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a b s t r a c t 

Machine learning and Artificial Intelligence (AI) already support human decision-making and complement 

professional roles, and are expected in the future to be sufficiently trusted to make autonomous decisions. 

To trust AI systems with such tasks, a high degree of confidence in their behaviour is needed. However, 

such systems can make drastically different decisions if the input data is modified, in a way that would 

be imperceptible to humans. The field of Adversarial Machine Learning studies how this feature could be 

exploited by an attacker and the countermeasures to defend against them. This work examines the Fast 

Gradient Signed Method (FGSM) attack, a novel Single Value attack and the Label Flip attack on a trending 

architecture, namely a 1-Dimensional Convolutional Neural Network model used for time series classifi- 

cation. The results show that the architecture was susceptible to these attacks and that, in their face, the 

classifier accuracy was significantly impacted. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Machine Learning (ML) and AI have been groundbreaking in 

ackling various problems. They are used today in a variety of dif- 

erent application domains. AI can outperform human observers in 

dentifying cancerous cells ( Bejnordi et al., 2017 ), even when using 

mateur equipment such as a mobile phone camera ( Esteva et al., 

017 ). Autonomous vehicles are seen as the future of the automo- 

ive industry ( Vishnukumar et al., 2017 ). AI protects against fraud 

nd cybercrime, from identifying unusual behaviour ( Dhieb et al., 

020; Nikoloudakis et al., 2021 ) to protecting a personal device 

ith facial recognition software ( Parkin and Grinchuk, 2019 ). It is 

xpected to supplant many professional roles carried out today, 

ith studies estimating that between 45% and 60% of jobs could 

e automated in the next 10 to 20 years ( Arntz et al., 2016 ). 

These uses of AI extend into safety-critical applications and 

nternet-of-Things (IoT) devices. For example, poorly designed au- 

onomous vehicles pose a significant danger, particularly as they 

ecome ubiquitous. However, it is hard to guarantee that the AI 

ystem will be well-behaved ( Adadi and Berrada, 2018; Stoyanova 

t al., 2020 ). The decision-making in the AI system can be ex- 
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remely complex, making it difficult to predict how the system will 

ct in all situations. 

The increasing popularity of AI and Machine Learning attracted 

he attention of malicious parties who started launching attacks 

gainst them. The common goal of all the attacks is to impact the 

erformance in some way. Most of these attacks would not fool 

 human, but many would not even be perceptible by a human 

bserver, yet they may substantially impact AI performance. 

Attacks can be carried out against real-world AI applications. 

or example, unique sunglasses can be designed that trick a fa- 

ial recognition network into granting access to a secure system 

 Sharif et al., 2016 ). For autonomous vehicles, traffic signs could be 

overed in graffiti which tricks their AI into misreading the sign 

 Gu et al., 2017 ). 

Attacks may occur in all phases of the AI lifecycle. They can 

e executed when an AI system is being trained, by poisoning 

he training data ( Steinhardt et al., 2017 ), or when it is used 

n production by evading classification. Attacks have been pub- 

ished in white-box, grey-box and black-box scenarios. Worry- 

ngly, the attacks show transferability across networks. This means 

hat an attack designed for one system could impact another 

 Pitropakis et al., 2019 ). Prediction with financial time series mod- 

ls is one of the application domains that have been poorly investi- 

ated in the literature concerning the influence of such attacks. Be- 

ides being a major influential factor in the global economy, finan- 
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ial time series models are also known for their non-linear, non- 

tationary and noisy nature; hence, making challenging the effort 

o capture their trends accurately. 

This work sheds light on this area, proving that attacks are fea- 

ible and that their impact should be taken into consideration by 

he security and AI communities. The contributions of our work 

an be summarised as follows: 

1. We mount label flipping attacks, poisoning a 1-Dimensional 

Convolutional Neural Network model that makes predictions 

based on financial stock data, in order to generate adversarial 

examples using the FGSM against the same model. 

2. We create and launch Single Value attacks, a novel adaptation 

of FGSM based on one-pixel attacks ( Yuan et al., 2019 ) aiming 

to identify the most impactful entry for perturbation. 

3. Finally, we analyse and critically evaluate the experimental re- 

sults along with the model’s robustness against the aforemen- 

tioned attacks. 

The rest of the paper is organised as follows. Section 2 builds 

he background around attacks against machine learning-based 

ystems while reviewing the related literature. Section 3 briefly 

xplains the methodology we followed to perform the study. 

ection 4 presents the results of our experiments, while 

ection 5 discusses the feasibility of the suggested scenarios and 

roposes countermeasures drawn from the known literature. Fi- 

ally, Section 6 draws the conclusion and gives some pointers for 

uture work. 

