Bioinformatics Advances, 2023, vbad027
https://doi.org/10.1093/bioadv/vbad027

Advance Access Publication Date: 14 March 2023
Review OXFORD

Genetics and population analysis
Inferring the heritability of bacterial traits in the era of

machine learning

T. Tien Mai ® "*, John A. Lees ® 23, Rebecca A. Gladstone ® % and
Jukka Corander ® %56

'Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim 7034, Norway, 2European
Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton CB10 1SD, UK, Department of Infectious Disease
Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK, “Department of
Biostatistics, University of Oslo, Oslo 0372, Norway, *Department of Mathematics and Statistics, University of Helsinki, Helsinki,
Finland and SPathogens and Microbes, Wellcome Sanger Institute, Hinxton CB10 18D, UK

*To whom correspondence should be addressed.
Associate Editor: Nicola Mulder

Received on September 2, 2022; revised on January 18, 2023; editorial decision on February 24, 2023; accepted on March 3, 2023

Abstract

Quantification of heritability is a fundamental desideratum in genetics, which allows an assessment of the contribu-
tion of additive genetic variation to the variability of a trait of interest. The traditional computational approaches for
assessing the heritability of a trait have been developed in the field of quantitative genetics. However, the rise of
modern population genomics with large sample sizes has led to the development of several new machine learning-
based approaches to inferring heritability. In this article, we systematically summarize recent advances in machine
learning which can be used to infer heritability. We focus on an application of these methods to bacterial genomes,
where heritability plays a key role in understanding phenotypes such as antibiotic resistance and virulence, which
are particularly important due to the rising frequency of antimicrobial resistance. By designing a heritability model
incorporating realistic patterns of genome-wide linkage disequilibrium for a frequently recombining bacterial patho-
gen, we test the performance of a wide spectrum of different inference methods, including also GCTA. In addition to
the synthetic data benchmark, we present a comparison of the methods for antibiotic resistance traits for multiple
bacterial pathogens. Insights from the benchmarking and real data analyses indicate a highly variable performance
of the different methods and suggest that heritability inference would likely benefit from tailoring of the methods to
the specific genetic architecture of the target organism.

Availability and implementation: The R codes and data used in the numerical experiments are available at: https://
github.com/tienmt/her_MLs.

Contact: the.t.mai@ntnu.no

1 Introduction

Heritability is a fundamental quantity in genetic applications
(Falconer, 1960; Lynch and Walsh, 1998) which specifies the con-
tribution of additive genetic factors to the variation of a pheno-
type. In the narrow-sense, heritability is defined as the proportion
of the variance of a phenotype explained by the additive genetic
factors. Heritability can be used to compare the relative import-
ance between genes and environment to the variability of traits,
within and across populations. Together with GWAS (genome-
wide association studies), the primary tool for discovering the gen-
etic basis of a phenotype of interest, heritability has been playing
as a more and more critical role in exploring the genetic architec-
ture of complex traits.

©The Author(s) 2023. Published by Oxford University Press.

Current investigations of heritability in the quantitative genetics
literature have focused on using the linear mixed-effect model
framework (Bonnet, 2016; Bulik-Sullivan et al., 2015; Golan et al.,
2014; Speed et al., 2012, 2017; Yang et al., 2010; Zhou, 2017).
In this framework, the effect sizes of genetic markers, usually SNPs
(single nucleotide polymorphisms), are assumed to be independent
and identically distributed random variables, and often the normal
Gaussian distribution is used for computational reasons. The genom-
ic restricted maximum likelihood (GREML) and method of moments
are the most widely used methods for heritability inference in this
model, and some corresponding popular software are GCTA (Yang
et al., 2011), LDSC (Bulik-Sullivan et al., 2015) and LDAK (Speed
et al., 2012; Speed and Balding, 2019). Although the linear mixed-
effect model provides various ways to interpret correlations among
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covariates and traits, and is computationally tractable, it makes
assumptions which do not necessarily accurately reflect the underly-
ing genetics (Gorfine et al., 2017; Holmes et al., 2019; Janson et al.,
2017; Lee et al., 2018; Li et al., 2019; Speed et al., 2017; Speed and
Balding, 2019). Some comparisons of different methods in this direc-
tion for estimating heritability have been recently conducted, for ex-
ample, in Zhou (2017), Evans et al. (2018), Weissbrod ez al. (2018),
Gorfine et al. (2017) and Holmes et al. (2019).

