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a b s t r a c t 

Working towards optimal crop yields is a crucial step towards securing a stable food supply for the world. To this 

end, approaches to model and predict crop yields can help speed up research and reduce costs. However, crop 

yield prediction is very challenging due to the dependencies on factors such as genotype and environmental fac- 

tors. In this paper we introduce a performer-based deep learning framework for crop yield prediction using single 

nucleotide polymorphisms and weather data. We compare the proposed models with traditional Bayesian-based 

methods and traditional neural network architectures on the task of predicting barley yields across 8 different 

locations in Norway for the years 2017 and 2018. We show that the performer-based models significantly outper- 

form the traditional approaches, achieving an R 2 score of 0.820 and a root mean squared error of 69.05, compared 

to 0.807 and 71.63, and 0.076 and 149.78 for the best traditional neural network and traditional Bayesian ap- 

proach respectively. Furthermore, we show that visualizing the self-attention maps of a Multimodal Performer 

network indicates that the model makes meaningful connections between genotype and weather data that can be 

used by the breeder to inform breeding decisions and shorten breeding cycle length. The performer-based models 

can also be applied to other types of genomic selection such as salmon breeding for increased Omega-3 fatty acid 

production or similar animal husbandry applications. The code is available at: https://github.com/haakom/pay- 

attention-to-genomic-selection. 
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. Introduction 

Optimizing crop yield is a crucial step to enable secure and stable

ood production for the world. As the human population grows, the

emand for food grows with it. To satisfy this demand, crops need to

aximize production while keeping production costs and area needs

o a minimum. Genomic Selection (GS) [6,27] has become a common

pproach to plant breeding in recent years. It is based on the use of

enotypes through DNA variations, markers, coupled with known phe-

otype information from measured populations and uses this to predict

he phenotype information in unknown populations. This approach can

ignificantly reduce the length of breeding cycles [26] . However, this

eduction depends entirely upon the models used for prediction. The

henotype of a crop is affected by a multitude of factors such as the

rop genotype, the environment and the farmers management of the

rop. This complexity is compounded by interactions between genotype

nd environmental factors. Environmental factors such as weather may

lso exhibit complex synergy effects that are difficult to model. 

Traditional approaches to GS have used genomic best linear unbi-

sed prediction (GBLUP) or Bayesian methods [3,28] . However, recent
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ears have seen a shift towards the use of machine learning techniques

or GS. With the recent success of artificial neural networks (ANNs) in

ther applications, such as image recognition and natural language pro-

essing (NLP) [21] , many recent GS approaches employ similar methods

19,29] . ANNs are able to learn complex relationships between its in-

uts and outputs through simple weight update rules applied repeatedly

ith many input-output pairs. They treat the output, such as phenotype

nformation, as an implicit function of its inputs, such as genotype and

nvironmental information. This makes ANNs especially attractive for

S since they may be able to accurately model the complex dynamics

nd interactions between environmental factors and genotypes. 

González-Camacho et al. [13] compared a multi layer perceptron

MLP) to a probabilistic neural network (PNN) on the task of classifying

n individual’s membership to a phenotypic class. They used 33 maize

nd wheat genomic and phenotypic datasets and found that the PNN

utperformed the MLP measured using area under curve (AUC) and area

nder precision-recall curve (prAUC) on all datasets. 

Khaki et al. [17] compare a convolutional neural network (CNN),

ombined with a recurrent neural network (RNN) to predict crop yields

ased on environmental data and management practices. Their model
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1 https://frost.met.no/ . 
2 
ses two CNNs to process weather and soil data respectively. The result-

ng output vectors of their CNNs were then fed into an RNN together

ith the historic average yield in sequence for prediction. They com-

are their method to a random forest (RF), MLP and LASSO. They use

orn and soybean data from 13 states in the United States for the years

016–2018. They find that their CNN-RNN framework substantially out-

erforms the other models achieving a root mean squared error (RMSE)

f 9% and 8% of their respective average yields. 

Barbosa et al. [2] proposed a CNN to learn the relevant spatial struc-

ures in five explanatory variables: nitrogen rate, seed rate, elevation

ap, soil’s electroconductivity and satellite image. They then use these

tructures to model the yield response to nutrient and seed rate prescrip-

ions for future predictions. They compare their model to a multiple lin-

ar regression (MLR) model, a fully connected network (FCN), an RF,

nd a support vector machine (SVM). Their model shows a reduction

n test dataset RMSE of up to 68% when compared to multiple linear

egression and up to 29% when compared to a random forest. 

Although a plethora of studies applying ANNs to GS exist, most of

hese approaches use ANNs with large inherent inductive biases such

s CNNs and RNNs. These networks make assumptions about the in-

ut such as local connectiveness for CNNs or sequential data in RNNs.

owever, genotype data generated through the use of markers do not

ecessarily fit these assumptions well. For instance, there is no inherent

otion that marker positions that are physically close together in a se-

uence have more importance to each other than marker positions that

re further apart. Similarly, although the genotype is organized as a se-

uence, there is not necessarily a sequential nature to the sequence. For

nstance, marker positions that follow each other are not inherently con-

ected sequentially. Such inductive biases may therefore hamper model

erformance since they do not apply. 

Recently, attention-based models have been applied to multiple ap-

lications with great success [9] . Common for these models is the use

f self-attention mechanisms [10] , which calculates the attention score

f a position in a sequence, by attending to all positions in the same se-

uence. First introduced in [35] , the transformer showed that a purely

elf-attentive model could produce state-of-the-art results on language

ranslation tasks. This result sparked increased research on transformer-

ased models and has resulted in transformers producing the state-of-

he-art performance in multiple domains [7,8,18,25] . However, trans-

ormers still suffer from an inability to process very long sequences due

o the space complexity of the self-attention mechanism. Choromanski

t al. [11] introduced the Performer, by substituting the softmax self-

ttention mechanism with a FAVOR+ mechanism. This enabled the

erformer to handle very long sequences without the memory footprint

f the traditional self-attention mechanism. However, this approach has

ot seen wide adoption and therefore the general limitations of the orig-

nal transformer persist. 

