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Abstract

Modern power systems are immensely complex, and the reliability of electricity supply is
governed by rare interruption events which sometimes invoke catastrophic consequences.
Proper reliability analysis is crucial both in the operating and planning phase of power
systems, and the risk of interruptions must be evaluated with probabilistic models. Monte
Carlo simulation is widely used in modern reliability analysis, but due to the rareness
of interruptions, a naive Monte Carlo simulation is usually an inefficient approach. This
thesis explores how importance sampling can increase the precision of different Monte
Carlo models. The research culminates in a novel method that combines the principles
of resampling, importance sampling and the cross entropy algorithm. The method is
applicable to time-sequential simulations and requires very few model assumptions. When
applied to a reliable grid configuration where interruptions occur in about 2 · 10−5 of the
samples, an average improvement in precision of 92.8% of the expected energy not supplied
was observed.
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Nomenclature

Abbreviations
MCS Monte Carlo simulation
CMC Crude Monte Carlo
CE Cross entropy
NEF Natural exponential family
PDF Probability distribution function
ENS Energy not supplied
EENS Expected energy not supplied
LR Likelihood ratio
Pinterr Interrupted power
SAC System available capacity
IS Importance sampling
ISD Importance sampling distribution
SPM Subspace partition method

Symbols
f(·) Reference PDF
g(·) Importance sampling density
g∗(·) Optimal importance sampling density

f̂(·) Empirical distribution
ĝ(·) Importance resampling distribution
W (·) Likelihood ratio
h(·) Target function
u Reference parameters
v Importance sampling parameters
X† Dagger denotes a resampled random vector
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1 Introduction

1.1 Motivation

The work presented in this Master’s thesis is part of the research project VulPro: Risk
and vulnerability prognosis for power system development and asset management. The
project is headed by SINTEF Energy Research in collaboration with Statnett, Landsnet
and NVE, and is co-funded by the Norwegian Research Council. The general objective
of VulPro is to develop new methods for long-term prediction of power system reliability,
providing system planners with a better decision basis for asset mangagement and system
development. One of the main topics of the project is to incorporate existing risk models
for individual power system components into reliability of supply analysis of the power
system. Such models should take into account the technical condition of components, how
the condition is affected by aging and maintenance, and finally how these factors influence
the probability of failure. When the complexity of the stochastic processes governing the
system state increases, Monte Carlo simulation (MCS) remains a powerful and general
tool for estimating reliability indices. The fundamental challenge in power system reli-
ability evaluation is to analyse rare interruption events that have severe consequences,
and capturing such rare events by Monte Carlo simulation can require an enormous num-
ber of samples. Therefore, development of successful variance reduction techniques which
increase the accuracy of Monte Carlo estimates will be of great value.

1.2 State of the art

Power system reliability is evaluated using either analytical methods, Monte Carlo simu-
lation, or a hybrid of the two [1]. In this context, there are two main approaches to Monte
Carlo simulation: Sequential simulation and non-sequential simulation. In the sequential
approach, the system state is simulated chronologically, while non-sequential models sam-
ple system states from a stationary distribution. As VulPro focuses on accounting for the
technical condition of components, and how it evolves with time, sequential simulation is
the main interest in this thesis. However, the stationary representation is simpler, and
therefore a non-sequential model was useful in the first stage of the work to familiarize
with established variance reduction techniques.

The main and most effective variance reduction techniques are importance sampling and
conditional Monte Carlo, and both methods can dramatically improve the precision of
Monte Carlo estimates. There is a variety of other variance reduction techniques, but
these usually provide moderate improvements [20]. The scope of this thesis is limited to
importance sampling. Importance sampling is performed by sampling from a probability
distribution which is different from the true distribution of the system, and each sam-
ple is weighted by the likelihood ratio to obtain an unbiased estimator. There exists a
theoretically optimal importance sampling distribution (ISD) which gives identically zero
variance, and variance reduction is achieved when the ISD is close to the optimal distri-
bution in some sense. The major challenge of importance sampling is to find an adequate
ISD, and many different methods have been proposed to achieve this, see e.g [21, 20]
for some examples. Two closely related importance sampling techniques called variance
minimization and the cross entropy method, first described in [19] and [10], are especially
relevant for power system reliability analysis. Both methods constrain the ISD to have
the same functional form as the reference distribution, and aim to find the optimal distri-
bution parameters. The variance minimization method was developed first, and the cross
entropy (CE) algorithm can be regarded as an advancement of variance minimization that
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usually results in more well structured optimization problems.

The cross entropy algorithm has especially been applied to non-sequential models with
impressivr results, see e.g [22, 7]. Application to sequential models is less studied, but
reference [6] should be mentioned as a good example which also entails an educational
comparison to non-sequential methods. To the best of the author’s knowledge, the CE
method has only been applied to sequential simulations where the system state follows a
Markov process. A Markov process is memoryless by definition, and is therefore unable to
express the temporal evolution of component condition. The sequential MC model which
is currently under development at SINTEF [26] takes into account aging and maintenance
of transformers. These factors lead to time dependent component failure rates, and the
system state follows a semi-Markov process. Application of the cross entropy algorithm to
a general sequential MC simulation with time dependent failure rates will require invention
of new methods.

1.3 Research objectives

Case study [26] reveals that SINTEF’s Monte Carlo prototype suffers from serious issues
regarding precision when applied to a moderately large system which is representative for
a Nordic transmission grid [24]. Naturally, the precision can be improved by using a larger
sample size, but since precision is proportional to the inverse square root of sample size,
this is not an efficient approach. The author’s ambition is to use importance sampling,
preferably in combination with the cross entropy algorithm, to achieve variance reduction
on SINTEF’s Monte Carlo model. Regarding the time limitation and formal requirements
of a master’s thesis in applied physics at NTNU, the following research question and way
points were defined:

Q: Can importance sampling reduce the variance of reliability index estimates for a se-
quential Monte Carlo simulation with time dependent component failure rates?

WP1: Implement a non-sequential MC model as a test bed to familiarize with importance
sampling techniques.

WP2: Test different importance sampling techniques on a simplified version of the existing
sequential model developed at SINTEF.

WP3: With the gained knowledge from WP1-2, develop a novel method to reduce the
variance of the general sequential model with time dependent failure rates.

The scope of the thesis is further limited to only run simulations on a small 4-bus test
network in order to maintain manageable run time during model development. The main
focus is on the probabilistic part of reliability analysis, and thus existing software [14] is
used without modification to determine the system’s response to contingencies.

1.4 Structure of the document

The organization of the thesis is intended to clearly differentiate between the parts of the
text which concern literature review or backround theory, and the author’s own contribu-
tions. The Python code1 for the project is based on an existing model from SINTEF which
has been modified and extended. Details on the implementation are mostly avoided in
the thesis. Chapter 2 describes backgroud theory covering the most fundamental concepts

1The current version of the code can be found on Bitbucket repository: stash.code.sintef.no, project
folder SAMREL/vulpro, Branch: SAMREL 214.
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of power system reliability analysis, Monte Carlo integration and importance sampling.
Chapter 3 and 4 recapitulates some findings from the author’s summer internship at SIN-
TEF that are directly relevant to the thesis, these chapters describe the test system and
illustrates long term reliability prediction with the Monte Carlo prototype. A more com-
prehensive report on the results from the summer internship can be found in reference
[3]. The remainder of the results and discussion can be divided into 3 parts, each part
concerns one of the way points defined above. Chapter 5 is is connected to WP1 where the
cross entropy algorithm is applied to a non-sequential MC model. Chapter 6 covers WP2
and discusses importance sampling applied to a simplified sequential simulation where
the system state follows a Markov process. Chapter 7 constitutes WP3 and explores the
combined methods of resampling and importance sampling to achieve variance reduction
on the general sequential model. And as the main result of the research, a novel method
which was named the subspace partition method (SPM) is proposed. Finally, section 8
contains concluding remarks and suggestions for further research.