The study of heritability estimation in the statistical machine
learning community has been started relatively recently and it has
not yet received wider attention. Current machine learning
approaches often focus on the high-dimensional linear regression
model where some sparsity regularizations could be used on the
number of the covariates. This is a natural model for GWAS in mod-
eling the whole-genome level contributions of genetic variation
(Falconer, 1960; Lynch and Walsh, 1998). The benefit of this model
over the classical univariate approach in GWAS has been demon-
strated for example in Wu et al. (2009) and Brzyski er al. (2017).
Several machine learning methods for making heritability inference
have been studied: a method of moments approach is proposed in
Dicker (2014); a convex optimization strategy is investigated in
Janson et al. (2017) through a singular value decomposition; max-
imum likelihood estimation is studied in Dicker and Erdogdu
(2016); some adaptive procedures have also been theoretically
studied in Verzelen and Gassiat (2018); two-step procedures based
on high-dimensional regularized regression have been introduced in
Gorfine et al. (2017) and Li et al. (2019); and, a strategy for aggre-
gating heritabilities through multiple sample splitting is introduced
in Mai et al. (2021). However, up to our knowledge, a systematic
numerical comparison of these different methods for estimating her-
itability has not yet been conducted.

In this study, we provide a systematic summary of recent advan-
ces in machine learning methods for estimating heritability. More es-
pecially, we review and discuss the six above-mentioned different
methods and compare them with GCTA method, a state-of-the-art
method in quantitative genetics. The application is carried in a bac-
terial GWAS context for estimating the heritability of antibiotic re-
sistant phenotypes. While estimating heritability in human GWAS
has been studied in numerous works, the topic has not yet been con-
sidered widely in bacteria, for the only prominent examples see Lees
etal. (2017, 2020) and Mallawaarachchi ez al. (2022). This is partly
because bacterial GWAS poses unique challenges compared to stud-
ies with human or eukaryotic DNA in general, originating from
highly structured populations and more limited recombination that
produce in considerable linkage disequilibrium across whole
chromosomes.

Our article is structured as follows. In Section 2, the problem of
heritability estimation is introduced and a systematic review of ma-
chine learning methods for estimating heritability is given. In
Section 3, we briefly introduce the test datasets used in our evalu-
ation. Results and discussion of different methods on test datasets
are presented in Section 4.

2 Heritability inference using machine-learning
methods

The following notations are used in the work. The £, 4 <o nOrm
of a vector x € R? is defined by [Ix[l, = (Zil [x:|1)"/7. For a matrix
A € R™™, A;. denotes its ith row and A, denotes its jth column. For
any index set S C {1,...,d}, xs denotes the subvector of x contain-
ing only the components indexed by S, and As denotes the submatrix
of A forming by columns of A indexed by S.

2.1 The problem of heritability estimation
Let y; € R be the measured phenotype of subject 7 such that
yi=Xif+e,i=1,....n (1)

where X;. = (Xi1,...,Xjp) € R is the vector of genotypes of subject
i and p is the total number of variants; ¢1, ..., ¢, € R are unobserved

independent and identically distributed (iid) errors with
E(e) = 0, Var(g;) = 62 > 0; B= (By,.-- ,[fp)T € R is an unknown
p-dimensional parameter. We assume that X;,i=1,...,n are iid
random vectors and independent of & with E(X;) =0 and p x p
positive definite covariance matrix cov(X;.) = X.

Under the model (1), for the ith observation it follows that
Var(y;) = Var(X; ) + 62 = fTZf + 62. Our main focus is in esti-
mating the narrow-sense heritability for the phenotype y defined as

-
W= Tﬁi (2)
BTEB+ o2

In other words, this quantity computes the proportion of genetic dif-
ferences present in the population variability of a trait. It can benefit
modeling the underlying genetic architecture of a trait, because a
heritability close to zero means that environmental factors cause
most of the variability of the trait, while a heritability close to 1 indi-
cates that the variability of the trait is nearly solely caused by the dif-
ferences in genetic factors.

It is noted that as IE[HyH%/n] = Var(y), one can use ||y||§/n as an
unbiased estimator for the denominator of the heritability. Further,
(2) can also be written as

2
g

2 _ —
bm=1 Var(y)

. (3)

And thus, an estimate of the noise-variance 6> [see e.g. Reid et al.
(2016)] can be used to estimate h? rather than directly estimating
the genetic variance BB

Hereafter, we provide details for different methods for making
heritability inference. We especially focus on methods that enable
confidence intervals (Cls) to be computed.

2.2 Direct methods
We first recall some methods that can directly estimate heritability
from the data without identifying the genetic basis of the phenotype.

2.2.1 Convex optimization approach

Using a singular value decomposition (s.v.d.) transformation, the
work in Janson et al. (2017) proposes a method, called Eigenprism,
to estimate the squared signal 72 and thus heritability by solving
a convex optimization problem. They also prove the asymptotic nor-
mality of their estimator.