Transformer-based models make very few assumptions about the in-

ut data. Instead they use self-attention mechanisms to learn any under-

ying structure. Since these models introduce little inductive bias and in-

tead learn the underlying dynamics and connectiveness of their inputs

e hypothesize that they are better suited for GS than traditional ANNs.

ue to the ability to visualize the self-attention maps within the model

er input, they may also be more explainable than CNNs or RNNs, mak-

ng it possible to use transformer-based models to inform the breeder

f what dynamics affected the prediction. This could therefore further

horten the length of breeding cycles since the breeder could directly use

he model to inspect potential marker interactions in the self-attention

isualization. 

In this work we are, to the best of our knowledge, the first to pro-

ose transformer-based models with the FAVOR+ mechanism, hereby

eferred to as performer-based models, for GS. We also firmly ground our

roposed models in optimal configurations by doing a thorough search

f each model’s hyperparameter space using Bayesian optimization. We

how that performer-based models significantly outperform other ANN

rchitectures and traditional methods for GS. We also show that the
2 
erformer-based models naturally handle multimodal input and lever-

ge the different modalities for improved prediction performance. The

erformer-based models introduced in this work are general models that

an be applied to other types of genomic selection such as salmon breed-

ng for increased omega-3 fatty acids production or similar types of an-

mal husbandry. 

Our contributions are as follows: 

• We introduce performer-based models to field of GS. 

• We show that performer-based models outperform traditional ANNs

for GS while needing significantly fewer trainable parameters. 

• We propose a general performer-based model that natively handles

multimodal input and is suitable for multi-domain GS. 

. Method 

.1. Dataset 

The genomic data consisted of 2-row and 6-row barley genotypes.

he genotype data was collected using single nucleotide polymorphisms

SNPs) measurements for 433 separate genotypes of barley. Each geno-

ype contained 13321 SNP measurements. The phenotype data con-

ained yield measurements from eight different locations in Norway for

he years 2017 and 2018. We collected weather data from the same

ight locations for both years in the time period 1st of May to 31st of Au-

ust using The Norwegian Meteorological Institute FROST API 1 [15] and

IBIO Landbruksmeteorologisk Tjeneste (LMT) AgroMetBase. 2 The col-

ected weather data contained the mean temperature for each day and

he cumulative precipitation for each day. 

.2. Data processing 

The data seen by the models contain two different data modalities,

enotypes and weather data. The different modalities are therefore pro-

essed differently to prepare them for our models. 

.2.1. Genotype 
Since the genotype data was originally encoded using SNPs, it con-

isted of sequences of nucleotides measured at different SNP positions,

ndicated by the symbols: “T ”, “C ”, “G ”, “A ”, “R ”, “S ”, “K ”, “Y ”, “M ”,

W ”, “failed ”, where “failed ” indicates a failed reading. However, to

ake the genotypes readable by computers, we encode them as se-

uences of one-hot encoded vectors. This approach represents each nu-

leotide as one of the unit vectors in ℝ 

11 . We also add an “extra ” symbol

o make our unit vectors part of ℝ 

12 , since they are easier to work with

n our models. Each genotype consists of a sequence of measurements

t 13,321 SNP positions. 

.2.2. Phenotype 
The phenotype data sometimes contained multiple yield measure-

ents for the same genotype in one location. This was due to several

lantings in the same experiment. Instead of creating separate genotype-

ield pairs for each such case, we use the average yield for the genotype

n each location. However, the distribution of yields for a genotype were

ometimes heavily skewed, even in a single location. We therefore calcu-

ated the average using Eq. (1) . This approach shifts the 𝑦𝑖𝑒𝑙𝑑 𝑎𝑣𝑔 slightly

owards the center of mass of the yield distribution and is therefore not

s affected by outliers as the mean. The resulting data contained a sin-

le yield measurement per genotype per location. To make the yields fit

ithin a sigmoid curve we also scaled the yields to a range between 0

nd 1. After processing our yield data as described above, we were left
https://lmt.nibio.no/ . 

https://frost.met.no/
https://lmt.nibio.no/
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Table 1 

The Spearman rank correlation coefficient matrix for the 

collected weather data. 

Yield Temperature Precipitation 

Yield 1.000 -0.381 0.452 

Temperature -0.381 1.000 -0.867 

Precipitation 0.452 -0.867 1.000 
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Fig. 1. The Vanilla CNN processes the genotype and historical weather data sep- 

arately using a stack of residual blocks for the genotype data and an simple MLP 

for the weather data. The output vectors of the networks are then concatenated 

to form a single feature vector for the prediction network. 
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ith 2214 genotype-yield pairs from the entire period, 1275 of which

ere 2-row and 939 were 6-row variants. 

𝑖𝑒𝑙 𝑑 𝑎𝑣𝑔 = exp ( 1 
𝐾 

𝐾 ∑

𝑖 =0 
ln ( 𝑦𝑖𝑒𝑙 𝑑 𝑖 )) (1)

.2.3. Weather 
The crop locations were spread over large portions of Norway and

herefore experienced a variety of climates. However, most crops were

roduced inland, with only one being produced in a coastal climate. To

nvestigate whether a clear relationship between weather measurements

nd production yield exists, we calculated the Spearman rank correla-

ion coefficient [33] in Table 1 . From the table, no strong correlation

etween yield and either weather phenomenon can be observed. We

reated two versions of the weather data. The first was a mean weather

ataset, containing the mean temperature and the mean precipitation

or the entire measurement period for each location. The second was

he raw historical data for each day. The two versions were processed

sing different methods. 

1. Mean weather The mean weather contained the mean air temper-

ature and mean precipitation for the entire period. The data was

standardized separately for each modality using the standard scaler

from Scikit-learn [30] . 

2. Historical weather Since the mean weather data only captured the

mean of the weather over the entire period, it could lose days with

abnormal temperature or precipitation measurements, since they

may not significantly affect the mean. This was especially true if

there were days with abnormally high and other days with abnor-

mally low measurements. Such variations could cancel each other

out in the mean calculation. However, they could have a significant

impact on the yield of a crop. A historical weather record avoids this

problem by capturing the daily variations of the weather and thus

enables models to become sensitive to such changes and leverage

them to better predict the yield. We therefore created a historical

weather dataset which contained the mean air temperature and cu-

mulative precipitation per day for the collected period. This gives

a daily historical record of the weather data and is well suited for

sequence analysis. However, since many days did not see any pre-

cipitation, the precipitation data was heavily positively skewed. To

avoid the models becoming too sensitive to outliers we scaled the

weather data using the robust scaler from Scikit-learn [30] . 