7



2 Background theory

2.1 Power system reliability analysis

The modern electrical power system is extremely complex, and its function is critical to
society. Therefore, adequate models for assessing the reliability of power supply are nec-
essary both in the planning and operation phase. The power systems ability of supplying
energy to customers can be viewed from two different perspectives. Firstly, the power
system must be engineered such that it can supply its customers under normal operation.
In addition, the size and complexity of the system makes it necessary to analyse the ability
to supply energy in situations outside the range of normal operation. The latter is the
scope of power system reliability analysis and its main tool is probability theory. System
states that are outside of normal operation can be caused by unexpected peaks in load,
failures of grid components or events limiting the power generation, and the frequency
and duration of such events can be described by stochastic models. A detailed reliability
model for the entire power system would be impractical both in terms of interpretability
and computational cost. Therefore the scope of analysis should be limited to specific parts
of the power system based on their function. A useful hierarchical division is introduced
in [1]. The classification consists of three levels and is sketched in figure 1. The ranking
of the hierarchy is based on the direction of power flow. The generation facilities are on
top, the transmission grid is in the middle and the distribution grid is on the bottom.
The analysis in this paper concerns hierarchical level II: generation of power, and its dis-
tribution to delivery points in the transmission grid, in the literature this is often called
composite system reliability analysis. The rest of this section is based on a report on the
OPAL-methodology for reliability analysis developed at SINTEF [14].

Figure 1: Hierarchical levels of power systems. Figure copied from [1].

The starting point for the analysis are data structures that specify the topology, specifi-
cations and constraints of all components in the system together with a set of operating
states. An operating state can be defined in a simplified manner as a specific combina-
tion of load and generation in the system that has a physical solution and lies within the
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security constraints. Given an operation state, one can analyse different contingencies,
or contingency states and determine whether these lead to interruptions in power supply
at delivery points. A contingency state is defined as a situation in which one or multiple
components in the power system are in a failure state. Given an operating state and a
contingency state one of four possible outcomes are possible:

1. The system is still within operational limits.

2. The contingency leaves the system in a state outside operational limits, but corrective
measures are sufficient to bring the system back to normal operation without load
shedding.

3. The contingency violates the operational limits of the system, and corrective actions
are insufficient. Load shedding must be performed at one or multiple delivery points
to bring the system back within operation limits.

4. Blackout. There is no stable physical solution to the optimal power flow problem.

The analysis used to determine the amount of load shedding and corrective measures rests
on an optimal power flow algorithm, and is not within the scope of this thesis.

The contingency state can be represented as a time dependent random vector

X(t) = (X1(t), . . . , Xn(t)), Xi ∈ {0, 1}, (2.1)

where each variable represents the state of a single component in the system and Xi =
0 means that the component is in operation, while Xi = 1 represents failure. In the
most general case, the sojourn times a component spends in either state before the next
transition are random variables with arbitrary distributions. E.g when the component
enters state i ∈ {0, 1}, it remains there for a random amount of time τi ∼ fi(t) before
the next transition. This stochastic process can be classified a semi-Markov process [18].
It is common and convenient to assume that the sojourn times are exponential random
variables, where τ0 ∼ Exp(1/λ) and τ1 ∼ Exp(1/µ), and λ and µ are the failure rate and
repair rate. In this case, the component state follows a continuous time Markov Chain,
also called a Markov process [18]. The Markov process is memoryless, and its stationary
probabilities P1 and P0 are

P1 =
µ−1

µ−1 + λ−1
, (2.2)

P0 =
λ−1

µ−1 + λ−1
. (2.3)

The state-diagram of the process is sketched in figure 2, and a component which undergoes
this specific Markov process will for simplicity be referred to as a Markovian component
in later chapters.

9
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λ

µ

Figure 2: A two state continuous-time Markov chain for a power system component.

Based on the distribution of the contingency vector, one can obtain quantitative measures
of the systems reliability in terms of statistical expectations, these are called reliability
indices. The two basic reliability indices are the loss of load frequency (LOLF ) and loss
of load duration (LOLD) where loss of load means partial or total interruption of power
supply. Other reliability indices can be obtained from these. This thesis focuses mainly
on the expected energy not supplied (EENS), which is as the name suggests the expected
value of energy not supplied (ENS). ENS is defined as the time integral of interrupted
power (Pinterr) over a given time period T

ENS =

∫ T

0
Pinterr[t,X(t)]dt, (2.4)

where Pinterr is the difference between the system’s available capacity (SAC) and the load
L. If there is excessive capacity, Pinterr is defined to be 0

Pinterr = max{0, L− SAC}. (2.5)

Reliability indices can be computed using analytical methods or estimated by Monte Carlo
simulation. The OPAL method is an example of an analytical model which systematically
analyses a specified list of contingency states by a so called contingency enumeration
approach [2]. Analytical methods are typically fast, but require certain model assumptions.
Monte Carlo simulation does not, in principle, put any restriction on the stochastic model,
but can be computationally expensive.

2.2 Monte Carlo integration

Monte Carlo integration is a technique for approximating integrals by sampling random
numbers. This section will focus on integrals in terms of expected values, but many
problems which are not of probabilistic nature can be rewritten as expectation values,
making Monte Carlo integration a very general tool. Let X be a random vector with
probability density function (PDF) f(x).

X ∼ f(x). (2.6)

Suppose one wants to compute the expected value θ of some target function h(X)

θ ≡ E[h(X)] =

∫
h(x) · f(x) dnx. (2.7)

θ can be approximated by sampling N independent random vectors from f and calculating
the sample average

θ̂ =
1

N

N∑
i=1

h(Xi). (2.8)
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This estimator has two important properties: It is unbiased, and its standard deviation
scales as 1/

√
N . These results follow directly from the basic properties of the expected

value and variance operators. The first can be proved using the linearity of the expected
value operator

E

[
1

N

N∑
i=1

h(Xi)

]
=

1

N

N∑
i=1

E[h(Xi)] = θ. (2.9)

The second property can be proved as follows

Var

[
1

N

N∑
i=1

h(Xi)

]
=

1

N2

N∑
i=1

Var[h(Xi)] =
1

N
Var[h(X)]. (2.10)

Additionally, it follows from the central limit theorem that the distribution of θ̂ tends
towards the normal distribution for large N . A recapitulation of the central limit theorem
without proof will follow.

Theorem. (The central limit theorem [18]). Suppose the random variables Xi, i =
1, . . . , N are independent and identically distributed with mean µ and variance σ2. Con-
struct a new random variable

Z =

∑N
i=1(Xi − µ)

σ
√
N

. (2.11)

The central limit theorem states that Z is standard normal distributed, Z ∼ n(0, 1) when
N tends to infinity irrespective of the distribution of Xi.

It follows from the central limit theorem that for large N

θ̂ ∼ n(θ, σ2
h/N) (2.12)

Where σ2
h ≡ Var[h(X)].

Monte Carlo integration can be useful in a number of different cases, and it is sometimes
the only viable estimation method. Some general situations where Monte Carlo integration
is convenient will be listed in the following, and for this discussion it will be useful to repeat
the general form of the integral that is estimated

θ =

∫
h(x) · f(x) dnx.

Monte Carlo integration can be useful when:

1. The function h(X) is complicated to evaluate making integration difficult.

2. The integral has high dimension. The volume of the integration domain scales ex-
ponentially with the dimension n, and the number of target function evaluations in
other numerical integration methods will typically also scale exponentially. This is
known as the curse of dimensionality. However, the uncertainty of the Monte Carlo
estimate scales as 1/

√
N independent of dimension.

3. The probability distribution function f(x) is complicated or unknown. In some situ-
ations the samples Xi are generated from a stochastic process that can be simulated,
but it might be difficult to determine an analytical expression for the PDF.

4. f(x) is known up to a constant factor, that is f(x) = c · g(x) where c is unknown.
In this case there exists methods for simulating a Markov chain that has f as its
stationary distribution. These methods are known as Markov chain Monte Carlo
methods, and the Metropolis-Hastings algorithm is the most famous one.

11



2.3 Variance reduction via importance sampling

The convergence rate of 1/
√
N is both the main strength and the main weakness of Monte

Carlo integration. This convergence rate can be relied upon no matter how complicated
the integrand or integration domain should be. On the other hand, a convergence rate
of 1/

√
N can be painstakingly slow if the constant factor in the uncertainty is large. As

an example, reducing the uncertainty by a factor of 10 requires 100 times the number
of samples. Fortunately, there are methods for reducing the uncertainty in Monte Carlo
estimates, these are called variance reduction techniques. This section will describe an
often used variance reduction technique called importance sampling (IS) [18, 20].

Recall the general problem of Monte Carlo integration as described in the previous section
which is to estimate the expected value

θ = E[h(X)] =

∫
h(x) · f(x) dnx.

The estimator θ̂ proposed in equation (2.8) will from now on be referred to as the crude
Monte Carlo estimate

θ̂ =
1

N

N∑
i=1

h(Xi).