More specifically, let X = UDV be a singular value decompos-
ition (s.v.d.) and put z = U"y. Let 4;;—1,, denote the eigenvalues of
XXT /p. The authors of Janson et al. (2017) consider the following
convex optimization problem, denoted by P,

n n
arg min max E w,-z, g w,zil-z ,
weR” =1 =1

n n
such thatZwi =0, Zwi/b =1
p pt

Let w* be the solution to the problem Pj, then the heritability
estimator is given by

n * 52
X i Wiz

3

With P; being the minimized objective function value, the (1 — «)-
CI is given by [béprismizl,a/zx /2P}], where z1_,, is the (1 —a/2)
quantile of the standard normal distribution.

The cost of this method stems mainly from the calculation of the
s.v.d. of X. This will be expensive and slow for a genotype matrix
with large dimensions. Moreover, we note that in practice the opti-
mization in Py can fail sometimes and, in addition, this method only
works with high-dimensional data where p > 7.
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2.2.2 Maximum likelihood estimation

Another direct method for estimating heritability is based on using
the maximum likelihood method. In the paper (Dicker and Erdogdu,
2016), the authors derive consistency and asymptotic normality of
the maximum likelihood estimation (MLE) under additional
Gaussian assumptions. More specifically, the maximum likelihood
problem is defined as

. log(a?) 1 /I
2
(1, 6vLE) argrlril‘gzx{ logdet( XX +I>

1 -1
~52.7" (gxxT + I) y}

and the heritability estimate is given by

Poo_q O
MLE Var(y)

The authors also studied the consistency and asymptotic normality
of this MLE estimator. As a result, the (1 —a)-CI is given by

[};;LEizl,“/z/\/Z_n], where 2y, is the (1 —«/2) quantile of the
standard normal distribution.

This method appears to be quite efficient computationally as it
only requires handling a matrix inversion of dimension 7 x 7.

2.2.3 Moments method

Heritability estimation based on method-of-moment has been pro-
posed and studied in Dicker (2014) and Verzelen and Gassiat
(2018). Several estimators have been proposed in these works.
However, when the covariance matrix X is non-estimable or expen-
sive to estimate (as often is the case in practice), the reference
(Dicker, 2014) proposed an estimator as follows, with §=
XX /n, 1 = trace(S)/p, 112 = %trace(SZ) —L4ir7, and put

) 2 .
- pm y "y
0_2 — (1 +( 1 ) II H _ ||)(Ty||27

n+ iy | n n(n+ 1),
. 2 .
22— _ pm% ||J)|| my HXTyHZ
(n+Vmy n nln+1)m; ’

and the heritability estimate is then
P2 72
Moment — %2 I 6’2 .
The asymptotic properties of the moment estimator were proven in
Dicker (2014) and some non-asymptotic results were derived in
Verzelen and Gassiat (2018). These results allow to obtain the

(1 — «)-CI approximately as [/ ;e £108(1/2) /P /7.
It is noted that this method requires to compute a p X p matrix S
which is very costly for data with large dimensions.

2.3 Plug-in Lasso type approaches

We now discuss some naive plug-in methods that are based on spars-
ity penalized regression methods. These methods typically assume
that there is a small subset of biomarkers (in the genotype matrix)
that will be important to the phenotype and influence its variability.

2.3.1 Scaled Lasso

The paper (Verzelen and Gassiat, 2018) studied the problem of her-
itability estimation through using a variance estimation, see formula
(3), in high-dimensional sparse regression from the scaled Lasso
method (Sun and Zhang, 2012). The scaled Lasso (also known as
square-root Lasso) is defined as

PO 1 , no
(Bsp,6s1) = afgﬂﬁ}vlganY*XﬁHz +7+ 1Bl

where 4 > 0 is the tuning parameter.
The heritability estimate is

~2 6§L
bSlasso =41 Var(y) ’

and its honest (1 — a)-CI, given in Verzelen and Gassiat (2018), is given
2 .
by [hge =log(1/2)(ky/P/n +A1/\/Z)L where k := ||Bg ||, the num-

ber of non-zero components in f; . It is noted that this Cl is rather hon-
est in the sense that its width tends to be quite large. A sharp confidence
interval for this estimator has not yet been constructed.

We note that the scaled Lasso method shares the same spirit as
Lasso which returns a very sparse model. Therefore, heritability esti-
mation for a phenotype with a polygenic basis by this method tends
to lead to underestimation.

