dura-
tion of the stable production of high-quality products.” Here, 
ANN can be seen as an artificial intelligence technique for 
RUL prediction [42]. Together, “Fault diagnosis” and “Fault 
prediction” are coherent elements which provide a basis for 
the optimum “Repair measures”, element four, and time for 
executing the “Maintenance actions”, element five [40]. 
The last element, “Maintenance management” is where the 
information from the other elements are used for decision 
making in terms of developing an economical maintenance 
schedule, cost-effective maintenance strategy, and resource 
allocation (people, spare parts, tools, and time). Further, a 
linkage between maintenance management and operation 
management should also be present, as data from operations 
can improve PdM capabilities, but PdM can also support 
rapid and data-driven decision making across operations 
[40].

Fig. 1   PdM structure with its main elements, redrawn from  Ref. [3]
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2.2 � Digitalized and integrated value chain

The value chain concept was first introduced by Michael E. 
Porter in 1985, and the term was defined as [43]: “A value 
chain is a set of activities that a firm operating in a specific 
industry performs in order to deliver a valuable product or 
service for the market.” The value chain concept was origi-
nally aiming at identifying value activities, as these are the 
building blocks of competitive advantage, and focusing on 
these activities can be used to define improvement needs 
or opportunities for companies [43]. Each value activity 
consists of two components, namely, a physical and an 
information processing component. The former includes 
the physical tasks required to fulfill the activity, and the 
latter are steps required to capture, manipulate, and chan-
nel data necessary to perform the activity [43, 44]. Porter 
identified two types of activities, namely, primary and sup-
port activities. First, the primary activities are inbound 
logistics, operations, outbound logistics, marketing and 
sales, and, lastly, service. These are defined as activities 
within the main value creation process for a traditional 
and general manufacturer. Second, the support activi-
ties are procurement, technology development, human 
resource management, and firm infrastructure. The role for 
these activities is to create a foundation for enabling and 
improving the function of primary activities [43], meaning 
that support activities also need to pursue technological 
advancements.

With the introduction of Industry 4.0 and new technol-
ogy, many industries have reshaped their value chain, and 
focused on higher information content in both products and 
processes [43, 45]. For vertical integration, the importance 
of integrating the various information subsystems at differ-
ent levels in the company is underpinned [6]. This is also 
discussed in Ref. [7], where it is claimed to be essential 

with: “vertical integration of actuator and sensor signals 
across different levels right up to the enterprise resource 
planning (ERP) level to enable a flexible and reconfigur-
able manufacturing system.” Further, horizontal integra-
tion should focus on inter-corporation collaboration where 
information and material can flow fluently, enabling new 
value networks and business models [6, 7]. The end-to-end 
integration across the entire value chain will include cross-
linking of stakeholders, products and equipment, from raw 
material acquisition to end of life [6].

Summarized, with the advancements in technology, 
increased level of competition, more demanding custom-
ers focus on sustainable production, the need for develop-
ment goes for both the field of maintenance and value chain, 
and, additionally, the integration between the two fields. In 
Fig. 2, three conceptual stages with coherent elements seen 
as important in succeeding when moving to a digitalized and 
integrated value chain are proposed.

The proposed three conceptual stages are also defined 
into hindsight, insight, and foresight, describing the way of 
working. Stage 1 “Connected”, targets to create a data foun-
dation from raw materials, equipment, products and process, 
as conceptualized in  Ref. [46]. At this stage, the way of 
working is focused on hindsight. Hence, a reactive approach 
is presented and the ability of understanding the whys, hows 
and potential improvements are only obvious after an event 
has occurred. Stage 1 creates the foundation for data-driven 
decision making in stage 2, “Balanced”. Here, data are uti-
lized to provide insight, and an accurate and deep under-
standing of the current situation. Thus, setup of machines 
and process can be balanced based on need and variance is 
managed to keep processes lean and stable. For example, in 
Ref. [47], the concept of a balanced maintenance program is 
presented, with anomaly detection and machine load as criti-
cal factors for deciding maintenance actions. Lastly, stage 

Fig. 2   Three conceptual stages towards a digitalized and integrated value chain
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3 “Predictive”, aims at predicting future maintenance need, 
setup and design of both value chain process and final prod-
ucts. Possessing contextualized value chain and maintenance 
data with predictive capabilities, enables decision making 
and working in a foresight manner. For example, Ref. [48] 
presents a method for combining knowledge-driven and 
data-driven anomaly detection, fault recognition and root 
cause analysis (RCA) for PdM.