.3. Model architectures 

We compared two models types, using the same data and training

egimes. The models were convolutional neural networks [20,22] and

erformers [11] . To develop a baseline with which to compare our mod-

ls, we trained a model using Bayesian reproducing kernel Hilbert spaces

egressions (RKHS) implemented in the BGLR package introduced by

erez and de los Campos [31] . 

.3.1. Convolutional neural networks 
The convolutional networks process the genotype sequence and

eather data using separate networks. The genotype sequence is pro-

essed using one of two CNN architectures, while the weather data is

rocessed using an simple MLP. This was done because the two data
3 
odalities do not easily mix. A CNN would therefore either have to

earn specific filters in each layer of its pipeline that either only look

t genotype data or only look at weather data. By separating the data

rocessing into two pipelines we could instead train modality-specific

etworks that needed fewer model parameters to reach optimal perfor-

ance. We then concatenated the output of the genotype pipeline to

he output of the weather pipeline and fed the resulting vector into the

rediction network. To explore the capabilities of CNNs we compared

wo possible architectures in the genotype pipeline. 

1. Vanilla CNN The first was a vanilla CNN, which consisted of a stack

of one-dimensional convolutional layers with batch normalizations

[16] between each layer. We used a kernel size of 6 and a stride of

2 for every layer. This reduces the output size of each layer, thereby

increasing the receptive field of the following layer. The Vanilla CNN

is visualized in Fig. 1 . 

2. ResNet The second CNN architecture was based on the ResNet ar-

chitecture introduced in [14] . Rather than using a stack of regular

convolutional layers, a ResNet architecture uses a stack of residual

blocks. Each residual block consist some permutation of a two path-

way information flow. The first pathway feeds the input through

two convolutional layers. The second pathway, called the skip con-

nection, feeds the input through a downsampling layer. This layer

commonly uses a pooling layer or a convolutional layer with a kernel

size 1 and a stride of 2. The output of the skip connection is added

to the output of the second convolutional layer to form the output of

a residual block. The skip connection introduces a shortcut for the

gradient to take, resulting in the ability to train much deeper and ex-

pressive networks. However, the skip connection also explicitly dis-

cards information from the input. This may not affect performance

much when dealing with data where spatially close inputs are statis-

tically similar, such as images. However, for genotype information,

such information loss could drastically reduce model performance.

We therefore introduced a new residual block that explicitly avoided

this loss of information. Our residual block fed its input through two

convolutional layers with kernel size 6 and stride 2, similar to a reg-

ular residual block. Our skip connection fed the input directly to the

output going through a downsample operation to make its dimen-

sions correspond with the output dimension of the second convolu-

tional layer. To preserve all the information from the input through

the skip connection, the downsample operation padded two copies

of the input with a zero-vector either at the end (Pad + ) or the be-

ginning (Pad − ) of the sequence. It then used a convolutional layer
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Fig. 2. The ResNet residual block. The input, 𝑥 , follows two parallel processing 

pipelines. The downsample operation (top), downsamples the input through ei- 

ther right or left padding it, before it is fed through a 1D convolutional layer, 

using a kernel size of 1 and a stride of 2, with fixed weights at 1 . 0 and no bias 

( ̄Conv1D ). The main processing pipeline (bottom) uses alternating 1D convo- 

lutional layers with a kernel size of 6 and a stride of 2, together with batch 

normalization layers to process the input. The pipelines are combined using a 

simple add operation before it is outputed by the residual block. 

Fig. 3. The ResNet processes the genotype and historical weather data sepa- 

rately using a stack of residual blocks for the genotype data and a simple multi- 

layer perceptron (MLP) for the weather data. The output vectors of the networks 

are then concatenated to form a single feature vector for the prediction network. 
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Fig. 4. A performer encoder module. The input ( 𝑥 ), is positionally encoded 

before it is fed into a stack of encoder modules (blue). Here the positionally 

encoded input is passed through a Multi-Head FAVOR+ Attention mechanism 

sub-module and a Feed-Forward Network (FFN), sub-module with residual con- 

nections and normalization layers added between each sub-module. 
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with a kernel size of 1 and stride 2 to downsample the input. The

padding shifted the input so that the convolutional layer looked at

two different subsets of the sequence. The convolutional layer had

fixed weights of 1, no bias and no gradients. The two downsampled

inputs were then added together to preserve the original information

in a compressed representation. The compressed representation was

then added to the output of the convolutional layers to complete the

skip connection. This allowed a full representation original input to

flow through every residual block, but with a reduced representation

size, thereby increasing the receptive field of the following residual

block. We visualize a residual block in Fig. 2 and the full ResNet

architecture in Fig. 3 . 

.3.2. Performer networks 
Two of our performer-based models employed the same approach to

he two data modalities as we described in Section 2.3.1 . The genotype

ata and weather data were processed in separate pipelines before the
4 
utput of the pipelines were concatenated to form a single vector that

as then fed into the prediction network. A third model processed both

enotype data and weather data in a single pipeline before the output

as fed into the prediction network. 

Similar to [12] , our performer-based models consisted of encoder

odules stacked on top of each other, regularized with dropouts

etween each module [34] . Each encoder module contained a self-

ttention sub-module and a feed-forward network, where the self-

ttention sub-module traditionally calculates the attention score over

ts input using a softmax attention mechanism as described in [35] . 

