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Introduction

Gap resonance problems is a relevant problem in prac-
tice within marine activity and have been addressed in
recent years both by industry (Bunnik et al. (2009))
and in more academic works (Mclver (2005), Kris-
tiansen and Faltinsen (2009), Molin et al. (2009), Lu
et al. (2010)). Examples are ship-by-ship operations,
moonpools and LNG carriers alongside terminals. Ma-
rine engineers typically meet problems when trying
to analyze this theoretically /numerically, in particu-
lar when the gap becomes small relative to the body
dimensions. This is so since traditional panel methods
then greatly overestimate the fluid and body motions
around the gap resonance frequencies. The reason is
that linear damping from radiated waves is small com-
pared to the damping provided by flow separation e.g.
at bilge keels.

It is therefore of interest to develop a method that
may be used in an engineering approach that takes flow
separation into account. The method should be fast
and easy to use. It should also be based on physics.

This has been the goal of the present work. We are
at the moment developing a time-domain numerical
wavetank based on domain-decomposition. The main
part of the wavetank has linearized potential flow, but
we incorporate the effect of flow separation using a
Naviér-Stokes solver (CFD) in a submerged domain
around the body. It is important to note that the
CFD-domain is submerged, which means that there is
no CFD in the free surface zone. This leads to a cpu-
efficient and accurate method as will be exemplified
by a moonpool study where we compare with model
tests.

The present domain decomposition method is in-
spired by the study in Kristiansen and Faltinsen
(2008); gap resonance prolems are well modelled by
linear theory, as long as the effect of flow separation is
included.

Theory

Consider a closed two-dimensional wavetank filled
with an incompressible fluid as in Figure 1. We assume
that in most of the wavetank the fluid is inviscid, but
viscous near the ship bilges. The governing equations
are the Bernoulli equation in the inviscid domain and
the Naviér-Stokes equations in the viscous domain,
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Here, u = (u,w) is the fluid velocity and ¢ is the
velocity potential.
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Figure 1: Sketch of numerical wavetank. The domain
is fixed and denoted €.

We require that (a) the normal velocity and (b) the
pressure is continuous along the boundary that sepa-
rates the two domains.

We further assume that the fluid flow everywhere
away from sharp corners is well described by linear
theory, so we neglect the nonlinear term in (1). We
introduce the acceleration potential 1) = %t@ which also
satisfies the Laplace equation. In the inviscid domain
we then have the free-surface problem described by
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where ((z,t) is the free surface elevation. For conve-
nience we denote p = —p/p — gz. Now (1) and (2)
are
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Two comments. There are two discrepancies in what
we model in the two domains: One is that the inviscid
method may not handle vorticity. From our experience
so far, it seems that we may handle this in practice by
having the Naviér-Stokes domain large enough so that
vorticity of significance is not advected into the invis-
cid domain. The cpu time is not sensitive to the size of
the CFD domain. The second discrepancy is that the
linearized potential theory does not take into account
nonlinearities, while the Naviér-Stokes solver does via
the term u-Vu. If the free-surface flow becomes “non-
linear”, the two solvers do not really solve for the same
physics, and we expect problems. One example is in a
closed sloshing tank, where nonlinearities become im-
portant quickly. Another example is in steep waves.
A third example is shallow water waves. However, in
gap resonance problems with small amplitude waves,
the flow is well described by linear theory, and so the
two different solvers solve the same physics, and the

present domain-decomposition method becomes use-
ful.

Numerical implementation

In the potential domain we use a standard fourth or-
der explicit Runge-Kutta (RK4) method to time-step
the solution ¢ and v according to (5). Since both do-
mains are solved simultaneously, we also use RK4 in
the CFD domain. We use the standard way to solve
the Naviér-Stokes equations (2) and (4) numerically.
This is done in three steps, referred to as the frac-
tional step method. In principle, going from time-step
n ton+ 1: (A) advect v and w, (B) apply viscosity,
and (C) solve Poisson equation and update to a diver-
gence free velocity field u™*!. Steps (A) and (B) may
be done in one single step, depending on what meth-
ods one choose for advection and diffusion. One may

say that the essential roles are for step (B) to create
vorticity along walls, and for step (A) to advect this
vorticity into the main part of the fluid. This creates
circulation in the gap which acts like a damping. Step
(C) is mathematically stated as

Vi =V-u™/At, u"t =u* 4 AL,

(7)

where u** is the velocity field after steps (A) and (B),
which is not divergence free, whereas u™*! is diver-
gence free.