. Literature review and background knowledge 

.1. Attacks against machine learning 

.1.1. Background 

Kearns and Li (1993) first referenced the challenges of auto- 

ated learning systems where training data is controlled by an 

dversary and proved the bounds for malicious errors in training 

ata. The first practical applications appeared in the mid-20 0 0s 

nd were primarily evading spam filters, and anti-malware pro- 

esses ( Lowd and Meek, 2005 ). The attacks on spam filters typ- 

cally involved obfuscating the detected words by adding trusted 

ords. This type of attack was called evasion , as the attack would 

ttempt to evade a trained classifier. 

Countermeasures were also studied. Globerson and 

oweis (2006) investigated making models more robust by 

ot giving too much weight to one single feature. Their method 

as effective for spam filtering and handwriting recognition. 

Poisoning attacks were also researched. Newsome et al. (2006) , 

tudied an attack against malware classifiers, where the adver- 

ary generated labelled samples, which would prevent the training 

f an accurate classifier. In the scope of intrusion detection sys- 

ems, Rubinstein et al. (2009) , studied multiple poisoning schemes 

nd found that creating a moderate amount of poisoned traf- 

c would substantially increase the chances of evading detection 

 Rubinstein et al., 2009 ). 

Barreno et al. published the first taxonomy of machine learning 

ttacks ( Barreno et al., 2006 ). They modelled attacks by their influ- 

nce, specificity and type of security violation. These terms were 

xpanded in subsequent work, by including a comprehensive set 

f scenarios where each attack type could be used ( Barreno et al., 

010 ). Huang et al. also published a taxonomy, building on existing 

ork and expanding their taxonomy into attacks on ML techniques 

 Huang et al., 2011 ). They discussed attacks on privacy-preserving 

L architectures. These architectures are designed to obfuscate the 

ata used to train a classifier. Thus, this is particularly important in 

ome private data, such as medical data, since they discussed the- 
2 
retical attacks which could break several privacy-preserving prop- 

rties. 

Recent works on machine learning attacks were catalysed by 

he discovery of adversarial examples ( Goodfellow et al., 2014 ). 

zegedy et al. (2013) , found that when testing an image classi- 

er, tiny alterations to an image that might be imperceptible to 

umans could cause a dramatic misclassification. These findings 

ighlighted a significant threat for deep learning architectures, at 

 time when they were seeing significant breakthroughs in perfor- 

ance ( Krizhevsky et al., 2012 ). Since ( Szegedy et al., 2013 ) was

ublished, the field of adversarial ML has grown considerably to 

ackle these problems, which could inhibit the uptake of AI. 

.1.2. Recent works 

Pitropakis et al. performed a taxonomy and survey of the liter- 

ture and provided a language for categorising attack knowledge, 

tyle and intention while describing three categorisations for the 

nowledge of the attacker, namely Black-box, Grey-box and White- 

ox ( Pitropakis et al., 2019 ). Black-box attacks assume no knowl- 

dge, Grey-box assumes some knowledge, and White-box assumes 

otal knowledge and unrestricted interactions. The attacks were 

ategorised as Poisoning and Evasion. Poisoning attacks are a subset 

f the causative attacks defined by Barreno et al. (2006) . They tar- 

et the manipulation of input data to corrupt a network, often by 

ampering with the training data. Evasion attacks aim to achieve 

ncorrect classifications for data in the testing stage. These are a 

ubset of exploratory attacks. They often involve generating a mali- 

ious input which is incorrectly classified. One example is the ad- 

ersarial examples discovered by ( Szegedy et al., 2013 ). For illustra- 

ion, consider the example of an attack against a facial recognition 

ecurity system. A poisoning attack may seek to train the network 

gainst a modified or mislabelled image. The network would then 

ncorrectly classify an unaltered image. An evasion attack may trick 

he network by changing the input in a particular way; as such, 

harif et al. (2016) crafted glasses frames to impersonate celebri- 

ies. 

Yuan et al. performed a taxonomy for Deep Neural Networks 

DNN) ( Yuan et al., 2019 ), whilst Gu et al. (2017) , provided an ex-

ellent illustration of some real-world attacks against autonomous 

ehicles which could hinder trust in the DNN technology. They 

valuated a DNN, which was designed for an autonomous vehicle. 

hey found that placing a yellow square at a particular location on 

 stop sign would cause it to be misclassified as a speed limit sign. 

his misclassification would not happen with a human observer, 

ut could cause an autonomous vehicle to drive dangerously. 

Sadeghi et al. (2020) , published a taxonomy for various aspects 

f Adversarial ML (AML) research, including the dataset, the ML 

rchitecture and the defence response. They also described an AML 

ycle i.e., a system for representing the arms race between ML ap- 

lications and adversaries. 

