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Abstract We study the frame properties of the Gabor systems

G(g; α, β) := {e2π iβmxg(x − αn)}m,n∈Z.

In particular, we prove that forHerglotzwindows g such systems always form a
frame for L2(R) if α, β > 0, αβ ≤ 1. For general rational windows g ∈ L2(R)

we prove that G(g; α, β) is a frame for L2(R) if 0 < α, β, αβ < 1, αβ /∈ Q

and ĝ(ξ) �= 0, ξ > 0, thus confirming Daubechies conjecture for this class of
functions. We also discuss some related questions, in particular sampling in
shift-invariant subspaces of L2(R).
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432 Y. Belov et al.

1 Introduction and main results

We investigate the Gabor systems generated by the linear combinations of the
Cauchy kernels, i.e. by the windows of the form

g(t) =
N∑

k=1

ak
t − iwk

. (1.1)

We describe a new wide class of such functions for which the corresponding
Gabor systems possess the frame property for all rectangular lattices of density
at least one.

For the general rationalwindows of the form (1.1)we discover that the frame
property depends on rationality of the product αβ and also give the precise
estimate of the lattice density (αβ)−1 which grantees the frame property of
the corresponding Gabor system. Finally we study sampling in shift-invariant
spaces, generated by the windows of the form (1.1) as well as some related
matters.

One of the central motives of this article is hinted by the Daubechies con-
jecture [3, p. 981] which assumes that Gabor system is a frame for all αβ < 1
whenever g is a positive function with positive Fourier transform. This conjec-
ture has been disproved by Janssen [8], yet in all known examples of functions
which generates a Gabor system for all αβ < 1 we encounter some kind of
positivity.

1.1 Gabor systems

Given a function g ∈ L2(R) we denote by πx,yg its time frequency shifts

πx,yg(t) = e2π iyt g(t − x), x, y ∈ R. (1.2)

For α, β > 0 consider the Gabor system

G(g; α, β) = {παm,βng; m, n ∈ Z}. (1.3)

We say that G(g; α, β) is a frame in L2(R) if the frame inequality

A‖ f ‖2 ≤
∑

m,n

∣∣〈 f, παm,βng〉
∣∣2 ≤ B‖ f ‖2, f ∈ L2(R) (1.4)

holds for some A > 0 and B < ∞.
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Gabor frames for rational functions 433

Gabor systems are widely used in signal analysis and quantum mechanics
because of time-frequency localization of their elements παm,βng. For suffi-
ciently dense lattices αZ × βZ the supports of παm,βng “cover” the whole
time-frequency plane and the frame inequality (1.4) provides stable recon-
struction of a signal f from the inner products 〈 f, παm,βng〉. On the other
hand G(g; α, β) never forms a frame if αβ > 1 (see e.g. [10]). We refer the
reader to [3,10,15], for the detailed history, as well as setting and discussion
of the problem.

1.2 Frame set

The fundamental problem of the Gabor analysis is to describe the frame set of
the window g:

F(g) = {(α, β); α, β > 0 and G(g; α, β) is a frame in L2(R)}.
If αβ = 1 the complete characterization of the frame set can be given in

terms of the Zak tarnsform Zg of the window g (see e.g. [10, Ch.8]) but for
αβ < 1 the frame set F(g) may be very complicated even for elementary
functions g, see e.g. [2,4]. Even the simpler question: for which g does F(g)
contain the whole set � := {(α, β); α, β > 0, αβ < 1} is also very difficult.

The answer has been obtained for the Gaussian e−x2 [17,24,25], truncated
χ(0,∞)(x)e−x and symmetric e−|x | exponential functions [6,7], the hyperbolic
secant (ex +e−x )−1 [9]. Despite numerous efforts very little progress has been
done until 2011. A breakthrough was achieved in [13] and later in [12] where
the authors considered the class of totally positive functions of finite type and,
by using another approach, Gaussian totally positive functions of finite type.
These results can be viewed as a contribution to the original conjecture of
Daubechies which relates the frame property to the positivity of function and
its Fourier transform. Our results are to large extend motivated by [13] since
the Fourier transforms of totally positive functions of finite type have the form
g(t) = P(t)−1, where P is a polynomial with simple zeroes located on the
imaginary axis, such functions of course admit representation (1.1).

1.3 Herglotz functions

We suggest another approach based on interpolation by entire functions and
dynamical systems. This approach allows us to describe the frame set for
Herglotz functions, to study the frames with irrational densities as well as
some related problems.

By Herglotz function we mean a function of the form (1.1) with ak > 0.
Such functions appear naturally in the spectral theory of the Jacobi matrices
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434 Y. Belov et al.

and the Schrödinger equations. This class is in a sense opposite to the class of
totally positive functions: while the coefficients ak in the representation (1.1)
of the totally positive functions have interlacing signs and also satisfy a number
of additional relations, they are just positive for Herglotz functions. We will
consider Herglotz functions with poles in the upper half-plane. In this case we
encountered another kind of positivity related to the Gabor frame property.

1.4 Main results

Theorem 1.1 Let g be a Herglotz function

g(t) =
N∑

k=1

ak
t − iwk

, ak > 0, wk > 0. (1.5)

Then

F(g) = {(α, β); αβ ≤ 1}. (1.6)

For the general function of the form (1.1) relation (1.6) does not hold gen-
erally speaking. Amazingly we almost always have the frame property if
αβ /∈ Q:

Theorem 1.2 Let g be of the form (1.1) and be such that m0(ξ) =∑N
k=1 ake

2πξwk �= 0, ξ > 0 and 	wk �= 	wl for k �= l. Then the Gabor
system G(g; α, β) is a frame in L2(R) for any (α, β) ∈ � such that αβ /∈ Q.

Remark 1.3 Note that we only need to assume that m0(ξ) �= 0 for ξ > 0
and not all ξ ∈ R. This is crucial, since we want to consider functions with
m0(0) = ∑N

k=1 ak = 0 which are exactly rational functions g such that
g(x) = O( 1

x2
), x → ∞.

Observe that, if 	wk < 0 for all k, we have m0(ξ) = ĝ(ξ), ξ > 0. Here and
in what follows we normalize the Fourier transform as

ĝ(ξ) =
∫ ∞

−∞
g(t)e−2π i tξdt.

The next result is an important special case of Theorem 1.2.

Theorem 1.4 Let g be a function of the form (1.1),	wk < 0, k = 1, 2, . . . N,
	wk �= 	w j for j �= k and also ĝ(ξ) �= 0 for ξ > 0. Then G(g; α, β) is a
frame in L2(R) for all (α, β) ∈ �, such that αβ /∈ Q.
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Gabor frames for rational functions 435

So, for the given class of functions Daubechies conjecture holds literally.
Later we will see that the assumption αβ /∈ Q cannot be dropped generally
speaking.

Remark 1.5 (Rational densities with large denominators.) One can check that
all arguments in the proof of Theorem 1.4 remain true if α = p

q is a ratio-
nal number with sufficiently big denominator. In particular, this means that
under the assumptions of Theorem 1.2 there exists at most countable set of
exceptional rational α-s, i.e. such thatG(g; α, 1) is not a frame, with only one
(possible) accumulating point 1.

Sometimes we get into the situation when there exists at most finite set of
exceptional α’s, see Sect. 5.1.

1.5 Near the critical hyperbola

Another interesting question is related to the frame property of G(g; α, β)

when the point (α, β) approaches the critical hyperbola αβ = 1.
Let g be of the form (1.1). Consider the function

Z(z, ξ) =
N∑

k=1

ake2πξwk

1 − ze2πwk/α
.

This function can be viewed as an analog of the Zak transform for our
setting.

Theorem 1.6 Let 	wk > 0, k = 1, ..., N and also 	Z(e2π i t , ξ) > 0 for all
t ∈ R, ξ ∈ R. Then there exists α0 < 1 such that G(g; α, 1) is a frame in
L2(R) for all α ∈ (α0, 1].
By the renormalization we have

G(g(·/β); α, β) is a frame in L2(R)

if αβ ∈ (α0, 1].
Together with Theorem 1.6 this will lead us to Theorem 1.7.

Theorem 1.7 Let g be of the form (1.1),	wk < 0, k = 1, ..., N,	wk �= 	w j
for j �= k, and ĝ(ξ) �= 0, ξ > 0. Let also

	Z(e2π i t , ξ) > 0, t ∈ R, ξ ∈ R.