However, the softmax attention mechanism has a space complexity

f 𝑂( 𝐿 

2 + 𝐿𝑑) , where 𝐿 is the input sequence length and 𝑑 is the di-

ension of the latent representation. The genotype sequences we used

ave 𝐿 = 13321 , which results in a space complexity that was not feasi-

le given current hardware. We therefore substituted the softmax atten-

ion mechanism with the FAVOR+ mechanism described in [11] , using

he FastAttention implemented by [36] , which approximates the soft-

ax attention using kernel methods. This reduced the space complex-

ty to 𝑂( 𝐿𝑟 + 𝐿𝑑 + 𝑟𝑑) , where 𝑟 is the number of random features sam-

led and 𝑟 << 𝐿 . Using the FAVOR+ mechanism we could construct

erformer architectures that were capable of processing very long se-

uences, thereby enabling their use in gene sequence processing. 

As in [35] , we configured the self-attention mechanism in a multi-

ead configuration to improve its performance. This configuration en-

ails creating ℎ parallel self-attention mechanism, dubbed heads, and

inearly transforming the input for each head using a different weight

atrix. This produced ℎ different representations of the input, where ℎ

s the number of heads in the model. This configuration allowed each

ead to learn different attention scores. The multi-head attention scores

ere then concatenated and linearly transformed to compute the final

ttention score. To keep computational costs similar to that of a single-

ead approach, the dimensionality of each head was reduced to 𝑖𝑛𝑝𝑢𝑡 _ 𝑠𝑖𝑧𝑒 
ℎ 

sing the linear transformation of the input. 

Finally, we added a residual connection and a layer normalization to

ach sub-module in the encoder module. The residual connection added

 shortcut through the network, providing an alternative route for the

radient to flow. This allowed deeper networks to be built since the

rror signal can always reach the lower levels in the network through

he residual connections. We visualize a full performer encoder module

n Fig. 4 . 

The FAVOR+ mechanism also allowed other kernels to be approxi-

ated. We therefore included the ability to approximate a ReLU kernel,

ubbed “generalized attention ” in [11] , instead of the softmax attention

n our performer models. We trained three different performer models: 

1. Plain performer The first model used a performer network to process

the genotype data, while it used an MLP to process the weather data.

We used 𝑟 = 150 in the performer FAVOR+ mechanism. This model

is directly comparable to the convolutional networks presented in

Section 2.3.1 and is visualized in Fig. 5 . The concatenated output of
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Fig. 5. The Plain Performer processes the genotype and historical weather data 

separately using a performer model for the genotype data, and a simple multi- 

layer perceptron (MLP) for the weather data. The genotype data is positionally 

encoded before it is fed into the encoder stack. The output vectors of the net- 

works are then concatenated to form a single feature vector for the prediction 

network. The [CLS] symbol is a special symbol added to the start of the input 

sequence and is the position used to generate the prediction vector P. 
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Table 2 

The hyperparameters searched for the models, shown with the search 

space and distribution type. 

Hyperparameter Search Space Distribution 

Number of Conv Layers/Residual blocks a 1–10 uniform_int 

Number of Filters per Conv layer a 16 –256 uniform_int 

Number of Performer Layers b 1–4 uniform_int 

Number of Performer Heads b [4, 8, 16] categorical 

Number of Units in FFN b [32, 64, 128] categorical 

Generalized Attention b [True, False] categorical 

Number of Linear Layers c 1–6 uniform_int 

Number of units per Linear layer c 16–32 uniform_int 

Learning Rate 5e-2 - 1e-8 log scale 

Dropout Rate 0.1–0.9 uniform 

Number of Units in 1st Prediction Layer 1–128 uniform 

a These hyperparameters are only used in convolutional models. 
b These hyperparameters are only used in performer-based models. 
c Linear Layers are not included in the Multimodal Performer. 
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the performer network and the MLP were then fed into the prediction

network. 

2. Historical performer The second model used one performer network to

process the genotype data and another performer network to process

the weather data. We used 𝑟 = 150 in the performer FAVOR+ mech-

anism in both models. This model also used the historical weather

data, utilizing the sequential processing nature of performer net-

works. The Historical Performer is visualized in Fig. 6 . The concate-

nated vector was then fed into the prediction network. 

3. Multimodal performer The third model fully leveraged the lack of in-

ductive bias in transformer models. For this network, we first up-

sampled the weather data to fit the dimensions of the genotype data

and then concatenated the upsampled weather data to the end of the

genotype sequence. This enabled the multimodal performer to attend

to the genotype data and weather data simultaneously, allowing it

to directly learn the relationship between genotypes and weather.

We also used historical weather data for this model. We use 𝑟 = 300
in the FAVOR+ mechanism to account for the increased sequence

length. To further emphasize the two different data modalities to

the performer, we added a constant of +1 to the weather vectors

before the learned positional embedding was added. The full pro-

cessing stack is visualized in Fig. 7 . The output of the performer was

then fed into a prediction network. 

.3.3. Prediction network 
The prediction network consisted of either a single fully connected

ayer or an MLP, depending on whether it was processing the output

rom the Multimodal Performer or one of the other models respectively.

he two layer version enabled the prediction network to interpret the

wo modalities before doing the prediction. Since the Multimodal Per-

ormer already handles the multimodal nature of the data, the prediction

etwork only needed a single layer. The final layer of the prediction net-

ork contains a single predictive unit. The predictive unit computed a

redicted scaled yield using a sigmoid activation function. 
5 
.3.4. BLGR model 
The baseline model was trained using BGLR RKHS [31] . Since this

odel was unable to handle multi-channel input, we represented each

ucleotide as a flotation point number, ranging from 0.0 to 1.0, where

failed ” = 0.0, “T ” = 0.1, “C ” = 0.2,... and “W ” = 1.0. We normalized

he genotype through subtracting the mean and dividing by the standard

eviation of the entire genotype dataset. The phenotype was represented

s explained in Section 2.2.2 . 

.4. Experimental details 

Our experiment was separated into two parts. The first part aimed

o find the best model architectures for each of our prediction models.

he second part tested the best architectures we found in the first part,

sing a 10-fold cross-validation setup. 