The proposed three conceptual stages can also be seen 
up against the six stages in the development towards smart 
maintenance presented in Ref. [10], which evaluate the 
degree of succession of maturity stages within Industry 4.0.

2.3 � Predictive maintenance platform

In terms of platforms within digitalization and Industry 
4.0, there is a lack of unified use of terminology and defi-
nitions. Some examples on use of terminology are sensor 
platform [49, 50], industrial internet of things (IIoT) plat-
form [51], Industry 4.0 system/platform [52], PdM plat-
form [53–55], smart manufacturing system [56], and digi-
tal platform [57]. The research institute Mercator Institute 
for China Studies published a report on the development 
within digital platforms in China. Here, they claim that 
for China, digital platforms are a crucial tool to realize its 
goal of becoming an industrial superpower by 2025, and 
present that [57]: “digital platforms in the manufacturing 
sector are considered crucial to upgrade industry, improve 
productivity, optimize resource allocation and increase 
employment”. Further, the same report also presents a 
working definition of a digital industrial platform [57]: 
“a digital industrial platform, often also referred to as an 
industrial internet of things (IIoT) platform, is essential for 
linking machines and devices in a smart, connected factory 
with applications (typically on a cloud). The platform col-
lects, stores, processes and delivers data and is the basis 
for monitoring manufacturing processes, for predictive and 
automated maintenance, digital integration of value chains 
or customization of design and production.” This working 
definition underpins the importance of PdM and digital 
integration of value chains for succeeding with Industry 
4.0, which also is highlighted in German reports [5, 39, 40, 
58]. However, and another similarity for China and Ger-
many, it is challenging for industrialists to reap the prom-
ised benefits connected to PdM. This is also seen in small 
and medium-sized enterprises (SMEs) in China, where the 
phrase “not daring to use it, not being able to use it, can’t 
be bothered to use it” has been used to describe SMEs gen-
eral view on implementing data-based solutions like PdM 
[57]. For SMEs in Europe and USA, a similar situation is 
claimed to be present and the importance of developing 
special approaches to introduce and apply Industry 4.0 
technologies is highlighted [59, 60]. As a contribution in 

this regard, the authors have developed and proposed a 
novel concept for a PdM platform, presented in Fig. 3.

There is no unified way for how a digital platform or 
PdM platform should be designed. Although, as an inspi-
ration, according to Refs. [59, 61], an IoT architecture 
includes four main layers.

	 (i)	 Sensing layer—is integrated with available hardware 
objects to sense the statuses of things, e.g., a sensor 
connected to a machine;

	 (ii)	 Network layer—is the infrastructure for sharing and 
exchanging data and enables wireless or wired con-
nection between the things;

	(iii)	 Service layer—is to create and manage services 
required by users or applications;

	(iv)	 Interface layer—is the interaction methods with users 
or applications.

2.4 � Novel concept for a predictive maintenance 
platform

Advances in platforms for Industry 4.0 have made good pro-
gress for generic models. For example, the German RAMI 
4.0 has presented the main layers for a holistic approach to 
Industry 4.0, and serves as an orientation framework for the 
stakeholders and classification of applications in the indus-
trial sector [27]. On the other hand, more in-depth detailed 
concepts, and industrial implementation experiences are 
needed to provide successful and scalable solutions for Indus-
try 4.0 and PdM. One of the research objectives for this paper 
is to provide concrete suggestions regarding how a PdM plat-
form can be constructed, implemented, and give examples of 
benefits. This includes discussing solutions for scaling and 
usability. The purpose of the PdM platform is to serve as an 
entry-level solution to enable Industry 4.0 and sensor data 
based PdM. Figure 3 presents a novel concept for a PdM 
platform, which includes elements from the PdM structure 
presented in Refs. [3, 40], and a value chain perspective.