When using importance sampling, samples Xi are drawn from a new distribution g differ-
ent from f , Xi ∼ g. And each sample is weighted to obtain an unbiased estimate of θ. In
order to illustrate how to obtain the correct weights it is instructive to rewrite (2.7) as

θ =

∫
h(x) · f(x)

g(x)
· g(x) dnx = Eg

[
h(X) · f(X)

g(X)

]
, (2.13)

where Eg denotes the expected value under g. Note that the support of f(x) · h(x) must
be contained in the support of g(x) for equation (2.13) to hold. Now one can construct a
new unbiased estimator of θ

θ̃ =
1

N

N∑
i=1

h(Xi) ·
f(Xi)

g(Xi)
, (2.14)

where the samples are weighted by the likelihood ratio W (X) ≡ f(X)
g(X) . For a good choice

of importance sampling distribution (ISD), the variance of θ̃ can be much lower than that
of the crude estimate.

2.3.1 Remark on the degeneracy of the likelihood ratio

The main challenge of importance sampling is to find a suitable ISD that reduces the
variance compared to the crude estimator, and the variance of the importance sampling
estimator can be very sensitive to the choice of ISD. This is connected to the fact that
the distribution of W under g easily becomes very skewed, and this is especially true if
the dimension of X is high. Following reference [20], the problem of extreme skewness of
the likelihood ratio and high variance of the IS estimator will be refered to as degeneracy.
This may confuse some readers since the term degeneracy in mathematics usually refers
to the case where an object reduces to a simpler form, but in this context degeneration
is synonymous to corruption or collapse. This subsection will first describe some charac-
teristics of a successful ISD, and finally the degeneration of the likelihood ratio will be
illustrated through a toy example.
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The variance of the IS estimator is

Var[θ̃] =
1

N

(
Eg

[
h2(X) · f

2(X)

g2(X)

]
− θ2

)
. (2.15)

In fact, there exists an optimal ISD g∗ that gives zero variance of the IS estimator. The
optimal ISD is given by

g∗(x) =
h(x) · f(x)

θ
, (2.16)

which is easily verified by inserting the expression for g∗ into equation (2.15). Successful
importance sampling is achieved when the ISD is similar, or close to the optimal distribu-
tion in some sense. However, sampling directly from g∗ is problematic since this requires
that θ is known in advance, and calculating θ is the very heart of the problem. In addi-
tion to being close to the optimal distribution, some other favourable characteristics of a
suitable ISD can be identified by examining equation (2.15). Naturally, the variance of
the IS estimator should be finite and this is equivalent to the requirement that

Eg

[
h2(X) · f

2(X)

g2(X)

]
<∞. (2.17)

This can be achieved by asserting that the likelihood ratio f(X)/g(X) is bounded. Addi-
tionally g should not have a lighter tail than f in the region where h has support. Having
a lighter tail means that the likelihood of g goes towards zero faster than f when moving
further away from the bulk of probability mass.

Example. (Degeneration of the likelihood ratio.) Consider a system which can be de-
scribed by a single random variable X which has a Gaussian distribution with mean µ
and variance σ2. The system is in a failure state when X is bigger than some value xf ,
and is functioning otherwise. Suppose one wants to estimate the probability of failure
Pf ≡ P{X > xf} = E[I{X > xf}] by importance sampling. The importance sampling
estimator is

P̃f =
1

N

N∑
i=1

I{X > xf} ·
f(X)

g(X)
.

Figure 3 illustrates different choices of ISD for the above problem. Plot 3a shows an
example of an importance sampling density that would lead to degeneracy. The bulk of
the probability mass lies in the failure domain x > xf , thus most samples will represent
failure states. If Pf is very low, the failure states are the ”important samples”, and
therefore one might be tempted to think that the ISD in figure 3a would lead to successful
importance sampling. However, the distribution of W under g is extremely skewed. By
visual inspection on can see that f/g << 1 under the bulk of g, so the observed likelihood
ratios will usually be very close to zero. At the same time Eg[W (X)] = 1 by definition,
therefore the likelihood ratio must take on extremely large values with a low probability.
This is degeneracy in a nutshell, and for high dimensional problems the skewness of W
is amplified. Figure 3b shows a good choice of ISD. The bulk of the probability mass
is in the ”important” failure region and the distribution of the likelihood ratio is only
moderately skewed. Figure 3 shows the same ISD as in (b) together with the theoretically
optimal ISD. Note that g and g∗ are somewhat similar in the sense that they have most
of their mass centered in the same region. For this simple example, the variance of the IS
estimator was found by numerical integration of equation (2.15), and the ISD in figure 3a
gives more than 2000 times higher variance than the ISD in (b).
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(a) (b)

(c)

Figure 3: (a): An ISD that leads to degeneracy of the likelihood ratio. (b): A good ISD.
(c): A good ISD and the optimal ISD.

2.4 The cross entropy algorithm for rare event simulation

As discussed in the previous section, successful importance sampling is achieved when the
ISD is close to the theoretically optimal ISD, g∗. The cross entropy algorithm [10, 4, 20]
presents an automatic method to find an ISD that is as close as possible to the optimal
ISD under certain constraints, and it is especially effective for rare event simulation. The
rationale behind the algorithm, and the main results will be presented in this section.

First the specific meaning of rare event simulation should be clarified. Suppose one wants
to estimate the probability

l ≡ P{h(X) ≥ γ}. (2.18)

If l is very small, say 10−5 or less, then rare events are defined as the set

{X|h(x) ≥ γ}. (2.19)

(2.18) can also be written as an expectation value

P{h(X) ≥ γ} = E[I{h(X) ≥ γ}], (2.20)

where I is the indicator function. Now l can be estimated by Monte Carlo integration,
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and the crude estimate is

l̂ =
1

N

N∑
i=1

I{h(X) ≥ γ}. (2.21)

However, since {X|h(x) ≥ γ} are rare events, a very large number of samples is needed to
get a sufficient number of non-zero contributions to the sum in (2.21). This is the main
challenge of rare event simulation. Now we want to use importance sampling to overcome
this challenge. Using equation (2.16), the optimal ISD is

g∗(x) =
I{h(x) ≥ γ} · f(x)

l
. (2.22)

The cross entropy algorithm searches for a function g that is close to g∗, and the search
is limited to functions that have the same functional form as f , but the distribution
parameters are allowed to vary. That is: if f is parameterized as f = f(x;u) where
u = (u1, . . . , un), then

g ∈ {f(x;v), vi ∈ R}. (2.23)

Now one needs a measure of how ”close” f(x;v) is to g∗, and the Kullback-Liebler distance,
also known as cross entropy is used for this purpose. The Kullback-Liebler distance
between two distributions f and g, is defined as

D(g, f) ≡ Eg

[
ln

g(X)

f(X)

]
=

∫
g(x) · ln g(x)

f(x)
dnx. (2.24)

The cross entropy algorithm aims to find the paramerters that minimize the Kullback-
Liebler distance between the importance sampling distribution and g∗,

v = argmin
v

D [g∗(x), f(x;v)] . (2.25)

By writing out the expression for the Kullback-Liebler distance, the optimization problem
in equation (2.25) can be reduced to a simpler form.

D(g∗, f) = Eg∗ [ln(g
∗/f)]

=

∫
g∗(x) ln g∗(x)dnx−

∫
g∗(x) ln f(x;v) dnx

(2.26)

The first integral in (2.26) is independent of v, therefore (2.25) is equivalent to maximizing
the second integral term∫

g∗(x) ln f(x;v) dnx =

∫
l−1I{h(x) ≥ γ}f(x;u) ln f(x;v) dnx

= l−1Eu [I{h(X) ≥ γ} ln f(X;v)]

= l−1Ew [I{h(X) ≥ γ}W (X;u,w) ln f(X;v)] ,

(2.27)

the last equality was obtained by a change of measure, where w is arbitrary, u are the
reference parameters and W (X;u,w) ≡ f(X;u)

f(X;w) . Now equation (2.25) can be rewritten as

v = argmax
v

Ew [I{h(X) ≥ γ}W (X;u,w) ln f(X;v)] . (2.28)

If the problem is convex in v, it can be solved by setting the gradient with respect to v
equal to zero, which reduces to

Ew [I{h(X) ≥ γ}W (X;u,w) ∂k ln f(X;v)] = 0,

k = 1, . . . , n.
(2.29)
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The set of equations (2.29) yields the deterministic solution to the cross entropy problem,
and is usually not computable. However, the deterministic solution can be estimated by
replacing (2.29) by its stochastic counterpart

1

N

N∑
j=1

I{h(Xj) ≥ γ}W (Xj ;u,w) ∂k ln f(Xj ;v) = 0. (2.30)

The solution to this set of equations will depend on the form of the PDF, and an especially
important case with broad application is when f belongs to the nautural exponential family
(NEF). In this case the set of equations are uncoupled, and the solution reads

vk =

∑N
j=1 I{h(Xj) ≥ γ}W (Xj ;u,w)Xjk∑N

i=1 I{h(Xj) ≥ γ}W (Xj ;u,w)
. (2.31)

For simplicity f is assumed to belong to the NEF in the remainder of this section. If Xi are
sampled from the reference distribution, the stochastic counterpart (2.31) will suffer from
low precision since P [I{h(Xj) ≥ γ}] << 1 leaving very few non-zero terms in the sum.
To overcome this challenge, the cross entropy algorithm uses an iterative approach where
both γ and vk are adjusted iteratively. The main algorithm consists of the 5 following
steps [4]:

Step 1 Set v(0) ← u, where u are the reference parameters. Define a value for γ.

