
Gap resonan
e analyzed by a domainde
omposition methodTrygve Kristiansen and Odd M. FaltinsenIntrodu
tionGap resonan
e problems is a relevant problem in pra
-ti
e within marine a
tivity and have been addressed inre
ent years both by industry (Bunnik et al. (2009))and in more a
ademi
 works (M
Iver (2005), Kris-tiansen and Faltinsen (2009), Molin et al. (2009), Luet al. (2010)). Examples are ship-by-ship operations,moonpools and LNG 
arriers alongside terminals. Ma-rine engineers typi
ally meet problems when tryingto analyze this theoreti
ally/numeri
ally, in parti
u-lar when the gap be
omes small relative to the bodydimensions. This is so sin
e traditional panel methodsthen greatly overestimate the �uid and body motionsaround the gap resonan
e frequen
ies. The reason isthat linear damping from radiated waves is small 
om-pared to the damping provided by �ow separation e.g.at bilge keels.It is therefore of interest to develop a method thatmay be used in an engineering approa
h that takes �owseparation into a

ount. The method should be fastand easy to use. It should also be based on physi
s.This has been the goal of the present work. We areat the moment developing a time-domain numeri
alwavetank based on domain-de
omposition. The mainpart of the wavetank has linearized potential �ow, butwe in
orporate the e�e
t of �ow separation using aNaviér-Stokes solver (CFD) in a submerged domainaround the body. It is important to note that theCFD-domain is submerged, whi
h means that there isno CFD in the free surfa
e zone. This leads to a 
pu-e�
ient and a

urate method as will be exempli�edby a moonpool study where we 
ompare with modeltests.The present domain de
omposition method is in-spired by the study in Kristiansen and Faltinsen(2008); gap resonan
e prolems are well modelled bylinear theory, as long as the e�e
t of �ow separation isin
luded.

TheoryConsider a 
losed two-dimensional wavetank �lledwith an in
ompressible �uid as in Figure 1. We assumethat in most of the wavetank the �uid is invis
id, butvis
ous near the ship bilges. The governing equationsare the Bernoulli equation in the invis
id domain andthe Naviér-Stokes equations in the vis
ous domain,
∂ϕ

∂t
+ 0.5∇ϕ · ∇ϕ = −

1

ρ
p− gz, (1)

∂u

∂t
+ u · ∇u = −

1

ρ
∇p− gk̂ + ν∇2

u, (2)along with the requirement of 
ontinuity of mass,
∇

2ϕ = 0, (3)
∇ · u = 0. (4)Here, u = (u,w) is the �uid velo
ity and ϕ is thevelo
ity potential.
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Figure 1: Sket
h of numeri
al wavetank. The domainis �xed and denoted Ω0.We require that (a) the normal velo
ity and (b) thepressure is 
ontinuous along the boundary that sepa-rates the two domains.We further assume that the �uid �ow everywhereaway from sharp 
orners is well des
ribed by lineartheory, so we negle
t the nonlinear term in (1). Weintrodu
e the a

eleration potential ψ = ∂ϕ
∂t

whi
h alsosatis�es the Lapla
e equation. In the invis
id domainwe then have the free-surfa
e problem des
ribed by
∇

2ψ = 0 in Ω0,

∂ϕ

∂t
= ψ in Ω0,

∂ζ

∂t
=
∂ϕ

∂z
on z = 0,

ψ = −gζ on z = 0,

(5)
1



where ζ(x, t) is the free surfa
e elevation. For 
onve-nien
e we denote p̃ = −p/ρ − gz. Now (1) and (2)are
ψ = p̃,

∂u

∂t
+ u · ∇u = ∇p̃+ ν∇2

u.
(6)Two 
omments. There are two dis
repan
ies in whatwe model in the two domains: One is that the invis
idmethod may not handle vorti
ity. From our experien
eso far, it seems that we may handle this in pra
ti
e byhaving the Naviér-Stokes domain large enough so thatvorti
ity of signi�
an
e is not adve
ted into the invis-
id domain. The 
pu time is not sensitive to the size ofthe CFD domain. The se
ond dis
repan
y is that thelinearized potential theory does not take into a

ountnonlinearities, while the Naviér-Stokes solver does viathe term u ·∇u. If the free-surfa
e �ow be
omes �non-linear�, the two solvers do not really solve for the samephysi
s, and we expe
t problems. One example is in a
losed sloshing tank, where nonlinearities be
ome im-portant qui
kly. Another example is in steep waves.A third example is shallow water waves. However, ingap resonan
e problems with small amplitude waves,the �ow is well des
ribed by linear theory, and so thetwo di�erent solvers solve the same physi
s, and thepresent domain-de
omposition method be
omes use-ful.Numeri
al implementationIn the potential domain we use a standard fourth or-der expli
it Runge-Kutta (RK4) method to time-stepthe solution ϕ and ψ a

ording to (5). Sin
e both do-mains are solved simultaneously, we also use RK4 inthe CFD domain. We use the standard way to solvethe Naviér-Stokes equations (2) and (4) numeri
ally.This is done in three steps, referred to as the fra
-tional step method. In prin
iple, going from time-step

n to n + 1: (A) adve
t u and w, (B) apply vis
osity,and (C) solve Poisson equation and update to a diver-gen
e free velo
ity �eld u
n+1. Steps (A) and (B) maybe done in one single step, depending on what meth-ods one 
hoose for adve
tion and di�usion. One may

say that the essential roles are for step (B) to 
reatevorti
ity along walls, and for step (A) to adve
t thisvorti
ity into the main part of the �uid. This 
reates
ir
ulation in the gap whi
h a
ts like a damping. Step(C) is mathemati
ally stated as
∇