The first step in the PdM platform is determining the 
raw data collection. Selection of sensor type and placement 
is based on a thorough analysis, e.g., failure mode effects 
(and criticality) analysis (FME(C)A) or failure mode and 
symptoms analysis (FMSA), as presented in the standard 
ISO 17359:2018 [62]. Additionally, to support this selection 
process, sensor management guidelines, as proposed in Ref. 
[46], can be used. Performing consequence classification, as 
described in the standard NORSOK Z-008 [63], as an ini-
tial step for determining what assets to be prioritized to the 
PdM platform is also suggested. For ensuring ease of imple-
mentation and bringing costs down, the sensors are battery 
powered, wireless, and measure physical data, e.g., vibra-
tion, temperature, pressure, flow or level, which is digitized 
at sensor level and locally transported to an IIoT gateway 
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by short range radio connection (ISM 868/915 MHz or 2.4 
GHz). The IIoT gateway utilizes 4G/5G cellular connection, 
ethernet connection or a combination to deliver the sensor 
data (using MQTT) to the IIoT cloud for further processing. 
The IIoT gateway can also act as an edge device and relay 
messages directly back to other local devices, reducing use 
of bandwidth.

In the second step, the raw data have arrived to the IIoT 
cloud and are processed, labeled, stored, and, if desirable, 
pushed to other clouds through API. Here, technical con-
dition analysis combines the sensor data, historical data, 
and previous experience to qualitatively and manually set 
alarm limits. The sensor data and alarm limit thresholds are 
monitored by computer algorithms, which immediately act 
if limits are breached or anomalies detected. Thus, anomaly 
detection, which is further described in the standard ISO 
13379-1:2012 [64], is the initial form of prediction and pro-
vides the maintenance request. More advanced algorithms 
and modules based on AI, such as ANN models, and gener-
ating suggestions for auto-alarms and calculations of RUL, 
can be added when more experience is gained, and contex-
tualized data are available. Further, for fault diagnosis, the 
FME(C)A and/or FMSA can together with an RCA form a 
qualitative approach to pinpoint possible repair measures. A 
quantitative approach to fault diagnosis with ANN models 
and other data-driven methods can also be added on a later 
stage.

Step three is where the triggered alarms, maintenance 
request and repair measures are presented to the user. This 
can be in the form of an alarm pushed by, depending on 
degree of importance, electronic mail, text message, or 
dashboard with further integration, through an application 

programming interface (API), to e.g., an enterprise asset 
management (EAM) system.

Lastly, step four concerns a cost-benefit selection of 
repair measures, planning and scheduling maintenance 
execution. Maintenance management and operation man-
agement must be integrated to balance decisions involving 
strategic investments, production plan, quality control and 
risk management, with the overall goal of improving value 
chain performance. For this matter, the functional connec-
tions between maintenance management and manufactur-
ing operations management presented in the standard IEC 
62264-1:2013 [65] can be used as guidelines. For decision-
making, contextualized data are prerequisites, as data from 
operations can improve PdM capabilities, but maintenance 
data can also support decisions across operations, e.g., by 
indicating utilization of machine capacity and if the required 
function is available when desired. Here, sensor data can be 
integrated through API between, e.g., the EAM system and 
manufacturing execution system (MES). Registration of the 
executed maintenance action finalizes this step and serves 
as input for improving the technical condition analysis, raw 
data collection, and enhancing anomaly detection and ANN 
models understanding of asset behavior.

3 � Case study

To discuss the technological development within mainte-
nance and value chain, and contribute with empirical imple-
mentation experiences within these fields, a case from Talgø 
MøreTre AS is studied. This company has chosen to apply 

Fig. 3   Novel concept for a PdM platform
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a PdM platform to their production process. The case study 
is designed to investigate potential verification of the theo-
retical concept for the PdM platform, by generating an in-
depth, multi-faceted understanding of the PdM platform in 
an industrial setting. It is also investigated how an ANN 
model can utilize the obtained sensor data, including confu-
sion matrix, loss function, and accuracy rate developed with 
the software TensorFlow. The case study was proceeded 
with the following steps.

	 (i)	 Provide an overview of the main steps in the value 
chain for the case company and select the most critical 
asset to be evaluated;

	 (ii)	 Determine raw data collection and define sensor tech-
nology and placement through an FMSA for the criti-
cal asset;

	(iii)	 Implementation of the PdM platform and development 
of an ANN model using sensor data as main input;

	(iv)	 Evaluation of case study findings and usability of the 
results for decision support.

The next three sections describe the case study and com-
pany, present the development of the ANN model and case 
study findings.

3.1 � Case study description

Talgø MøreTre AS is an SME located in Surnadal munici-
pality in Norway and is a lumber producer which has estab-
lished itself as a significant player in the Norwegian lumber 
market. Their products are mainly within terraces and clad-
ding, as well as finished elements, and lumber is delivered 
for approximately 58.9 million USD annually (2019) to 
Norwegian building material stores and other construction 
industries.