Step 2 Draw N samples {X1, . . . ,XN} from f(X;v(t−1)).

Step 3 Sort the values of h(Xi) such that h(1) ≤ . . . ≤ h(N) and set γt to be the (1 − ρ)
quantile of {h(i)} where ρ is not too small, for example ρ = 0.01. If γt > γ set
γt ← γ.

Step 4 For all parameters vk, k = 1, . . . , n set

v
(t)
k ←

∑N
i=1 I(h(Xi) ≥ γt) ·W (Xi;u,v

(t−1)) ·Xik∑N
i=1 I(h(Xi) ≥ γt) ·W (Xi;u,v(t−1))

. (2.32)

Step 5 If γt < γ, repeat step 2-5.

When the convergence criterion is fulfilled, namely γt = γ, use the final parameter vector
v(t) for importance sampling as described in section 2.3.

Note that the toy example in 2.3.1 concerns estimation of a rare event probability. In fact,
figure 3 was not only constructed to illustrate degeneracy, but also to visualize the cross
entropy method. The mean µg of the gaussian distribution g in figure 3c was centered
at the point that minimizes the cross entropy between g and g∗. The parameter value
was found by numerical integration of equation (2.29). Thus µg is the solution to the
deterministic CE problem when µ is the only free parameter. In fact, the mean of g and
g∗ were seen to coincide.

Finally, an important remark on the area of use for the CE algorithm must be made. In
the above discussion, the CE algorithm was presented as a tool to estimate a rare event
probability limited to the form l = E[I{h(X) ≥ γ}]. The CE algorithm is however often
used to estimate the expected value of h instead, i.e θ = E[h(X)]. This works well if the
region of sample space where h(X) ≥ γ constitutes the important samples for estimating
θ.
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2.5 The bootstrap

Since Monte Carlo estimates are stochastic quantities, it is crucial to obtain a measure of
uncertainty. A straight forward way of doing so is to run multiple independent simula-
tions and calculate e.g the standard deviation from the independent estimates, but this
is obviously inefficient. The bootstrap [5] offers an automatic procedure of assessing both
the uncertainty and distribution of the Monte Carlo estimator based on the samples from
a single simulation. The general principle is to use a so called bootstrap distribution as a
representation for the true distribution of the estimator.

Suppose that one uses a sample of N random vectors X = {X1, . . . ,XN} to estimate the
expected value of the target function

θ̂ = θ̂(X) =
1

N

N∑
j=1

h(Xj). (2.33)

A bootstrap sample X† is obtained by resampling observations from the sample N times
with replacement.

X† = {X†
1, . . . ,X

†
N }. (2.34)

Thus the bootstrap sample is a random permutation of the original sample where each
observation may appear several times. The bootstrap distribution fB is the distribution
of the estimator θ̂(X†)

θ̂(X†) ∼ fB. (2.35)

If N is sufficiently large, the bootstrap distribution is a good representation of the esti-
mator’s true distribution

θ̂(X) ∼ f. (2.36)

A theoretical explanation of why this principle works is outside the scope of this thesis, the
reader is directed to [5] for a comprehensive and educational text book on the bootstrap.
In the following, the bootstrap principle will be illustrated through a specific example.

Example. (Bootstrap standard error.) Assume one wants to evaluate the standard error
of the estimator θ̂(X) in equation (2.33). This is done as follows:

1. Draw B bootstrap samples X†
1, . . . ,X

†
B.

2. Compute the bootstrap standard error as

σB =

(
1

B − 1

B∑
b=1

[
θ̂(X†

b)− θB

]2)1/2

, (2.37)

where θB is the bootstrap mean

θB =
1

B

B∑
b=1

θ̂(X†
b) . (2.38)

Other statistics such as confidence intervals, quantiles and even bias can be evaluated in
the same manner. And what makes the bootstrap an extremely useful tool is that no
knowledge of the distribution of X is required.
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2.6 Sequential Monte Carlo simulation

There are two main simulation approaches for reliability evaluation of power systems,
sequential and non-sequential Monte Carlo simulation. The sequential MCS simulates
the stochastic processes in the system chronologically, and each MC sample describes
the history of the system state throughout the simulation period. Non-sequential MCS
assumes that the system follows a continuous-time Markov chain, and system states are
sampled from the stationary distribution. This section will give a general description
of sequential MCS as well as a condition dependent stochastic model for transformers
developed at SINTEF.

In the sequential MCS, the evolution of each component state Xi(t) is simulated chrono-
logically. The component states are assumed independent throughout this thesis, thus
each component can be simulated individually. The component states are combined to a
system state time series X(t) = [X1(t), . . . , Xn(t)], and the system time series can be used
to find the system available capacity and interrupted power as a function of time, this is
illustrated in figure 4. Reliability indices can be estimated by Monte Carlo integration
when a sufficient number of system state time series have been simulated. The (crude)
EENS estimator is defined as follows

ÊENS =
1

N

N∑
i=1

∫ T

0
Pinterr[t,Xi(t)]dt. (2.39)

Figure 4: The sequential MCS combines component state time series to a time series of
system available capacity. The area of the shaded regions where the load is higher than
SAC is ENS.

The main advantage of the sequential MCS is that it does not put any restrictions on
the type of stochastic process that govern component states. The two state continuous-
time Markov chain described in section 2.1 is a useful and simple stochastic model for
component states. However, this model assumes a constant failure rate and is unable to
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describe processes that lead to time dependencies such as the effect of component aging
and maintenance schemes. The following subsection will describe a condition dependent
stochastic model for the failure of transformers which has been developed at SINTEF. A
large part of the work that will be presented in this paper uses this model in sequential
MCS.

2.6.1 A condition dependent stochastic model for component failure

The condition dependent probabilistic model for transformer failure [8] has been developed
by Jørn Foros and Maren Istad at SINTEF Energy Research, and will be reffered to as the
Foros-Istad model from here on. The model is further adapted and integrated in reliability
of supply analysis in [25, 26]. The Foros-Istad model separates failures in the active and
non-active part of the transformer and both failure modes will put the trasformer out of
operation. The stochastic model for the active part is the only condition dependent and
explicitly time dependent failure mode.

Failures in the active part of the transformer, i.e core, windings and oil are labeled wear-out
failures. A Norwegian database for scrapped transformers is used to curve fit a cumulative
distribution for the time to failure. The cumulative distribution Fw(s) is a function of
apparent age s, and not chronological time t. Apparent age is a direct measure of technical
condition, and is introduced to reflect the fact that the lifetime of a transformer should
depend on condition and not directly on age. As an example, an old transformer can have
a low apparent age after maintenance. Apparent age is in turn related to a health index
(HI), which is a number between 0 and 1, where 1 is the best technical condition

HI = HI(s),

s = HI−1(hi).
(2.40)

Time to failure in the non-active part is assumed to be exponentially distributed with
rate λml, where the subscript ”ml” is short for mid-life failure. After a failure of any
kind, the sojourn time before the transformer is repaired or replaced is modeled as an
exponential random variable with rate µ. In addition to failure and repair, the Foros-Istad
model incorporates a simple maintenance scheme. When the transformer is in operation,
preventive maintenance is conducted at random times which are exponentially distributed
with rate λpm. The effect of preventive maintenance is to update the health index to
HI = 1 giving an apparent age s = HI−1(1) = 0.