Interestingly, 98% of Adversarial Machine Learning papers us- 

ng deep learning architectures involve image or text classification, 

hile time series datasets are significantly ignored, despite their 

tilisation in mission-critical applications in health care and finan- 

ial trading ( Sadeghi et al., 2020 ). 

Academic research focused on machine learning has revealed 

ertain network architectures as being optimal for some problems. 

onvolutional Neural Networks (CNNs) have shown incredible suc- 

ess in computer vision tasks ( Yuan et al., 2019 ) and facial recog- 

ition ( Lawrence et al., 1997 ). Convolutional Neural Networks work 

y taking input data and performing convolutions on the data. For 

mage classification problems, this involves creating feature maps 

f clusters of pixels. 

Although Recurrent Neural Networks and Long Short-Term 

emory Networks have traditionally been the recommended ML 

rchitecture for time series classification, it has recently emerged 
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hat CNNs can outperform these architectures for this problem 

 Chen et al., 2016; Zheng et al., 2017 ). Chen et al. applied trans-

ormations to a time series, such as moving averages, and then 

ombined these together ( Chen et al., 2016 ). This approach allowed 

 2-Dimensional CNN to be used as there were effectively multi- 

le time series being analysed simultaneously. Fawaz et al. used a 

-Dimensional CNN by training their data on the raw time series 

 Fawaz et al., 2019 ). In this approach, the CNN concept of kernel

ize is still applicable. However, the kernel window only includes 

djacent entries in the time series across one dimension. 

The FGSM produced tiny perturbations imperceptible to hu- 

ans to a test image which was subsequently misclassified, was 

roposed in Goodfellow et al. (2014) . As in Szegedy et al. (2013) ,

t was found that the adversarial examples transferred to differ- 

nt models. Since its publication, the FGSM method has seen a lot 

f research attention. Simple variations, such as adding random 

erturbations, add robustness to countermeasures ( Yuan et al., 

019 ). Multi-step methods are more powerful variations, which 

se projected gradient descent for the negative loss function in- 

tead of the sign of the gradient ( Huang et al., 2020; Madry et al.,

017 ). These have proven to be extremely robust against defences 

 Kurakin et al., 2016 ). 

Causative attack strategies target the classifier itself by ma- 

ipulating the parameters, the architecture or the training set. 

adeghi et al. (2020) , claimed that data poisoning is the most 

ommon causative attack and defined “Label Flip” as poisoning 

 dataset by changing the hard class labels. Xiao et al. (2012) , 

ttacked a Support Vector Machine model with targeted Label 

lip, where they changed the labels to an alternative class. Their 

ethod required a classifier trained with the uncontaminated 

ataset. Then, a new model was trained on this manipulated data. 

his new model was found to be very underperforming. 

.2. Financial time series prediction 

Time series analysis problems are a common class of prob- 

ems in domains such as finance, weather, health care and security 

 Chen et al., 2016 ). 

Selvin et al. used several neural network models to analyse a 

nancial time series ( Selvin et al., 2017 ). Each model was given a

liding window of the time series as input. They used minute-wise 

tock data with a 90 min sliding window and trained their models 

o predict 10 min into the future. They trained a Recurrent Neu- 

al Network (RNN), a Long Short-Term Memory (LSTM) network 

nd a CNN. RNN and LSTM networks are traditionally popular ar- 

hitectures for deep learning with a time series. In an RNN, com- 

utational units form a directed circular graph which use internal 

emory when processing inputs. This is achieved with a recurrent 

eedback loop. An LSTM is a form of RNN with special cells which 

llow it to store memory for a longer period of time. The authors 

ound that the RNN and LTSM models were incapable of capturing 

ynamic trends in the price movement, with the CNN being much 

ore accurate. They hypothesised that this was a result of the dy- 

amic nature of the stock market. As price movements happen for 

easons independent of the recent price history, the recent history 

ffered poor predictive value. The CNN model does not use the re- 

ent history for any particular sliding window, and was therefore 

ot impacted by this. 

Chen et al. (2016) , used CNNs for financial time series fore- 

asting. They found that CNNs could understand complex pat- 

erns with more accuracy than rule based systems. Their work 

as specific to a 2-Dimensional convolutional network. They ap- 

lied transformations to the time series to get a 2-Dimensional 

utput. For example, several moving averages were derived from 

he time series. These were combined together, which resulted in 
3

 2-Dimensional output. Their experiment utilised a sliding win- 

ow approach, similar to Selvin et al. (2017) . 

.2.1. Time series attacks 

Even though adversarial attacks on 2-Dimensional problems 

uch as image recognition have received a lot of attention in re- 

ent years, such attacks against a 1-dimensional time series have 

ot being thoroughly studied. 