Since 2014 Talgø MøreTre AS, with its 70 employees, 
has increased their production capacity from 20 000 m3 to 80 
000 m3 of lumber running through their value chain. Simul-
taneously with this increasement, a continuous challenge of 
ensuring stable technical condition of the production equip-
ment occurred. The technical condition of a splitting saw 
was highlighted as a major concern by the operators, as it 

was the bottle neck in their value chain. Figure 4 presents a 
simplified overview of the main steps in the value chain at 
Talgø MøreTre AS.

The first step in the value chain is transportation of lum-
ber into the production facility at Talgø MøreTre AS. Sec-
ond, the lumber is fed through the splitting saw for dimen-
sioning, which is the initial lumber process, i.e., lumber 
process 1. Third, the lumber is run through a planer, for 
surface and thickness adjustments, i.e., lumber process 2. 
Fourth, post-processing includes sorting, preservation of 
the lumber with a variety of treatment solutions, and pack-
ing. Lastly, the finished products are transported out to the 
customers. With the mentioned overall increase in produc-
tion capacity, the splitting saw needs to be operated over its 
design capacity. Additionally, the splitting saw is without 
external cooling, and, as a result, managing overheating of 
the saw blade and saw wheels has been a major challenge. 
High temperature increase on the saw blade results in loss of 
saw blade tension, which leads to lack of quality and rejected 
products. In addition to loss of saw blade tension, the 450 
kg saw wheels can also be overheated when the splitting 
saw is under heavy load and the saw blades are worn. Other 
damages of the system are also a risk with continued tem-
perature increasement. Replacing the saw blade and letting 
the saw wheels cool down result in approximately two hours 
of unplanned downtime. Figure 5 provides a picture of the 
splitting saw.

As the splitting saw was operated over its design capacity 
and no data measurements, e.g., temperature, was available 
directly from the machine, calculating the optimal opera-
tion speed could be categorized as guesswork performed, 
individually, by the 14 operators. Thus, to avoid high costs 
connected to unplanned downtime and maintenance repairs, 
the operating speed for the splitting saw was kept well down 
on the safe side. On the other hand, this strategy resulted in 
splitting saw becoming a major bottleneck, leading to chal-
lenges in meeting the increasing customer demand.

To overcome the challenges with the splitting saw, the 
management team at Talgø MøreTre AS discussed investing 
in a new splitting saw, a cost of approximately 400 000 USD. 
However, they decided to first investigate on using wireless 
sensors for condition monitoring (CM), as this potentially 

Fig. 4   Simplified overview of the main steps in the value chain at Talgø MøreTre AS
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could lead to insight into optimal operation speed. The 
selected solution was to implement a PdM platform, as pre-
sented in Fig. 3, with a wireless infrared (IR) temperature 
sensor, vibration sensor, and power usage sensor as a basis 
for the raw data collection. The IR sensor was placed on the 
chassis of the splitting saw for measurement of the saw blade 
surface temperature. The vibration sensor and power usage 
sensor were placed on the 55 kW electrical engine running 
the splitting saw. Table 1 shows the simplified FMSA for the 
critical subparts of the splitting saw.

Measurements from the sensors, every two minutes, are 
sent via radiofrequency 868 MHz to a gateway, and stored in 
the IIoT cloud. Further, the measurements are presented as a 
live temperature graph in a web-based dashboard available 
for the operators through tablets and mobile phones. After 
gaining operational experience, sensor data, and insight on 

the saw blade surface temperature from the IR sensor, an 
alarm limit was set when the surface temperature reached 
48 °C. For the operators, this alarm limit provided an early 
warning, i.e., anomaly detection, to reduce operation speed, 
well in time to avoid overheating the splitting saw, and to 
start planning a maintenance action of changing the saw 
blade before failure and in line with the production plan.

3.2 � ANN model with sensor data input

To establish the normal behavior ANN model and make pre-
dictions on saw blade temperature and splitting saw opera-
tion, the variables that can affect this must be taken into 
consideration to build an accurate model. Accordingly, the 
sensor data providing input for the model are the IR sensor 
(Sensor A) measuring saw blade temperature, power usage 
(current measurement form Sensor B), vibration sensor with 
temperature measurement (Sensor C). Table 2 shows the 
parameters selected to establish the ANN model with its 
input and outputs.