The wear-out failure mode introduces time dependence in the failure rate. Although
it is the time to failure PDF and not the failure rate which is directly involved in the
simulation, it is instructive to examine how the failure rate depends on the failure modes.
The two failure modes are independent, and thus the total failure rate λtot is the sum of
the wear-out failure rate λw and the mid-life failure rate

λtot = λw + λml , (2.41)

this is known as a competing risk model. λw is a function of apparent age and is given by
the definition of the failure rate function [18]

λw(s) =
fw(s)

1− Fw(s)
, (2.42)

where f ≡ dF
ds . The wear-out failure rate as a function of chronological time is

λw(t) = λw(s) ·
ds

dt
=

fw(s)

1− Fw(s)
· ds
dt

. (2.43)
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The full stochastic process including failure, repair and maintenance is illustrated in figure
5.

0

1, w

1, ml

λw(t)

λml

µ

λpm

µ

Figure 5: State diagram describing the probabilistic failure model. Figure courtesy of
H̊akon Toftaker.

Sequential simulation of this stochastic process results in a sequence of alternating times-
to-failure τ0 and repair times τ1

T = {τ (1)0 , τ
(1)
1 , τ

(2)
0 , τ

(2)
1 , . . .}. (2.44)

This sequence specifies the evolution of the component state X(t). The τ0 marks the
points in time when the component makes a transition from up-state to down state 0→ 1,
and the τ1 marks transitions from down-state to up-state. Naturally, the simulation period
must be finite, this leads to a partial censoring of the last transition time in (2.44). The
censoring effect will have an important impact on the importance sampling discussed in
section 6.3.

The list at the end of section 2.2 about the applications of Monte Carlo integration can
underline why it is challenging to calculate reliability indices by analytical methods when
the component states follow stochastic processes like the one described by the Foros-Istad
model. In fact the problem exhibits all of the first three features that were listed. 1) The
target function h(X) is in this case ENS, and evaluating ENS requires an optimal power
flow analysis of the whole power system. 2) The number of random variables involved is
unknown since the number of transitions in (2.44) within the simulation period will vary.
Thus the dimension of the integration domain can in principle be infinite. 3) The samples
X(t) are generated from an ivolved stochastic process and are not sampled from a known
PDF.

2.7 Non-sequential Monte Carlo simulation

The non-sequential Monte Carlo simulation of the power system assumes that the com-
ponent states follows a continuous-time Markov Chain as described in section 2.1. The
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stationary probabilies for a single component are

P1 = P{X = 1} = µ−1

λ−1 + µ−1
, (2.45)

P0 = P{X = 0} = λ−1

λ−1 + µ−1
. (2.46)

P1 is known as the unavailability and is conventially denoted u. Using this notation, the
stationary distribution for each component can be written as

P (X = x) = ux(1− u)1−x, (2.47)

this is a Bernoulli distribution with parameter u. Since component states are independent,
the joint distribution of the system is simply the product of the component distributions

f(x) =

n∏
i=1

uxi
i (1− ui)

1−xi . (2.48)

In the non-sequential approach, system states X are sampled from f , and the crude
estimate of EENS is

ÊENS =
1

N

N∑
i=1

∫ T

0
Pinterr(t,X)dt =

1

N

N∑
i=1

T · P interr(X), (2.49)

where P interr(X) is the time-average of interrupted power over all operating states.
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3 Constructing a reference case for model verification

Since this work concerns development of new Monte Carlo techniques, it is practical to
use a simple test system for interpretability of results and low run time in the testing
phase. A simple transmission network was constructed which is shown in the line diagram
in figure 6. The test system was constructed during the authors summer internship and
this section is a recapitulated from [3]. The network consists of two generating units, two
transmission lines, two transformers and two delivery points. The new test system is based
on the OPAL test network [14], the only difference being that two of the transmission lines
have been replaced by transformers which convert the voltage of 132kV supplied by the
generators to 66kV at the delivery points. The transformers are introduced for use of the
Foros-Istad transformer failure model in sequential MCS as described in section 2.6.1. The
reliability analysis considers only failure in lines and transformers, which will sometimes
be referred to by the common term branch in this thesis.

Figure 6: Line diagram of the test network.

The OPAL test network comes with a load curve which is also used for the new test
network. The load curve consists of 2 operational states, a state of high load through the
winter months December-February and a state of low demand the rest of the year. The
load on delivery point L1 is higher than at L2 in both operating states.

In order to obtain reference results for the new test network, an optimal power flow analysis
with all contingencies up to 2nd order was performed, and reliability indices were calculated
with the analytical OPAL model [14, 23]. The results show that there is redundancy in the
system, and only contingencies of 2nd order or higher give loss of load with the provided
load curve. The EENS contribution from each 2nd order contingency is listed in table
2. Note that one of the 4 possible 2nd order contingencies, namely simultaneous outage
of branch (1, 4) does not lead to loss of load. The failure and repair rates used in this
reference case are given in table 1.
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Table 1: Probability parameters of the reference case.

Branch # Failure Rate λ [yr−1] Repair time 1
µ [hrs]

1 2 20
2 0.0036 367.6
3 0.0036 367.6
4 5 10

Table 2: Annual EENS for 2nd order contingencies. The simultaneous outage of branch
i and j is denoted (i, j).

Contingency EENS [kWh]

(3, 4) 311.6
(2, 4) 528.8
(2, 3) 22.2
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4 Long-term reliability analysis

This section will demonstrate sequential MCS using the Foros-Istad model and how the
time dependent failure rate of transformers is expressed on system level in terms of time
varying EENS. This effect makes the sequential model useful for long term reliability
analysis. The work presented in this section was done during the authors summer intern-
ship, and several different case studies on long term reliability analysis are presented in
[3]. Prior to using the Foros-Istad model, the sequential simulation model was verified by
comparison with the reference case in section 3.

4.1 Verification of the sequential Monte Carlo model

Sequential simulation of each component state where time-to-failure τ0 and repair times
τ1 are exponentially distributed with parameters λ and µ is a direct simulation of the
continuous time Markov Chain described in section 2.1. Therefore the estimated EENS
defined in equation (2.39) should converge towards the analytical reference case. This
specific sequential simulation model will be referred to as the simple sequential model
from now on. The estimated annual EENS for 2nd order contingencies is plotted together
with the analytical values in figure 7. The uncertainty in the estimate is visualized by box
plots of the bootstrap distribution which was introduced in section 2.5.

Figure 7: EENS per contingency state for the simple sequential model with N=105

samples.

The boxplots show that the uncertainty in EENS is big, even for a relatively large sample
size, and the relative standard deviation for the two first contingencies in the plot is 36%
and 21 % respectively. Interestingly, the simulation captures no ENS from contingency
(2, 3) which is the simultaneous outage of both transformers. This is reasonable since the
failure rate of the transformers is far smaller than that of the lines, making the probablility
of simultaneous outage very low. However the expected repair time of the transformers is
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considerably longer than for lines which explains the fact that the analytical EENS for
(2, 3) is small but not negligible. The large variance in the EENS estimates, and the fact
that the (2, 3) contingency was not captured demonstrates the computational challenge of
estimating means that are dominated by rare events with crude Monte Carlo simulation.

4.2 Long term EENS prediction with the sequential model

As described in section 2.6.1, the effect of aging and preventive maintenance in the Foros-
Istad model makes the instantaneous failure rate of transformers time dependent. This
section presents a case study with EENS prediction over 35 years where the inital health
index of both transformers is set toHI0 = 0.8. This corresponds to an OK initial condition.
The health index relation and time-to-failure distribution used in this thesis and in case
study [26] are

s = 10 ln

(
1− hi

hi

)
+ 53,

f(s) = n(µ = 60, σ = 18),

[s] = years.

(4.1)

A time horizon of 35 years was chosen because this was seen to capture the transient
behaviour of the failure rate well. The estimated failure frequency ω(t) of a transformer
with HI0 = 0.8 is shown in figure 8. Note that the failure frequency is conceptually
different to the failure rate λ(t). λ is the instantaneous transition rate from up-state to
down-state, while ω is the expected frequency of failure which is also influenced by the
outage time. However, the numerical value of ω and λ is similar since the outage time is
short compared to the time between consecutive failures. The failure frequency is seen to
increase to a maximum around year 20 before it decreases steadily until the end of the
period. This can be explained by competing factors which drive the failure rate up or
down. The effect of component aging and deteriorating condition drives the failure rate
up while preventive maintenance and replacement due to failure both have the effect of
restoring the transformer to ”new” condition, which drives the failure rate down. The
effect of aging is dominating until year 20, but in the following years the transformer
will have been replaced in a considerable portion of the MC samples and the failure rate
decreases.
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Figure 8: Estimated failure frequency of a transformer with HI0 = 0.8. The grey envelope
marks the bootstrap standard deviation.

