
Sustainable Cities and Society 78 (2022) 103634

Available online 23 December 2021
2210-6707/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

High-resolution impact assessment of climate change on building energy 
performance considering extreme weather events and microclimate – 
Investigating variations in indoor thermal comfort and degree-days 

Mohammad Hosseini a,b, Kavan Javanroodi c,d, Vahid M. Nik b,c,* 

a Department of Ocean Operations and Civil Engineering, Faculty of Engineering, NTNU Norwegian University of Science and Technology, Ålesund, Norway 
b Division of Building Physics, Department of Building and Environmental Technology, Lund University, SE-22363 Lund, Sweden 
c Division of Building Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden 
d Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Climate change adaptation 
Extreme climate events 
Urban microclimate 
Urban heat island 
Indoor thermal comfort 
Building energy performance 

A B S T R A C T   

Climate change and urbanization are two major challenges when planning for sustainable energy transition in 
cities. The common approach for energy demand estimation is using only typical meso-scale weather data in 
building energy models (BEMs), which underestimates the impacts of extreme climate and microclimate varia-
tions. To quantify the impacts of such underestimation on assessing the future energy performance of buildings, 
this study simulates a high spatiotemporal resolution BEM for two representative residential buildings located in 
a 600 × 600 m2 urban area in Southeast Sweden while accounting for both climate change and microclimate. 
Future climate data are synthesized using 13 future climate scenarios over 2010-2099, divided into three 30-year 
periods, and microclimate data are generated considering the urban morphology of the area. It is revealed that 
microclimate can cause 17% rise in cooling degree-day (CDD) and 7% reduction in heating degree-day (HDD) on 
average compared to mesoclimate. Considering typical weather conditions, CDD increases by 45% and HDD 
decreases by 8% from one 30-year period to another. Differences can become much larger during extreme 
weather conditions. For example, CDD can increase by 500% in an extreme warm July compared to a typical one. 
Results also indicate that annual cooling demand becomes four and five times bigger than 2010-2039 in 2040- 
2069 and 2070-2099, respectively. The daily peak cooling load can increase up to 25% in an extreme warm day 
when accounting for microclimate. In the absence of cooling systems during extreme warm days, the indoor 
temperature stays above 26◦C continuously over a week and reaches above 29.2◦C. Moreover, the annual 
overheating hours can increase up to 140% in the future. These all indicate that not accounting for influencing 
climate variations can result in maladaptation or insufficient adaptation of urban areas to climate change.   

1. Introduction 

Urban areas accommodate more than half of the world’s population 
(Mihaela, 2014), expected to rise to more than two-thirds by 2050 
(Sethi et al., 2021). They are also counted as the primary source of 
greenhouse gas emissions in different sectors (Revi et al., 2014), 
whereas more than 70% of the CO2 emissions for energy use are emitted 
in urban areas (Seto et al., 2014). Numerous local and international 
policies have been conducted to control and reduce the environmental 
impacts of urbanization. The Sustainable Development Goal (SDG) 11 of 
the United Nations Agenda 2030 (sustainable cities and communities) 
has explicitly defined the reduction of environmental impacts (Target 

11.6) and the resource efficiency and resilience of cities (Target 11.b) as 
indicators to reach the defined sustainable goals (UN, 2015). SDG 3 
(good health and well-being) and SDG 7 (affordable and clean energy) 
are strongly connected to urban energy solutions and sustainable tran-
sition. Furthermore, it is vital to reduce anthropogenic climate changes 
to limit the global average temperature rise well below 2◦C above the 
pre-industrial level (Nik et al., 2021). The Paris Agreement mandates 
countries to take action toward the climate goals (Rogelj et al., 2016), 
which is emphasized in SDG 13 (climate action). 

A fundamental goal of urban energy solutions is to enhance human 
comfort, in which a considerable weight is on providing indoor thermal 
comfort. The effects of high-temperature periods, so-called heatwaves, 
have been experienced since the 2003 heatwave in western European 

* Corresponding author: 
E-mail addresses: mohammad.hosseini@ntnu.no (M. Hosseini), kavan.javanroodi@epfl.ch (K. Javanroodi), vahid.nik@byggtek.lth.se (V.M. Nik).  

Contents lists available at ScienceDirect 

Sustainable Cities and Society 

journal homepage: www.elsevier.com/locate/scs 

https://doi.org/10.1016/j.scs.2021.103634 
Received 29 September 2021; Received in revised form 9 December 2021; Accepted 20 December 2021   

mailto:mohammad.hosseini@ntnu.no
mailto:kavan.javanroodi@epfl.ch
mailto:vahid.nik@byggtek.lth.se
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2021.103634
https://doi.org/10.1016/j.scs.2021.103634
https://doi.org/10.1016/j.scs.2021.103634
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2021.103634&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Sustainable Cities and Society 78 (2022) 103634

2

countries (with a high mortality rate) followed by several other extreme 
warm summers (Robine et al., 2008). Elderly people, patients suffering 
from cardiovascular disease, diabetes, and other chronic illnesses are at 
severe risk of extreme warm temperatures (Schwartz, 2005); where July 
2021 has earned the unenviable distinction as the world’s hottest month 
ever recorded, narrowly beat July 2016, 2019, and 2020 (NOAA, 2021). 
The fact that all these peaks have occurred recently, which can be 
considered to be in a statistical tie for Earth’s hottest months (Masters, 
2021), accentuates impacts of climate change. Furthermore, due to 
climate change, a higher number of extreme weather events are ex-
pected in the future (Chen et al., 2018), with higher frequencies and 
stronger magnitudes affecting both the energy demand and supply 
(Perera et al., 2020). Such extreme events and the consequent cascading 
failures can put unprecedented extra loads on energy systems, disrupt 
the proper functioning of buildings and energy systems and risk the 
thermal comfort and health of people. Unpredicted and unexpected 
climate shocks cause energy supply poverty in urban areas where 
households cannot supply their energy (Jessel et al., 2019; Thomson 
et al., 2019). Moreover, the economic effects of climate extremes are 
also significant at different scales, such as impairment of energy systems 
(Cronin et al., 2018), increased healthcare costs (Gasparrini et al., 2015; 
Jessel et al., 2019), power outages as well as disturbances in crucial 
modern days platforms (Campbell, 2013; Kenward & Raja, 2014). 

Climate shocks influence the performance of urban energy systems 
on both the demand (Yang et al., 2021) and supply (Perera et al., 2020) 
sides. On the supply side, although moving towards higher integration of 
renewable energy sources contributes effectively to the urban area’s 
sustainability, adapting to climate change is still essential since renew-
able energy production is highly influenced by climate variations (Nik, 
2016; Perera et al., 2020). As a major part of the demand side and 
responsible for providing indoor thermal comfort, buildings play a sig-
nificant role in reaching flexible and resilient urban energy solutions 
(Nik et al., 2021; Nik & Moazami, 2021). Therefore, having a reliable 
and accurate assessment of the energy performance of buildings is 
required to properly plan for climate change adaptation in urban areas 
(Nik & Moazami, 2021). 

Multiple approaches have been developed and are adopted for en-
ergy performance estimation (Amasyali & El-Gohary, 2018; Wei et al., 
2018; Zhao & Magoulès, 2012). Engineering methods, among all 
developed approaches, provide a comprehensive, detailed estimation 

through Energy Performance Simulation (EPS) (Sousa, 2012; Zhao & 
Magoulès, 2012). However, the building sector severely suffers from the 
shortage of high-resolution measured energy and indoor climate data as 
well as reliable predictions of future conditions, especially during 
extreme climate events. Significant uncertainties also exist for the cur-
rent process (Walch et al., 2020; Nik & Sasic Kalagasidis, 2013). The 
more uncertain inputs are, the more unrealistic EPS results will be 
(Bhandari et al., 2012), which can cause discrepancies from 30% up to 
100% from actual energy performance (Ioannou & Itard, 2015). 