.4.1. Finding optimal model architectures 
To find the optimal model architectures we searched the hyperpa-

ameter space using the Optuna library [1] . This allowed us to search

hrough large hyperparameter spaces efficiently by updating where a

ample set of hyperparameters was drawn from using Bayesian priors.

his approach naturally focuses the search process in areas with the

ost promising sets of hyperparameters rather than randomly sampling

rom the entire search space or using a naïve grid search approach. To

et up our search we defined the hyperparameters to be included in the

earch and defined their ranges. The hyperparameters and their search

anges are shown in Table 2 . In addition we searched through a set of

yperparameters that were common for all models. We ran 400 trials

er model search, sampling hyperparameters using a multivariate TPE

ampler [4,5] . Each trial was allowed to run for up to 128 epochs, but to

void spending too much time exploring unpromising trials, we used a

yperband pruner [23] with min_resources = 3, max_resources = ‘auto’

nd a reduction_factor of 3. All models were trained using the AdamW

ptimizer [24] . The search was conducted using the NTNU IDUN com-

uting cluster [32] . The trials were run in parallel on 10 nodes, each

onsisting of two Intel Xeon cores and either 2 NVIDIA Volta V100 GPUs

r 2 NVIDIA Pascal P100 GPUs. A complete search for a single model

equired from ≈ 24 hours to several days to finish. 

.4.2. 10-fold cross-validation 
To test the model architectures resulting from the hyperparameter

earches, we employed a 10-fold cross-validation approach. This en-

ailed dividing our dataset into 10 equally sized partitions and then

sing 9 partitions to train a model and the 10th partition to test the

esulting model. This was repeated using each partition as a test par-

ition only once. Each test fold was randomly sampled to ensure it be-

ng a representative sample. This approach enabled us to report test
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Fig. 6. The Historical Performer processes the 

genotype and historical weather data sepa- 

rately using one performer model for each 

modality. The genotype data is positionally en- 

coded before it is fed into the encoder stack, 

while the weather data is also upsampled be- 

fore the positional encoding is added. The out- 

put vectors of the two performers are then con- 

catenated to form a single feature vector for the 

prediction network. The [CLS] symbol is a spe- 

cial symbol added to the start of the input se- 

quence and is the position used to generate the 

prediction vector P. 

Fig. 7. The Multimodal Performer takes in both the genotype sequence and the 

weather sequence. It then upsamples the weather sequence to fit the dimensions 

of the genotype sequence. It then further enhances the difference in modalities 

by adding a 1 to every measurement in the weather sequence. It then concate- 

nates the two sequences and positionally encodes the entire sequence before 

it feeds the sequence through the encoder stack. The [CLS] symbol is a spe- 

cial symbol added to the start of the input sequence and is the position used to 

generate the prediction vector P. 
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Table 3 

The 10-fold cross-validation results for each of the mod- 

els. We report the 𝑅 

2 score, the Mean Average Error 

(MAE) and the Root Mean Squared Error (RMSE) for 

each model. 

Model R 2 score MAE RMSE 

BGLR RKHS 0.076 128.77 149.78 

Vanilla CNN 0.807 55.05 71.63 

ResNet 0.690 72.55 90.79 

Performer 0.815 54.61 70.34 

Historical Performers 0.820 53.61 69.29 

Multimodal Performer 0.820 53.11 69.05 
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esults on the entire dataset, giving a better evaluation of each model’s

erformance than if we used a single randomly sampled test set. For

ach test partition the model architecture found in the hyperparameter

earch was initialized with the same set of starting parameters using a

eeded random sampler. This starts the model off with randomly ini-
6 
ialized variables, but ensures the same set of parameters for each fold.

his resulted in the only changing variable being the 9 partitions used

or training. During training, we used 20% of the training data as a val-

dation dataset. Each model was trained for 128 epochs. For testing, we

rst loaded the set of parameters that achieved the lowest validation

oss before we ran the test set through the model to find its test perfor-

ance. For the BLGR model, we employed the same approach, however,

ach model was trained using 18K iterations with a 3K burn-in. 

. Results 

In the cross-validation test process we tested each architecture, us-

ng the optimal set of hyperparameters found through the hyperparam-

ter search. An overview of the best hyperparameter combinations for

ach model is shown in Appendix A . We report the 𝑅 

2 score, Mean

verage Error (MAE) and the Root Mean Squared Error (RMSE) for

ach model. The results are shown in Table 3 . We found that the Per-

ormer models were superior to both the convolutional models and the

GLR RKHS model. This is also visible in Fig. 8 , where we visualize

he RMSE for each cross-validation fold per model. Additionally, among

he performer-based models, we found that the Multimodal Performer

lightly outperformed the two other models. This is also visible in the
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Fig. 8. We show the root mean squared error (RMSE) for each of the 10 cross- 

validation (CV) folds for each model. The performer-based models consistently 

outperform the other models except for folds 1 and 7, where the Vanilla CNN 

only slightly outperform the performer-based models. 
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esidual box plot shown in Fig. 9 , where the Multimodal Performer

hows the smallest spread of all models. 

.1. Model analysis 

.1.1. Model fit 
To asses the fit of our models we analyze the testing residual plots for

he BGLR RKHS, the Vanilla CNN and the Multimodal Performer. The

lots are shown in Fig. 10 . The BGLR RKHS model shows some pattern in

he residuals, indicated by the dip in the red line, while both the Vanilla

NN and Multimodal Performer shows little pattern in the residuals. We

lso observe significantly lower and constant variances in residuals for
7 
he Vanilla CNN and Multimodal Performer than we do in the BGLR

KHS model, explaining the large difference in 𝑅 

2 scores. However, all

odels also show the possible presence of outliers, indicated by individ-

al points with particularly high variance around 𝑦̂ ≈ 400 and 𝑦̂ ≈ 800
or the Vanilla CNN and Multimodal Performer and around 𝑦̂ ≈ 500 and

̂ ≈ 600 for BGLR RKHS. Again, these points are much more obvious in

he BGLR RKHS model, explaining the reduced performance. The lack of

atterns and presence of constant variance in the residuals of the Vanilla

NN and Multimodal Performer indicate a good fit for both models. 