ThenG(g; α, 1) is a frame in L2(R) for all α ∈ (0, 1], except perhaps a finite
number of rational exceptional values.
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We also highlight the following corollary of Theorem 1.6.

Corollary 1.8 Let g be of the form (1.1), wk < 0, ak ∈ R. If ĝ is a positive,
decreasing, convex function on the positive semiaxis R+, then G(g; α, β) is a
frame for any pair (α, β) sufficiently close to the critical hyperbola αβ = 1,
(i.e. for α > α(β)).

1.6 Large densities

The condition αβ /∈ Q in Theorem 1.2 cannot be omitted generally speaking.
For example the system G(g; α, β) fails to be a frame if g(t) = −g(−t) and
g(t) = O(t−2), t → ∞ and αβ = n−1

n , n = 2, 3, ... see [19]. For these cases
the density of the non-frame lattice is at most 2.

It is known that for arbitrary window function g in the Wiener class the
system G(g; α, β) becomes a frame if (α, β) belongs to some vicinity of
(0, 0) in the time-frequency plane. This vicinity depends on g, of course. A
lot of effort has been spent in order to determine the size of this vicinity, see
e.g. [1,3,23].

For the windows of the form (1.1) this size depends on the number of
summands. This gives a partial answer to the question, formulated in [3].

Theorem 1.9 Let g be of the form (1.1), 	wk �= 	wl , k �= l. Then
{
(α, β) : αβ ≤ 1

N

}
⊂ Fg.

This therorem is almost precise: we will see that there exists a window g of
the form (1.1) andα, β > 0withαβ = 1

N−1 such that the correspondingGabor
systemG(g; α, β) does not constitute a frame in L2(R) (see Proposition 5.3).

In particular there exist non-frame rational Gabor systems with lattices of
arbitrary large density.

1.7 Concluding remarks

Infinite number of poles

We are able to generalize Theorem 1.1 to a class of Herglotz functions with
infinite number of poles.

Theorem 1.10 Let g be of the form

g(x) =
∞∑

k=1

ak
x − iwk

,
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wk > 0, wk+1 − wk ≥ 1 and also 0 < ak < 2−22
wk
. Then

F(g) = {(α, β) : α, β > 0, αβ ≤ 1}.

Two kernels

Using our approach we can completely describe the frame set Fg for all func-
tions g(x) = a1

x−iw1
+ a2

x−iw2
, a1, a2, w1, w2 ∈ C. In particular, forw1, w2 ∈ R

we have � ⊂ Fg. The detailed proofs will appear elsewhere.

Completeness

In contrast to the frame property the completeness of rational Gabor systems
does not require αβ /∈ Q. It can be obtained from Example 4.1. in [21] that for
αβ > 1 the Gabor systemG( f ; α, β) is incomplete in L2(R) for any function
f ∈ L2(R). This is the only restriction in case of windows of form (1.1).

Theorem 1.11 Let the function g(x) = ∑ ak
x−iwk

be such that 	wk �=
	wl, k �= l. Then the systemG(g; α, β) is complete in L2(R) for all α, β > 0,
αβ ≤ 1.

For the windows of the form g(t) = e−γ t2R(t) where R(t) is a rational
function similar statement has been proved in [11].

Multiple poles The right hand-side of (1.1) represent rational function in
L2(R) with simple poles. We restrict ourselves to this case to avoid non-
essential technical complications only.

1.8 The structure of the paper

The article is organized as follows. In Sect. 2 we give necessary and sufficient
conditions for a rational Gabor system to be a frame. This characterization
will be used throughout the whole article. In Sect. 3 we prove Theorem 1.1 and
highlight connections to dynamical systems. In Sect. 4 we prove Theorems 1.2
and 1.4. Finally, in Sect. 5 we prove Theorem 1.6, Theorem 1.7, Theorem 1.9,
and construct counterexamples. In Sect. 6 we discuss connections with the
theory of shift-invariant subspaces.

Throughout this paper, U (z) � V (x) (equivalently V (z) � U (z)) means
that there exists a constant C such that U (z) ≤ CV (z) holds for all z in the
set in question, which may be a Hilbert space, a set of complex numbers,
or a suitable index set. We write U (z)  V (z) if both U (z) � V (z) and
V (z) � U (z).
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2 Frame Criterion

In this section we give necessary and sufficient conditions for an arbitrary
rational function g ∈ L2(R) to generate a frame for given α, β. This is the key
step in the proofs of Theorems 1.1–1.4.

Let

g(t) =
N∑

k=1

ak
t − iwk

, ak, wk ∈ C, ak �= 0, 	wk �= 0. (2.1)

2.1 Multipliers ms and the main criterion

Given α, β > 0, αβ ≤ 1, we study the frame property in L2(R) of the Gabor
system

G(g; α, β) = {gm,n(t)}m,n∈Z, gm,n(t) = e2π iβtng(t − αm). (2.2)

It is immediate that the systemG(g; α, β) is a frame if and only if the system
G(gβ; αβ, 1) is a frame, gβ(t) = g(t/β). Since gβ is also a rational function
it suffices to consider only the case β = 1, α ∈ (0, 1] which we will assume
from now on.

We need the following notation. For k = 1, . . . , N and s = 0, . . . , N −1
let

Ak,s = (−1)s
∑

j1< j2,...,< js , jl �=k

e
2π
α

(w j1+···+w js ), (2.3)

the sum is taken over pairwise different jl’s such that jl �= k. Put

ms(ξ) =
N∑

k=1

ak Ak,se
2πξwk . (2.4)

Theorem 2.1 The following statements are equivalent:

(i) G(g; α, 1) is a frame in L2(R),
(ii)

∫ 1
α

0

∑

n∈Z

∣∣∣∣∣

N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ)

∣∣∣∣∣

2

dξ  ||G||2L2(R)
, G ∈ L2(R).

(2.5)
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2.2 Proof of Theorem 2.1: Step 1

In order to establish the frame property of (2.2) we need to prove

∑

m,n

|〈gm,n, f 〉|2  ‖ f ‖2, f ∈ L2(R). (2.6)

Since all functions ms(ξ) are bounded the upper estimate is always true.
We have

(
∑

m,n

|〈gm,n, f 〉|2
) 1

2

= sup

{∣∣∣∣∣
∑

m,n

cm,n〈gm,n, f 〉
∣∣∣∣∣ ;

∑

m,n

|cm,n|2 ≤ 1

}
.

(2.7)

2.3 Step 2

Given c = {cm,n} ∈ l2(Z × Z), we fix n and consider

Sn =
∑

m

cm,n〈gm,n, f 〉 =
∫ ∞

−∞
f (t)e2π int

N∑

k=1

ak
∑

m

cm,n

t − (αm + iwk)
dt.

(2.8)

Denote

p j (t) = 1 − ei
2π
α

(t−iw j ); P(t) =
N∏

j=1

p j (t). (2.9)

The coefficients of the trigonometric polynomial P(t)p j (t)−1 are represents
by (2.3):

Pk(t) = P(t)pk(t)
−1 =

N−1∑

s=0

Ak,se
i 2π

α
st . (2.10)

Consider the entire function

hn(t) =
(
1 − ei

2π
α
t
) ∑

m

cm,n

t − αm
. (2.11)
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We have

∑

m

cm,n

t − (αm + iwk)
= Pk(t)

P(t)
hn(t − iwk), (2.12)

respectively

Sn =
∫ ∞

−∞
f (t)

P(t)
e2π int

N∑

k=1

ak Pk(t)hn(t − iwk)dt. (2.13)

By combining the classical sampling and the Paley–Wiener theorems we
have

hn(t) =
∫ 1

α

0
e2π i tξ ȟn(ξ)dξ, (2.14)

with

ȟn ∈ L2(0, 1/α); ‖ȟn‖L2(0,1/α)  ‖{cm,n}m‖l2(Z). (2.15)

Let g(t) = f (t)/P(t). Since |P(t)|  1, t ∈ R, we have ‖ f ‖  ‖g‖. Now

Sn =
∫ ∞

−∞
g(t)e2π int

N−1∑

s=0

ei
2π
α
st Ms(t)dt, (2.16)

where

Ms(t) =
N∑

k=1

ak Ak,shn(t − iwk) =
∫ 1

α

0
e2π iξ t ȟn(ξ)

N∑

k=1

ak Ak,se
2πξwk dξ.