The EENS estimated from N = 105 samples is plotted in figure 9. The transient be-
haviour of the transformer failure rate is clearly expressed on system level as the EENS
curve has the same general shape as the failure frequency. The confidence intervals are
made from bootstrap quantiles and again shows the challenge of estimating EENS ac-
curately even for a small test system. It should be stressed that the confidence intervals
represent the distribution of the EENS estimator, and not the distrubution of ENS.
The distribution of ENS is extremely skewed as most of the samples give zero ENS while
the few samples that contain contingencies leading to interruptions give very large values.
The relative standard deviation of ENS is seen to lie in the range 20-60. The reader is
directed to [3] for a more detailed discussion on the ENS distribution.
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Figure 9: Long term EENS prediction with transformers in good initial condition. The
P95 and P80 envelopes mark confidence intervals made from bootstrap quantiles.
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5 Non-sequential Monte Carlo Simulation and Importance
Sampling

The non-sequential Monte Carlo model as described in section 2.7 was implemented as a
test bed for importance sampling and the cross entropy method. With the non-sequential
model, the joint distribution of the system (2.48) is straightforward to evaluate. This is an
essential point since the joint distribution appears in the importance sampling estimator
(2.14) as the numerator in the likelihood ratio. Another advantage of using the non-
sequential model in this first approach is that estimating reliability of supply indices using
importance sampling with non-sequential MCS is relatively well studied, see e.g [22, 7]
for application of the cross entropy algorithm or see [15] for a similar but more general
approach called the variance minimization method [20]. The two following subsections
will present results from importance sampling with a user defined importance sampling
density, and then application of the cross entropy algorithm which automates the search
for a good importance sampling density. The results were obtained during the authors
summer internship [3], but the discussion and interpretation in this thesis is based on a
better theoretical foundation.

5.1 Using a predefined importance sampling density

Using the definition of the importance sampling estimator (2.14), the joint distribution
of the system (2.48) and the crude EENS estimator (2.49), an importance sampling
estimator of EENS can be constructed

ẼENS =
N∑
i=1

T · P interr(Xi) ·
f(Xi;u)

g(Xi)
. (5.1)

When the importance sampling density is limited to have the same form as f but with
different distribution parameters, the likelihood ratio reads

W (x;u,v) =
f(x;u)

f(x;v)
=

n∏
i=1

uxi
i (1− ui)

1−xi

vxi
i (1− vi)1−xi

. (5.2)

From table 1 and the definition of unavailability (2.45), the reference parameters of the
test system are u = [4.94·10−3, 1.68·10−4, 1.68·10−4, 6.16·10−3]. The importance sampling
parameters were set to v = [0.5, 0.5, 0.5, 0.5] which corresponds to a system where the un-
availability is much higher for all components. Since the non-sequential model assumes a
steady state distribution, the results should converge towards the analytical reference case
in section 3. EENS for 2nd order contingencies from importance sampling is plotted to-
gether with the corresponding crude estimate for comparison in figure 10. The importance
sampling estimate shows a vast improvement in precision over the crude estimate. The
crude simulation only captures ENS for one of the contingencies, but when importance
sampling is used, contributions from all contingencies are estimated with negligible uncer-
tainty. It should be pointed out that the non-sequential model with importance sampling
consequently give slightly higher EENS values of roughly 1% compared to the analytical
model, and this systemic error has not been accounted for.
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(a) (b)

Figure 10: Annual EENS with (a): Importance sampling, (b): Crude Monte Carlo.
N = 106 samples were used in both simulations.

In this case ”guessing” on a suitable parameter vector v was very efficient and the method
works well for a large range of parameter values. In cases where the dimension of the sample
space is high, or the expression for the likelihood ratio is more complicated, finding suitable
parameters becomes increasingly challenging. This is due to a problem called degeneracy
of the likelihood ratio which was briefly discussed in section 2.3.1 leading to high variance
in the importance sampling estimate.

5.2 Using the cross entropy algorithm

A slightly modified version of the Cross Entropy algorithm described in section 2.4 was
applied to the non-sequential model. Recall that the goal of the cross entropy algorithm
is to find the parameter vector v that minimizes the distance in the cross entropy sense
between f(x;v) and the theoretically optimal importance sampling density. In the non-
sequential model, each value of P interr corresponds uniquely to a value of ENS by equation
(2.49)

ENS(X) = T · P interr(X), (5.3)

therefore P interr was used as the target function instead of ENS. Since the joint distribu-
tion of the system given in (2.48) belongs to the natural exponential family, the stochastic
counterpart in equation (2.32) can be used directly and reads

v
(t)
k ←

∑N
j=1 I{P interr(Xj) ≥ γt} ·W (Xj ;u,v

(t−1)) ·Xjk∑N
j=1 I{P interr(Xj) ≥ γt} ·W (Xj ;u,v(t−1))

(5.4)

Considering contingencies up to 2nd order, there are only four possible values for P interr,
three values for the contingencies that lead to interruptions in table 2, and zero for all
other contingencies. Their numerical values are

P interr : {0, 41250kW, 70000kW, 111250kW}. (5.5)

In the first approach, the parameters were updated directly using (5.4). And the stopping
criterion was set to γ = 1000kW. Note that any choice of gamma between 0 < γ <
41250kW would have the same effect. With this approach, the importance sampling
distribution was seen to degenerate to an atomic distribution with the entire mass centered
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at one point in the sample space. This is a known behaviour of the cross entropy algorithm
when applied to finite support discrete distributions and it can even be desirable in cases
where the cross entropy method is used in optimization problems. Degeneration of the
importance sampling distribution is further discussed in [4, 20]. The ISD was seen to
degenerate to either of the three contingencies that lead to interruptions, this happens
when the unavailability of two of the components is set to 1, and the two remaining are
set to 0. As an example, the parameters v = [0, 1, 0, 1] leaves the full mass of the ISD
on contingency (2, 4). The effect of this degeneration is that the importance sampling
estimator finds the analytical EENS value of the corresponding contingency with N = 1
sample.

Although interesting, this is clearly unwanted behaviour. To prevent the parameter vector
from changing too rapidly or ending up at boundaries in parameter space, the updating
formula for the parameter vector (5.4) was modified to

v
(t)
k ← v

(t−1)
k + α · (v∗k

(t) − v
(t−1)
k ) · v(t−1)

k (5.6)

Where v∗k is calculated from (5.4) and α ∈ (0, 1] is a tuning parameter that controls the
step length. In addition, the stopping criterion was changed to γ = 100000kW which lies
between the highest and second highest value in (5.5). The trajectory of the parameter
vector in the modified cross entropy method and the corresponding EENS estimates are
shown in figure 11. The tuning parameter was set to α = 0.5 , and 105 samples were used
in each iteration. N = 106 samples were used in the final estimate. Figure 11 (a) shows
that the unavailability of branch 4 is initially increased towards 1, but the convergence
criterion is not met until v4 is turned down to a moderate level such that contributions
from contingencies where branch 4 is up can also be captured. The unavailability of branch
2 and 3 are also increased, but the unavailability of branch 1 remains very low. This is
promising since there are no 2nd order contingencies where branch 1 is out that lead to loss
of load. The importance sampling estimates using the final values in the parameter-plot
again show a huge improvement over the crude estimate, and the uncertainty is negligible.

(a) (b)

Figure 11: (a): Trajectory of the parameter vector in the cross entropy algorithm. (b):
Importance sampling estimate of EENS using the parameter vector from the cross entropy
algorithm.

A natural extension would be to investigate how the CE-algorithm works with the non-
sequential model on a larger and more realistic system. However, the non-sequential model
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was mainly implemented for the purpose of familiarizing with importance sampling and
the CE-method, and the main goal of this research is to apply variance reduction tech-
niques to sequential MCS. It should be mentioned that there are established methods to
tackle high dimensionality with the CE-method. The so called screening method identifies
bottleneck parameters which are the parameters that are most important for increasing the
precision. Adjusting only the bottleneck parameters limits the problems connected to high
dimensionality in the likelihood ratio. This idea will be discussed in a different context
in section 7.3. The screening method is described in [20] and the method is applied to
reliability analysis in [12, 16].
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6 Sequential Monte Carlo Simulation and Importance Sam-
pling

This chapter will discuss and present results from importance sampling with the simple
sequential model. Recall from section 4.1 that simple sequential means direct simulation of
the continuous time Markov chain with transition rates µ and λ. Two different likelihood
ratios were tested, one based on the steady state distribution, and one based on the
observed transition times. The first gave similar improvements in precision as was seen
with the non-sequential model, the drawback is that its use is limited Markov processes.
The latter can in principle be applied to any semi-Markov process e.g sequential simulation
of the Foros-Istad model. Although it was verified that the importance sampling estimator
is unbiased with this choice of likelihood ratio, severe problems were encountered with
regards to degeneracy.