Fawaz et al. published the first study on adversarial examples 

gainst deep learning architectures used for time series classifi- 

ation ( Fawaz et al., 2019 ). They attacked a state of the art deep

earning architecture across spectroscopic time series used for food 

afety, electrical sensor readings from vehicles and a time series of 

lectricity consumption. As in this work, they successfully utilised 

he FGSM method to produce adversarial examples. However, they 

ad to add noise to investigate how the model would behave, and 

hey did not investigate the financial time series model which, in 

omparison to their chosen time series models, has larger amounts 

f noise. 

Karim et al. used a fully connected CNN and demonstrated at- 

acks across 42 datasets. They experimented with white-box and 

lack-box attacks. The black-box attacks featured a number of re- 

trictions, such as no access to the dataset labels during an attack. 

hey used a Gradient Adversarial Transformation Network model to 

enerate their adversarial examples, as proposed in Baluja and Fis- 

her (2017) , and used an unsupervised neural network. They found 

hat all datasets were susceptible to attack ( Karim et al., 2020 ). 

Our work differentiates from others in the literature since 

t contributes an evaluation of several attacks against a 1- 

imensional CNN architecture when used for time series classifica- 

ion. This work also contributes to the 2% of AML research against 

 deep learning architecture which does not use image or text 

atasets ( Sadeghi et al., 2020 ). Compared to the existing literature, 

e experimented with: i) A novel Single Value attack; ii) A Label 

lip attack; and iii) An FGSM attack using a financial time series 

odel. As there is limited research into using deep learning for fi- 

ancial time series analytics ( Chen et al., 2016 ), to the best of our

nowledge, our work contributes to this research area and demon- 

trates how financial groups may be vulnerable to a range of attack 

ectors. It also features a stock trading simulation to assess the fi- 

ancial impact. 

. Methodology 

This section describes a 1-Dimensional Convolutional Neural 

etwork model and three attack methodologies, namely FGSM, 

ingle Value and Label Flip. 

Each experiment represented a real-world security risk in the 

nancial trading domain. The FGSM and Single Value were evasion 

ttacks, attempting to force a misclassification at testing time. The 

ttacks were performed by intentionally altering the price of a fi- 

ancial instrument across the time series. 

The Label Flip attack demonstrated how a poisoned dataset 

ould create a disproportionately inaccurate model. In a real-world 

cenario, an attacker with access to the training data could poison 

 small amount of the data and drastically affect performance. 

.1. Model under attack 

Financial stock data was obtained from Kaggle (2017) , and daily 

tock price data for Google stock was used. The time range was 

006–2018. The training period was 2006–2014 and the remaining 

ata was used for validation. The data was processed with a sliding 

indow. The sliding window size was fixed to 30 days, and the 

uture price prediction offset was fixed to 14 days. These values 
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re chosen to investigate whether a month of data could predict 

he price in two weeks. 

The data was normalised so that each entry in the time series 

as the price difference from the previous entry. This is known 

s the price delta or �. By examining relative price movements, 

he model would identify certain patterns used for prediction. This 

s known in financial analytics as technical analysis ( Treynor and 

erguson, 1985 ). 

The Convolutional Neural Network that was used is composed 

f two convolution layers and two hidden layers. It was trained for 

0 0 0 iterations using the PyTorch library. The pseudocode repre- 

enting the model and its parameters can be seen in Algorithm 1 . 

lgorithm 1 Pseudocode of 1-D CNN m odel. 

1: Conv1d(inputs=1, outputs=32, kernel_size=3, padding=1, 

stride=1) 

2: ReLU(inplace=True) 

3: Conv1d(inputs=32, outputs=3, kernel_size=3, padding=1, 

stride=1) 

4: ReLU(inplace=True) 

5: Linear(84,250) 

6: ReLU(inplace=True) 

7: Linear(250,2) 

The network output was a vector with two entries. This form of 

utput is known as a one-hot vector . The two entries represented 

he predicted probability of a sell or a buy. The sigmoid function 

as used on the vector in the final stage of the network to nor- 

alise the entries between 0 and 1. The Stochastic Gradient De- 

cent (SGD) optimiser was used for backpropagation. Binary Cross- 

ntropy (BCE) Loss was used as the loss function. Cross-Entropy 

oss functions are common loss functions when evaluating one-hot 

ector results ( Karim et al., 2020 ). 

.1.1. Optimisation 

The CNN had two convolution layers, each with its own output 

nd kernel sizes. These were hyperparameters to be optimised. For 

omputational performance reasons, a limit was placed on these 

arameters. A range of 1 to 200 was chosen for tuning the number 

f convolution layers. A range of 1 to 20 was the constraint for 

he kernel size. This resulted in 8 million possible hyperparameter 

ombinations. 