(2.17)

2.4 Step 3

The Parseval’s identity now yields

Sn =
∫ 1

α

0

[
N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ)

]
ȟn(ξ)dξ, (2.18)

where G is the Fourier transform of g which satisfies ‖G‖L2 = ‖g‖L2 
‖ f ‖L2 .
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Finally,

∑

m,n

|〈gm,n, f 〉|2  sup

{
∑

n

∫ 1/α

0

[
N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ)

]
ȟn(ξ)dξ ;

∑

n

‖ȟn‖2L2(0,1/α)
≤ 1

}
. (2.19)

2.5 Step 4

Observe that the sequence {ȟn}n∈Z runs through the whole l2(Z, L2(0, 1/α))

as {cm,n} runs through the whole l2(Z×Z) and also ‖{ȟn}n∈Z‖l2(Z,L2(0,1/α)) 
‖{cm,n}‖l2(Z×Z).

Set

ȟn(ξ) =
N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ). (2.20)

Without loss of generality we may assume ‖ f ‖  ‖G‖  1. Therefore
‖{ȟn}n∈Z‖l2(Z,L2(0,1/α))  ‖{cm,n}‖	2(Z×Z)  1. Hence the systemG(g; α, 1)
is a frame if and only if

∫ 1
α

0

∑

n∈Z

∣∣∣∣∣

N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ)

∣∣∣∣∣

2

dξ  1, G ∈ L2(R), ‖G‖  1

(2.21)

which is equivalent to (2.5). ��

3 Frame property for Herglotz functions

In this section we prove Theorem 1.1.

3.1 Frobenius matrices

The proof of Theorem 1.1 is based on the Lemma 3.1 about Frobeniusmatrices
which was communicated to us by Ivan Bochkov. First we recall the definition
of Frobenius matrix.

Definition 1 Given a polynomial p(z) = zn + bn−1zn−1 + . . . + b0 with the
leading coefficient 1 by the Frobenius matrix associated with p we mean the
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matrix

F(p) =

⎛

⎜⎜⎜⎜⎜⎝

−bn−1 −bn−2 . . . −b1 −b0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0

⎞

⎟⎟⎟⎟⎟⎠
. (3.1)

We refer the reader to [27] and [20] for the detailed presentation of properties
of such matrices. In particular, p is the characteristic polynomial of F(p). The
next lemma is the key step in the proof of Theorem 1.1, we also think that it
is of independent interest.

Lemma 3.1 Let the sequence {μk}n+1
k=1 be such that 1 > μ1 > μ2 > . . . >

μn+1 > 0. Consider the set P of all polynomials p(x) = (x − λ1)(x −
λ2) . . . (x−λn) such that their zeroes interlacewithμk’s, i.e.μk ≥ λk ≥ μk+1.
Then there exist constants C > 0, 0 < c < 1 depending only on the numbers
μk such that for any m = 1, 2, ... and for any polynomials p1, . . . , pm ∈ P
we have

||F(p1)F(p2) . . . F(pm)|| ≤ Ccm . (3.2)

We do not specify matrix norm here since all norms in finite-dimensional
space are equivalent. We postpone the proof and first obtain Theorem 1.1 from
Lemma 3.1.

3.2 Proof of Theorem 1.1 Step 1

As before we assume β = 1, α ≤ 1 and prove the relation (2.5). We truncate
the integral in (2.5) and prove the stronger estimate

1∫

0

∑

l∈Z

∣∣∣∣∣

N−1∑

s=0

G
(
ξ + l + s

α

)
ms(ξ)

∣∣∣∣∣

2

dξ � ||G||22, G ∈ L2(R). (3.3)

Here as before the functions ms(ξ) are determined in (2.4).
Assume 0 < w1 < ... < wN and let

n = N − 1, μk = e−2πwk/α, k = 1, 2, . . . n + 1.
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We have 1 > μ1 > μ2 > · · · > μn+1 > 0. Since ak > 0, wk > 0 we have
mn(ξ) �= 0. We claim that the roots of the polynomial

pξ (z) = m0(ξ) + m1(ξ)z + · · · + mn(ξ)zn

mn(ξ)

satisfy the assumptions of the Lemma 3.1. This follows from the identity

∑N−1
s=0 ms(ξ)zs

∏N
k=1(1 − ze

2π
α

wk )
=

N∑

k=1

ake2πξwk

1 − ze
2π
α

wk

and the positivity of ak’s and wk’s.
The estimate (3.3) is equivalent to

||LG||2 � ||G||2, G ∈ L2(R), (3.4)

where the operator L : L2(R) → L2(R) is given by the formula

(LG)(ξ) =
n∑

s=0

G
(
ξ + s

α

)
ms({ξ}).

Here {ξ} denotes the fractional part of ξ .

3.3 Step 2

From the definition of ms we have

mn({ξ}) = (−1)ne
2π
α

(w1+...+wN )

N∑

k=1

ake
2π{ξ}wk− 2π

α
wk . (3.5)

The absolute value ofmn({ξ}) is bounded from above and from below by some
positive constants.Without loss of generality we can consider the operator PG
instead of LG

(PG)(ξ) = (LG)(ξ)

mn({ξ}) .

It suffices to construct the inverse for P , i.e. solve

PG = h, h ∈ L2(R).
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We rewrite this equation in the form

G
(
ξ + n

α

)
= h(ξ) −

n−1∑

s=0

ms({ξ})
mn({ξ})G

(
ξ + s

α

)
. (3.6)

3.4 Step 3

We transform equation (3.6) to a dynamical system. Consider the vector-
functions �, H ∈ L2(R,Cn):

�(ξ) =

⎛

⎜⎜⎜⎝

G(ξ + n−1
α

)

G(ξ + n−2
α

)
...

G(ξ)

⎞

⎟⎟⎟⎠ , H(ξ) =

⎛

⎜⎜⎜⎝

h(ξ)

0
...

0

⎞

⎟⎟⎟⎠ .

In this notation equation (3.6) can be rewritten as

�

(
ξ + 1

α

)
= F

(
p{ξ}

)
�(ξ) + H(ξ),

where pξ (z) = zn + mn−1(ξ)
mn(ξ)

zn−1 + · · · + m0(ξ)
mn(ξ)

.
Iterating this formula we get

�

(
ξ + 1

α

)
= F

(
p{ξ}

)
F

(
p{ξ− 1

α
}
)

�

(
ξ − 1

α

)

+F
(
p{ξ}

)
H

(
ξ − 1

α

)
+ H(ξ). (3.7)

and

�

(
ξ + 1

α

)
= F

(
p{ξ}

)
F

(
p{ξ− 1

α
}
)

. . . F
(
p{ξ− k

α
}
)

�

(
ξ − k

α

)

+
k∑

s=0

F
(
p{ξ}

)
F

(
p{ξ− 1

α
}
)

. . . F
(
p{ξ− s−1

α
}
)
H

(
ξ − s

α

)
.

By Lemma 3.1 the coefficients in front of �(ξ − k
α
) and H(ξ − s

α
) decay

exponentially. By passing to the limit we obtain

�

(
ξ + 1

α

)
=

∞∑

s=0

F
(
p{ξ}

)
F

(
p{ξ− 1

α
}
)

. . . F
(
p{ξ− s−1

α
}
)
H

(
ξ − s

α

)
.
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Thus, we get ||�||2 ≤ C ||H ||2 = C ||h||2. Hence, ||G||2 ≤ C ′||h||2 =
C ′||PG||2. That is, ||PG||2 � ||G||2 and, subsequently, ||LG||2 � ||G||2
which is the desired estimate (3.4). ��

3.5 Proof of Lemma 3.1: Preliminaries

We are going to construct a norm ||v||∗ on Rn such that for all p ∈ P we have
||F(p)||∗ ≤ c < 1. This implies by induction that ||F(p1) . . . F(pm)||∗ ≤ cm .
Since all norms on the finite-dimensional space are equivalentwe get the result.

We will actually construct a norm in which F(p)T is contractive uniformly
for all p ∈ P . If we are able to do so, then matrices F(p) will be contractive
in the dual norm.

The proof consists of two steps. In the first step we show that it is enough
to consider only polynomials p such that λk’s is either μk or μk+1 for all k.
Moreover, we will show that among them we can actually study only those
for which all λk are distinct, that is polynomials pl(x) = ∏

k �=l(x − μk),
l = 1, . . . , n + 1. In the second step we will construct a norm in which all
matrices F(pl)T are uniformly contractive.