6.1 Two different likelihood ratios

A derivation of the two different likelihood ratios used with the simple sequential model
will follow. The first is simply the same likelihood ratio used with the non-sequential
model, namely

Wx(x;u,v) =
f(x;u)

f(x;v)
=

n∏
i=1

uxi
i (1− ui)

1−xi

vxi
i (1− vi)1−xi

. (6.1)

In order for this likelihood ratio to be valid, the Markov chain must have been in operation
long enough to reach its stationary distribution. A way of avoiding to simulate the ”burn
in” time of the chain is to draw the initial system state directly from the stationary
distribution (2.48). This likelihood ratio will be referred to as the steady state likelihood
ratio in the remainder of this thesis, and it is denoted Wx implying that it is evaluated
directly with the state vector of the system with no explicit time dependency.

The second likelihood ratio that was used assumes that the system can be described by
a semi-Markov process. Formally, this is a process that can be in any one of M states
labeled 1, . . . ,M and each time it enters state i it stays there for a random amount of time
with distribution fi and mean µi before it jumps to any of the other states with transition
probability Pij [18]. Note that the continuous time Markov chain is a special case of a
semi-Markov process where the times between transitions are exponentially distributed.
Adopting the notation from [9], the trajectory J of the state vectorX(t) is uniquely defined
by a sequence of tuples (t1, s1), . . . , (tK , sK) where ti are the transition times and si are
the corresponding states. The likelihood of the trajectory for a fixed number of transitions
K is then

l(J) =

K∏
i=1

fsi(ti − ti−1) · Psi−1,si . (6.2)

The states of components in the system are independent, and therefore one can assign an
independent trajectory to each component and write the likelihood for the system as a
product of these. A component can be in either of two states, and if the component is in
state 1 it will transition to state 0 with probability 1 and vice-versa, thus P1,0 = P0,1 = 1.
The likelihood in (6.2) is then reduced to

l(J) =
K∏
i=1

fsi(ti − ti−1), si ∈ {0, 1}, (6.3)
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where the sequence of states si alternates between 0 and 1. and f0 and f1 are the dis-
tributions of the times-to-failure τ0 and repair times τ1 correspondingly. However, the
simulation is not run for a fixed number of transitions, but rather a fixed time period.
Therefore, a variable number of transitions will be observed and the last transition time
will be partially censored in the sense that one knows only that the transition time exceeds
the observation window, but not by how much. [17] explains how the likelihood can be
expressed with different types of censoring, and the censored version of (6.3) is

l(J) =

(
K−1∏
i=1

fsi(ti − ti−1)

)
· (1− FsK (T − tK−1)), (6.4)

where T is the end time of the simulation and GsK is the cumulative distribution of gsK .
It should be stressed that the number K is known only after the time series has been
observed. Now the likelihood ratio for a single component can be written as

wt(J) =

(
K−1∏
i=1

fsi(ti − ti−1)

gsi(ti − ti−1)

)
· 1− FsK (T − tK−1)

1−GsK (T − tK−1)
, (6.5)

where fsi are the reference distributions, gsi are the ISDs and FsK and GsK are the
corresponding cumulative distributions. The likelihood ratio for the system trajectory is
then

Wt(J1, . . . ,Jn) = wt,1(J1) · . . . · wt,n(Jn), (6.6)

and it will simply be referred to as the trajectory likelihood ratio from now on.

6.2 Using the steady-state likelihood

Similar to the non-sequential case from section 5.1, importance sampling was done with a
user defined parameter vector. In contrast to the non-sequential representation which is
fully specified by the unavailability, the sequential model is parameterized by both µ and λ.
There is an infinite set of values for λ and µ that give the same value for u, therefore either
µ or λ should be fixed when the parameter vector is distorted for importance sampling.
The repair rate was fixed to the reference values, and the failure rates were changed
such that the resulting unavailability was v = [0.1, 0.1, 0.1, 0.1]. EENS estimates from a
simulation with N = 104 samples are shown in figure 12. The results should be compared
to the crude estimate in figure 7, and the improvement in accuracy is comparable to the
non-sequential case. The sequential model was seen to consistently overestimate EENS
when compared to the analytical model and the cause was identified to be an inconsistency
between the models in the number of hours that represent a full year. No attempt was
made to fix the inconsistency since it has little or no practical consequence.
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Figure 12: Annual EENS using the steady state likelihood ratio.

As mentioned, use of the steady state likelihood ratio is limited to the simple sequen-
tial model. Sequential simulation generally requires more computational effort than non-
sequential models, and one might be tempted to draw the conclusion that sequential
simulation of a continuous time Markov Chain is obsolete since the same results can be
obtained from non-sequential or analytical methods with considerably less CPU time. This
is indeed true for the simple test case considered here. However, a sequential simulation
can give valuable information which is not readily obtained from non-sequential methods
if there are time-dependencies in other parts of the system, examples could be stochastic
variation in load or generating capacity. The latter is highly relevant for modeling renew-
able energy sources. One could also apply this importance sampling method to systems
that contain both Markovian and non-Markovian components. This is done by applying
importance sampling with the steady state likelihood ratio to the Markovian part of the
system while the distributions of non-Markovian components are left unchanged. Since the
stationary distribution of the simple sequential model is the same as in the non-sequential
case, the cross entropy algorithm described in section 5.2 can readily be applied to the se-
quential model with minor adjustments. The literature on sequential cross entropy Monte
Carlo simulation is rather scarce compared to that on non-sequential methods. Reference
[6] gives a good comparison between non sequential, quasi-sequential and sequential meth-
ods and applies the cross entropy method to a system of Markovian components combined
with a stochastic wind power model. [27] applies a similar sequential cross entropy method
with emphasis on including samples from the optimization stage in the final estimates.

6.3 Using the trajectory likelihood ratio with censoring

The main motivation for using the trajectory likelihood ratio is that it can be applied to a
general semi-Markov process such as the Foros-Istad model. No references that apply this
type of likelihood ratio to system reliability analysis have been found by the author, and
therefore a validation of the trajectory likelihood is called for. A test case was constructed
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where the unavailability of a single Markovian component was estimated by importance
sampling. This problem was chosen since the exact value of the unavailability is known.
Recall that the definition of unavailability originates from the stationary distribution of
the continuous time Markov Chain, and the simplest way of obtaining a stationary chain
is to draw the initial state from the stationary distribution. This introduces an additional
factor in the likelihood, namely the likelihood of the initial state under the stationary
distribution. The trajectory likelihood then reads

l(J) = Ps0 ·

(
K−1∏
i=1

fsi(ti − ti−1)

)
· (1− FsK (T − tK−1)) , si ∈ {0, 1} (6.7)

where
Ps = us(1− u)1−s, f0(t) = Exp(1/λ), f1(t) = Exp(1/µ).

The importance sampling estimator for component unavailability is

ũ =
1

N

N∑
i=1

Tout(Ji)

T
·Wt(Ji), (6.8)

Where Tout(J) is the total time spent in state 1 for a given sample. For the test case, a
failure rate of λ = 0.0036 and repair rate µ = 21.94 was used, which corresponds to the
parameters for one of the transformers in table 1. These parameters give an unavailability
of u = 1.64 · 10−4. For the importance sampling, the repair rate was fixed to the reference
value and different scaling factors for λ were tested. The importance sampling estimates
and their bootstrap distributions for the different scaling factors are shown in figure 13,
N = 105 samples are used for each estimate. Note that the leftmost box plot with scaling
factor 1 is the crude estimate. The precision of the estimate is clearly improved as the
failure rate is increased, and a scaling factor of roughly 100-500 seems to give very good
precision. The increased variance for the highest failure rates are a consequence of the
degeneracy of the likelihood ratio, and the box plot for the highest scaling factor of 4096
shows that the estimate is starting to collapse.