The Stochastic Gradient Descent algorithm was parameterised 

ith a learning rate and momentum. The learning rate affects how 

uch the gradients are changed during backpropagation. The mo- 

entum accelerates the gradient change and leads to faster con- 

erging. Both of these parameters were considered hyperparame- 

ers. The range for optimisation was between 1 e − 9 and 1 e − 1 for

oth parameters. 

The Optuna optimisation framework was used for efficient hy- 

erparameter optimisation ( Akiba et al., 2019 ). The framework al- 

owed the hyperparameter search space to be dynamically gen- 

rated in the program at runtime. It then performed sampling 

o find the optimal parameters given the loss function. It used 

 Tree-structured Parzen Estimator during the search. This form 

f Bayesian Optimisation uses a probability model to determine 

hich hyperparameters should be evaluated. 

The optimisation framework used BCE Loss as the loss function 

o mirror the model’s loss function. The optimisation ran for 150 

ounds, and the accuracy in each round is illustrated in Fig. 1 . 

The optimal parameters for the first convolutional layer were 

 32-dimensional output with a kernel size of 3. The optimal pa- 

ameters for the second layer were a 3-dimensional output with a 

ernel size of 3. The learning rate was 1 . 71176 e − 05 . The momen-

um was 0.081. 
4 
.2. FGSM attack 

The FGSM ( Goodfellow et al., 2014 ) is very similar to the 

ethodology used in this experiment. However, it was adapted 

lightly to function with a time series as an input. 

The experiment used validation data from the dataset. This 

eant that the model was attacked with data which was not used 

or training. As discussed, the data was processed with a sliding 

indow. This attack created a small perturbation to the original 

est data. The perturbation created for each sliding window can be 

een in Algorithm 2 . 

lgorithm 2 Pseudocode of perturbation. 

1: Evaluate the sliding window with the model. 

2: For each entry in the time series, capture the gradient using 

backpropagation. 

3: For each gradient, obtain the sign of the gradient as −1 or 1. 

4: Multiply the gradients by the parameter ε. 

Formally, the perturbation can be expressed as: η = ε ·
ign (∇ x J(X )) where X is the model input and ∇ x J(X ) is the gra- 

ient. This perturbation was added to the original input data, as in 

oodfellow et al. (2014) and Fawaz et al. (2019) . This is illustrated 

n Fig. 2 . 

The parameter ε drives the magnitude of the attack. In this sce- 

ario, it represented how much the price of the stock would be 

oved to perform the attack. It was important not to set ε too 

igh, as this could be identified as an abnormal price movement 

y human observers. 

For these reasons, ε was limited to the mean delta across the 

ataset. The value was calculated as 4.54. This means that the per- 

urbation would modify the time series by the average amount 

f daily price change. The experiment was repeated for different 

alues of ε up to this limit. The initial value for ε was 0, where 

o data was perturbed. In each subsequent iteration, ε increased 

y 10% of the mean delta. The experiment concluded after ε was 

qual to the mean delta. 

.3. Single value attack 

The Single Value attack is a novel adaptation of the FGSM at- 

ack. It attempted to identify the most impactful entry in each 

liding window to perturb. It was inspired by the one-pixel at- 

ack ( Yuan et al., 2019 ), which caused poor performance by per- 

urbing a single pixel in an image. In our case, each sliding win- 

ow was passed through the model, and the gradients were re- 

rieved using backpropagation. In the FGSM attack, a single pertur- 

ation was created, which perturbed all entries in the sliding win- 

ow. The Single Value attack methodology differed can be seen in 

lgorithm 3 . This was done for all sliding windows. An example of 

lgorithm 3 Pseudocode of single value perturbations. 

1: For each sliding window, n number of perturbations were tem- 

porarily created, where n is the number of entries in the time 

series. Each of these perturbations affected just a single entry 

in the sliding window, such that all entries had a correspond- 

ing perturbation. 

2: Each of the perturbations were applied to the original data. 

3: The perturbed data was passed through the model and a loss 

was obtained. 

4: The worst performing perturbation was chosen as the pertur- 

bation to use in the attack. 

 chosen perturbation is illustrated in Fig. 3 . 



M. Gallagher, N. Pitropakis, C. Chrysoulas et al. Computers & Security 123 (2022) 102933 

Fig. 1. Hyperparameter optimisation accuracy results. 

Fig. 2. Sliding window input and FGSM attack. 
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The value for ε was two times the standard deviation of the 

elta between each entry. This is represented as ε = 2�. This value 

as chosen as it would have more impact than using the mean, 

ut would still be viewed as a normal price movement by human 

bservers. The value was calculated to be 10.4. 

.4. Label flip attack 

The Label Flip attack involved changing the label of training 

ata so that an inaccurate classifier was trained. The objective 

as to change a small percentage of the training data and have 

 relatively large impact on performance. In this experiment, flip- 
5 
ing a label meant changing a Buy label to a Sell and vice versa 

 Xiao et al., 2012 ), and this can be seen in Algorithm 4 . 