3.6 Step 1: Reduction to n+ 1 matrices

Let p(x) = ∏n
k=1(x −λk) be an arbitrary polynomial inP . Assume that λk �=

μk, μk+1 for some k. Since μk > λk > μk+1 we can find positive numbers
a, b ∈ Rwitha+b = 1 such that (x−λk) = a(x−μk)+b(x−μk+1).Denoting
q(x) = x−μk

x−λk
p(x) and r(x) = x−μk+1

x−λk
p(x) we get p(x) = aq(x) + br(x)

and therefore F(p)T = aF(q)T + bF(r)T . Repeating this procedure with q
and r we can express F(p)T as a convex combination of matrices of the form
F(ρ)T where ρ ∈ P and all its roots are from {μ1, . . . , μn+1}. By the triangle
inequality if F(ρ)T are contractive for all such polynomials ρ then F(p)T is
contractive as well.

Now we show that it is enough to consider only the polynomials pl . Let us
consider all 2n polynomials p ∈ P with λk = μk or λk = μk+1 and denote by
K the convex hull of the corresponding matrices F(p)T . Since it is a convex
hull of finitely many points it is a polytope. It is well-known that any polytope
is a convex hull of its vertices which are exactly the points that can not be
written as a convex combination of other points from this polytope.

Let p(x) = ∏n
k=1(x − λk) be such that λk = μk or λk = μk+1 for all k

and moreover λl = λl+1 = μl+1 for some l. There exist positive numbers
a, b such that a + b = 1 and (x − μl+1) = a(x − μl) + b(x − μl+2).
Denoting q(x) = x−μl

x−μl+1
p(x) and r(x) = x−μl+2

x−μl+1
p(x)weget p(x) = aq(x)+

br(x) and therefore F(p)T = aF(q)T + bF(r)T . On the other hand we have
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F(q)T , F(r)T ∈ K and both of them are not equal to F(p)T . That is, we
decomposed F(p)T as a convex combination of other points from K . Thus, it
is not a vertex of K .

Therefore the only possible candidates for the vertices of K correspond to
the polynomials with distinct roots, that is pl ’s. That is, all points K are convex
combinations of F(pl)T ’s and so if F(pl)T ’s are contractive for all l then all
other matrices from K are contractive as well.

Remark 3.2 Instead of appealing to the theory of polytopes one can more
carefully decompose p into the sum of two other polynomials with smaller
number of repeated roots and then continue the process until there are none.

3.7 Step 2: Construction of the contractive norm for F( pl)T ’s

Let us identify Rn with the space Pn−1 of all polynomials of degree less than
n in a way that α = (αn−1, . . . α0)

T ∈ R
n corresponds to the polynomial

qα(z) = αn−1zn−1 + . . . + α0 ∈ Pn−1. One can see that the action of F(p)T

on the polynomial q ∈ Pn−1 corresponds to the operation

q(z) �→ zq(z)(mod p(z)).

For each l = 1, 2, . . . n + 1 consider the linear functional which sends the
polynomial q ∈ Pn−1 to q(μl). Since these are n + 1 linear functionals on the
n-dimensional vector space there is a linear dependence between them:

a1q(μ1) + a2q(μ2) + . . . + an+1q(μn+1) = 0 (3.8)

for all polynomials q ∈ Pn−1.Moreover, since the values of q at any n different
points uniquely determine q none of ak’s vanishes. Put

||q||μ = |a1q(μ1)| + · · · + |an+1q(μn+1)|.

Sinceq is uniquely determined byq(μ1), . . . , q(μn+1), this is a normonPn−1.
Note that this norm is overdetermined (n terms would have been enough to
have a norm). But this overdetermination is instrumental for the proof of the
contractivity. We are going to show that ||F(pl)T q||μ ≤ μ1||q||μ for all l.
Since μ1 < 1 this implies the result.

We fix l ∈ [1, ..., n + 1] and let r(x) = (F(pl)T q)(x). Then

r(μk) = μkq(μk) for all k �= l
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and, by (3.8),

alr(μl) = −
∑

k �=l

akr(μk).

Therefore

||r ||μ =
∑

k �=l

|μkakq(μk)| + |alr(μl)|

=
∑

k �=l

|μkakq(μk)| + |
∑

k �=l

akμkq(μk)|

= μ1

⎛

⎝
∑

k �=l

∣∣∣∣
μk

μ1
akq(μk)

∣∣∣∣ +
∣∣∣∣∣∣

∑

k �=l

ak
μk

μ1
q(μk)

∣∣∣∣∣∣

⎞

⎠ . (3.9)

For sk ∈ [0, 1], xk ∈ R, k �= l we have

∣∣∣∣∣∣

∑

k �=l

sk xk

∣∣∣∣∣∣
−

∣∣∣∣∣∣

∑

k �=l

xk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∑

k �=l

xk(1 − sk)

∣∣∣∣∣∣
≤

∑

k �=l

|xk |(1 − sk).

Hence,

∑

k �=l

|skxk | +
∣∣∣∣∣∣

∑

k �=l

sk xk

∣∣∣∣∣∣
≤

∑

k �=l

|xl | +
∣∣∣∣∣∣

∑

k �=l

xk

∣∣∣∣∣∣
.

Setting xk = akq(μk), sk = μk
μ1

we get

||r ||μ ≤ μ1||q||μ, (3.10)

as required. ��

4 Irrational densities

In this section we prove Theorems 1.2–1.4. The main ingridient of the
proofs is careful analysis of the finite matrices with rows of the form
(0, ...,m0(ξ), ....,mN−1(ξ), 0, .., 0).
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4.1 Preliminaries

Without loss of generality we may assume, as before, β = 1, α ∈ (0, 1) \ Q

because the rescaling g �→ gβ(t) := g(t/β) as in Sect. 3 leads one just to
rescaling of the corresponding functions m0(ξ), ĝ(ξ).

Put

M(ξ) = (m0(ξ),m1(ξ), ...,mN−1(ξ)).

In what follows we writeOk for zero row of length k; when the length is clear
from the context we suppress the subscript k. So the row (0, ...,m0(ξ), ....,

mN−1(ξ), 0, ..., 0) can be written as (O,m0(ξ), ....,mN−1(ξ),O).
We assume α > 1/2. The case α < 1/2 follows since αZ×Z ⊂ 2αZ×Z.
Let τ = 1

α
− 1. For any fixed ξ ∈ (1, 1

α
) consider the sequence

{ξ, ξ − 1, ξ − 1 + τ, ξ − 1 + 2τ, ...., ξ − 1 + k1τ },

here k1 ∈ N is the first number such that ξ − 1 + k1τ ∈ (1, 1/α). We repeat
the procedure starting from ξ − 1+ k1τ and take the first k2 such that ξ − 1+
(k1 + k2)τ ∈ (1, 1/α), and so on. After l repetitions we obtain the sequence

Sξ,l := {ξ, ξ − 1, ξ − 1 + τ, ξ − 1 + 2τ, ...., ξ − 1 + k1τ, ξ − 2 + k1τ,

ξ − 2 + (k1 + 1)τ..., ξ − 2 + (k1 + k2)τ ),

...,

ξ − l + K τ, ξ − l − 1 + K τ },

where K = k1 + k2 + · · · + kl . With any such sequence S(ξ, l) we associate
finite (K + l + 2) × (K + N ) matrix D = D(ξ, l),

D = D(ξ, l) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(ξ) O

M(ξ − 1) O

O1 M(ξ − 1 + τ) O

O2 M(ξ − 1 + 2τ) O

. . .

Ok1−1 M(ξ − 1 + (k1 − 1)τ ) O

Ok1 M(ξ − 1 + k1τ) O

Ok1 M(ξ − 2 + k1τ) O

Ok1+1 M(ξ − 2 + (k1 + 1)τ ) O

. . .

OK M(ξ − l + K τ)

OK M(ξ − l − 1 + K τ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We put attention of the reader to the (a bit) non-traditional form of represen-
tation of this matrix: each “column” consists of strings of various length. In
the next section we will see how does this matrix appear and also explain its
structure in more details.

The next lemma is the key technical step in the proof of Theorem 1.2.

Lemma 4.1 There exist ξ̂ ∈ (1, 1
α
), l ∈ N, l > N, and δ > 0 such that for

any ξ ∈ [ξ̂ − δ, ξ̂ + δ] the rank of the matrix D(ξ, l) is K + N.

We postpone the proof of this lemma and first deduce Theorem 1.2 from
Lemma 4.1.