The accuracy of EPS relies upon several parameters/variables, 
especially those related to (1) outdoor weather (Erba et al., 2017), (2) 
building energy modeling (BEM) (Menberg et al., 2016), and (3) urban 
modeling (Javanroodi et al., 2018). The quality of weather data defines 
the accuracy of the outdoor condition as the primary boundary condi-
tion for the model; however, historical weather data are not available for 
every selected place and site around the globe. Typical Meteorological 
Year (TMY) weather data are commonly used for energy simulation, 
representing the most common monthly conditions among multiple 
years (usually 30 years)(Janjai & Deeyai, 2009). Accordingly, the TMY 
file differs from the actual measured data over a certain year (Tsoka 
et al., 2017). A drawback of using TMY data is that it fails to address the 
probable extreme weather conditions (Crawley, 1998). This becomes 
critical when the plan is increasing climate change adaptation in the 
future (Nik, 2016). Furthermore, it is crucial to consider extreme situ-
ations when considering climate resilience and system sizing (Nik et al., 
2021). Hence, Synthesized Meteorological Year (SMY) (Cui et al., 2017) 
needs to be adopted to achieve higher accuracy and provide future 
weather data with extreme conditions based on various scenarios (Nik, 
2016, 2017). 

BEM can be divided into building geometry and building perfor-
mance. The geometry accuracy depends on the precision of parameters 
to represent shapes and dimensions, glaze to wall ratio, effective surface 
area, and relative compactness (Bourisli et al., 2018; Y. Huang & Li, 
2021). Building performance is intrinsically involved with uncertainties, 
including user behavior, occupancies, and envelope quality (Ding et al., 
2015; Tian et al., 2018). These uncertainties cause deviations in EPS 
results, particularly influencing hourly profiles, where the hourly trend 
evaluates thermal comfort (Kallert et al., 2018; Kensby, 2015) and de-
fines the peak power. Nevertheless, EPS hourly results can be calibrated 
with the hourly measurements to eliminate the effects of uncertainties, 

Nomenclature 

ASHRAE American Society of Heating, Refrigerating and Air- 
Conditioning Engineers 

BEM Building energy model 
CDD Cooling Degree-Day 
CV(RMSE) Coefficient of Variation of Root Mean Square Error 
DHW Domestic Hot Water 
DOE Department Of Energy 
ECY Extreme Cold Year 
EPS Energy Performance Simulation 
EWY Extreme Warm Year 
FEMP Federal Energy Management Program 
ĝ(t) Kernel estimate for time t 
GCM Global climate model 
GIS Geographic Information System 
h The bandwidth of the kernel 
HDD Heating Degree-Day 
HVAC Heating, Ventilation, and Air Conditioning 
i Index of values in demand data time series 
IPCC Intergovernmental Panel on climate change 
K(u) Gaussian kernel function 

LoD Level of Detail 
n Length of the demand data time series 
NMBE Normalized Mean Bias Error 
OSM Open Street Map 
Qi Measured demand at index i in time series 
RCM Regional Climate Model 
RCP Representative Concentration Pathway 
RD Relative Difference 
SDG Sustainable Development Goal 
SH Space Heating 
SMY Synthesized Meteorological Year 
Tt Temperature at time t in an hourly scale 
TDY Typical Downscaled Year 
TMY Typical Meteorological Year 
UHI Urban Heat Island 
y Mean values of the measured data 
ŷi Simulated hourly data at index i 
yi Measured hourly data at index i 
ΔTd Daily average temperature difference between meso- and 

microclimate conditions 
ΔTh The temperature difference between meso- and 

microclimate conditions at the hth hour of the day (0-23)  
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minimize discrepancies from measured profiles, and have a realistic 
assessment of indoor conditions. 

Developing the urban morphology model, including surrounding 
buildings, trees, and vegetation, has considerable effects on the accuracy 
of EPS models (Javanroodi, 2018; Perera et al., 2021a). Anthropogenic 
heat emissions from human activities also affect the local weather 
conditions, and consequently, the EPS models (Lee et al., 2020). Thus, a 
wide range of uncertainties would emerge due to a large number of 
influencing parameters as well as the complexity of local climate mea-
surements. It is crucial to model significant urban elements for EPS. 
However, the accuracy of the urban modeling would be satisfied with 
the level of detail (LoD) of 1 or 2 (Goy et al., 2020), where buildings are 
modeled as simple extruded blocks with flat roofs or simple-inclined 
roofs (Biljecki, 2017; Biljecki et al., 2016). 

The aggravated impacts of climate change and urban morphology on 
building energy performance has been assessed by Berardi and Jafar-
pour (2020) using two dynamically downscaled global climate models 
(GCM) for typical weather conditions and performing EPS on 16 refer-
ence building models developed by the United States Department of 
Energy (DOE). Li et al. (2021) and Gao et al. (2022) have calculated the 
effects of the urban heat island (UHI) as a function of urban morphology, 
using a geographically weighted regression model. Khoshnoodmotlagh 
et al. (2021) has evaluated the UHI effects on the accuracy of satellite 
imagery. Wang & Shu (2021) have assessed future climate and UHIs on 
building energy performance using monitored data, on-site surveying, 
and EPS with calibrated models. Berardi and Jafarpour (2020), 
Mourshed (2011), and Taha (1997) have used the concept of heating 
degree-day (HDD) and cooling degree-day (CDD) as a metric to quantify 
the impacts of UHI. The applicability of using opensource geographical 
information system (GIS) data for urban energy modeling is assessed by 
Wang et al. (2021), where buildings’ footprints are captured from 
OpenStreetMap (OSM), and building height for residential buildings are 
defined based on the story number. Schiefelbein et al. (2019) show the 
credibility of urban and building energy modeling using geometry from 
OSM, enriched by building stock statistics as the building performance. 
Zhou et al. (2021) has performed an impact assessment of UHI and 
future climate on health risks using urban morphology parameters, 
including sky view factors, permeable surface fraction, building surface 
fraction, and building height. 

More than the aforementioned studies, several other studies have 
been conducted to forecast the energy demand and thermal comfort of 
buildings and prepare buildings’ owners and district energy providers 
with reliable predictions (Biswas et al., 2016; Deb et al., 2017; Massana 
et al., 2015; Zhao & Magoulès, 2012). However, there is a gap in per-
forming hourly assessments, considering extreme climate events based 
on the high-resolution temporal and spatial measured data in both 
building and urban scale. There is no high-resolution assessment of the 
impacts of climate extremes on the energy performance of buildings and 
their indoor comfort, considering both the temporal and spatial reso-
lutions at the urban and building scales (i.e. considering microclimate 
conditions around buildings and multiple climate zones inside build-
ings). This work contributes to the field by conducting a high spatio-
temporal resolution impact assessment of climate change on the energy 
performance of buildings and their indoor comfort, considering a 
comprehensive set of hourly future weather data and simulating a 
detailed BEM. The impacts of climate change on microclimate, with 
specific focus on extreme conditions are evaluated, comparing outdoor 
temperature and degree-days when using only mesoclimate and when 
simulating microclimate for the considered urban area based on the 
same mesoclimate data. Such a detailed impact assessment is performed 
for two residential buildings in Karlshamn, Sweden. In this regard, a set 
of hourly scale synthesized future weather data, generated by down-
scaling 13 GCMs, is used in addition to representative weather data sets 
for typical and extreme conditions (generated based on the developed 
method by Nik (2016)), all for three 30-year periods over 2010-2099. A 
BEM is developed and verified against high-resolution measured energy 

use and temperature for the indoor and outdoor spaces of the considered 
buildings. The BEM considers the urban morphology through importing 
urban elements and landscape from GIS to the BEM, accounting for 
microclimate effects. Aggravated impacts of climate change and urban 
morphology, particularly in extreme weather conditions, on building 
energy performance and indoor thermal comfort are quantified in a 
high-resolution time scale. 

This study is organized as follows. In Section 2, the methodology of 
developing BEM and performing EPS using future weather data are 
discussed. Section 3 thoroughly assesses the results, followed by con-
clusions of the research in Section 4. 

2. Methodology 

The research work is based on the energy modeling of two residential 
buildings, using detailed geometry and measured data for heating de-
mand, indoor- and outdoor temperature over a year. The workflow is 
divided into two time periods of past and future, as depicted in Fig. 1. 
The past conditions were used as the reference for calibration of the BEM 
to acquire a realistic model. Then, based on the verified model, future 
conditions were estimated using EPS and applying a broad spectrum of 
future weather scenarios to assess long and short-term impacts of 
climate change, including typical and extreme conditions. 

This section will explain the (1) selected case study, including 
buildings and their specifications, (2) adopted approach to account for 
demand separation, (3) past and future weather data sets, including 
typical and extreme years used in energy simulations, (4) analysis of 
microclimate conditions in the considered area, (5) developed building 
energy models, (6) applied techniques for modeling calibration and 
verification, and (7) simulation progress and general workflow. 