If we now look at the first equation in (6) we see
that we may treat p and 1 as the same variable. Next
compare the first equation in (5), and equation (7)
and note that p and v are acted upon by the same
operator; the Laplacian V2. If we choose the same
numerical method to solve for p and 1, we may use
the same discretization method for both and we obtain
one single system of equations Az = b for the whole
wavetank. This ensures that both matching conditions
are satisfied without any further exchange of informa-
tion between the two domains. In this way we avoid
having an overlapping region, and we avoid any back-
and-forth communication. There is a sharp interface
between the two domains. To the authors’ knowledge,
this method to couple potential theory with a Naviér-
Stokes solver has not been used earlier.

Since the domain €2 is not changing, the system ma-
trix A is constructed once and for all before the time
stepping, and in the present implementation inverted
using the Lapack banded solver. In this way, only a
matrix-vector product is carried out each time-step.

We chose to use the Finite Volume Method in both
domains. We discretize the whole wavetank by rect-
angles and assume all variables to be constant over
each rectangle face. The method for advection is sim-
ply upwinding. This is diffusive, but sufficient for our
purpose, where the shed vorticity is important only
for about half a wave period. We call our code the
dd-code hereafter.

Results

Figure 2 (a - c) presents validation results for the
present dd-code. A, is the steady-state amplitude



averaged over the gap and Ay is the far-field ampli-
tude. In all three cases (a - c¢) the main dimensions
of the boxes are the same; B = 0.36m, D/B = 0.5,
b/B = 0.25, the forced heave amplitude is 73, = bmm,
and the water depth is h = 1.03m. What is varied is
the appendage size s and d. The results called “Lin-
ear simulations” are also performed with the present
dd-code with advection and diffusion turned off. This
recovers the linear solution.

We see that linear theory overpredicts, as expected,
while the simulations including flow separation (called
“Present dd-code”) compare well with the model tests.
This indicates that the present dd-code is appropriate
to use in analyzing gap resonance problems.

Steady-state was typically achieved after about 15 -
20 periods. Each marker in the figures is the average
of the amplitude over the last 10 periods in a 30 period
long run. The grid is near uniform around the body as
shown in Figure 3 and stretched both in the vertical
and horizontal directions away from the ship. We tried
different resolutions: 4, 6, 10 and 20 grid cells across
the gap. All gave practially the same results. This
means the gap resonance problem is not sensitive to
gridding.

The shown results are from the runs with 10 grid
cells across the gap. For the whole wavetank we had
n, = 150 and n, = 54. The number of time-steps per
period was 80. The cpu-time was remarkably low; run-
ning 30 periods (2400 time-steps) took only 73 seconds
on a single 2.4GHz cpu. The simulations with flow
separation took 20% more cpu-time than the linear
simulations, basically due to the calculation of V - u**
on the right hand side of the Poisson equation (7).

We mention that the same set-up as that presented
in Figure 2 (a) was investigated in Kristiansen and
Faltinsen (2008). They used a different set of model
tests and different numerical models, but the results
were almost identical.

Ongoing and further work

The results presented here is from a first version of
the code which has a simple, body-fitted grid. Since
the grid is rectangular, we may only model rectangular
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Figure 2: Forced heave of two boxes.

shaped bodies. This is not adequate for an engineer-
ing tool. We are presently implementing an immersed
boundary, so that the body may have arbitrary shape,
while the grid is still rectangular. Next, we will im-
plement local refinements by dividing some grid cells
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Figure 3: Blue: Potential domain. Red: CFD domain.

in four, and some of these in four again etc, so that
details like bilge keels may be resolved.

Further, we are planning to add weakly nonlinear
free surface conditions in particular in order to incoro-
porat slowly varying motions which may bring the sys-
tem out of resonance. Also we plan to include a current
U in order to study wave-current-strucure interaction
including flow separation.

An engineering tool must be three-dimensional. The
method is directly applicable in a three-dimensional
setting. With an iterative solver that is parallellized,
we expect that one may run three-dimensional sim-
ulations within minutes, and not days or weeks like
traditional CFD codes.

Concluding remarks

We have presented a new domain-decomposition strat-
egy which couples linear potential theory with a
Naviér-Stokes solver (CFD) in a time-domain nu-
merical wavetank. The intention was to provide a
methodology for an engineer to analyze gap resonance
problems in an efficient manner which is based on
physics. The present implementation of the dd-code
was validated against experiments, and the results
were promising.

The major attractive feature about the method is
that one does not have CFD in the free surface zone.
The CFD domain is submerged in the fluid. This al-
lows for a strong and sharp coupling between the two

domains. More importantly: Linearized potential the-
ory is more accurate in propagating small-amplitude
waves, and significantly faster. This means we gain
both accuracy and cpu time.

The presented method is in principle directly appli-
cable for a three-dimensional implementation.
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