This method produced a model which had maximal loss under 

he original classifier, but minimal loss with the poisoned classifier. 

his is because it was trained to identify the most costly trades as 

rofitable. This experiment used profitability as the loss function 

o identify the worst performers. This function was chosen in order 

o demonstrate the impact in a real-world scenario. For computa- 

ional performance reasons, the models for the clean and poisoned 

atasets were trained for 20 0 0 iterations. 

The methodology was parameterised by n . This was the per- 

entage of data which would be flipped in the experiment, and a 
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Fig. 3. Single value attack example. 

Fig. 4. Sliding windows sorted by profitability. 

Algorithm 4 Pseudocode of label flip. 

1: Use a model trained on a clean dataset. 

2: Using a trading simulation, calculate a profit for each sliding 

window in the training dataset. 

3: Sort the sliding windows by the least profitable. 

4: Extract the worst performing n sliding windows, where n is a 

parameter representing the percentage of data to be flipped. 

5: Flip the label of the worst performing data. 

6: Re-combine the original and flipped datasets. 

7: Train a new model using this poisoned dataset. 
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alue of n = 10 was used. This was chosen by analysing the distri-

ution of poorly performing datasets. It was found that some 10% 

f the sliding windows are disproportionately unprofitable. This is 

isualised in Fig. 4 , which shows the profitability for each sliding, 

orted by the least profitable first. It can be observed that there is 

 small percentage of sliding windows which underperform. 
6 
. Results 

.1. FGSM attack 

The FGSM attack caused a significant reduction in performance 

cross several metrics, and the BCE loss function was used to com- 

ute the loss since this was suitable for a binary classifier. The ex- 

eriment was repeated over several iterations with the value of ε
ncreasing in increments. The minimum value for ε was zero, and 

he maximum was equal to the mean delta in the time series. The 

ncrements were in 10% of the mean delta. 

When ε = 0 , the loss was equal to the base loss of the network

hen using the evaluation data. This was 4.95. As ε increased, the 

oss increased. The final loss for each increment of ε is shown in 

ig. 5 . 

When ε was equal to the mean delta, 4.55, the loss was 18.72. 

n example of the experiment results for each sliding window in 

his iteration is shown in Fig. 6 . This illustrates that the loss was

ignificantly higher when using the FGSM attack. 
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Fig. 5. BCE loss for FGSM attack for each increment of ε. 

Fig. 6. BCE loss for ε = mean � under FGSM attack. 
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The classifier used in this experiment was binary, using the la- 

els Buy and Sell . A simple performance metric for this classifier 

s calculating its Accuracy . Accuracy is the ratio between the cor- 

ect predictions and the total predictions. The output of a binary 

lassifier can belong to four classes: True Positives, True Negatives, 

alse Positives, and False Negatives ( Chicco and Jurman, 2020 ). 

sing these classes, the formula for accuracy can be derived as: 

ccuracy = 

t p+ t n 
t p+ t n + f p+ f n 

In this experiment, Positives were Buy labels and Negatives were 

ell labels. Using these classes, the values of other common perfor- 

ance metrics can be calculated. 

Recall is accuracy in the Positive class. It is an indication of how 

erformant the classifier was at predicting Positive class instances. 

ecall = 

t p 
t p+ f n 

Precision is the ratio of correctly classified Positive instances, to 

ll instances classified as Positive. It is useful for measuring the 

evel of misclassification as Positive. Precision = 

t p 
t p+ f p 

F-Score is a 

ommon metric which is defined as the harmonic mean of Recall 

nd Precision. FScore = 2 × precision ×recall 
precision + recall 

Four accuracy metrics were used for the attacks in this 

xperiment: Standard Accuracy, Recall, Precision and F-Score. 

he measurements for the FGSM attack showed a dramatic 

ecrease in accuracy across all metrics. These are shown in 

ig. 7 a. 

Accuracy and F-Score are among the most popular metrics for 

easuring binary classification performance. However, Chicco and 

urman (2020) found that these metrics display overly optimistic 

nd inflated results due to the imbalance issues. The Matthews 

orrelation Coefficient (MCC) overcomes this class imbalance is- 

t

7 
ue. The MCC is a special case of the φ (phi) coefficient, which 

s used for binary classification problems. It is computed as MCC = 

(t p×t n ) −( f p× f n ) √ 

(t p+ f p) ×(t p+ f n ) ×(tn + f p) ×(tn + f n ) and it is claimed to be the only bi- 

ary classification measurement which generates a high score if a 

ajority of positive and negative instances are correctly classified 

 Chicco and Jurman, 2020 ). The values of MCC for each iteration of 

he FGSM attack are illustrated in Fig. 7 b. 