.1.2. Trainable parameters 
In Fig. 11 we show the number of trainable parameters for each of

he five non-Bayesian models. The three performer-based models had

he lowest number of trainable parameters. The Vanilla CNN had three

imes more trainable parameters than the performer-based models and

he ResNet had an order of magnitude more trainable parameters than

he Vanilla CNN. It is therefore possible to argue that these models had

 high capability of overfitting to the training data, which could ex-

lain their lower performance on the test set. It is therefore encouraging

hat all performer-based models are significantly smaller than the CNNs.

hese smaller model sizes are suggestive of the generalization capabili-

ies of performers, since they need fewer parameters to achieve similar

r better performance. It also suggests that the reduction in inductive

iases is beneficial, since it allows the models to learn the underlying

orrelations in the data instead of relying on assumptions coded into the

odel structure. 

.1.3. Seasonal data 
In Section 2.2.3 , we describe that our dataset contained weather

ata from 2017 and 2018. However, historical weather records show

hat 2018 was a particularly hot year, with abnormally low precipita-

ion rates. This could mean that the Multimodal Performer was poorly

quipped to handle data from other time periods, since it may have

earned correlations that are particular to 2018. To investigate this we

uantified the performance difference in Table 4 . From the table, it is

lear that the model performs better on 2017 data than on 2018 data,

ndicated by superior performance across all metrics. This suggests that

he model has learned the true underlying factors contributing to pro-
Fig. 9. The box plot shows the residual performance of our 

models visualizing the 0th percentile (lower whisker), the first 

quartile (lower part of box), the median (center line), the third 

quartile (upper part of box) and the 100th percentile (top 

whisker). Outliers are visualized as circles. The highest spread 

is observed for the BGLR RKHS model, while the lowest spread 

is observed for the Multimodal Performer. 
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Fig. 10. The residual plots of three models: BGLR RKHS, 

Vanilla CNN and Multimodal Performer. The red line is a 

smooth fit to the residual, intended to make it easier to iden- 

tify a trend. There is some pattern present in the BGLR RKHS 

model as seen by the dip in the smoothed fit. For the Vanlilla 

CNN and Multimodal Performer there is little pattern in the 

residuals. It is also clear that the BGLR RKHS has a much larger 

variance than the Vanilla CNN and Multimodal Performer. 

Fig. 11. The five non-Bayesian models differ in the number of trainable param- 

eters in the optimal model found. The ResNet has an order of magnitude more 

trainable parameters than the Vanilla CNN, while the Performer-based models 

have three times fewer parameters than the Vanilla CNN. 

Table 4 

The Multimodal Performer test data 

performance for the years 2017 and 

2018. We report the 𝑅 

2 score, the 

Mean Average Error (MAE) and the 

Root Mean Squared Error (RMSE). 

Year R 2 score MAE RMSE 

2017 0.683 45.26 58.92 

2018 0.627 58.65 75.68 

Table 5 

The Multimodal Performer test data per- 

formance for the 2-row and 6-row bar- 

ley variants. We report the 𝑅 

2 score, the 

Mean Average Error (MAE) and the Root 

Mean Squared Error (RMSE). 

Variant R 2 score MAE RMSE 

2-row 0.759 55.10 71.85 

6-row 0.856 50.71 65.93 
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8 
uction yields, whereas abnormal weather data confuses the model and

eads to deteriorated performance. 

.1.4. 2-row and 6-row comparison 
In Section 2.1 we stated that our dataset contained both 2-row and

-row barley genotypes. Since model performance may be different for

he two barley variants we compared 2-row and 6-row variants results

n the test data using the Multimodal Performer. In Table 5 we show

he Multimodal Performer performance on the two barley variants. It

s clear that the model performs much better on 6-row than it does on

-row. This is particularly interesting since our dataset contained fewer

-row examples than 2-row examples. This should intuitively lead to

etter performance on 2-row since the model would have more exam-

les to learn from. We therefore show the true yield densities for the

wo barley variants along with the predicted yield densities in Fig. 12 .

n the figure it is clear that the 2-row variant has two pronounced modes,

hile the 6-row has a slight tendency towards three modes. The Mul-

imodal Performer is able to capture the modes of both variants, but

ne of the predicted 2-row modes is shifted to the right and has a much

igher density than the true distribution, explaining the reduction in

erformance. 

.1.5. Self-attention visualizations 
In this section we illustrate the self-attention maps produced by the

ultimodal Performer model. Visualizing these maps can help to bet-

er understand how the model interprets the data and what types of

nput have the most impact on the output of the model. We start by vi-

ualizing the self-attention maps for the genotype portion of the input

equence. In Fig. 13 we visualize 5 attention heads of the genome pro-

ucing the highest measured yield in the test set of the model (Genome

) as well as the genome producing the lowest measured yield form

he same location (Genome 2). We have also verified that the model

oes predict high and low yield values respectively for the different

enotypes. From Fig. 13 , it is clear that the model can identify partic-

lar SNP positions as more important than others. This is indicated by

lobal attention activations (vertical lines) in the different heads. Such

ttention activations suggests that the model weights the nucleotides at

hese SNP positions as particularly important for the yield prediction.

his could indicate that the Multimodal Performer is able to model in-

eractions between SNP positions, making it especially useful for GS.

oreover, each head seems to have learned to pay attention to differ-

nt SNP positions, suggesting that the model utilizes its parallel pro-

essing capabilities and has learned multiple representations of the

ata. 

We now visualize a small square of the weather portion of the input

equence. We visualize every day of weather measurements along the

-axis, but only the first 123 SNP positions along the y-axis to make the

gures easier to read. In Fig. 14 we show the attention activations for
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Fig. 12. The yield density distributions for 2-row and 6- 

row barley variants together with the Multimodal Per- 

former predictions for each variant. The model is able to 

capture the multimodal distibutions of both variants, but 

one of the modes in the 2-row variant is shifted to the 

right. 
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hree of the heads in the Multimodal Performer and overlay the weather

ata as a bar plot along the x-axis. Here, the parallel processing capa-

ilities are even more apparent, since the different heads have clearly

earned to pay attention to different weather phenomenon. Head 1 pays

ttention to temperature, indicated by strong global attention activa-

ion (vertical lines) aligning with higher measurements for temperature.

eads 4 and 5, on the other had, seem to pay attention to precipitation,

gain indicated by global attention activations aligning with high pre-

ipitation measurements. This is especially clear in the very strong acti-

ations aligning with the two days with abnormally high precipitation

easurements, indicating that these two days are particularly important

or the model yield prediction. 