2.1. Case study 

A neighborhood including two multi-family residential buildings in 
Karlshamn is selected as the case study, located in the middle of Swe-
den’s Southeast coast, defined as warm temperate climate and fully 
humid with cool summer, according to Köppen and Geiger climate 
classification (Kottek et al., 2006). According to the Official Statistics of 
Sweden, more than 50% of the entire population lives within 10 km and 
14% within 1 km of coastline (SCB, 2019). Buildings were constructed 
before the 1930s and have been renovated partially during different 
periods. According to the Swedish Statistic Organization, more than 
12% of the current buildings are built before the 1930s (SCB, 2017). The 
neighborhood is located in a low-density urban area where the sur-
rounding buildings are mostly three-story residential buildings with a 
basement and attic. The 600 × 600 m2 surrounding urban area is 
modelled to account for microclimate conditions, which is explained in 
2.4. Buildings are connected to the district heating system through one 
shared node for heating purposes and have no cooling system installed. 
Table 1 presents some of the physical specifications of buildings, and 
Fig. 2 illustrates 3D models of the buildings and surrounding urban el-
ements and landscape. 

A high-resolution set of measured data is provided for the buildings 
consisting of (1) supplied heat from the district heating system to cover 
the space heating (SH) and domestic hot water (DHW) demands, (2) 
outdoor temperature, and (3) indoor temperature per room. Data is 
recorded every 15 minutes (4 records per hour) over one year starting 
from 01-01-2016. The total recorded heating demand for both buildings 
equals 151,200 kWh, equivalent to ~170kWh/m2 for conditioned areas. 

2.2. Demand separation 

Heating demand is measured via one meter on the total supplied heat 
from district heating and includes SH and DHW. Since this research is 
focused on SH demand, a non-parametric method is applied to exclude 
the DHW from the total hourly demand. This method exploits a statis-
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tical time series approach based on a kernel smoothing technique 
(Bacher et al., 2016) to determine the fundamental data in a noisy data 
set. DHW load appears as spikes due to the intensive high demand of 
DHW in a short period, while SH has slow changes and a smooth pattern 
(Pezzutto et al., 2019). In Eq. (1), ĝ(t) is the kernel estimate for time t, n 
is the length of time series which is iterated by i, Qi is the measured 

demand in the ith index of the time series, k is a Gaussian kernel function 
defined as k(u) = (2π)− 1 • exp{ − 0.5 • u2}. Moreover, h is the bandwidth 
of the kernel, while in the developed method by Bacher et al. (2016), h is 
not defined since the bandwidth can be adjusted based on the different 
kinds of datasets as well as desired accuracy and speed of the calcula-
tion. In this study, h equals to 4 in the hourly time step. 

ĝ(t) =
∑n

i=1

Qi⋅k
(

t− i
h

)

∑n
i=1k

(
t− i
h

) (1)  

2.3. Weather data 

Two groups of weather data are used in this work representing past 
and future climate. The past climate data contains historical data and in- 
situ measurements. The future climate data is synthesized data from 
multiple future climate scenarios, which are explained further. 

The past climate is used in EPS for the existing condition by 
exploiting a standard EPW file. The weather data file is TMY type for a 

Fig. 1. The workflow for the proposed method; divided into Past and Future, which Past is based on high resolution measured energy and climate data, and Future is 
for estimating the energy performance of buildings for the future climate (more details about future weather data are available in Fig. 3 and Fig. 4). 

Table 1 
Buildings physical specifications.   

Building A Building B 

Total floor area [m2] 670 655 
Conditioned area [m2] 455 442 
Number of floors 3 3 
Number of apartments 6 3 
Number of rooms 26 18 
Windows area [m2] 69 58 
Glazing area 44 41 
Envelope / Total floor area 1.37 1.16 
Windows to wall ratio 17% 15% 
Glazing to wall ratio 11% 11%  

Fig. 2. The 3D model of the urban area that considered as urban morphology to generate microclimate data (left) and the sample buildings selected for high 
resolution energy performance assessment (right). 
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meteorological station within an appropriate distance (Crawley, 1998; 
EnergyPlus, 2021) (below 30km) with an annual average of the dry-bulb 
temperature of 7.9◦C. However, in the measurement period, the annual 
average is recorded as 9.9◦C. Thus, the EPW file is modified using the 
measured outdoor dry-bulb temperature to better represent the actual 
weather conditions. Using the measured temperature also helps to better 
account for the impacts of the urban morphology on climate conditions 
as microclimate. 

Future climate in this study is generated using climate data from the 
RCA4 regional climate model (RCM), dynamically downscaling five 
GCMs forced by three representative concentration pathways (RCPs). 
GCMs may simulate different responses to the same forcing (Nik, 2016); 
hence, utilizing a number of them could a more reasonable distribution 
for future weather projections. In this study, five GCMs are applied, 
namely, CNRM-CM5, ICHEC-EC-EARTH, IPSL-CM5A-MR, MOH-
C-HadGEM2-ES, and MPI-ESM-LR. RCP includes time series of emissions 
and concentration of GHG, chemically active gases, and aerosols. Among 
many different pathways, Intergovernmental Panel on climate change 
(IPCC) used RCP 2.6 (stringent mitigation scenario), RCP 4.5 and 6.5 
(intermediate stabilization pathways), and RCP 8.5 (high pathway) for 
its reports assessments (Good et al., 2012). In this research, CNRM-CM5 
and IPSL-CM5A-MR are forced with RCP 4.5 and 8.5, and the rest are 
also forced with RCP 2.6 in addition to RCP 4.5 and 8.5. In total, 13 
climate scenarios are used in this research from 2010 to 2099. The 
90-year period is divided into three 30-year periods, representing 
climate conditions at the beginning, middle, and end of the century. 

Therefore, each time stage is represented by 30 years of data for 13 
climate scenarios, resulting in 390 years of data, also mentioned as Y390 
in this research (check (Nik, 2016) for details). The graphical structure 
of the synthesized future weather is illustrated in Fig. 3. 

In addition to the RCM data sets, representative weather data sets are 
synthesized for the purpose of this work based on the method developed 
by Nik (2016). The representative weather data contained three 
one-year climate data sets for each 30-year period, including typical 
downscaled year (TDY), extreme warm year (EWY), and extreme cold 
year (ECY), as schematically presented in Fig. 4. These data sets are 
synthesized considering all the 13 future climate scenarios. Conse-
quently, a wide range of climate variations and uncertainties (at the 
hourly temporal resolution) have been considered. 

Applying the representative weather datasets enables us to decrease 
the number of simulations considerably (i.e. running three sets of one- 
year simulations instead of 390 years) without neglecting the impacts 
of climate uncertainties and extreme conditions. The application and 
accuracy of the representative weather data sets have been tested and 
verified for different types of simulations, including building energy 
performance (Moazami et al., 2019), hygrothermal performances of 
building components (Nik, 2017), and urban energy systems (Perera 
et al., 2020). The annual analyses based on extreme weather data sets 
represent pessimistic scenarios which are unlikely to happen since ECY 
and EWY respectively accumulate the extreme cold and warm months 
over a year. However, they provide a scientifically valid picture about 
probable future conditions on the monthly scale and finer. Therefore, for 

Fig. 3. For future climate conditions, climate big data sets with the hourly temporal resolution were synthesized for three 30-year periods using the RCA4 regional 
climate model and downscaling five global climate models forced by three different representative concentration pathways (check (Nik, 2016) for details). 
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extreme conditions results are discussed over shorter periods while the 
annual analyses are mainly made using TDY weather data. Some sta-
tistics about the representative weather data sets for the three 30-year 
periods are presented in Table 2. The readers are referred to (Nik, 
2016) for more details about synthesizing representative weather data 
sets for future climate. 

2.4. Microclimate modelling 

The energy performance of buildings and bioclimatic metrics are 
influenced significantly by microclimate conditions (Javanroodi & Nik, 
2019). Several morphological characteristics such as urban form, al-
bedo, and vegetation density modify sky view factor (Taha, 1997), solar 
gain (Ma et al., 2020), solar reflectivity (Zoras et al., 2017), air tem-
perature (Javanroodi & Nik, 2020), and wind speed (Javanroodi et al., 
2021) within an urban area. In particular, for an urban area, lower 
average wind speed and higher average air temperature are expected 
compared to rural areas (Battista et al., 2021). The higher effective 
thermal inertia in the city, arising from larger surface areas with more 
heat capacities, causes a reduction in the diurnal cycle of air tempera-
ture (Ryu & Baik, 2012). 