The real-world impact was demonstrated in a stock trading 

imulation of bought or sold stock based on predictions from the 

odel. The accumulated profit when evaluating the test data was 

ecorded for each increment of ε, in increments of 10% of the mean 

elta. The results are depicted in Fig. 8 . The final loss curve is 

hown in Fig. 9 . This shows the final financial profit from the sim- 

lation for each increment of ε. 

.2. Single value attack 

A significant reduction in accuracy was observed for the Single 

alue attack. This was significant as only a single entry in each 

liding window was perturbed. This attack was also parameterised 

ith ε, representing the amount of price change in the attack. As 

nly one entry was being perturbed, a higher limit was chosen for 

he value of ε. This value was still constrained, so the price move- 

ent would be within historical ranges. A value of two times the 

tandard deviation of the delta of the time series was chosen, and 

his was 10.42 in the dataset. 

The loss for each increment of ε is shown in Fig. 10 . 

Fig. 11 shows the loss for each sliding window when ε was at 

he highest value. 
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Fig. 7. Accuracy metrics & FGSM MCC. 

Fig. 8. FGSM simulated profit for ε = mean �. 

n

F

r

a

d

a

The accuracy measurements were calculated in the same man- 

er as with the FGSM attack. The accuracy, precision, recall and 

-Score measurements were calculated for each iteration of ε. The 

esults are illustrated in Fig. 12 a. 
8 
The MCC value was calculated, and a significant reduction in 

ccuracy was observed as ε was increased. The magnitude of the 

ecrease in the MCC value was half the value seen in the FGSM 

ttack. This is an impressive reduction in accuracy as only one- 
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Fig. 9. FGSM total profit per iteration of ε. 

Fig. 10. BCE loss for single value attack for each increment of ε. 

Fig. 11. BCE loss for ε = 2 ω� under single value attack. 
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hirtieth of the entries were perturbed. The result for each iteration 

s shown in Fig. 12 b. 

The profitability was calculated with the same trading simula- 

ions as the FGSM results. However, a large impact on profitability 

as observed, approximately half the impact of the FGSM results. 

his correlates with the results seen in the MCC calculation. The 

nal monetary loss for each increment of ε is shown in Fig. 13 . 

s

9 
he result from the trading simulation for each increment of ε is 

hown in Fig. 14 . 

.3. Label flip 

The Label Flip attack involved training a classifier with a poi- 

oned dataset. The experiment flipped the label of 10% of the 
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Fig. 12. Single value attacks for each increment of ε. 

Fig. 13. Single value total profit per iteration of ε. 

10 
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Fig. 14. Single value attack simulated profit for 10% increments of ε = 2 ωδ. 

Fig. 15. Label flip simulated trading performance. 

Fig. 16. Label flip BCE loss. 
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ataset. For evaluation, metrics for a clean dataset and the poi- 

oned dataset were obtained. The attack had a clear impact on 

rofitability in the trading simulation and caused a significant in- 

rease in the BCE Loss. Minor decreases were found in accuracy 

nd MCC score. 

The BCE loss for the clean dataset and poisoned dataset were 

alculated. The loss for the clean dataset was 2.65. This was dif- 

erent to the base loss for the evasion experiments as the model 

as retrained and initialised with random weights and biases. Us- 

ng a poisoned dataset increased the loss to 5.8, demonstrating a 

ubstantially reduced performance. This is illustrated in Fig. 16 . 

The simulation showed a drastic impact on performance. The 

rofitability during the trading simulation is shown in Fig. 15 . The 

rading simulation showed a reduction in final profit of $2748 for 

he base model to −$915 for the poisoned model. This is significant 

s only 10% of the labels were flipped. Furthermore, this impact 
11 
as achieved without manipulating the price of the market. These 

ould make the Label Flip attacks much more cost-effective than 

he evasion attacks. 

Further, several accuracy metrics were obtained. These are 

hown in Fig. 17 a. A minor decrease in accuracy was observed be- 

ween the base and poisoned classifiers. This is in contrast to the 

ubstantially decreased performance in profitability and BCE Loss. 

t is interesting that the results are not fully correlated. This may 

e because profitability and loss metrics incorporate the magni- 

ude of classification and misclassification. They add more weight 

o very costly or very profitable predictions. This is in contrast to 

he accuracy metrics, which are simply concerned with the cor- 

ectness of a prediction. 

This effect may be encouraged by the methodology. The 

ethodology flipped the label of the most unprofitable sliding 

indows instead of the least accurate. This should create a clas- 

ifier where disproportionality underperforms in profitability met- 

ics. Finally, it is worth noting that the Label Flip attack may per- 

orm strongly across all metrics in a highly predictive model. How- 

ver, producing a model that accurately predicts financial time se- 

ies data is very challenging. The MCC measurement showed a 

light decrease in performance between the base model and the 

oisoned model. This may be for the same reason as the other ac- 

uracy metrics. The MCC is shown in Fig. 17 b. 