4.2 Proof of Theorem 1.4

We have to establish relation (2.5). The� part of (2.5) is straightforward since
all ms(ξ) are bounded. In order to prove the opposite inequality it suffices to
construct the left inverse L−1 to the operator L : L2(R) → 	2(L2(0, 1/α))

defined by the relation

L : G �→
{
N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ)

}

n

. (4.1)

As before, we restrict ourselves to the case α > 1/2 and denote τ = 1
α

− 1.
Given γ = {γn(ξ)}n∈Z ∈ �L we have to solve the infinite sequence of

equations with respect to {G(ξ + n + s/α)}n
N−1∑

s=0

G
(
ξ + n + s

α

)
ms(ξ) = γn(ξ), n ∈ Z, ξ ∈

(
0,

1

α

)
. (4.2)

We use notations from the previous section. For ξ ∈ (1, 1/α) we will try to
choose a subsystem of (4.2) which can be resolved with respect to variables

{
G(ξ + j

α
)

}

j∈Z
. (4.3)

This leads us to the matrix D(ξ, l). Indeed, we have ξ ∈ (1, 1/α), ξ − 1 ∈
(0, τ ). Two equations in (4.2) written for ξ with n = 0 and for ξ − 1 with
n = 1 contain the same selection of variablesG(ξ +s/α), s = 0, 1, ..., N −1.
The coefficients in these equations belong to the strings M(ξ), M(ξ − 1). We
complete these strings by the corresponding number of zeroes and obtain the
first two rows of the matrix D(ξ, l).
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The equation in (4.2) with ξ − 1 + τ instead of ξ and n = 2 has the form

N−1∑

s=0

G

(
ξ + s + 1

α

)
ms(ξ − 1 + τ) = γ2(ξ − 1 + τ).

This equation contains the variables {G(ξ + s/α)}Ns=1, its coefficients are
the elements of the string M(ξ − 1 + τ). Completing this string by one zero
on the left and by the corresponding amount of zeroes on right we obtain the
third row in D(ξ, l).

Repeating this procedure as described in the previous section we obtain the
whole matrix D(ξ, l). We remark that the total number of unknowns increases
by one when we add the equation related to the shift of the argument by τ and
remains the same, whenwe add the equation related to the shift of the argument
by −1. This will allow us to extract a subsystem of (4.2) which contains the
same amount of equations and variables to be determined.

Moreover, for each ξ ∈ (1, 1/α) we can explicitly write the matrix of the
operator applied to the sequence {G(ξ + j/α)} j∈Z. This matrix consist of
single and double strings M(·) shifted with respect to each other.

Lξ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

O−k−1 M(ξ + 1 − k−1τ) O

O−k−1 M(ξ − k−1τ) O

. . .

O−2 M(ξ − 2τ) O

O−1 M(ξ − τ) O

O0 M(ξ) O

O0 M(ξ − 1) O

O+1 M(ξ − 1 + τ) O

O+2 M(ξ − 1 + 2τ) O

. . .

Ok1 M(ξ − 1 + k1τ) O

Ok1 M(ξ − 2 + k1τ) O

. . .

Ok1+k2 M(ξ − 2 + (k1 + k2)τ ) O

Ok1+k2 M(ξ − 3 + (k1 + k2)τ ) O

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.4)

here Oq indicates the shift of the corresponding string M(·) to the left or to
the right depending on the sign of q.

The structure of all rows of the matrix Lξ is similar. Therefore, we can start
with ξ − 1+ k1τ instead of ξ . Similarly, if ξ /∈ (1, 1

α
) we can first add to it rτ

for some r ∈ N so that ξ + rτ ∈ (1, 1
α
) and proceed from there.
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Choose l, ξ̂ and δ as in Lemma 4.1 and, for each t ∈ Z, denote by ξt the
point of t-th return of the original point ξ into the interval (1, 1/α):

ξt = ξ − t + (k1 + k2 + · · · + kt )τ,

so that the corresponding couple of “double rows” in (4.4) has the form

(
Ok1+···+kt M(ξt ) O

Ok1+···+kt M(ξt − 1) O

)
.

In this notation we have ξ = ξ0. Since α /∈ Q the set ξt is dense in (1, 1/α).
By shifting of the numeration we may assume that ξ0 ∈ [ξ̂ − δ, ξ̂ + δ],

and also we can choose t ∈ N so that the point ξ−t = ξ + t − (k−1 + · · · +
k−t )τ ∈ [ξ̂ − δ, ξ̂ + δ]. Consider the submatrix of Lξ located between the
rows (O, M(ξ + t − (k−1 + k−2 + · · · + k−t )τ ),O) and (O, M(ξ − l + (k1 +
k2 + · · · + kl)τ ),O):

C = C(ξ, l, t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

M(ξ + t − (k−1 + · · · + k−t )τ ) O

M(ξ + t − 1 − (k−1 + k−2 + · · · + k−t )τ ) O

. . .

Ok−1+···+k−t−2 M(ξ − 2τ) O

Ok−1+···+k−t−1 M(ξ − τ) O

Ok−1+···+k−t D(ξ, l)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The matrix C(ξ, l, t) has ν := N + K + (k−1 + k−2 + · · · + k−t ) columns.

4.3 Rank of the matrix C(θ, t, l)

We will show that rank(C(ξ, l, t)) = ν. To this end we choose collection of
ν rows of C(ξ, l, t) which spans the whole spaceRν . By Lemma 4.1 there is a
square non-degenerate submatrix E(ξ, l) of D(ξ, l) of size (K+N )×(K+N ).
We keep the rows which correspond to E(ξ, l) and eliminate the rest of the
rows D(ξ, l). Further we eliminate each second row in the couples of double
rows, i.e. the rows which contain the strings M(ξ + p−1−(k−1+· · ·+k−p)),
p = 1, ..., t . The remaining rows form ν × ν matrix of the form

⎛

⎜⎜⎜⎜⎝

M(ξ + t − (k−1 + . . . + k−t )τ ) O

O1 M(ξ + t − 1 − (k−1 + . . . + k−t − 1)τ ) O

. . .

Ok−1+···+k−t−1 M(ξ − τ) O

Ok−1+···+k−t E(ξ, l)

⎞

⎟⎟⎟⎟⎠
.

This is a block-diagonal matrix

(
X Y
0 E(ξ, l)

)
. In addition X is an upper-

triangular matrix, its diagonal elements are values m0(ξ) for some point
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ξ ∈ (τ, 1 + τ). They do not vanish and bounded away from zero by the
assumption on m0. Thus the matrix C(ξ, l) indeed has the full rank.

4.4 End of the proof of Theorem 1.4

We can now find
−→
G = {G(ξ + j/α)}K+N

j=−k1−...−kt
which solves the system of

equations (4.2) which corresponds to the selected rows of the matrix C(ξ, l).
The equations of this systemwhich correspond to the rest of the rows ofC(ξ, l)
will be met automatically since we assume γ ∈ �Lξ . In addition we have

‖−→G ‖2 ≥ C‖γ̃ ‖, (4.5)

where γ̃ is the section of the sequence γ corresponding the rows of C(ξ, l).
The constant C depends on t and the estimate from below for | det E(ξ, l)|.

We observe that number t may be chosen uniformly bounded with respect
to ξ . Indeed, we have an irrational motion with step τ and it is well known
that it lands into any given interval in the bounded number of steps regardless
of the starting point.

One can choose ε > 0 so that, for each ξ ∈ [ξ0 − δ, ξ0 + δ] we
have | det E(ξ, l)| > ε for the corresponding submatrix E(ξ, l) of D(ξ, l).
Therefore the constant C in (4.5) can be chosen uniformly with respect to
ξ ∈ [ξ0 − δ, ξ0 + δ].

It remains to note that the operator Lξ can be decomposed into the operators
C(ξ) with finite overlapping. So, finally we have constructed the bounded left
inverse to (4.1).

Remark 4.2 The proof of Theorem 1.2 can be roughly decomposed into the
following ideas: we can use nonvanishing of the functionm0 to shift the atten-
tion from the number ξ to the number ξ − τ mod 1

α
. Since τ = 1

α
− 1 and 1

α
are incommensurable in this way we can come close to any given point on the
interval [0, 1/α]. Thus, it is enough to prove the corresponding bound for any
single ξ0 ∈ (0, 1/α) (and its small vicinity), which is done in Lemma 4.1.

4.5 Proof of Lemma 4.1: Step 1

First we observe the identity

∑N−1
s=0 ms(ξ)zs

∏N
k=1(1 − ze

2π
α

wk )
=

N∑

k=1

ake2πξwk

1 − ze
2π
α

wk
, (4.6)
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this follows from the definition of the functions ms , see (2.4). Let

u j = e
2π
α

w j , j = 1, ...N .