2p̃ = ∇ · u
⋆⋆/∆t, u

n+1 = u
⋆⋆ + ∆t p̃, (7)where u

⋆⋆ is the velo
ity �eld after steps (A) and (B),whi
h is not divergen
e free, whereas u
n+1 is diver-gen
e free.If we now look at the �rst equation in (6) we seethat we may treat p̃ and ψ as the same variable. Next
ompare the �rst equation in (5), and equation (7)and note that p̃ and ψ are a
ted upon by the sameoperator; the Lapla
ian ∇

2. If we 
hoose the samenumeri
al method to solve for p̃ and ψ, we may usethe same dis
retization method for both and we obtainone single system of equations Ax = b for the wholewavetank. This ensures that both mat
hing 
onditionsare satis�ed without any further ex
hange of informa-tion between the two domains. In this way we avoidhaving an overlapping region, and we avoid any ba
k-and-forth 
ommuni
ation. There is a sharp interfa
ebetween the two domains. To the authors' knowledge,this method to 
ouple potential theory with a Naviér-Stokes solver has not been used earlier.Sin
e the domain Ω0 is not 
hanging, the system ma-trix A is 
onstru
ted on
e and for all before the timestepping, and in the present implementation invertedusing the Lapa
k banded solver. In this way, only amatrix-ve
tor produ
t is 
arried out ea
h time-step.We 
hose to use the Finite Volume Method in bothdomains. We dis
retize the whole wavetank by re
t-angles and assume all variables to be 
onstant overea
h re
tangle fa
e. The method for adve
tion is sim-ply upwinding. This is di�usive, but su�
ient for ourpurpose, where the shed vorti
ity is important onlyfor about half a wave period. We 
all our 
ode thedd-
ode hereafter.ResultsFigure 2 (a - 
) presents validation results for thepresent dd-
ode. Ag is the steady-state amplitude2



averaged over the gap and Af is the far-�eld ampli-tude. In all three 
ases (a - 
) the main dimensionsof the boxes are the same; B = 0.36m, D/B = 0.5,
b/B = 0.25, the for
ed heave amplitude is η3a = 5mm,and the water depth is h = 1.03m. What is varied isthe appendage size s and d. The results 
alled �Lin-ear simulations� are also performed with the presentdd-
ode with adve
tion and di�usion turned o�. Thisre
overs the linear solution.We see that linear theory overpredi
ts, as expe
ted,while the simulations in
luding �ow separation (
alled�Present dd-
ode�) 
ompare well with the model tests.This indi
ates that the present dd-
ode is appropriateto use in analyzing gap resonan
e problems.Steady-state was typi
ally a
hieved after about 15 -20 periods. Ea
h marker in the �gures is the averageof the amplitude over the last 10 periods in a 30 periodlong run. The grid is near uniform around the body asshown in Figure 3 and stret
hed both in the verti
aland horizontal dire
tions away from the ship. We trieddi�erent resolutions: 4, 6, 10 and 20 grid 
ells a
rossthe gap. All gave pra
tially the same results. Thismeans the gap resonan
e problem is not sensitive togridding.The shown results are from the runs with 10 grid
ells a
ross the gap. For the whole wavetank we had
nx = 150 and ny = 54. The number of time-steps perperiod was 80. The 
pu-time was remarkably low; run-ning 30 periods (2400 time-steps) took only 73 se
ondson a single 2.4GHz 
pu. The simulations with �owseparation took 20% more 
pu-time than the linearsimulations, basi
ally due to the 
al
ulation of ∇ ·u

⋆⋆on the right hand side of the Poisson equation (7).We mention that the same set-up as that presentedin Figure 2 (a) was investigated in Kristiansen andFaltinsen (2008). They used a di�erent set of modeltests and di�erent numeri
al models, but the resultswere almost identi
al.Ongoing and further workThe results presented here is from a �rst version ofthe 
ode whi
h has a simple, body-�tted grid. Sin
ethe grid is re
tangular, we may only model re
tangular
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ed heave of two boxes.
shaped bodies. This is not adequate for an engineer-ing tool. We are presently implementing an immersedboundary, so that the body may have arbitrary shape,while the grid is still re
tangular. Next, we will im-plement lo
al re�nements by dividing some grid 
ells3
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(b) Zoom around stru
tureFigure 3: Blue: Potential domain. Red: CFD domain.in four, and some of these in four again et
, so thatdetails like bilge keels may be resolved.Further, we are planning to add weakly nonlinearfree surfa
e 
onditions in parti
ular in order to in
oro-porat slowly varying motions whi
h may bring the sys-tem out of resonan
e. Also we plan to in
lude a 
urrent
U in order to study wave-
urrent-stru
ure intera
tionin
luding �ow separation.An engineering tool must be three-dimensional. Themethod is dire
tly appli
able in a three-dimensionalsetting. With an iterative solver that is parallellized,we expe
t that one may run three-dimensional sim-ulations within minutes, and not days or weeks liketraditional CFD 
odes.Con
luding remarksWe have presented a new domain-de
omposition strat-egy whi
h 
ouples linear potential theory with aNaviér-Stokes solver (CFD) in a time-domain nu-meri
al wavetank. The intention was to provide amethodology for an engineer to analyze gap resonan
eproblems in an e�
ient manner whi
h is based onphysi
s. The present implementation of the dd-
odewas validated against experiments, and the resultswere promising.The major attra
tive feature about the method isthat one does not have CFD in the free surfa
e zone.The CFD domain is submerged in the �uid. This al-lows for a strong and sharp 
oupling between the two

domains. More importantly: Linearized potential the-ory is more a

urate in propagating small-amplitudewaves, and signi�
antly faster. This means we gainboth a

ura
y and 
pu time.The presented method is in prin
iple dire
tly appli-
able for a three-dimensional implementation.A
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