2.3.2 Elastic Net

From (2), a direct heritability estimate can be obtained by using a
Lasso type method. More precisely, let S = {j : f # 0} where f is an
estimate from a Lasso-type method, we can calculate the heritability
as in equation (2) with 5 = XsX{ /(n — 1),

EZ _ ﬁzﬁsﬁs
Var(y)

Here, we focus on using the Elastic Net estimate for the regression
parameters: § = S, The Elastic Net has been shown to be especially
useful when the variables are dependent (Zou and Hastie, 2005) (LD
structure), which is particularly relevant in bacterial genome data
(Earle et al., 2016). The corresponding estimator is defined as

poo AN T A—a) 0
BEner -:argm/;n;;f(yhﬁ Xi)+;“|: 5 Bl +allBlly |,

where £(-) is the negative log-likelihood for an observation. Elastic
Net is tuned by o € [0,1], that bridges the gap between Lasso
(¢ =1) and ridge regression (¢ = 0). The tuning parameter /. > 0
controls the overall strength of the penalty and can be chosen by
using cross-validation. For example, 10-fold cross-validation is often
used in practice.

The paper (Lees et al., 2020) showed that Elastic Net is a promis-
ing method for bacterial GWAS data where the authors suggest using
a small value of «, e.g. « = 0.01. However, we would like to note
that the CI for heritability estimated by this plug-in method is not
available yet. It is worth noting that a GWAS analysis using high-
dimensional sparse regression, such as the Elastic net discussed
above, would already provide the estimated effect sizes correspond-
ing to the selected covariates. Therefore, estimating the heritability
by using these effect sizes would bring insight on understanding both
the genetic architecture as well as the genetic contribution to a trait.

2.4 Boosting heritability method

We now present some advanced approaches in machine learning for
making inference about heritability. The core idea of these types of
methods is to combine a covariate selection step with an estimation
step, known as the selective inference approach. The selection step
aims at either reducing the dimension of the problem or removing ir-
relevant biomarkers, after which a heritability estimation step is
applied. These approaches have been shown not only to improve the
computational aspects of the estimation procedure, but to also yield
more accurate results.

In this approach, the original data (y,X) is randomly divided
into two disjoint datasets (y(, X() and (y®, X)) with equal sam-
ple sizes.

The HERRA method introduced in Gorfine et al. (2017) is first
based on a screening method [e.g. as in Fan and Lv (2008)] to reduce
the number of covariates below the sample size. With the remaining
covariates, the data are randomly split into two equally sized subsets.
Then, a Lasso-type estimator is employed on (y(1), X(1) to select a
small number of important variables. After that, the authors use the
least squares estimator on (y), X2)) with only the selected covariates
(from the Lasso-type estimator) to obtain an estimate of the noise-
variance. The procedure is repeated where the role of (y(), X(1) and
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(y®,X@) is switched to obtain another estimate of the noise-
variance. Finally, heritability is calculated as in the formula (3) where
the noise-variance is the mean of the two estimated noise-variances.

The work in Li ez al. (2019) has also proposed a ‘two-stage’ ap-
proach with sample splitting. More particularly, the data is also ran-
domly split into two disjoint datasets with equal sizes. On the first
dataset (y(1), X(W), they use a sparse regularization method based on
Elastic net to first reduce the model by selecting the relevant varia-
bles. Then, on the second dataset (y?), X)), only the selected varia-
bles are used to estimate the heritability through a method of
moments approach (Dicker, 2014) or GCTA method.

These post-selection approaches guarantee that sparse regular-
ization and variance estimation are carried out on independent data-
sets and thus the heritability will not be overestimated. However,
both methods in Gorfine et al. (2017) and Li et al. (2019) heavily de-
pend on the way data is split. One can avoid this dependence by per-
forming the sample splitting and inference procedure many times
(e.g. 100 times) and aggregating the corresponding results. This is to
make sure that the different latent structures possibly residing in the
sample are properly taken into account in both the selection and es-
timation steps. This is the core idea of the ‘Boosting heritability’
strategy in Mai et al. (2021).

The work in Mai et al. (2021) recently introduces a generic strat-
egy for heritability inference, termed as ‘Boosting Heritability’,
which generalized the ideas from the post-selection approaches by
Gorfine et al. (2017) and Li et al. (2019). Boosting heritability,
detailed in Algorithm 1, uses in particular a multiple sample splitting
strategy which is shown to lead in general to a stable and more reli-
able heritability estimate.More importantly, this procedure also pro-
vides an informative interval of estimated heritabilities that shows
the range of the target heritability would belong to. We call this inter-
val a ‘reliable’ interval.

Algorithm 1 Boosting heritability (Mai et al., 2021)

Step 0: Using a screening method, such as the sample correl-
ation (Fan and Lv, 2008), to remove 25% least associated
covariates.

Repeat B times from step 1 to step 4,

Step 1: With the remaining covariates, divide the sample
uniformly at random into two equal parts.

Step 2: On the first part of the data, use Elastic net to se-
lect the important covariates.