A high-resolution urban model is crucial in this research to account 
for the interactions between urban morphology and climate variables. In 
this regard, a detailed urban model is generated based on the OSM 
database. OSM database for selected case study provides building foot-
prints, terrain, vegetation, building types, roads, and trees. In addition to 
the residential buildings, commercial buildings, offices, stadiums, and 
theatres are the main building types, combined as non-residential 
buildings in Fig. 2 for the sake of simplicity. However, buildings’ 
heights and altitudes are not available for the target coordination. Thus, 
building footprints are projected to the terrain’s mesh to locate them in 
the actual altitudes. Then, buildings’ heights are defined from Google 
Street View based on the number of floors. Then, a 600 × 600 m2 area 
around the target buildings is modeled, including 192 blocks (nearly 
90% residential and 10% non-residential). Finally, parks, playgrounds, 
green areas, and roads are modeled in the considered area. The urban 
model has not considered dynamic changes in plants and trees as well as 
the real surface of the roads. 

The applied energy simulation engine, EnergyPlus, does not calcu-
late the local wind speed and air temperature under the effects of the 

urban morphology and uses the meteorological data from the EPW file 
(Ellis & Torcellini, 2005). DragonFly plugin for Grasshopper is adopted 
to generate the microclimate weather data, using the Urban Weather 
Generator (UWG) method. UWG estimates the effects of UHI by using 
the energy conservation principles to account for the effects of the urban 
canopy and boundary layers on microclimate conditions (Bueno et al., 
2014). UWG solves the effects of surface roughness on flow by using the 
vertical air temperature profile calculated by the vertical diffusion sub 
model and a logarithmic profile for the wind speed (Bueno et al., 2012). 
The anthropogenic heat gains are considered by energy performance 
estimation of buildings using their type and area. The lower evaporation 
because of the reduction in vegetation area is also applied by the 
vegetation surface coverage ratio (Bueno et al., 2013). UWG divides the 
entire urban model into different modules to consider the interaction 
between neighborhoods, so-called urban mapping. The urban mapping 
method defines each module as upwind and downwind for the adjacent 
modules based on the wind direction (considered in four quadrants). 
Thereafter, the average boundary layer air temperature is calculated for 
each time step (of the observed meteorological data) and assigned to the 
next neighborhood as the reference temperature (Bueno et al., 2014). 

Additionally, the shading effects and reflectance of buildings are 
considered using True View Factor in EnergyPlus. Shading objects can 
also cast shadows on the ground, reducing the ground-reflected radia-
tion (Perera et al., 2021a). Detailed surface geometry with the assigned 
material and reflectance is used to calculate the magnitudes and di-
rections of shadings and reflectance by exploiting direct solar radiation 
and diffuse sky radiation from the modified weather file (Naboni et al., 
2019). 

Previous studies show various effects of UHI for the daytime and 
nighttime as well as different seasons (Rizwan et al., 2008; Taha, 1997); 
thus, UHI’s impacts are studied seasonally in addition to daytime and 
nighttime. The difference between mesoclimate and microclimate con-
ditions is defined in this research as ΔTt = Ttmicro − Ttmeso, where Tt is the 
temperature at time t in an hourly timestep. The average temperature 
difference for a day was also defined as ΔTd to quantify the more 
extended span changes to eliminate the effects of single index peaks. 
Meaning that changes in one day would be considered. Therefore, ΔTd is 
defined according to Eq. (2) where ΔTh is ΔT at hth hour of the day. 

Fig. 4. Structure of the synthesized representative future weather data (check (Nik, 2016) for details).  

Table 2 
Dry-bulb temperature distribution for the representative weather files.   

2010-2039 2040-2069 2070-2099  

TDY EWY ECY TDY EWY ECY TDY EWY ECY 

mean 7.9 12.1 1.8 8.6 13.3 2.8 9.4 14.5 3.6 
SD 6.8 6.4 9.2 6.7 6.5 9.0 6.6 6.4 8.2 
5% -2.6 2.9 -14.5 -1.6 3.9 -13.1 -0.9 5.7 -10.2 
25% 2.6 7.2 -4.4 3.5 8.0 -3.2 4.4 9.4 -2.1 
50% 7.8 11.3 1.3 8.4 12.7 3.1 9.1 13.5 3.0 
75% 13.3 16.5 10.1 13.9 17.8 10.5 14.6 19.2 10.8 
95% 18.5 23.9 15.1 19.3 24.5 15.4 20.0 25.7 15.8  
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ΔTd =
1
24

∑23

h=0
ΔTh (2) 

In this research, all future conditions EPSs are performed using 
microclimate weather data. In addition, the representative weather 
datasets for the mesoclimate and microclimate scale are utilized in EPS 
to assess the impacts of urban morphology on the indoor temperature 
and building energy performance in the future (see Fig. 6). 

2.5. Building energy modeling 

The building energy model is developed in Rhinoceros/Grasshopper 
via Ladybug and Honeybee plugins. A total number of 44 zones are 
created based on the buildings’ blueprints and measurement datasheets 
to enable a detailed comparison. The urban model with the actual 
heights and altitudes is imported to the EPS through the EP_context 
component of Honeybee. The initial simulations are performed using 
past weather data and measured outdoor temperatures. The heating 
setpoints are imported as a list of hourly temperatures acquired from the 
median hourly temperature of each building. The indoor measured 
temperatures per room show high fluctuations because of user activities 
such as opening windows, altering local setpoints, sleeping, gathering, 
and/or changes in internal loads from lighting and equipment (Ueno & 
Meier, 2020). 

The thermal transmittance coefficient (U-Value) is one of the most 
crucial parameters in EPS. It becomes even more critical for the tradi-
tional constructions where the U-value is higher than newly-built 
buildings. Energy simulation engines usually do not include tradi-
tional construction and material for U-value calculations, and in-situ 
measurement will be required instead (Baker, 2011). However, accu-
rate measurement for existing building components is not straightfor-
ward because of the lack of information on actual constructions (Hulme 
& Doran, 2014). Moreover, similar constructions will have different 
performances after a long period of exposure to climate. Also, mea-
surements are pretty sensitive to weather conditions and seasonal var-
iations (Sørensen, 2013). Hence, a range of reasonable U-values is 
defined for exterior walls, roof, slab on the ground, basement walls, and 
windows based on similar cases (Baker, 2011; Hulme & Doran, 2014)]. 
Additionally, the infiltration rate through the envelope, which is hard to 
measure (P. Huang et al., 2015), is also considered as a range to calibrate 
the model due to its uncertain values (the calibration process is 
explained in 2.6). Infiltration is imported into the model based on the 
climate exposed surface area of the zone rather than air change per hour. 
Therefore, the number of exterior surfaces of each zone is considered in 
the simulation. Table 3 presents the U-value and infiltration rate of the 
buildings with the considered intervals. 

To have a better representation of real conditions and user behavior, 
the operable windows were assumed to be opened when indoor tem-
perature goes above 24◦C, providing natural cooling during the warm 
hours where the cooling system is not installed (i.e. the only case with an 
installed cooling system is Building A for future climate). Moreover, the 
HVAC system does not work during the warm season (June 21st – 
September 21st). The number of occupants per floor area is calculated 

for each apartment based on the on-site surveying of the number of 
people, and the average is calculated for each building. Table 4 provides 
a brief overview of the main EPS parameters. 

When running the energy simulations for future climate, the heating 
setpoint schedule was changed to the constant value of 21◦C to eliminate 
the impacts of setpoint fluctuations when assessing results for future 
climate. For Building A (with a cooling system for future climate), the 
cooling setpoint was set to 26◦C when running simulations for future 
climate. The setpoint is chosen according to FEBY (2019) which defines 
the overheating temperature above 26◦C; therefore, the cooling setpoint 
is adjusted on this threshold to have a conservative energy efficiency 
attitude and do not overestimate the cooling demand in the future 
conditions. In contrast, no cooling system was assigned to Building B to 
evaluate the effectiveness of natural cooling in providing thermal 
comfort for future climate. The rest of the settings for the future con-
ditions EPS were kept unchanged. 