We also visualize the self-attention map for the weather portion

sing the same two genomes as in Fig. 13 . In Fig. 15 we visualize

he genome producing the highest yield (left) and the genome pro-

ucing the lowest yield (right) on the same location. In the figure,

he general self-attention maps look similar, however, for the low-

ield genome we see strong activations along many of the SNP posi-

ions (y-axis) than in the high-yield genome. This indicates that the

odel learns to weight weather data differently, based on the partic-

lar genome fed in with the weather data, suggesting that the model

s able to model how weather phenomena affect yield for different

enotypes. 
9 
. Discussion 

We have introduced performer-based models to GS and shown that

hey are able to learn meaningful representation while outperforming

ore traditional approaches applying ANNs to GS. Through an exten-

ive search of hyperparameters using Bayesian optimization techniques

e found an optimal set of hyperparameters for our models. We then

ompared each optimally hyperparametrized model on crop yield pre-

iction using barley genotype and weather data sourced from 8 locations

ver two years of production. Our results suggests that performer-based

odels outperform other ANN approaches by a significant margin. 

The use of performer-based models has several advantages over tra-

itional ANN approaches for GS. First, performers have less inductive

ias than traditional ANNs. This enables performers to learn underly-

ng correlations more accurately and naturally than traditional ANNs,

hich to a larger degree rely on such correlations being encoded into the

odel architecture. Second, performer-based models are multimodal by

ature. CNNs and RNNs were developed with particular applications in

ind, they are therefore less effective for applications that are signifi-

antly different. The transformer was instead introduced as a general-

zation of the MLP. It is therefore able to handle all modalities of data

ith relative ease, which has also been shown in the literature. Unlike

he CNN models, which must be coupled with a MLP to handle the two
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Fig. 13. The self-attention map of the genotype portion of the input shows how each SNP position pays attention to every other SNP position in the Multimodal 

Performer. It is visualized by plotting each SNP position against all SNP position on both the x- and y-axis. We show the 5 most visually salient heads for the same 

model being fed the genome producing the highest measured yield in the test set (top row), and the genome producing the lowest measured yield on the same 

location (bottom row). The model finds particular SNP positions more important than other, indicated by global attention activations (vertical lines) corresponding 

to their position on the x-axis. This indicates that the values at these SNP positions contribute more than other SNP position values when the model predicts the 

yield. 

Fig. 14. Multimodal Performer self-attention maps for the weather portion of the input sequence. Weather measurements are overlayed on the x-axis to show 

correlations between weather data and attention activations. The y-axis shows the SNP position and the x-axis shows the day number for the weather data. The 

global attention activations (vertical lines) align well with precipitation measurements in Heads 4 and 5, indicating that these heads have learned to pay particular 

attention to such measurements during prediction. In Head 1, global attention activations align more with high temperature measurements albeit less prominent in 

the first month. 
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odalities of our data, the Multimodal Performer handles both modali-

ies in a single network architecture. It also requires little extra process-

ng of the two modalities other than making sure they are of the same

imensionality, making the Multimodal Performer the easier model to

mplement and use. Third, the self-attention maps of performer-based

odels can be visualized during prediction to show what the model is

paying attention to ”. As we showed in Section 3.1.5 , such visualiza-

ions can be highly informative and intuitive to interpret as opposed to

any visualization techniques commonly applied to ANNs. The observa-

ion that different genotypes produce different self-attention activations

or the same weather data aslo suggests high potential for its usage in

S. It could, for example, be possible to use the Multimodal Performer

o find the optimal genotype for a particular location, using average

eather data over many years in combination with yield predictions

rom the model. The breeder could also directly use how self-attention

aps visualize SNP position interactions to inform future selection and

reeding of genotypes. Such approaches could drastically shorten the

reeding cycle length. The generality of the performer-based models

lso enable their use beyond crop yield prediction. They could, for in-
10 
tance, be used to inform selection of salmon genes in salmon farming

or improved production of Omega-3 fatty acids or in other animal hus-

andry applications. 

Although we show many positive results, our approach also has

ome drawbacks. The main drawback is the size of our dataset.

n Section 2.2.2 we mention that our dataset only contained 2214

enotype-yield pairs. Traditionally, this is not considered a big dataset.

owever, since the Multimodal Performer is also a comparatively small

odel it suggests that the performance we report on our dataset is in-

icative of the model’s performance on new data and that it is not merely

 result of the model overfitting. We would still like to stress that more

ata is likely to further improve model performance, especially consid-

ring that one of the two years available in our data was an abnormal

ear in terms of environmental factors. We could also have tested the

odel on several of the available datasets to better gauge the perfor-

ance of the model, but these datasets neither contain the same SNP

arkers as our own, nor the same types of environmental data. They

ould therefore require models to be adapted to work with the new

ata and thereby result in a new model for each new dataset. Such test-



H. Måløy, S. Windju, S. Bergersen et al. Smart Agricultural Technology 1 (2021) 100017 

Fig. 15. Multimodal Performer self-attention maps for the weather portion of the input sequence using two different genomes. The y-axis shows the SNP position and 

the x-axis shows the day number for the weather data. The attention activations for Genotype 2 (right) are stronger for many SNP positions than those for Genotype 

1 (left), indicating that the model pays attention to different things, given the same location, but across genotypes. 
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ng is still very interesting and could be used to further evaluate the

ultimodal Performer on multiple datasets in the future. 

Another aspect of our dataset that could have resulted in improved

erformance is the environmental factors used. In Section 2.2.3 we state

hat we used both mean temperature and cumulative precipitation for

ach day as our weather data. However, there are additional environ-

ental factors that could have been used: soil data, solar radiation and

apor pressure. Such environmental data could give the Multimodal Per-

ormer further information on what factors contribute to yield and there-

ore improve model performance. Since our weather data was collected

hrough the FROST API and NIBIO LMT AgroMetBase, and not the farms

hemselves, such information was not available. It would therefore be

nteresting to further study how extra environmental information affects

odel performance. 