The data collection and preprocess for the ANN model 
emphasize the connection between the operation of the saw 
blade and the saw blade surface temperature, which is the 
most critical part. The upper limit of temperature alarm  
48 °C is further used in defining the data in use. The artifi-
cially constructed forward neural network is used to classify 
and recognize the state of the saw blade. Table 3 shows the 
raw datasets used for the ANN model [66].

Next, the temperature data, with total dataset being 8 
360, were recorded in the csv file for the column with Â°C 
IR avg and the temperature was set to less than 48 °C to 
0, and vice versa. Further, the program TensorFlow was 
used and LabelEncoder selected to code the data labeled, 

Fig. 5   Splitting saw at Talgø MøreTre AS

Table 1   Simplified FMSA for the critical subparts of the splitting saw machine

Subpart Function Failure mode Effect Failure symptom Recommended sensor for CM

Saw blade Saw through wood Loss of saw 
blade ten-
sion

Lack of 
quality and 
rejected 
products

Overheated and/or worn saw blade IR sensor for measuring surface blade 
temperature

Saw wheel Run saw blade Overheating Saw wheel 
malfunction 
and further 
damage

Overheating due to heavy load 
and/or worn saw blade

Vibration sensor and power usage sensor 
on the electrical engine

Table 2   Input and outputs of ANN model

Model output Input

Blade temperature (Sensor A) Blade temperature (t‒1, Sensor A)
Current (t, Sensor B)
Vibration acceleration RMS g (t, 

Sensor C)
Sensor C temperature (t)
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and MinMaxScaler normalized the data. Figure 6 shows an 
example of normalized data, randomly selected 75% data as 
training set and 25% data (2 090 data) as testing set.

The model =Sequential() is used to build a forward 
ANN model and the structure of ANN model is shown 
in Fig. 7.

Dropout technology is added to the network to prevent 
network over-fitting problems, and the activation function 
is set to sigmoid. Moreover, the cross entropy of the two 
classifications is used as the loss function, the Adam opti-
mizer, with accuracy and confusion matrix are used in 
the model to evaluate the network classification. The 25% 
dataset is used as the validation set to get the loss function. 
The accuracy and confusion matrix results are shown in 
Figs. 8 and 9.

Through the results of the loss function and accuracy rate, 
it can be concluded that the classification accuracy rate of 
the ANN model is greater than 0.98, and the accuracy of the 
model recognition can also be seen intuitively in the confu-
sion matrix, i.e., the accuracy of the saw blade state can be 
achieved through the presented ANN model.

3.3 � Case study findings

After implementing the PdM platform, improvements in 
performance, safety, and maintenance costs occurred. In 
terms of performance, case results showed a 40% increase 
in capacity for the splitting saw. Along with this increase-
ment, the production equipment next in the value chain, the 
planer, was now sufficiently fed. Thus, the splitting saw was 
no longer a bottleneck, and satisfactory performance in these 

Table 3   Raw datasets [66]

Avg High Low Â°C IR avg Â°C IR high Â°C IR low Sample qty rssi avg rssi high rssi low

0.274 0.891 0 24.2 28.6 22.7 30 69 − 65.5 − 106.0
0 0 − 1 23.0 72.0 − 1.0 38 − 86 − 79.5 − 102.5
231 273 206 25.8 30.7 21.5 14 − 78 − 75.5 − 82.5
0.002 0.007 0 24.2 25.5 22.8 31 − 67 − 65.5 − 67.5
‒1 − 1 − 1 − 1.0 − 1.0 − 1.0 28 − 84 − 82.0 − 94.0
206 207 205 21.3 21.5 21.1 15 − 76 − 76.0 − 76.5
0.003 0.007 0 25.6 25.9 25.5 30 − 66 − 65.5 − 67.5

Fig. 6   Data normalization conducted through the software Tensor-
Flow

Fig. 7   Structure of ANN model developed with the software TensorFlow
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two value chain steps could be achieved. Within safety, the 
reduction of saw blades failures improved the level of safety 
for the operators, as these failures could lead to metal frag-
ments being ejected. For maintenance costs, moving from 
the strategy of run-to-failure on the saw blades, with a high 
degree of unplanned downtime, over to a more predictive 
strategy and enabling scheduling maintenance actions to 
planned stops, resulted in large maintenance cost savings 
and a high return on investment. The ANN model shows 
promising results for classification and recognizing the state 
of the saw blade, but more work is needed to develop predic-
tive capabilities.