2.6. Model calibration and verification 

The quality of a data-generative study relies upon accurate and un-
biased energy models (Fan et al., 2021; FEMP, 2015), which is crucial 
for achieving reliable results (Burman & Mumovic, 2017). 
Well-recognized statistical methods in this order, which are also 
accepted by ASHRAE (ASHRAE Guideline 14, 2014) and FEMP, are the 
Coefficient of Variation of Root Mean Square Error (CV(RMSE)) and 
Normalized Mean Bias Error (NMBE), which were calculated based on 
the Eq. (3) (Fan et al., 2021) and Eq. (4) (Ruiz & Bandera, 2017), 
respectively. The accepted range of mentioned metrics is presented in 
Table 5. NMBE tends to eliminate errors (Burman & Mumovic, 2017; 
Ruiz & Bandera, 2017) since it takes the effect of negative and positive 
values into account, contrary to CV(RMSE), which does not cancel out 
errors. Hence, to avoid misleading implications, these two metrics 
should be used together, and both of them need to meet the criteria. In 
these equations ŷi stands for the simulated hourly data at index i, yi 
stands for the measured hourly data at index i, and y represents mean of 
the measured values. The calibration approach is to minimize the value 
of CV(RMSE) and NMBE by adjusting the results through alteration in 
U-value and infiltration rate mentioned in Table 4. 

CV(RMSE) = 100 ×
1
y

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑n

i=1

(yi − ŷi)
2

n

]√
√
√
√ (3)  

NMBE = 100 ×

∑n
i=1(yi − ŷi)

n⋅y
(4)  

2.7. Simulation procedure 

EPS was performed separately for each building in Grasshopper with 

Table 3 
Calibration parameters interval and the adjusted values.  

Parameter Interval Steps Building 
A 

Building 
B 

Exterior walls U-value [W/m2•K] 0.8 – 1.6 0.1 1.3 1.1 
Roof U-value [W/m2•K] 2.0 – 3.0 0.1 2.3 2.1 
Slab on the ground U-value [W/ 

m2•K] 
0.8 – 1.6 0.1 1 0.8 

Basement walls U-value [W/ 
m2•K] 

0.8 – 1.6 0.1 1.3 0.8 

Windows U-value [W/m2•K] 1.0 – 3.0 0.1 1.3 1.2 
Infiltration rate [l/m2•s] 0.8 – 2.0 0.1 1.2 1.2  

Table 4 
The main characteristics of the energy model.  

Parameter Building A Building B 

Conditioned zone [number] 26 18 
VentilationPerPerson [l/s] 7 7 
VentilationPerArea [l/s] 3 3 
PeoplePerArea [people/m2] 0.019 0.012 
Infiltration rate [l/m2•s] 1.2 1.2 
Windows opening setpoint 

[◦C] 
24 24 

mean U-Value [W/m2•K] 1.32 1.08 
Heating setpoint [◦C] Varied (past climate) 

21 (future climate) 
Varied (past climate) 
21 (future climate) 

Cooling setpoint [◦C] Not assigned (past 
climate) 
26 (future climate) 

Not assigned (past 
climate) 
Not assigned (future 
climate)  
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the OpenStudio simulation engine, exploiting EnergyPlus. Openstudio 
adds HVAC features to the EnergyPlus energy simulation engine 
(Crawley et al., 2008). A loop of EPS was employed to run a series of 
simulations based on the defined ranges of U-value and infiltration rate 
to reach the minimum calibration parameters (i.e. CV(RMSE) and | 
NMBE|). The loop iterated the list of U-value and infiltration. EPS hourly 
results were stored as CSV files, consisting of heating demand and zones 
temperatures. The calibration parameters were calculated based on the 
stored time-series in CSV files, as presented in Fig. 5. These simulations 
utilized measured weather data. 

Future condition simulations used the calibrated model with future 
weather data, iterating the weather files by a loop of EPS as illustrated in 
Fig. 6. The results of simulations, including heating load, cooling load, 
and zones temperatures, were stored in a CSV file for every weather file. 
For each building, 1170 simulations were run with synthesized annual 
future weather data, in addition to nine simulations using the meso-
climate representative weather data (ECY, TDY, and EWY) and nine 
simulations using microclimate representative weather data. Thus, in 
total, 1,188 years simulations were run, and the hourly results were 
stored. On average, each year EPS took five minutes on a PC with an 
Intel (TM) i7-4790K 4.00GHz CPU with 16.0 GB of RAM. 

The 95th percentile of heating and cooling powers are considered the 
peak load and extreme conditions for energy demand. Hence, to inves-
tigate the hourly results for the extreme conditions, one week in summer 
and one week in winter are chosen, including the peak power. Having 
such criteria, the extreme warm summer week starts from July 10, and 
the extreme cold winter week starts from February 14. 

3. Results and Discussion 

3.1. Model verification and validation 

Parameters of verification and validation of the EPS model based on 
the zones’ temperatures are presented in Table 6 and Fig. 7, annually 
and seasonally. The required values for CV(RMSE) and NMBE (Pre-
sented in Table 3) are shown by the red lines on the box plots, which 
show that all zones are in the required range. 

The similar range of the seasonal values of CV(RMSE) means that the 
model is well-calibrated in different seasons, and it can represent various 
conditions, for example, different temperatures or HVAC settings. 
Moreover, the symmetrical NMBE values to zero show that different 
zones have different degrees of under- and overestimation of the actual 
condition; therefore, the positive and negative deviations eliminate each 
other to some extent. Hence, the total simulated heating demand is close 
to measured values, whereas the annual hourly profile for the measured 

and simulated heating demand gives a CV(RMSE) of 23% and an NMBE 
of 4%. As a result, BEM is also calibrated and verified based on the 
hourly heating demand (see Fig. 17). 

Two indoor dry-bulb temperature samples from each building are 
illustrated in Fig. 8 to show the measured values (blue line) against the 
simulated hourly profile (orange line). The graph shows a higher tem-
perature in simulated values in May and June due to two phenomena. 
First, direct solar radiation into the rooms in EPS (southern windows), 
while it can be blocked by a curtain or other obstacle in actual condition. 
Second, it can result from underestimating the effects of natural venti-
lation in EPS compared to the actual condition since the rooms are to-
ward the large open area in the south, and recorded wind data would not 
cover it precisely. Note that the constant temperature in October and 
party in June comes from the failure of the thermometer. 

The applied separation method on the total hourly heating demand 
showed a value of nearly 9,000 kWh per year (530 kWh/year per per-
son) for DHW, nearly 6% of the total heating demand. Fig. 9 shows the 
hourly measured heating demand (black line) and the separated spikes 
(blue line) as DHW for the summer- and winter week. The SH demand 
(red line) is the subtraction of the total demand (black line) from 
separated DHW (blue line). The summer week (left graph) shows the 
pattern of DHW demand while no SH is in progress to compare the 
output of the applied function for DHW demand separation, which 
presents a fairly similar pattern and intensity. 

3.2. Microclimate weather data 

The introduced future weather data in the previous chapter are 
compared with their corresponding microclimate data in Fig. 10 for 
three 30-year periods. Comparing the boxes for Y390 and Triple (which 
contains TDY, EWY, and ECY) shows that Triple can represent all 390 
years of weather data with very high accuracy, very similar to the case of 
considering all 390 years without neglecting extreme events. TDY also 
represents the typical conditions very similar to Y390. The median line 
for Triple (long green line) is passed just above the median line for Y390 
and TDY, and the same is also applied for 25th and 75th percentiles. 
Accordingly, their contents have a pretty similar distribution, so TDY 
can be used in EPS instead to reduce the number of simulations enor-
mously (1 year instead of 390 years). Moreover, a comparison of the 
high and low boundaries shows that EWY and ECY cover the highest and 
lowest temperature range in Y390, which can help evaluate the extreme 
conditions without running a large number of simulations. 

The distribution and differences (Diff.) of the meso- and microcli-
mate conditions for the representative future weather data are presented 
in Table 7. EWY shows the most significant differences between meso- 
and microclimate with the increase of 0.6, 0.6, and 0.5 degrees Celsius of 
the average values in three periods, occurring due to the cumulative 
effects of the warm climate and the UHI effects. 

The alterations in the outdoor air temperatures are not distributed 
equally either all around the year or over a day. Hence, a detailed 
analysis on a daily scale is required. Fig. 11 shows the seasonal outdoor 

Table 5 
Model calibration and verification criteria.  

Timestep CV(RMSE) NMBE 

Hourly <30% <|±10%|  

Fig. 5. Model calibration workflow including EPS loop and data storage.  
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temperature changes (ΔT) for TDY, EWY, and ECY over three future 
periods. The area of the bulbs represents the total ΔT (◦C) for the season, 
while the white part in the middle shows the changes in the daytime 
(6:00 to 18:00); thus, the rest are related to nighttime (18:00 to 6:00). 
This chart shows firstly, dramatically higher ΔT for warm seasons, 
which is addressed in several previous studies (Rizwan et al., 2008), 
showing the larger effects of solar gain and albedo than anthropogenic 
heat gains in this specific urban morphology (Taha, 1997). Secondly, the 
impacts of UHI appeared fairly different from day to night. As illustrated 
in Fig. 11 (white area on each bulb), a small portion of ΔT happens 
between 06:00 and 18:00 (daytime), while the major part happens at 
nocturnal hours. In this case, above 95% of ΔT occurs at nighttime. 