A third importand aspect of our dataset was that genoytpes

nd weather data were present in both training and test data. In

ection 2.2 we describe how the dataset was processed and that the

nal dataset contained 2214 genotype-yield pairs. The process we de-

cribe resulted in the same genotype being tested in multiple locations.

hen we divided our dataset into 10 folds for the cross-validation runs,

his also means that both genotypes and weather data were present in

oth the training data and the test data. However, any combination of

enotype and weather data is only present in either the training data

r the test data. This still means that the models have seen both the

enotype and weather data during training, however independently.

lthough this might seem like a breach of the standard approach to

plitting data into training and validation sets, we argue that this is not

he case. First, the same splits were seen by every model, making the

odel comparisons valid. Second, this setting is good proxy for what

ight happen in real world GS. Next year’s trials may contain many of

he genotypes included in a previous year, thereby producing a similar

ituations to what we have in our dataset splits. However, weather data

ill likely change. It would therefore be valuable to test the model using

reviously unseen weather data. 

We mention in Section 2.2.2 that the phenotype values of our dataset

ere scaled to fit between 0 and 1 to facilitate the use of sigmoid ac-

ivation functions in our models. This choice means that the extreme

henotype values of our dataset will be pushed to the far left and far
 y  

11 
ight tails of the sigmoid function. This has the unfortunate effect of

estricting the variance of the models prediction distributions since it

s not possible for the model to predict a value that is larger than the

ighest phenotype measurement. This effect can also be seen in Fig. 12 .

o avoid this issue, the scaling of phenotype values should be scaled

sing a range that is slightly larger than the minimum and maximum

henotype values in the future. This will shift the resulting distribution

owards the middle of the sigmoid curve, thereby allowing the model to

ver- and underestimate its prediction during training and learn to fit

he entire distribution. 

One potential limiting factor in the design of our performer-based

odels was the size of the output head. In Section 2.3 we stated that the

imensionality of the model input was 12. Due to how the performer

as built, this also means that the final prediction head produced a

rediction vector of the same dimensionality. In the performer-based

odels this vector is responsible for representing the entire process-

ng of the model. Given that the model processeed an input sequence

f length 13445, each element of which was 12-dimensional, a single

2-D vector was a very compressed representation of the inner work-

ngs of the model. This could also help explain why the optimal archi-

ecture found for the Multimodal Performer contained only one layer,

ince multiple layers could create inner representations too complex to

e expressed by a 12-dimensional vector. It would therefore be very in-

eresting to increase the expressiveness of the model by increasing the

ize of the prediction vector. This could be done by simply upsampling

he entire sequence to a higher dimension in the input layer, similar

o what we do for the historical weather sequence in the Multimodal

erformer. Such studies could further increase model performance and

ncover even more complex representations by analyzing the resulting

elf-attention maps. 

. Conclusion 

In this paper we introduced performer-based architectures to the

eld of genomic selection with the application of crop yield prediction.

e showed that these architectures outperformed convolutional neu-

al network architectures as well as Bayesian approaches on the task of

ield prediction from SNP-based genotypes and weather data. We also
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Table A2 

The best hyperparameter combination for the ResNet. In brackets, the index 

corresponds to the layer number. 

Hyperparameter Value 

Dropout Rate 0.15 

Learning Rate 0.001 

Weight Decay 0.010 

Number of Convolutional Layers 14 

Number of Filters per Layer [100, 234, 39, 255, 137, 254, 222, 23, 

250, 238, 35, 243, 195, 206] 

Number of Linear Layers 5 

Number of Units per Layer [28, 29, 30, 26, 29] 

Number of Units in Prediction Layer 118 

Table A3 

The best hyperparameter combination for the 

performer. 

Hyperparameter Value 

Dropout Rate 0.30 

Learning Rate 0.0024 

Weight Decay 0.02 

Number of Performer Layers 1 

Number of Performer Heads 16 

Head Dimension 2 

Number of Units in FFN 128 

Generalized Attention True 

Number of Linear Layers 1 

Number of Units per Linear Layers [28] 

Number of Units in Prediction Layer 29 

Table A4 

The best hyperparameter combination for the His- 

torical Performer. In brackets, the leftmost value is 

the performer processing the genome and the right- 

most value is the performer processing the weather 

data. 

Hyperparameter Value 

Dropout Rate 0.16 

Learning Rate 0.0003 

Weight Decay 0.002 

Number of Performer Layers [1, 1] 

Number of Performer Heads [16, 2] 

Head Dimension [2, 8] 

Number of Units in FFN [128, 128] 

Generalized Attention [True, True] 

Number of Units in Prediction Layer 69 

Table A5 

The best hyperparameter combination 

for the multimodal performer. 

Hyperparameter Value 

Dropout Rate 0.20 
howed that the multimodal capabilities of performer-based architec-

ures made the models easier to implement and could further increase

erformance by processing multiple modalities simultaneously, using

 self-attention mechanism. Through analyzing the self-attention maps

roduced in the performer-based models we showed that the models

earned to pay attention to different weather phenomenon in different

ttention heads and correlated SNP positions with each other to pro-

uce its predictions. We also showed that the lack of inductive bias

n performer-based models improved model generality and drastically

educed the number of trainable parameters needed to achieve high

erformance. 

We suggest that future work should explore applying performer-

ased models to several readily available genomic selection datasets.

e also suggest that these models should be applied to other applica-

ions within genomic selection, such as genotype selection for salmon

arming or other types of animal husbandry. Such studies could reveal

he full potential of performer-based models and help reduce breeding

ycles. 
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ppendix A. Hyperparameter search results 
Table A1 

The best hyperparameter combination for the Vanilla CNN. In brackets, 

the index corresponds to the layer number. 

Hyperparameter Value 

Dropout Rate 0.22 

Learning Rate 0.008 

Weight Decay 0.0045 

Number of Convolutional Layers 10 

Number of Filters per Layer [256, 117, 79, 143, 101, 42, 16, 

67, 117, 17] 

Number of Linear Layers 3 

Number of Units per Layer [21, 17, 17] 

Number of Units in Prediction Layer 28 

Learning Rate 0.0007 

Weight Decay 0.003 

Number of Performer Layers 1 

Number of Performer Heads 8 

Head Dimension 8 

Number of Units in FFN 64 

Generalized Attention True 
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