In addition to the mentioned improvements, a change in 
the way of working also developed. For the operators, the 
sensor data provided better understanding of technical con-
dition of the splitting saw, and how maintenance actions 
and changes in machine load could affect this. Moreover, 
the degree of ownership also increased for the operators, as 
their actions could be seen as changes in the data and further 

connected to the mentioned improvements. For the mainte-
nance management team, the successful application on the 
splitting saw provided motivation for scaling the solution to 
other production equipment. Thus, as a test, wireless sensors 
with combined vibration and temperature measurement was 
mounted inside the planer to gather data from the bearings 
connected to the spindle, as spindle failures were connected 
to high costs with unplanned downtime and maintenance 
repairs. The sensor data were intended to provide anomaly 
detection for the bearings, as RCA from previous spindle 
failures had shown that worn bearings often was the initiat-
ing event. After a test period, the data foundation was suffi-
cient to enable anomaly detection and give an early warning 
for a maintenance action of changing the bearings.

4 � Discussion of case study findings

The case study findings show that, prior to the implementa-
tion of the PdM platform, the view on Industry 4.0 tech-
nologies and PdM in Talgø MøreTre AS was quite similar 
as in most of the other SMEs in China, Europe, and USA. 
Hence, a general skepticism, which can be connected to lack 
of competence on new technology and its implementation, 
economic resources, and willingness to invest in new tech-
nology, and insufficient understanding for how such tech-
nologies can be utilized to improve value chain performance. 
As discussed in Ref. [6], this view is also present in other 
Norwegian SMEs, especially for companies with low level 
of production repetitiveness.

The novel concept for a PdM platform can be seen as a 
contribution to theory by bridging the gap between generic 
overall PdM structures, e.g., as described in Refs. [3, 40], 
and implementation of a PdM solution in an industrial set-
ting. The PdM platform presents examples on technologies 

Fig. 8   Loss function and accuracy created through the software TensorFlow

Fig. 9   Confusion matrix built in the software TensorFlow
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to be used, and relevant integrations to other systems. Sug-
gestions on standards concerning methods, e.g., FME(C)A, 
FMSA, and anomaly detection, relevant for implementation 
and use of the PdM platform is given to aid the users. For 
Talgø MøreTre AS, a simplified FMSA was conducted to 
support sensor placement and selection of sensor technol-
ogy, utilizing the extensive experience on the value chain 
and its bottleneck, the splitting saw. In terms of choosing 
method for fault prediction, anomaly detection was the natu-
ral choice for Talgø MøreTre AS, as an early warning on a 
well-known symptom for failure provided sufficient time for 
making adjustments and planning a maintenance action. In 
addition, the ANN model shows the opportunities of utiliz-
ing sensor data to a greater extent, and its position within 
PdM. The alternative of other quantitative approaches, e.g., 
RUL can be seen as a balance between cost and value. This 
trade-off can be linked to findings in Ref. [18], where it is 
claimed that the added value of stand-alone PdM machine 
projects is often lower than expected, as companies have 
extensive experience with wear and tear on their machines.

In the PdM platform, a value chain perspective is included 
to underpin the importance of focusing on the linkage and 
integration between maintenance and operation. Further, by 
bringing in this perspective and seeing the bigger picture, 
utilizing contextualized data and making decisions with the 
overall goal of improving value chain performance is high-
lighted. This is in line with Ref. [18], where the need for 
using digitization in an advantageous and holistic manner 
is presented, and the results in Ref. [22], showing that suc-
ceeding with data contextualization is crucial for delivering 
insights across the organization and for enabling data-driven 
decision making. For Talgø MøreTre AS, the three stages 
in Fig. 2 can be used to present their transition into pos-
sessing a more integrated and digitalized value chain. From 
initially being at “Stage 0”, to connecting sensors on the 
splitting saw and planer in Stage 1, into enabling anomaly 
detection in Stage 2, and predicting future maintenance need 
and planning this along with the production plan in Stage 
3. For bigger companies with a more complex value chain, 
data from raw materials, environment, products, and process 
can be included in Stage 1 to provide a more comprehensive 
context for supporting data-driven decision making.