. Discussion 

The results demonstrated a significant performance loss in each 

ttack and how this can lead to financial loss when used in fi- 

ancial trading simulations. As these are white-box attacks, an at- 

acker would need access to the internals of the neural network to 

erform them. However, the existence of insider threats, malicious 

mployees, network breaches and data theft mean that this is a 

egitimate concern. 
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Fig. 17. Label flip accuracy and MCC. 
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It is worth noting that a more finely tuned model could be even 

ore affected by attacks. A side experiment was performed, where 

he FGSM method was applied to the training data, instead of the 

alidation data. Naturally, the model would be much more predic- 

ive of this data. The initial results showed that the losses were 

ore than double than those of the original model. This is illus- 

rated in Fig. 18 . 

Sadeghi et al. (2020) claimed that proactive defences were the 

ost popular approach. They found that most approaches aimed 

o prevent damage as much as possible. Reactive defence ap- 

roaches provide protection for a trained neural network, and 

uan et al. (2019) identified several common approaches in the lit- 

rature. Adding a specialised detector involved including an attack- 

etector as part of the network. This detector would identify ad- 

ersarial examples and block them before classification. For exam- 

le, Grosse et al. (2017) studied the statistical properties of ad- 

ersarial examples in order to detect attacks. They demonstrated 

hat many attacks, including the FGSM method, could be detected. 

or defences which modify the classifier, Sadeghi et al. (2020) and 

uan et al. (2019) identified several approaches. Adversarial ex- 

mple thwarting involved neutralising perturbations in adversar- 

al examples. They found several techniques to achieve this, such 
12 
s data transformation ( Athalye et al., 2018 ) and noise filtering 

 Osadchy et al., 2017 ). Training process modification involves mod- 

fying the training data to make the classifier more resilient to ad- 

ersarial examples. A common approach was incorporating adver- 

arial examples into the training dataset. This approach was tested 

y Goodfellow et al. (2014) when studying the FGSM method. 

hey showed that incorporating adversarial examples into the 

raining set improved the robustness of the classifier. However, 

urakin et al. (2016) found that this approach would add ro- 

ustness against one-step attacks but would not help with iter- 

tive attacks. ML algorithm modification involves modifying the 

lassifier to draw more accurate class boundaries, such as ap- 

lying non-linear ML algorithms ( Fawzi et al., 2018 ). Network 

istillation involved reducing the complexity of the neural net- 

ork. The technique was originally used to reduce the size of 

he network by transferring knowledge from a large to a small 

etwork. They found that attacks that relied on networks’ sen- 

itivity were less successful. However, the improvements were 

uite modest. For example, the success rate of an attack from 

apernot et al. (2016) against the popular MNIST and CIFAR-10 

atasets was reduced by 0.5% and 5%, respectively. Adversarial de- 

ecting involves identifying adversarial examples, often using ML 
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Fig. 18. Profit for FGSM attack when evaluated with training data. 
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rchitectures. It differs from the proactive specialised detector de- 

ence as the system for detecting attacks exists outside of the neu- 

al network itself ( Sadeghi et al., 2020 ). 

. Conclusions 

Adversarial examples continue to threaten ML and AI systems. 

his work explored FGSM , a novel Single Value and Label Flip at- 

acks against a 1-Dimensional Convolutional Neural Network. This 

ork focused on the potential impact to the financial trading do- 

ain. A trading simulation was used to assess the impact of the 

ttacks, and we found that all attacks caused a significant reduc- 

ion in profitability. 

The attacks in the experiment demonstrated that the target ar- 

hitecture was susceptible to adversarial examples. Further poten- 

ial problems arise as the stock market is publicly traded. If the 

rice was modified by buying or selling a stock, other investors 

ould return the stock price to an unwanted value. 

Our experiment was performed using twelve years of daily 

tock price movements for Google stock. Our future plans in- 

lude the use of much more granular data while considering 2- 

imensional CNN models. Additionally, there are many other grey- 

ox and black-box attacks described in the literature which could 

e effective against a 1-Dimensional CNN. 

In our future work, we plan to study the effects of such attacks 

gainst different Deep Neural Network architectures. This would 

e interesting from an adversarial perspective as the adversaries 

ould have to produce adversarial examples across all the chan- 

els. Additionally, we aim to explore defensive countermeasures 

urther, such as adversarial training techniques ( Grierson et al., 

021; Papadopoulos et al., 2021; Shafahi et al., 2019 ) and calculate 

he impact of these attacks again. 
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