Step 3: On the second subset with only selected covariates
from Step 2, estimate the heritability by using (3) where the
noise-variance is estimated using the least square method.

Step 4: Repeat Step 2 and Step 3 by changing the role of
the first and second subset.

Final — The final heritability estimate is the mean of the esti-
mated heritabilities at each repeat.

Table 1. Summary of test datasets

3 Test datasets

We investigate performance of the different methods using four pub-
lic bacterial datasets suitable for GWAS and simulated phenotypes
based on the genetic architecture present in the data. We focus on
estimating heritability of the antibiotic resistance phenotypes.
Table 1 summarizes our test datasets. The heritability of the anti-
biotic resistance phenotype is expected to be high, meaning that the
variability stems primarily from the observed genetic differences
among these bacteria.

3.1 Streptococcus pneumoniae: MA data

Streptococcus pneumoniae (the pneumococcus) is a common naso-
pharyngeal commensal that can cause invasive pneumococcal dis-
ease. Here, we consider two datasets for this bacterium, abbreviated
as the MA and Maela data.

The MA dataset consists of 616 S.pneumoniae genomes from
isolates collected from healthy children in an asymptomatic naso-
pharyngeal colonization survey in Massachusetts between 2001
and 2007. The genomic data and phenotypes are publicly available
through the publication (Croucher et al., 2015). After initial data
filtering using a minor allele frequency (5%) and removing missing
data greater than 10%, we obtain a genotype matrix of 603 sam-
ples with 89 703 SNPs (Chewapreecha et al., 2014). We consider
resistance to penicillin antibiotics as the phenotype (Croucher et
al, 2013). The genome-wide association studies of this phenotype
were conducted in Chewapreecha et al. (2014). The results are
given in Figure 3. It is noted that the main mechanism of resistance
to penicillin can be explained by the causal SNPs in the penicillin
binding proteins pbp2x, pbp2b and pbpla, see Chewapreecha
etal. (2014).

3.2 Streptococcus pneumoniae: Maela data

The Maela dataset is a large S.prneumoniae dataset which consists of
3069 whole genomes produced from randomly selected isolates
from a longitudinal nasopharyngeal colonization study of infants
and a subset of their mothers, performed between 2007 and 2010
in a rural refugee camp on the Thailand-Myanmar border
(Chewapreecha et al., 2014; Lees et al., 2016). The genomic data
and penicillin MICs are publicly available from Chewapreecha et al.
(2014). Using a minor allele frequency threshold (5%) and removing
missing data greater than 10%, we obtain a genotype matrix with
121 014 SNPs.

We use a continuous phenotype corresponding to the inhibition
zone diameters measured in the lab. These inhibition zone diameters
are in practice used to define whether a sample is ‘Sensitive’ or
‘Resistant’ to an antibiotic, for some antibiotics, an ‘Intermediate’
designation is also given which we treat as resistant. We consider
resistances to three different antibiotics as the phenotypes: tetracyc-
line, penicillin and co-trimoxazole. The results are given in Figure 4.
The genetic loci associated with these antibiotic resistances have
been examined in genome-wide association studies in Lees et al.
(2016). The tetracycline resistance is conferred by the tetM gene and

Dataset name Bacteria Antibiotic resistant phenotype(s) to No. of No. of genetic Reference
samples features

MA Streptococcus Penicillin 603 89703 Croucher et al. (2015)
pneumoniae

Maela Streptococcus Tetracycline, Co-trimoxazole, Penicillin 3069 121014 Chewapreecha et al. (2014)
pneumoniae and Lees et al. (2016)

E.coli Escherichia Amoxicillin, Cefotaxime, Ceftazidime, 1509 121779 Kallonen et al. (2017)
coli Cefuroxime, Ciprofloxacin, Gentamicin

NG Neisseria Azithromycin, Cefixime, Ciprofloxacin, 1595 20486 Schubert et al. (2019)

gonorrhoeae Penicillin, Tetracycline

and Unemo et al. (2016)
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the co-trimoxazole resistance is conferred by the SNPs in the dyr
gene (Maskell et al., 2001).

3.3 Escherichia coli: E.coli data

Escherichia coli is a common colonizer of the human gut but is also
a leading cause of blood stream infections, in which antibiotic resist-
ance is increasing. The E.coli data from Kallonen et al. (2017) con-
sists of 1509 isolates from a systematic survey of blood stream
infections conducted in England between 2001 and 2012 with an
alignment of 121 779 SNPs (after initial data filtering with a minor
allele frequency threshold 5% and removing missing data greater
than 10%).