Fix j ∈ {1, ..., N } and compare the residues at z = u−1
j on both sides in (4.6).

N−1∑

s=0

ms(ξ)u−s
j = a ju

1−N
j e2πξw j

∏

l �= j

(u j − ul). (4.7)

Assume that the number l > N is already found. The (K +l+2)×(K +N )

matrix D(ξ, l) is composed from l + 1 “double” rows of the form

(Ok1+···+ks , M(ξ − s + (k1 + · · · + ks)τ ),O),

(Ok1+···+ks , M(ξ − s − 1 + (k1 + · · · + ks)τ ),O)

with “single” rows in between.
In order to transform it to a square matrix it suffices to eliminate l + 2− N

rows. Let us eliminate the second rows in the appropriate number of double
rows except the first and last ones. The remaining second rows are of the form

(Ok1+···+ks , M(ξ − s − 1 + (k1 + · · · + ks)τ ),O)

for s = Q1, Q2, ..., QN−1 for some 0 = Q1 < Q2 < ... < QN−1 = l.
Denote the resulting matrix by F(ξ, l) and let

q j = kQ j−1 + · · · + kQ j

be the “distance” between the rows with numbers Q j−1 and Q j .
We will choose the numbers Q1, ..., QN−1, and also ξ̂ ∈ (1, 1/α), δ > 0,

so that det F(ξ, l) �= 0, ξ ∈ (ξ̂ − δ, ξ̂ + δ).
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It follows from (4.7) that, for each j = 1, 2, ..., N ,

F(ξ, l)

⎛

⎜⎜⎜⎜⎝

uK+N−1
j

uK+N−2
j
...

u j

1

⎞

⎟⎟⎟⎟⎠
= a j e

2πξw j
∏

l �= j

(u j − ul )

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uKj
uKj e

−2πw j

uK−1
j e−2πw j e2πτw j

uK−2
j e−2πw j e2π2τw j

. . .

uK−q2
j e−2πQ2w j e2πq2τw j

uK−q2
j e−2π(Q2+1)w j e2πq2τw j

. . .

e−2πQN−1w j e2πK τw j

e−2π(QN−1+1)w j e2πK τw j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= a j e
2πξw j

∏

l �= j

(u j − ul )Vj (l).

For each j = 1, 2, ..., N , Vj (ξ, l) is a column of size K + N . We observe that
Vj (l) is independent of ξ .

Put

W (l) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

uK+N−1
1 uK+N−1

2 . . . uK+N−1
N

uK+N−2
1 uK+N−2

2 . . . uK+N−2
N

...
...

...
...

u1 u2 . . . uN
1 1 . . . 1

ON×K
IK

⎞

⎟⎟⎟⎟⎟⎟⎠

here ON×K is the zero N × K matrix and IK is the identity matrix of the size
K × K .
For any choice of Q1, ..., QN−1 the determinant d(ξ) = det(F(ξ, l)W (l))

is an exponential polynomial, i.e., a finite sum of the form

d(ξ) =
∑

j

α j e
ξβ j .

We are going to prove that for an appropriate choice of Q1, ..., QN−1, this
polynomial does not vanish identically. This would prove Lemma 4.1. We
have

d(ξ) = e2π(w1+···+wN )ξ
N∏

j=1

a j

∏

j �=l

(u j − ul) det(V1, ..., VN , FN+1, ..., FN+K ),
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where Fj is a j’th column of the matrix F(ξ, l). Observe that e2π(w1+···+wN )ξ

∏N
k=1 a j

∏
j �=l(u j −ul) �= 0,which follows from the assumption that	w j �=

	wl , j �= l.

4.6 Step 2

It remains to choose Q1, ..., QN−1 so that det(V1, ..., VN , FN+1, ..., FN+K )

is non-zero. Note that this determinant is also an exponential polynomial in ξ .
Therefore, it suffices to find at least one non-zero coefficient. We assume that
	w1 > 	w2 > ... > 	wN and we are going to choose Q1, ..., QN−1 so that
the term e2πKw1ξ participates in our polynomial with a non-zero coefficient.

We have

M(ξ − 1) − e−2πw1M(ξ) = (J0, J1, ..., JN−1),

where Js does not contain the frequency e2πξw1 . We do the following trans-
formations which do not change the determinant. Each remaining couple of
double rows of the matrix F has the form

Rs = (O, M(ξ − Qs + (k1 + · · · + kQs )τ ),O),

R′
s = (O, M(ξ − Qs − 1 + (k1 + · · · + kQs )τ ),O).

We replace the row R′
s by Ts = e−2πw1Rs − R′

s which is now free from
the terms containing e2πξw1 . Next, we rearrange the rows of F(ξ, l) in such
a way that the new rows Ts go after the first row of F(ξ, l). This yields a
rearrangment of the rows of the matrix (V1, ..., VN , FN+1, ..., FN+K ) which
after this rearrangment acquires a transparent block structure

(
X Y
Z T

)
,

where N × N matrix X and K × N matrix Z are independent on ξ , T is a
K × K lower triangular matrix while the N × K matrix Y does not contain
terms with e2πξw1 .

Since T is lower-triangular the coefficient of e2πKw1ξ comes from the diag-
onal elements of the matrix T only. The diagonal elements of the matrix T
are equal to mN−1(ξ + ...) and have non-zero coefficients in front of e2πξw1 .
Thus, it remains to prove that det X �= 0.
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We have

X =

⎛

⎜⎜⎜⎜⎝

uK1 uK2 . . . uKN
0 uK2 (e−2πw2 − e−2πw1 ) . . . uKN (e−2πwN − e−2πw1 )

0 uK−q2
2 (e−2πw2 − e−2πw1 )e2πw2(q2τ−Q2) . . . uK−q2

N (e−2πwN − e−2πw1 )e2πwN (q2τ−Q2)

. . .

0 (e−2πw2 − e−2πw1 )e2πw2(K τ−QN−1) . . . (e−2πwN − e−2πw1 )e2πwN (K τ−QN−1)

⎞

⎟⎟⎟⎟⎠
.

Note that since 	w1 �= 	w j , j > 1 all the factors e−2πw j − e−2πw1 are
non-zero. We have

det X = uK1

N∏

j=2

(e−2πw j − u−2πw1 ) det

⎛

⎜⎜⎝

uK2 . . . uKN
uK−q2
2 e2πw2(q2τ−Q2) . . . uK−q2

N e2πwN (q2τ−Q2)

. . .

e2πw2(K τ−QN−1) . . . e2πwN (K τ−QN−1)

⎞

⎟⎟⎠

= uK1

N∏

j=2

(e−2πw j − e−2πw1 ) det X ′.

Now we finally choose Qs in such a way that 1 � Q2 � Q3 � . . . �
QN−1. This implies that 1 � q2 � q3 � . . . � qN−1. Note that since
all numbers (q2 + . . . + qs)τ − Qs are in (0, 1

α
) corresponding exponents

are uniformly bounded from above and from below. It remains to observe
that, since |u2| > |u3| > . . . > |uN |, when we expand det X ′ as a sum
over all permutations the diagonal term containing uK2 u

K−q2
3 . . .will dominate

everything else and so det X ′ is non-zero. The lemma is proved. ��

4.7 Proof of Theorem 1.11

Modifying above arguments we can prove that the system G(g; α, β) is com-
plete. Moreover, since the function m0 is a priori almost everywhere non-zero
and the matrix D(ξ, l) almost always has full rank we do not need the assump-
tions about m0 and the irrationality of αβ.

For αβ > 1 the system G(g; α, β) is incomplete in L2(R). This follows
from the general theorem in [21]. However in our case we have a direct proof.
Looking at the proof of Theorem 1.2 we can see that if αβ > 1 then there
exists an infinite-dimensional space of function which are orthogonal to all
G(g; α, β). If αβ = 1, then the frame operator is unitarily equivalent to the
multipication by the Zak transform. In our case Zak transform is analytic and
hence almost everywhere non-zero, so we have completeness in this case as
well.
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5 Other results

In this section we prove Theorems 1.6, 1.7, 1.9 and, in addition, we construct
some counterexamples.

5.1 Near the critical hyperbola (proof of Theorems 1.6 and 1.7)

Let the condition of Theorem 1.6 be met. The beginning of the proof repeats
that of Theorem 1.1. We also use some notation as in Theorem 1.1. Let

(LG)(ξ) =
N−1∑

s=0

G
(
ξ + s

α

)
ms({ξ}).