In Fig. 12 and Fig. 13, the hourly profiles of outdoor temperatures for 
microclimate (solid lines) and mesoclimate (dashed lines) in winter and 
summer weeks are presented. As expected, the differences between 
microclimate and mesoclimate are higher in spring and summer with an 

average of 0.7◦C against 0.3◦C in autumn and winter over 90 years for 
TDY. Moreover, the impacts of UHI emerge significantly at nighttime 
(grey zones), which has been reported by other studies, as well (Rizwan 
et al., 2008). The maximum outdoor temperature growth during day-
time is 5.9◦C, while it grows by a peak of 10.6◦C during nighttime. 

In the summer week (Fig. 13), the average ΔT (hourly difference 
between mesoclimate (solid line) and microclimate (dashed line) out-
door temperature) is 0.4◦C and 0.9◦C for TDY and 1.3◦C and 1.7◦C in 
EWY over 2040-2069 and 2070-2099, respectively. 

Daily average temperature differences (ΔTd) over three future pe-
riods are illustrated in Fig. 14 as duration diagrams, sorted by the values 
(not the time). The boxplots on the right show the distribution for all 
data from TDY, EWY, and ECY together, showing the possible bounds for 
daily temperature changes in typical and extreme conditions. Daily 
average temperature helps to assess the impacts of temperature change 
in a longer period (24 hours) instead of one single hour; therefore, 

Fig. 6. Future conditions EPS and data storage workflow.  

Table 6 
Verification of the model with CV(RMSE) and NMBE for all zones’ temperatures.   

Annual spring summer autumn winter Annual spring summer autumn winter 

mean 4.66 5.02 4.02 3.95 4.80 0.23 1.36 -0.48 0.00 0.14 
STD 1.45 1.45 1.11 1.85 2.35 2.71 2.79 2.54 3.45 3.94 
min 3 3 2 2 2 -6 -6 -6 -6 -10 
max 9 9 7 9 11 7 7 4 9 10  

Fig. 7. Box plots for annual and seasonal CV(RMSE) and NMBE for all zones. Redlines indicate the requirements for each parameter.  
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accumulated impacts of several continuous hours of high-temperature 
changes can be considered. The highest ΔTd is around 3◦C (average 
hourly temperature changes over 24 hours) for TDY and EWY. In TDY 
(green line), for three future periods, 51, 52, and 57 days have ΔTd 
above 1◦C (orange point), meaning that the temperature increase 
because of the effects of microclimate is more than 1◦C per hour by 
average (yellow point) in those days, while 2, 3, and 8 days have ΔTd 
larger than 2◦C (2◦C per hour by average). EWY also shows changes 
above 1◦C for 85, 79, and 68 days and above 2◦C during 11, 9, and 18 
days over three periods. These numbers would significantly affect the 
degree-days values with increasing CDD and reducing HDD. 

Degree-days are well-known in scientific communities as a metric to 
quantify the alteration in outdoor air temperature. Degree-days are 
simply related to the building energy demand. Many studies used CDD 

and HDD to assess the effects of UHI and climate change. In this 
research, due to the high-accuracy BEM, the results of EPS are used, 
which is more comprehensive and precise. However, to present a 
familiar metric, CDD and HDD are calculated and discussed in this 
section with a base temperature of 18◦C. The calculated CDD and HDD 
for mesoclimate and microclimate TDY, EWY, and ECY over three future 
periods and the relative differences (RD (%)) are denoted in Table 8. In 
typical climate conditions (TDY) over three future periods, microclimate 
shows around 4% reduction in HDD, while CDD rises sharply by an 
average of 16%, which causes higher cooling loads. However, these 
changes are not proportional to the EPS result, presented later in this 
chapter, due to the consideration of solar gains and wind in EPS in 
addition to the air temperature. 

CDD and HDD for each future period under microclimate conditions 

Fig. 8. Dry-bulb temperature for a southern kitchen in building A (top) and a southern study room in building B (bottom) as samples out of 63 zones. Measured 
values (dark blue) are compared against simulated data (orange). 

Fig. 9. DHW and SH separation from total measured heating demand for the one week with the lowest yearly demand, summer week (left), and the highest annual 
demand, winter week (right). 
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(Micro. Columns in Table 8) are depicted in Fig. 15, where each point 
shows the total degree-day and the line between each point shows the 
difference between periods. Accordingly, CDD shows 49% and 41% RD 
for the second and third periods, compared to the previous period. While 
HDD indicate 7% and 8% reduction over each period. EWY shows the 
highest RD in both CDD (increase) and HDD (decrease). Climate change 
has no considerable effect on CDD in ECY, while it influences HDD by 
6% and 5% reduction during future periods in ECY. 

Fig. 16 illustrates CDD for summer (July) and HDD for winter 
(February) over three future periods. CDD for EWY in July shows 
significantly larger values than TDY; around 500% larger on average. 
HDD for ECY in February is approximately 150% higher than TDY on 
average, over all the three time periods. 

3.3. Energy performance simulations 

3.3.1. Past conditions calibrated model 
The first part of EPS results is related to the past condition. The 

annual hourly profiles of the measured and simulated (calibrated) SH 
demand for both buildings are presented in Fig. 17. The total heating 
demand for SH is equal to 142,200 kWh from measurements (DHW is 

excluded) and 138,000kWh from simulation (using measured weather 
data). 

The second part of EPS results are correlated to future conditions and 
is analyzed in annual (long period) and weekly (short period) hourly 
profiles. 

3.3.2. Future annual heating and cooling demand analysis 
EPS results for three 30-year periods for 13 climate scenarios, 

introduced in section2.3, are presented in Fig. 18 (grey lines), where 
each period represents 390 years of simulations (13 scenarios). TDY is 
shown in the first row (green line), with reduced annual heating de-
mands for 2040-2069 and 2070-2099 by 6% and 14%, respectively, 
compared to 2010-2039. EWY (red line) and ECY (blue line) are pre-
sented in the following graphs. EWY and ECY decline by 10% and 8% in 
the second period and 23% and 15% during the third period, respec-
tively. As expected, heating demand falls every period due to the 
increasing temperature based on Table 7 and Fig. 10. According to the 
definition of the utilized representative weather data set, EWY and ECY 
are pessimistic future scenarios accumulating extreme warm and cold 
months, respectively. The probability of having such extreme years is 
relatively low, but they can show the bounds of the possible demands to 

Fig. 10. Comparison of synthesized mesoclimate (dark blue) weather data with their corresponding microclimate (orange) for 13 scenarios for three periods. Y390 
stands for thirteen 30-year scenarios, containing (13 × 30) × 8760 data points. ECY, EWY, and TDY are representative years (one year each), and Triple contains all 
three representatives (3 × 8760 data points). The short green lines show the 5th and 95th percentiles for Y390 and Triple. The median value of Triple is also marked in 
the graph (long green line) to be comparable with all boxes. 

Table 7 
Distribution and comparison of microclimate and mesoclimate for the representative future weather data.    