We consider resistances to six different antibiotics as the pheno-
types: amoxicillin, cefotaxime, ceftazidime, cefuroxime, ciprofloxa-
cin, gentamicin reported as categorical phenotypes ‘resistant’,
‘intermediate’, ‘sensitive’ as in Kallonen et al. (2017). The results are
given in Table 2.

3.4 Neisseria gonorrhoeae: NG data

Neisseria gonorrboeae is a sexually transmitted pathogen in which
antibiotic resistance is rapidly evolving, leading to multidrug resist-
ance (MDR) and some extremely drug resistant (XDR) strains. The
NG data has been analyzed in these studies (Grad et al., 2016;
Schubert et al., 2019; Unemo et al., 2016). These 1595 clinical sam-
ples were from surveillance in the USA (2000-2013), Canada
(1989-2003, selected for decreased susceptibility to cephalosporin)
and the UK (2004-2013). We obtain a genotype matrix with 20 486
SNPs (after initial data filtering using a minor allele frequency
threshold 5% and removing missing data greater than 10%). We
consider resistances to five different antibiotics as the phenotypes:
azithromycin, cefixime, ciprofloxacin, penicillin, tetracycline. The
results are given in Table 3.

4 Results and discussion

4.1 Simulations

4.1.1 Simulation settings

As the basis for systematically evaluating the performance of the dif-
ferent methods, we use a subset of the Maela dataset (see Section 3)
to create a semi-synthetic dataset that incorporates levels of popula-
tion structure and LD closely reflecting those present in natural

populations (see Fig. 1). This subset corresponds to a genotype ma-
trix of 3051 samples and 5000 SNPs. Using this real genotype ma-
trix, we simulate the responses/phenotypes through the linear model
defined in (1). For choosing the causal SNPs (non-zero effect sizes),
we follow the penicillin resistance-like setting (Dewé et al., 2019;
Lees et al., 2016): to select all SNPs from three genes (pbp X, pbp1A,
penA) as causal.

Given the chosen SNPs, regression coefficients f° are either
drawn from the normal distribution A(0, 1) or Student ¢; distribu-
tion. Because the true covariance of the genotype matrix is not

given, we need to re-normalize the coefficient £° as f=

ﬂo\/ofhl/([imfﬁo(l —h?)) to assure that the true corresponding

heritability is approximating our target. Here, h*> = 0.8 is our target
heritability and T is the sample covariance matrix of the genotype
matrix and the noise variance is fixed as 62 = 1.

In simulations, the true covariance matrix of the genotype matrix
is unknown, so phenotypes are approximated based on a given herit-
ability using model (1). To establish a benchmark for comparison,
the noise variance is set to g2 = 1, and an estimator is calculated
using formula (3). This estimator, denoted by ‘oracle’, is based on
the true simulated values and cannot be used with real data. The
methods are tested using the following settings: ‘wholegenes’ (whole
genome analysis), ‘subsample1500” (1500 randomly selected sam-
ples), ‘subsample500’ (500 randomly selected samples), ‘causal-
genes’ (only true causal genes, Eprism does not work in this setting)
and ‘t-effect’ (effect sizes simulated from Student ¢#3 distribution).
Additionally, the GCTA (mixed-effect) model is used to simulate
phenotypes and is denoted as ‘GCTA.model’ (oracle does not work
in this setting). Results from 50 replications are shown in Figure 2.

4.1.2 Simulation results

As seen in the simulation results presented in Figure 2, the ‘oracle’
estimator consistently demonstrates the highest level of accuracy
and therefore serves as an effective benchmark for comparison. It is
also evident that both the Elastic net and Lasso methods tend to
underestimate the target heritability. However, the Elastic net
method does provide a more reliable lower bound for the underlying
heritability. The moment method, on the other hand, is found to be
particularly unreliable in this context, failing to produce acceptable
results across all settings. The Eprism approach, which is based on

Table 2. Heritability estimation of antibiotic resistances in E.coli data (Cls are in parentheses)

Amoxicillin Cefotaxime Ceftazidime Cefuroxime Ciprofloxacin Gentamicin
Enet 0.56 0.44 0.26 0.23 0.75 0.31
Eprism 0.99 (0.76-1.00) Failed Failed 0.55(0.34-0.77) Failed Failed
MLE 0.00 (0.00-0.04) 0.44 (0.40-0.47) 0.34 (0.30-0.37) 0.32(0.28-0.35) 0.90 (0.86-0.94) 0.34 (0.31-0.38)
Moment 0.77 (0.55-0.99) 0.03 (0.00-0.20) 0.03 (0.00-0.20) 0.12 (0.00-0.28) 0.10 (0.00-0.26) 0.05 (0.00-0.21)
SLasso 0.42 (0.15-0.70) 0.17 (0.00-0.36) 0.14 (0.02-0.26) 0.11 (0.03-0.19) 0.80 (0.49-1.00) 0.13 (0.03-0.22)
GCTA 0.82 (0.77-0.86) 0.72 (0.65-0.79) 0.69 (0.62-0.76) 0.31(0.22-0.41) Failed 0.41(0.31-0.51)
BoostHER 0.67 (0.64-0.70) 0.53 (0.47-0.58) 0.42 (0.33-0.51) 0.40 (0.34-0.45) 0.89 (0.87-0.92) 0.45 (0.39-0.50)
Table 3. Heritability estimation of antibiotic resistances in NG data (Cls are in parentheses)