It suffices to prove (see Sect. 3.2, Step 1) that for some α0,

‖LG‖2 � ‖G‖2, G ∈ L2(R),

for each α > α0.
We further follow Steps 2 and 3 Sects. 2.3, 2.4 by showing that the norm of

the corresponding product of Frobenius matrices decays at least as a geometric
progression:

‖F(p{ξ})F(p{ξ− 1
α
})...F(p{ξ−l/α})‖ ≤ Cql , for some q ∈ (0, 1). (5.1)

First we note that the spectrum of F(pξ ) coincides with the zero set of the
polynomial

pξ (z) = m0(ξ) + m1(ξ)z + · · · + mN−1(ξ)zN−1

mN−1(ξ)
.

On the other hand, from the assumption of Theorem 1.6 we have

	Z(z, ξ) = 	 mN−1(ξ)pξ (z)∏N
k=1(1 − ze2πwk/α)

> 0, |z| = 1,

and, by the argument principle, the number of zeroes of pξ (counting with
multiplicities) inside the unit diskD is N . Actually they are located in a smaller
disk {z : |z| < ρ}, where ρ < 1 is chosen so that 	Z(ρe2π i t , ξ) > 0,
ξ ∈ [0, 1], t ∈ R, and ρ > e−2πwk/α , k = 1, ..., N .

Therefore the spectral radius of the matrices F(pξ ) is strictly less than 1.
In particular,

‖FM(pξ )‖ ≤ q < 1, ξ ∈ [0, 1], for sufficently large M, (5.2)

123



458 Y. Belov et al.

where ‖ · ‖ is an operator norm of matrix. This inequality is uniform with
respect to ξ ∈ [0, 1] (numbers q and M do not depend on ξ ).

Given this M one can choose α sufficiently close to 1 so that the matrices
F(p{ξ− k

α
}) and F(p{ξ− j

α
}) are arbitary close to each other if |k − j | < M ,

so for M � l the product in (5.2) can be represented as a product of l/M0
uniformly strictly contractive matrices. This completes the proof. ��

Combining Remark 1.5 and Theorem 1.6 we get also Theorem 1.7.

Remark 5.1 The condition 	Z(z, ξ) > 0, |z| = 1, ξ ≥ 0 can be reformulated
as

∑

n≥0

m0

(
ξ + n

α

)
cos(nt) > 0, ξ, t ∈ R.

Proof Put z = eit . We have

	Z(z, ξ) =
N∑

k=1

ake
2πξwk	 1

1 − ze2πwkα
=

N∑

k=1

ake
2πξwk

∞∑

n=0

	(zne2πnwkα) =
∑

n≥0

m0

(
ξ + n

α

)
cos(nt).

��
This form is useful if we want to check the inequality for all rescaled func-

tions g(·/β) since rescaling of the window g corresponds to the rescaling of
m0.

Now, we are in position to prove Corollary 1.8. From the equationm0(ξ) =
ĝ(ξ) we conclude that the Fourier series

∑

n≥0

m0

(
ξ + n

α

)
cos(nt)

has positive, convex coefficients for any ξ . It is known that such the Fouries
series are positive, which can be deduced by applying the Abel transform
twice. ��

5.2 Lattices with large densities

In this section we prove Theorem 1.9. The proof is similar to one of Theo-
rem 1.2. By the standard rescaling we can assume β = 1. As in Sect. 4.2 it
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suffices to prove that the discrete operator Lθ defined by (4.4) satisfies

‖Lξ Pξ‖ � ‖Pξ‖.

Sinceα < 1
N , the variable ξ in (4.4) runs over the interval (0, 1/α) ⊃ (0, N ).

Given ξ ∈ (0, 1/α) take ξ ′ = ξ + k
α

≥ N − 1, ξ ′ ∈ (0, 1/α). After may be
omitting some rows the operator Lξ can be reduced to the block-diagonal
structure with N × N blocks of the form:

B(ξ ′, N ) :=

⎛

⎜⎜⎝

M(ξ ′)
M(ξ ′ − 1)

...

M(ξ ′ − N )

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

m0(ξ
′) m1(ξ

′) .... mN−1(ξ
′)

m0(ξ
′ − 1) m1(ξ

′ − 1) .... mN−1(ξ
′ − 1)

...

m0(ξ
′ − (N − 1)) m1(ξ

′ − (N − 1)) .... mN−1(ξ
′ − (N − 1))

⎞

⎟⎟⎠ .

Theorem 1.9 follows now from

Lemma 5.2 Let ak �= 0, k = 1, ..., N and 	wk �= 	wl , k �= l. Then

det B(ξ, N ) �= 0.

Proof Put yk = e−2πwk , uk = e2πwk/α , Ak = ake2πξwk , k = 1, ..., N . Then

B =

⎛

⎜⎜⎝

A1 A2 ... AN

A1y1 A2y2 ... AN yN
....

A1y
N−1
1 A2y

N−1
2 ... AN y

N−1
N

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 − ∑
k �=1 uk ... (−1)N−1 ∏

k �=1 uk
1 − ∑

k �=2 uk ... (−1)N−1 ∏
k �=2 uk

...

1 − ∑
k �=N uk .. (−1)N−1 ∏

k �=N uk

⎞

⎟⎟⎠

= XY.

The entries of the matrix Y are symmetric polynomials with respect to the
corresponding subsets of variables {u1, ..., uN }. We have

det Y = ±
∏

k<l

(uk − ul) �= 0.

On the other hand,

det X =
N∏

k=1

Ak det

⎛

⎜⎜⎝

1 1 ... 1
y1 y2 ... yN

....

yN−1
1 yN−1

2 ... yN−1
N

⎞

⎟⎟⎠ .

It remains to note that this Vandermonde determinant does not vanish. ��

123



460 Y. Belov et al.

Proposition 5.3 For any N > 1 and any numbers w1, w2, ..., wN , such that
	wk �= 0, 	wk �= 	wl for k �= l, there exist a non-zero {ak}Nk=1 such that
G(g; 1/(N − 1), 1) is not a frame in L2(R). Here g is defined by (1.1).

Proof We have α = 1
N−1 . As before fix ξ ∈ (0, N − 1) and consider the

corresponding operator Lξ . Observe that there are only N − 1 different rows
in Lξ . Therefore one can find a non-zero sequence {ak}Nk=1 such that Lξ1 = 0,
where 1 = (..., 1, 1, 1, ...)T . Since Lξ has bounded entries and its rows have
finitely many elements, by truncating the column of all 1’s we can get an 	2

sequence γ with arbitrary large 	2-norm and uniformly bounded norm of Lξ γ .
Therefore Lξ cannot be bounded from zero. ��

Similar arguments lead us to the follwoing statement:

Proposition 5.4 For any rational number α there exists rational window g
such that Gabor system G(g; α, 1) is not a frame.

5.3 Counterexamples

Assumptionm0(ξ) �= 0 in Theorem 1.2 cannot be omitted, generally speaking.
By analysing the proof of this theorem one can find a method for construction
of non-frame Gabor systems different from the one used in Propositions 5.3–
5.4. This leads us to Gabor non-frame systems with irrational densities.

Theorem 5.5 Let g(x) =
3∑

k=1

ak
x−iwk

. Assume that α > 5
6 and also that for

some 0.99 < ξ0 < 1 we have

m0

(
ξ0 − 2

α
+ 2

)
= m1

(
ξ0 − 1

α
+ 1

)
= m2(ξ0) = 0. (5.3)

Then the system G(g; α, 1) is not a frame in L2(R).

Proof By Theorem 2.1 the necessery and sufficient condition for G(g; α, 1)
to be a frame is

1/α∫

0

∑

n∈Z

∣∣∣∣∣

2∑

s=0

G

(
ξ − n − s

α

)
ms(ξ)

∣∣∣∣∣

2

dξ � ||G||2L2(R)
, G ∈ L2(R).
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Clearly this relation is not met for functions G concentrated in δ-vicinity of
the point ξ0 − 2/α. Even if we bound left-hand side by

1/α∫

0

∑

n∈Z
3

2∑

s=0

∣∣∣∣G(ξ − n − s

α
)

∣∣∣∣
2

|ms(ξ)|2dξ, (5.4)

for sufficiently small δ we may obtain a quantity less than ε‖G‖2. ��
Remark 5.6 Similar result can be proved for the sum of arbitrary many kernels
as long as α and ξ are close enough to 1.