2010-2039 2040-2069 2070-2099   

Meso[◦C] Micro[◦C] Diff.[◦C] Meso[◦C] Micro[◦C] Diff.[◦C] Meso[◦C] Micro[◦C] Diff.[◦C] 

TDY mean 7.9 8.3 0.4 8.6 9.0 0.4 9.4 9.9 0.5 
5% -2.6 -2.2 0.4 -1.6 -1.5 0.1 -0.9 -0.5 0.4 
50% 7.8 8.2 0.4 8.4 8.9 0.5 9.1 9.6 0.5 
95% 18.5 18.8 0.3 19.3 19.6 0.3 20.0 20.3 0.3 

EWY mean 12.1 12.7 0.6 13.3 13.9 0.6 14.5 15.0 0.5 
5% 2.9 3.4 0.5 3.9 4.5 0.6 5.7 6.1 0.4 
50% 11.3 12.0 0.7 12.7 13.3 0.6 13.5 13.8 0.3 
95% 23.9 24.3 0.4 24.5 25.1 0.6 25.7 26.2 0.5 

ECY mean 1.8 2.4 0.6 2.8 3.3 0.5 3.6 4.1 0.5 
5% -14.5 -13.8 0.7 -13.0 -12.5 0.5 -10.2 -9.8 0.4 
50% 1.3 1.7 0.4 3.1 3.9 0.8 3.0 3.5 0.5 
95% 15.1 15.3 0.2 15.4 15.6 0.2 15.8 16.0 0.2  
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assess the impacts of climate change and extreme conditions. 
Cooling demands for building A over three 30-year periods (grey 

lines) are presented in Fig. 19. The first row of graphs shows TDY (green 
line), which rises significantly by four times for 2040-2069 and five 
times for 2070-2099. This growth happens in limited hours with high 
peak loads. The annual cooling demand shows a growth of 4.5 and 5.1 
times in TDY for the second and third periods, respectively, while 
cooling peak loads grow by 210% and 290% over the second and third 
periods relative to 2010-2039 in EWY. For ECY, cooling demand is 
negligible, and naturally, there will not be any need for cooling during 
summertime in an extreme cold year in Sweden. Further study is done 
without the cooling system on building B to assess the impacts of higher 
outdoor temperature on indoor thermal comfort, discussed in the 
following section. 

Cumulative summaries of heating and cooling demand are shown in 
Fig. 20. Following the same pattern as before, 390 years of simulations 

(grey lines) are enveloped by EWY (red line) at the lower bound and ECY 
(blue line) at the higher bound, while TDY (green line) is stretched in the 
middle. Cooling demand has an opposite arrangement. The substantial 
differences between the EWY and ECY with TDY and 390 years are due 
to the aggregated pessimistic situation in the extreme scenarios; hence 
extreme conditions are used mostly for short period analysis. Dramatic 
growth in cooling demand can be seen in the second row of the graphs. 
In 2040-2069 the cooling system starts to work from mid-June, while the 
cooling device starts to work one month earlier in 2070-2099, due to the 
longer warm season. 

3.4. Future weekly heating and cooling demand analysis 

An enlarged graph for hourly demand for the summer week is pre-
sented in Fig. 21. Cooling demand for 150 years of simulation (five 
GCMs) for RCP 8.5 (grey lines) is shown against EWY (red line) for 2070- 

Fig. 11. Outdoor temperature differences between microclimate and mesoclimate ΔT for TDY (green), EWY (red), and ECY (blue) divided into four seasons over 
three future periods. Values on each bulb represent the summation of the season’s hourly temperature difference (ΔT (◦C)). The white area shows diurnal ΔT (◦C). 

Fig. 12. Winter week outdoor dry-bulb temperature microclimate (solid line) and mesoclimate (dashed line) comparison for TDY (green), EWY (red), and ECY (blue) 
for the middle and end of the century. The grey zones show the nighttime (18:00 to 06:00). 
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2099, which is, perhaps, one of the worst conditions regarding the high 
temperature due to the climate change, showing adequately the climate 
change impacts on the cooling load for an extreme warm scenario. While 

the annual cooling demand rises by 23%, the microclimate EPS for EWY 
(solid red line) depicts 4% growth in the cooling peak power (yellow 
circle) compared to mesoclimate EWY (dashed red line). Meanwhile, the 

Fig. 13. Summer week outdoor dry-bulb temperature microclimate (solid line) and mesoclimate (dashed line) comparison for TDY (green), EWY (red), and ECY 
(blue) for the middle and end of the century. The grey zones show the nighttime (18:00 to 06:00). 

Fig. 14. Duration diagram for daily outdoor temperature differences (ΔTd (◦C)) between microclimate and mesoclimate for TDY (green), EWY (red), and ECY (blue) 
over three future periods. 

Table 8 
CDD and HDD for mesoclimate and microclimate representative weather data and comparison with the relative difference (RD) over three 30-year future periods.    

2010-2039 2040-2069 2070-2099   

Meso.[◦C] Micro.[◦C] RD[%] Meso[◦C] Micro[◦C] RD[%] Meso[◦C] Micro[◦C] RD[%] 

CDD TDY 42 49 14% 61 74 18% 87 104 16% 
EWY 280 332 16% 363 442 18% 492 590 17% 
ECY 2 2 0% 1 1 0% 3 3 0% 

HDD TDY 3742 3590 -4% 3501 3351 -4% 3240 3075 -5% 
EWY 2428 2270 -7% 2086 1958 -7% 1788 1704 -5% 
ECY 5904 5704 -4% 5561 5370 -4% 5246 5080 -3%  

Fig. 15. CDD (left) and HDD (right) for the beginning (circle), middle (diamond), and end (square) of the century. RDs [%] are denoted over each period.  
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Fig. 16. CDD in summer (left) and HDD in winter (right) for the beginning (circle), middle (diamond), and end (square) of the century. RDs [%] are denoted over 
each period. 

Fig. 17. Hourly measured values (dark blue) for SH against simulation results (orange).  

Fig. 18. Hourly profile of heating demand for 390 years (13 climate scenarios) of simulations and TDY (top), EWY (middle), and ECY (bottom).  
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daily peak loads are increased up to 25% under the effects of microcli-
mate conditions and UHI; for instance, July 10th, 11th, and 14th have a 
rise in peak load by 25%, 16%, and 13% (blue circles). 

Magnified hourly heating demand for the winter week is illustrated 
in Fig. 22. Heating demand for 150 years of simulation (five GCMs) for 
RCP 4.5 (grey lines) is shown against ECY (blue line) for 2040-2079. The 
microclimate conditions (solid blue line) shows a 3% reduction in the 
peak load and 4% in the annual demand compared to the mesoclimate 
conditions (dashed blue line). In the winter week, daily demand reduces 
by an average of 5%. As discussed in section 3.2, the effects of UHI in 
winter is not as significant as in summer, which appears in the lower 
changes in the heating demand, considering the fact that this change is 
desired. 

3.4.1. Future indoor thermal comfort analysis 
To assess the impacts of future weather on indoor comfort, building B 

was simulated without the cooling system. In this case, the reference 
point for overheating is defined at 26◦C. The first row of graphs in 
Fig. 23 represents TDY (green line) for three periods of 30-year. For the 
second period, TDY has 67 hours above 26◦C and 96 hours for the last 
period. EWY (red line) shows an enormous number of overheating hours 
by 1180 and 1630 for 2040-2069 and 2070-2099, respectively. More-
over, during the warm season, from June 01 to September 30, average 
temperatures are 25.9◦C, 26.7◦C, and 27.4◦C with standard deviations of 
1.7, 2.1, and 2.1 for the three periods. Accordingly, the number of 
overheating hours is significant. Moreover, the hourly temperature has a 
higher range with spikes over 32◦C. ECY (blue line) has no overheating 
during the future periods. Overheating hours in 390 years of simulations 
have an average of 73 for 2040-2069 and 133 for 2070-2099; these 

Fig. 19. Hourly profile of cooling demand for 390 years (13 climate scenarios) of simulations and TDY (top), EWY (middle), and ECY (bottom).  

Fig. 20. Cumulative summary of heating (top) and cooling demand (bottom) for 390 years simulation (grey), TDY (green), EWY (red), and ECY (blue).  
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numbers are influenced and reduced by RCP 2.6. Particularly RCP 8.5 
has an average of 98 and 232 hours for the second and third periods, 
which is considerable. 

Enlarged views of the hourly profile of the summer week indoor 
temperatures are illustrated in Fig. 24. The indoor temperature in EWY 
(red line) remains above 26◦C continuously for several days, especially 
in 2070-2099, while it is lower only for a few hours before sunrise over 
2040-2069. In addition, overheating occurs in several different years for 
RCP 8.5 (grey lines) continuously in a day, significantly affecting ther-
mal comfort in that particular time, even though they do not represent 
the warmest year. Furthermore, natural ventilation through opening the 
windows was activated above the indoor temperature of 24◦C; however, 
it is not sufficient for diurnal hours (white zones) in 2040-2069, and it is 
not adequate even for nocturnal hours (grey zones) over the last period. 
Nevertheless, the effect of natural ventilation is noticeable in TDY (green 
line) as the outdoor air is sufficient to cool down interior space, and the 
summits of the curves are flattened. 