Azithromycin Cefixime Ciprofloxacin Penicillin Tetracycline

Enet 0.69 0.78 0.91 0.68 0.73
Eprism 0.99 (0.82-0.99) 0.74 (0.56-0.92) 0.28 (0.10-0.45) 0.99 (0.82-0.99) 0.99 (0.82-0.99)
MLE 0.80 (0.76-0.83) 0.87(0.83-0.91) 0.98 (0.94-0.99) 0.80 (0.76-0.83) 0.85(0.81-0.89)
Moment 0.08 (0.01-0.14) 0.99 (0.93-0.99) 0.19 (0.12-0.26) 0.06 (0.00-0.12) 0.58 (0.52-0.65)
SLasso 0.33 (0.25-0.40) 0.69 (0.51-0.86) 0.95 (0.72-0.99) 0.44 (0.33-0.55) 0.37(0.29-0.45)
GCTA 0.81 (0.77-0.85) 0.77 (0.73-0.82) 0.85 (0.82-0.88) 0.73 (0.68-0.78) 0.81(0.77-0.84)
BoostHER 0.70 (0.66-0.74) 0.84 (0.81-0.85) 0.96 (0.95-0.97) 0.77 (0.74-0.79) 0.81(0.79-0.83)
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Fig. 1. Sample covariance matrices of the 100 random SNPs (right) and 100 samples (left) in the genotype matrix shows the complex dependence structure present in the

S.pneumoniae Maela data
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Fig. 2. Simulation results over 50 data replicates with Penicillin-like setting in Maela data, the true heritability is 0.8 (red-dashed line). Settings: ‘wholegenes’: run on whole
genomes, ‘causalgenes’: run only with true causal genes, ‘subsample1500’: run with 1500 randomly selected samples, ‘subsample500’: run with 500 randomly selected samples,

‘t-effect’: the effect sizes are simulated from Student #3 distribution, ‘GCTA.model’: the phenotypes are simulated from the GCTA model
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Fig. 4. Heritability estimations of antibiotic resistances in Maela data. The top plot is for Penicillin, the middle is for Tetracycline and the bottom plot is for Co-trimoxazole

convex optimization, is also observed to be quite unstable in its
performance.

On the other hand, both the maximum likelihood estimation
(MLE) and Boosting methods consistently provide accurate approxi-
mations of the target heritability for bacterial genome data across all
the simulation settings that were considered. The GCTA method,
however, is observed to consistently underestimate the target herit-
ability, with a high degree of variability. This may be due to the fact
that the GCTA method was specifically designed for mixed-effect
models with different underlying assumptions about the effect sizes.

It has been observed that using the Elastic net (Enet) method to
estimate heritability provides a reliable lower bound for the herit-
ability and serves as a benchmark for comparison. However, studies
such as Qian et al. (2020) and Mai et al. (2021) have shown that
Enet tends to underestimate the true heritability due to a bias known
to affect Lasso-type approaches. This is because coefficients associ-
ated with weak effects are shifted toward zero, even though these
weak effects may still play a significant role in the overall genetic

variation of a trait. On the other hand, the scaled Lasso (SLasso) ap-
proach often results in even lower heritability estimates than Enet.
This is because it only selects a small number of covariates, resulting
in a model that can only explain a limited amount of variation in the
phenotype.

4.2 Results with real data
The results on real datasets are given in Figures 3, 4 and Tables 2, 3.
Overall, we see that direct approaches like convex optimization
(Eprism) and moment method (Moment) are not able to deal with
these data and return unstable results quite often. On the other
hand, the maximum likelihood method (MLE) yields consistent
results in line with the outcome from Elastic Net (Enet) and GCTA
methods.
The approach by combining selection and estimation steps to-
gether with multiple sample splitting as done in the Boosting herit-
ability (BoostHer) method always returns reliable results. More

£20Z YoJe\ 2z uo Jasn 1ausiaAiun abijadeysusyaineN-ysiuye | sabioN Aq Gi 1 220.2/.20PBAA/L/S/3|01LB/S80UBAPESDIIBLIOIUIOIG/WO0D dNO dIWapE.//:Sd)y WOl POPEOjUMO(]



T.T.Mai et al.