For fixed α, w1, w2, w3 conditions (5.3) are three homogenious linear equa-
tions in a1, a2, a3. For this system to have a nontrivial solution corresponding
3 × 3 determinant has to be zero. We will construct numbers α, w1, w2, w3
such that this determinant is zero and	wk are pairwise different. Moreover, in
our construction wewould havew2 = 1

2π ,w3 = − 1
2π and arbitrary α (rational

or irrational) with |α − 6
7 | < 1

1000 .
Let us begin with explicitly writing down the matrix corresponding to (5.3)

⎛

⎜⎝
e2πw1(ξ0− 2

α
+2) e2πw2(ξ0− 2

α
+2) e2πw3(ξ0− 2

α
+2)

e2πw1(ξ0− 1
α

+1)(e
2π
α

w2 + e
2π
α

w3 ) e2πw2(ξ0− 1
α

+1)(e
2π
α

w1 + e
2π
α

w3 ) e2πw3(ξ0− 1
α

+1)(e
2π
α

w1 + e
2π
α

w2 )

e2πw1ξ0+ 2π
α

w2+ 2π
α

w3 e2πw2ξ0+ 2π
α

w1+ 2π
α

w3 e2πw3ξ0+ 2π
α

w1+ 2π
α

w2

⎞

⎟⎠ .

First we note that whether this determinant is zero or not does not depend
on ξ0 (in particular it is irrelevant if 0.99 < ξ0 < 1 or not). Therefore, without
loss of generality we can assume that ξ0 = 1

α
− 1. Expanding the determinant

(which we view as a function of w1) and dividing it by e
2π
α

(w1+w2+w3) we get

F(w1) = e2πw1(e−2πw2 − e−2πw3) − e−2πw1(e2πw2 − e2πw3)

−eε2πw1(e−ε2πw2 − e−ε2πw3) + e−ε2πw1(eε2πw2 − eε2πw3) + C,

where ε = 1
α

− 1 and C is a constant such that F(w2) = F(w3) = 0.
Let us first put α = 6

7 . Then ε = 1
6 and e2πw1 = (eε2πw1)6. Denoting

eε2πw1 = z and recalling that w2 = 1
2π , w3 = − 1

2π the equation we rewrite
as

(e − e−1)(z6 + z−6) − (e1/6 − e−1/6)(z + z−1)

−e2 + e−2 + e1/3 − e−1/3 = 0. (5.5)

This equation has solutions z1 = e1/6 ≈ 1.18, z2 = e−1/6 ≈ 0.85. But
one can numerically verify that it also has negative solutions z3 ≈ −1.12,
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z4 ≈ −0.89. They correspond for example to w1 = 0.108 + 3i and w1 =
−0.111+ 3i respectively. For any α close to 6

7 we can find a close solution by
the argument principle.

So, we proved the following theorem.

Theorem 5.7 There exists a rational window g of degree 3 and irrational
number α < 1 such that G(g; α, 1) is not a frame.

6 Sampling in shift-invariant spaces

The results on Gabor frames allow us to obtain new theorems on sampling in
shift-invaraint spaces, generated by rational windows. We follow mainly the
pattern of [10], which in turn relies on the Jannsen’s version of duality theory.

First, we remind the basic definitions. Given a function g which belongs to
the Wiener amalgam space W0 = W (	1,C), i.e., g is continuous and

‖g‖W0 =
∑

k∈Z
max

x∈[k,k+1] |g(x)| < ∞. (6.1)

For functions g of the form (1.1) this is equivalent to the equality
∑N

k=1 ak =
0.

Consider now the shift-invariant spaceV 2(g)which consists of the functions
of the form

f (t) =
∑

k∈Z
ckg(t − k), {ck} ∈ 	2(Z). (6.2)

Clearly, V 2(g) ⊂ L2(R) and

‖ f ‖L2 ≤ ‖g‖W0‖{ck}‖2. (6.3)

We will assume the following stability of the generator g:

Proposition 6.1 (see e.g. [22], Theorem 29) The following properties are
equivalent

(i) There exists C > 0 such that

‖
∑

k∈Z
ckg(t − k)‖ ≥ C‖{ck}‖2; (6.4)

(ii) ∑

k∈Z
|ĝ(ξ − k)|2 > 0 for all ξ ∈ R. (6.5)
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We say that a sequence � ⊂ R is separated if for some δ > 0, |λ − μ| > δ,
λ, μ ∈ �, λ �= μ.

A separated sequence� is called sampling for V 2(g) if there exist constants
A, B > 0 such that

A‖ f ‖22 ≤
∑

λ∈�

| f (λ)|2 ≤ B‖ f ‖22, f ∈ V 2(g). (6.6)

In what follows we apply these definitions to the sequences αZ, α < 1 and
spaces V 2(g) generated by the rational function g.

The relation between sampling and frame properties is given by the follow-
ing statement.

Proposition 6.2 Let g ∈ W0 satisfy the properties from Proposition 6.1. The
following are equivalent:

(i) The family G(g; α, 1) is a frame for L2(R);
(ii) There exist A, B > 0 such that for each x ∈ [0, 1] and f of the form (6.2)

A‖{ck}‖22 ≤
∑

m∈Z
| f (x − αm)|2 ≤ B‖{ck}‖22. (6.7)

We refer the reader to (now) classical article [12] for the proof of this propo-
sition and also to [10] formore general sequences. For the case of characteristic
functions this statement has been proved also in [2].

We combine Proposition 6.2 with Theorems 1.4 and 1.2.

Lemma 6.3 Let the function g have the form (1.1), 	wk �= 	wl, k �= l, and,
in addition g ∈ W0 and m0(ξ) �= 0, ξ > 0. Then for each α /∈ Q, α ∈ (0, 1)
there exist Aα, Bα > 0 such that

Aα‖{ck}‖22 ≤
∑

k∈Z
| f (αk)|2 ≤ Bα‖{ck}‖22 (6.8)

for each function f of the form f (t) = ∑
k ckg(t − k).

Proof It suffices to prove that g admits stable sampling, for example check the
inequality (6.5). We have

ĝ(ξ) =
{∑

wk<0 ake
2πξwk , ξ > 0,

− ∑
wk>0 ake

2πξwk , ξ < 0.

each sum on the right hand-side has the leading term as |ξ | → ∞ (it corre-
sponds to the smallest |wk |). Thus, we have (6.5). ��
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Theorem 6.4 Let the function g have the form (1.1), 	wk �= 	wl, k �= l,
and, in addition, g ∈ W0 and m0(ξ) �= 0, ξ > 0. Then, for each α ∈ (0, 1)
the set αZ is a sampling for V 2(g) i.e. there exist Aα, Bα > 0 such that

Aα‖{ck}‖22 ≤
∑

k∈Z
| f (αk)|2 ≤ Bα‖{ck}‖22, f ∈ V 2(g). (6.9)

Proof The left-hand side inequality is a direct consequence of (6.8) and (6.3).
The proof of the right-hand side inequality follows the classical Plancherel-
Polya pattern. Each function f ∈ V 2(g) has the form

f (t) =
N∑

k=1

ak

∞∑

n=−∞

cn
t − (n + iwk)

(6.10)

and thus admits analytic continuation to C \ ∪N
k=1(Z + iwk). Denote

q(x) = 1 − e2π i z, Q(z) =
N∏

k=1

q(z − iwk)

and consider an entire function of exponential type which in addition belongs
to L2(R)

F(z) = Q(z) f (z). (6.11)

Function F belongs to the Paley–Wiener spacePWa for an appropriate a and,
hence, satisfies Plancherel-Polya inequality

∑

k∈Z
|F(αk)|2 � ‖F‖22.

��
Remark 6.5 It follows from [19] that condition α /∈ Q cannot be omitted in
general. On the other hand the right inequality in (6.9) holds independently of
irrationality of α.

Remark 6.6 Relation (6.8) can be viewed as a statement on sampling by linear
combination of values of functions in the Paley–Wiener space. Problems of
such type appear in the study of eigenfunction expansions of operator pencils,
see e.g. [18]. Indeed, given f of the form (6.10) we denote

H(z) = q(z)
∞∑

n=−∞

cn
z − n

.
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We then have

H ∈ PW[0,1], ‖H‖2  ‖{ck}‖	2,

and (6.9) can be read as

∞∑

j=−∞
|

N∑

k=1

akq(α j − iwk)
−1H(α j − iwk)|2  ‖H‖22.
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