Comparison between indoor temperature for mesoclimate and 
microclimate EPS in the summer week shows a significant difference in 
indoor temperature, especially at nocturnal hours (grey zones). The 
temperature difference of up to 3◦C for several days can be seen in 
Fig. 25. The mesoclimate EPS results (dashed line), commonly applied in 
EPSs, mostly show temperatures below the yellow line at night, which 
eliminates the thermal discomfort conditions in the assessments. The 
high indoor temperature leads to higher thermal discomfort, where most 

of the occupancy hours in residential buildings happen at night. Also, it 
will eliminate the effect of night flush to reduce the overheating for the 
coming day. This situation should be considered by urban energy pro-
viders to avoid power outages since happening EWY conditions for a 
week is quite possible. Some statistics for indoor temperature under 
mesoclimate and microclimate are presented in Table 9. 

The effects of extreme conditions are investigated on the HVAC 
system. Fig. 26 illustrates the working hours for the heating and cooling 
system. Each line represents one hour on or off for the system, and their 
color gradient shows the power intensity. The heating system always 
works during the five months of November, December, January, 
February, and March for ECY and TDY. ECY induces higher heating 
powers than TDY in all three periods (darker colors) for about two 
months. The cooling load shows a significant difference between TDY 
and EWY. The cooling system is active in 190, 410, and 530 hours for the 
three periods in TDY, while for EWY, it works 1320, 1530, and 1860 
hours with higher intensities. Also, the cooling system is continuously 
required for EWY over 2040-2069 and 2070-2099 for almost three 
months during June, July, and August. This analysis can provide energy 
suppliers with a realistic demand curve to avoid power blackout with an 
accurate forecast. 

4. Conclusion 

This research investigated the impacts of climate change and 

Fig. 21. Annual (left) and enlarged section of hourly cooling demand for the summer week (right) for 150 years simulations RCP 8.5 (grey), EWY microclimate (solid 
red), and EWY mesoclimate (dashed red) for 2070-2099. 

Fig. 22. Annual (left) and enlarged section of hourly heating demand for the sample week in winter (right) for 150 years simulations for RCP 4.5 (grey), and ECY 
microclimate (yellow), and ECY mesoclimate (red) for 2040-2069. 
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extreme weather on the energy performance and indoor thermal comfort 
of buildings, considering microclimate effects. The analysis was per-
formed for two multi-family buildings in Southeastern Sweden and 
adopted high spatiotemporal resolution data, including measured data 
on heating energy demand, indoor thermal condition and outdoor 
temperature. The measured heating demand included space heating and 
domestic hot water; therefore, a non-parametric method was applied to 
separate their hourly values from the total demand. The research 
workflow was divided into past and future climate conditions, where 
historical and monitored weather data were used as well as the 
measured heating demand and indoor temperature to calibrate and 
verify the building energy model for the past conditions. The future 
conditions were studied by simulating the verified BEM using RCM 
future climate data and considering 13 different future climate sce-
narios. Three sets of representative weather data sets were synthesized 
for three 30-year future periods, consisting of TDY, EWY, and ECY. This 

collection of future weather data enabled us to conduct a comprehensive 
assessment, considering a wide range of possible future conditions, 
climate uncertainties, and typical and extreme weather conditions. By 
simulating the microclimate conditions for the future representative 
weather data sets, we could investigate the impacts of microclimate on 
the energy performance of buildings during typical and extreme weather 
conditions in addition to the climate change impacts over three future 
periods. 

According to the results, the mesoclimate conditions for TDY had the 
annual average temperature of 7.9◦C, 8.6◦C, and 9.4◦C, over three future 
periods (2010-2039, 2040-2069, and 2070-2099), while the corre-
sponding microclimate had an average of 8.3◦C (+5%), 9.0◦C (+4%), 
and 9.9◦C (+5%), respectively. Dividing the outdoor temperature results 
for microclimate conditions into daytime (06:00-18:00) and nighttime 
(18:00-06:00) helped to better understand the impacts of urban 
morphology on microclimate. Apparently, the increase mostly occurs at 

Fig. 23. Indoor dry-bulb temperature for building B without the cooling system for 390 years simulations (grey) for every 30-year period, TDY (top), EWY (middle), 
and ECY (bottom). The yellow dashed line delineates 26◦C for the overheating reference point. 

Fig. 24. Enlarged hourly indoor dry-bulb temperature for summer sample week for 150 years simulations for RCP 8.5 (grey), TDY (green), EWY (red), and ECY 
(blue) for 2040-2069 (left) and 2070-2099 (right). The grey zones show the nighttime (18:00 to 06:00). All data are for microclimate conditions. 
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nighttime, having a total share of 95% and up to 10.6◦C against 5.9◦C 
during daytime. These cause thermal comfort disruption since the 
highest occupancy for residential buildings happens at night. Spring and 
summer showed the highest outdoor temperature change with 75% of 
the annual change, including both daytime and nighttime peaks. 

Moreover, degree-days (CDD and HDD) were calculated as well-known 
metrics for practitioners. Cooling degree-day increased by 16%, while 
heating degree-day reduced by 4% in TDY conditions directly affect the 
cooling and heating demand. 

Considering the energy performance of buildings, a comparison 

Fig. 25. Indoor temperature for microclimate (solid lines) against mesoclimate (dashed lines) for the second and third periods. TDY (green), EWY (red), and ECY 
(blue) are compared against the 26◦C (dashed yellow) mark line. The grey zones show the nighttime (18:00 to 06:00). 

Table 9 
5th, 50th, and 95th percentile for indoor temperature over the three future periods from EPS with microclimate and mesoclimate conditions in three representative 
weather scenarios.    

2010-2039 2040-2069 2070-2099   

Meso[◦C] Micro[◦C] Diff.[◦C] Meso[◦C] Micro[◦C] Diff.[◦C] Meso[◦C] Micro[◦C] Diff.[◦C] 

TDY mean 21.6 21.7 0.1 21.8 21.9 0.1 21.9 22.0 0.1 
5% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.0 0.0 
50% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.0 0.0 
95% 24.4 24.6 0.2 24.8 24.9 0.1 24.9 25.0 0.1 

EWY mean 22.5 22.7 0.2 22.8 22.9 0.1 23.1 23.2 0.1 
5% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.0 0.0 
50% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.1 0.1 
95% 26.9 28.4 1.5 27.6 28.4 0.8 28.4 29.2 0.8 

ECY mean 21.2 21.2 0.0 21.2 21.2 0.0 21.3 21.3 0.0 
5% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.0 0.0 
50% 21.0 21.0 0.0 21.0 21.0 0.0 21.0 21.0 0.0 
95% 22.6 22.8 0.2 22.4 22.6 0.2 23.1 23.3 0.2  

Fig. 26. Heating system (Top) working hours for TDY against ECY in winter, and cooling system (Bottom) working hours for TDY against EWY in summer. The color 
gradient shows the power intensity. Numbers on the right present the number of working hours, regardless of the intensity. 
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between energy demands for three future periods showed a reduction in 
heating demand by 6% in 2040-2069 and 14% in 2070-2099 related to 
2010-2039 for typical weather conditions (TDY). On the other hand, 
cooling demands demonstrated significant growth of four and five times 
for the second and third periods under climate change impacts. Cooling 
peak loads climbed by 210% over 2040-2069 and 290% over 2070-2099 
compared to 2010-2039 for TDY. Considering the fact that extreme 
weather events are not accounted in EPS with TMY weather file, energy 
demand and indoor thermal comfort were assessed in a high-resolution 
time step for extreme conditions. In an extreme warm week, the daily 
cooling peak load increased up to 25%. In a typical year (TDY) cooling 
system works for 190, 410, and 530 hours in 2010-2039, 2040-2069, 
and 2070-2099, respectively, while it works 1320 (+690%), 1530 
(+370%), and 1860 (+350%) hours in an extreme warm year (EWY) 
over the future periods. This explains the significant role of cooling 
systems in the future to maintain thermal comfort and energy efficiency. 

In the absence of cooling systems during an extreme warm year 
(EWY), natural ventilation was not sufficient to remove the heat from 
interior spaces and the average indoor temperature during the warm 
season were 25.9◦C, 26.7◦C, 27.4◦C for three future periods with a 
maximum of 29◦C, 30◦C, and 32◦C. This assessment showed that it is 
probable to have an indoor temperature above 26◦C for almost one week 
continuously. These all indicate that not accounting for influencing 
climate variations can result in maladaptation or insufficient adaptation 
of urban areas to climate change. This can become very critical in 
Sweden, where residential buildings are mostly not equipped with 
cooling systems, inducing considerable health risks and/or cooling loads 
in the future. Therefore, further studies, especially with high spatio-
temporal resolutions data and models, are needed to assess the tenants’ 
well-being and energy demands during future extreme weather 
conditions. 
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