Table 4. Running times of different methods on four real datasets in seconds

Data Enet Eprism MLE Moment SLasso GCTA BoostHER
MA 26.1 38.2 0.8 162.7 10 0.3 82.0
Maela 171.6 288.4 16.8 323.8 86.5 17.6 410.7
E.coli 82.8 68.8 2.1 477.3 33.8 0.8 119.9
NG 18.1 33.4 2.6 8.7 5.6 3.4 64.4

specifically, its results are always at a higher value than the lower
bounds given by the Enet method, and it can still work well when ei-
ther MLE or GCTA method fails, as seen from Table 2.

We also consider the estimation with respect to the causal genes
for MA and Maela data. We observe that for MA data the estima-
tion of heritability with only causal genes is slightly improved, see
Figure 3. While considering causal genes for Maela data does not
gain an improvement, and in the case of Co-trimozaxole, it even
lower downs the estimation, see Figure 4. Note that this is desirable,
since in practice we may not know all the causal genes, and thus we
would like to obtain good results from using all predictors.

Regarding the uncertainty quantification, we can see that the
CIs of MLE and the ‘reliable’ intervals of BoostHer are stable.
More particularly, their widths are similar to those from the
GCTA method. In contrast, other methods come with wider inter-
vals and thus they can be harder to interpret. As an example, the
ClIs for penicillin resistance heritability in Maela data (Fig. 4) are
as follows: the width for CI of GCTA is 7.91%; of MLE is 5.02 %;
and of BoostHer is 2.64%; while the width of CI of Eprism is
28.16% and of SLasso is 52.16%. Since heritability is between 0
and 1, the latter two intervals are of limited value for
interpretation.

4.2.1 Running time

The indicative running times of all considered methods on four
tested datasets are given in Table 4. The codes were executed on a
Linux Redhat 64-bit operating system using a CPU with Intel-E7-
4850v3 processor and 3TB of RAM, with the splitting step utiliz-
ing 10 CPU cores for parallelization. Overall, the maximum likeli-
hood (MLE) method is the fastest method and also returns
trustworthy results. The moment method seems to be computa-
tionally expensive, while its results are highly unstable and un-
reliable.

5 Conclusions

In this study, we have conducted a thorough examination of mul-
tiple techniques for estimating heritability in bacteria, focusing on
their precision and calibration of uncertainty. We have compared
a diverse set of methods, including both traditional and newer
techniques. Our findings revealed that, as anticipated, the max-
imum likelihood method is the fastest of all the methods we eval-
uated, while the method of moments is generally the slowest.
However, it is important to note that none of the methods we
tested had running times that would be considered prohibitive for
practical use.

In our simulations, the maximum likelihood method demon-
strated consistently strong performance. However, when applied to
real data cases, its behavior was more mixed. This is likely caused
by sensitivity to model assumptions, which tend to lead to a lack of
robustness of MLE in general when the data deviate from these
assumptions.

Our analysis also revealed that certain methods, such as Eprism,
method of moments and SLasso, consistently displayed poor per-
formance and are not recommended for estimating heritability in
bacteria. Conversely, the multiple sample splitting technique used in
the BoostHer method emerged as the most reliable and accurate ap-
proach in our experiments. Overall, our findings provide useful
insights for researchers and practitioners looking to determine herit-
ability in bacteria.

It is important to note that our findings have implications for the
estimation of heritability in other organisms as well. The patterns of
linkage disequilibrium (LD), population structure and existing studies
of heritability are all quite different in humans and other organisms
compared to bacteria. Therefore, it is crucial to consider the unique
characteristics of the organism and the data when choosing a method
for heritability inference. Furthermore, it is worth noting that the
results of our computational experiments may not generalize to all
possible scenarios and further research is needed to fully understand
the applicability of these methods in different contexts.

Another investigation of heritability estimation for bacteria re-
cently appeared, where linear mixed models were compared with
the Elastic net and LD-score regression (Mallawaarachchi et al.,
2022). The study found that linear mixed models showed poor cor-
relation with the ground truth and typically overestimated heritabil-
ity to a large degree, while Elastic net and LD-score regression
methods were found to perform well. This observation is consistent
with our findings, where we found that multiple sample splitting as
in BoostHer appears overall as the most reliable and accurate ap-
proach in our experiments. It is worth noting that this recent study
highlights the need for further research in the field of heritability es-
timation for bacteria, as it is clear that there is a lack of consensus
on the best approach to use. The combined results of our study and
the aforementioned study call for more research in the field of herit-
ability estimation in bacteria to facilitate future studies of genetic
architectures in bacteria.
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