For operators at Talgø MøreTre AS, the implementation 
of the PdM platform resulted in increased ownership and 
understanding of how their actions affect the value chain. 
Moving from decisions based on guesswork over to data, 
enabled the operators to perform their job more efficiently. 
This can be seen up against Ref. [27], where the importance 
of considering how actions of human actors are taken into 
account in a PdM system is highlighted, and research on 
Operator 4.0, e.g., in Ref. [67], where it was investigated 
on how Industry 4.0 technologies would  affect and set new 

requirements for operators working in an Industry 4.0 envi-
ronment. The case study findings underpin the potential ben-
efit of providing improved decision support for operators, as 
presented in Ref. [67], and can be seen as proof of concept 
on a sensor-based feedback system.

After implementation of the PdM platform, the mainte-
nance management team at Talgø MøreTre AS quickly real-
ized its potential and started looking for scaling opportuni-
ties. This is in line with Ref. [40], where the importance of 
a PdM structure being modular and scalable, and providing 
minimal configuration effort, is highlighted. Additionally, 
in terms of possibilities with Industry 4.0 technologies, 
the PdM platform provided an eye opener for Talgø Møre-
Tre AS. As discussed in Ref. [6], this can be seen as an 
approach needed to initiate an Industry 4.0 journey. Further, 
the importance of a company or industry specific approach 
to reap the opportunities and benefits from Industry 4.0 is 
underpinned by Ref. [6]. As a contribution for this matter, a 
generalized approach for initiating a PdM platform is given 
in Fig. 10. Here, consequence classification creates a foun-
dation and overview of critical assets to pursue a PdM strat-
egy, performing FME(C)A and/or FMSA, along with PdM 
platform implementation, results in a defined selection of 
sensor technology and placement, and a scalable solution for 
enabling expansion and gaining improvements throughout 
the value chain.

5 � Conclusions, limitations and further research

This paper has discussed the development, and need for inte-
gration, within the fields of maintenance and value chain along 
with the introduction of Industry 4.0. As a contribution for this 
matter, the paper presents a novel concept for a PdM platform 
and an ANN model, and a case study at Talgø MøreTre AS, a 
Norwegian SME, providing empirical implementation expe-
rience in an industrial setting. Case study shows that, with 
the implementation of the PdM platform, Talgø MøreTre AS 
moved from a firefighting maintenance strategy, into using 
contextualized data with predictive capabilities for enabling 
maintenance actions to be planned before failure and in line 
with the production plan. Sensor data available to the operators 
provided better understanding and competence on parameters 
affecting technical condition of the production equipment, and, 
as a result, increased the production capacity to a level that 
investments in new equipment could be postponed. This shows 
that the PdM platform can be used as an entry-level solution 
to enable Industry 4.0 and sensor data based PdM. The ANN 
model also shows promising results with high accuracy of 
determining the saw blade state. In terms of scaling and for 
companies with a more complex value chain, a generalized 
approach for initiating a PdM platform is given. This provides 
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the necessary prerequisites for companies aiming to imple-
ment the PdM platform, by establishing an overview of critical 
assets in the value chain and conducting a FMSA to define 
selection of sensor technology and placement to be used in 
the PdM platform.

A limitation to the study and for evaluation of the PdM plat-
form is the number of case companies included. Conducting 
a study in only one company limits the level of generalization 
of results, and if the approach is applicable to other companies 
or industries. Another limitation of the structure of the PdM 
platform is the lack of detail in terms of connectivity to other 
systems such as MES and EAM, which can be essential for 
companies requiring a high degree of contextual information 
for decision making. There is also a limitation that the ANN 
model and analysis methods used require a noteworthy amount 
of failure data before the results can provide decision support 
for end-users. Results are also highly dependent on correct 
selection and placement of sensors.

Further research should include case studies on the PdM 
platform and the ANN model in other companies and different 
industries to strengthen its maturity and sustainability. Further 
development of the PdM platform is proposed to include more 
ways to integrate historical data and systems such as MES 
and EAM. A more seamless integration with the ANN model 
should also be developed. Research is also needed on how 
other Industry 4.0 technologies can be added in a cost-benefi-
cial way. Evaluating the generalized approach for initiating a 
PdM platform, and its role in a roadmap towards Industry 4.0, 
is also proposed for further work. More detailed investigation 
should be conducted on how the PdM platform further can 
integrate maintenance and operation for enabling contextual-
ized data-driven decision making throughout the value chain 
in an Industry 4.0 environment.
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