Figure 13: Estimated unavailability for different scaling factors of the failure rate using
Wt.
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The cause of the degeneration of the importance sampling estimator is in this case twofold.
The most obvious cause is that each factor in the likelihood ratio involving λ will typically
take on more extreme values when the importance sampling parameter is far from the
reference value. The less obvious source of degeneracy comes from increasing dimension.
Recall that a variable number of transitions K can occur for each trajectory that is sam-
pled, and each transition is associated with a random variable, namely the time since the
previous transition. Phrased differently, both the target function and the likelihood ratio
is a function of a random vector with variable dimension. The dimension will tend to
increase when the failure rate is higher since transitions from 0→ 1 are more frequent. A
peculiar consequence of this issue is that the importance sampling estimate will be more
prone to degeneracy for longer simulation periods T .

The trajectory likelihood ratio was also tested for EENS estimation, and result were
compared to the reference case. With multiple components there is an additional increase
in dimension since the system likelihood ratio is a product of each component likelihood
ratio, thus one should expect that the importance sampling estimator is even more vulner-
able to degeneracy. Finding suitable parameters for importance sampling required some
trial and error. It was found that leaving the failure rates of the lines i.e branch 1 and
4 unchanged and only increasing the failure rate of the transformers gave good results.
When the failure rate of the lines was changed by a moderate factor, the estimate was
seen to break down completely in the sense that all observed values of the likelihood ratio
were very close to zero giving practically zero EENS. Figure 14 shows the importance
sampling estimate of EENS with N = 105 samples when the failure rate of both trans-
formers is scaled by a factor of 50, and clearly the precision is considerably better than
the crude estimate in figure 7. Although this is an interesting result in itself, importance
sampling with Wt is not feasible in practice. Even for a test system of only four compo-
nents, finding suitable parameters by manual search was challenging and for a larger and
realistic system this task would be intractable. The cross entropy algorithm can not easily
be applied to automatically find optimal parameters. The main reason is that one knows
only the expression for the likelihood, and not the PDF of the system trajectory, and the
PDF must be known in order to solve the cross entropy optimization problem (2.29).
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Figure 14: Importance sampling estimate of EENS using Wt.
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7 Resampling

The research in section 6 did not result in a viable importance sampling technique for
non-markovian components. This chapter will present importance resampling as a way to
circumvent the use of intricate likelihood ratios, and section 7.2.3 proposes a novel method
named subspace partitioning to find a close-to-optimal importance resampling distribution.
Finally, the subspace partition method is used to reduce the variance of long term EENS
predictions with the Foros-Istad model in section 7.3.

7.1 Resampling from the empirical distribution

In the resampling approach, a set of component samples, i.e component trajectories, are
considered as an empirical distribution. Trajectories are independently resampled from the
empirical distribution of each component and are then recombined to form new system
trajectories. First, a definition of the empirical distribution is in place.

Definition. (The empirical distribution [5].) Having observed a set of N random samples
{x1, . . . , xN} from a distribution f , the empirical distribution is the discrete distribution
f̂ that assigns the probability 1/N to each observation xi. f̂ can be expressed as

f̂(x) =

N∏
i=1

N−I{x=xi}. (7.1)

When N trajectories {j1, . . . , jN} are sampled for each component, the joint empirical
distribution is

f̂(j1, . . . , jn) =
n∏

k=1

N∏
i=1

N−I{jk=jki}. (7.2)

Since each component trajectory is resampled independently, there is a vast number of
possible combinations as the sample space containsNn points. Therefore it is reasonable to
resample M > N system trajectories, and resampling offers a computationally inexpensive
increase in sample size which again leads to better precision. However, increasing the
sample size must be done with caution, and the improvement in precision is somewhat
limited. Consider the example where one has sampled N = 100 component trajectories
for the 4-branch test system. The sample space consists of 1004 = 108 elements, and it is
tempting to think that it is appropriate to choose M in the order of millions. However,
the case may be that the precision of reliability indices is terrible no matter how large M
is. The reason is that successful resampling is dependent on the empirical distribution f̂
to be a good representation of f . When N = 100, f̂ may be a very poor representation
of the true distribution. The failure rate of the transformers is λ = 0.0036, and if the
simulation period is T = 1 year, only about 0.36% of the trajectories will visit the failure
state on average. Thus N = 100 trajectories for the transformers will typically contain no,
or very few outages and obviously f̂ has very poor resolution in the interesting region of
the sample space. The takeaway is that N must be large enough to capture a considerable
number of outages, and it is pointless to increase the sample size by a very large factor.

To found the above discussion on a better theoretical basis, it is useful to introduce the
concept of a resample mean, which is the expected value under the empirical distribution
defined by a sum over all Nn points in sample space.

θ† = Ef̂ [h(X
†)] =

∑
x1

. . .
∑
xn

f̂(x) · h(x). (7.3)
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Where the dagger denotes that X† is resampled from f̂ . Note that in the univariate case
n = 1, the resample mean is a superficial construction since it is equivalent to the sample
average or the crude MC estimate. By resampling, one estimates θ† by

θ̂† =
1

M

M∑
i=1

h(X†). (7.4)

Thus increasing M gives a better estimate of θ†

lim
M→∞

1

M

M∑
i=1

h(X†) = θ†. (7.5)

While increasing N makes θ† a better approximation of θ

lim
N→∞

(θ − θ†) = 0, (7.6)

where θ = Ef [h(X)] as usual.

7.2 Importance resampling

The combined methods of resampling and importance sampling is called importance resam-
pling. There are some interesting papers concerning importance resampling to estimate
bootstrap distributions e.g [13, 11]. The resampling approach described in the previous
section is not a variant of the bootstrap principle, therefore these articles are not directly
relevant to the problem. Nonetheless, these references have come to use in defining some
of the mathematical framework which is somewhat similar.

Importance resampling is done by resampling from an ISD ĝ that is different from the
empirical distribution f̂ , and the goal is to estimate θ† with better precision. ĝ is con-
structed by assigning a probability weight vik to each observation Xij , where i = 1, . . . , N
and k = 1, . . . , n. The importance resampling estimator is

θ̃† =
1

M

M∑
i=1

h(X†) · f̂(X
†)

ĝ(X†)
. (7.7)

As for conventional importance sampling, there exists an optimal resampling distribution,
namely

ĝ∗(x) =
h(x) · f̂(x)

θ†
. (7.8)

Note that the empirical distribution f̂ is a finite support discrete distribution, and the
solution to the cross entropy problem for a general finite support discrete distribution will
be derived in the following subsection.

7.2.1 The cross entropy solution for a finite support discrete distribution

Let X = (X1, . . . , Xn) be a random vector where each component is an independent
discrete random variable with finite support

Xk ∈ {a1k, . . . , amk}.
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The joint distribution of X can be written as

f(x;u1, . . . ,un) =

n∏
k=1

fk(xk,uk), (7.9)

where

fk(xk,uk) =

m∏
i=1

uik
I{xk=aik}. (7.10)

Now one wants to find the parameters V ≡ (v1, . . . ,vm) that minimizes D[g(x)∗, f(x;V)].
Using equation (2.28), the stochastic counterpart of this optimization problem can be
expressed as

V = argmax
vik

1

N

N∑
j=1

h(Xj)W (Xj ,U,W) ln f(Xj ,V), (7.11)

where

ln f(Xj ,V) = ln

n∏
k=1

m∏
i=1

vik
I{Xjk=aik}

=

n∑
k=1

m∑
i=1

I{Xjk = aik} ln vik.
(7.12)

The maximization problem (7.11) is subject to the n constraints that the marginal distri-
butions fk must be normalized

m∑
i=1

vik − 1 = 0. (7.13)

When the constraints have the form g = 0, the maximization problem (7.11) can be solved
by the method of Lagrange multipliers. Define the Lagrange function

L(v1, . . . ,vn, λ1, . . . , λn) ≡
N∑
j=1

h(Xj)W (Xj ,U,W)
n∑

k=1

m∑
i=1

I{Xjk = aik} ln vik −
n∑

k=1

λk

(
m∑
i=1

vik − 1

)
.

(7.14)

Now the cross entropy solution is given by the critical point of the Lagrange function

∂vikL = 0, (7.15)

∂λk
L = 0. (7.16)

To solve (7.15), we first calculate

∂vik ln f = ∂vik

n∑
l=1

m∑
q=1

I{Xjl = aql} ln vql =
n∑

l=1

m∑
q=1

δklδiqI{Xjl = aql}
1

vql

= I{Xjk = aik}
1

vik
,

(7.17)

and

∂vik

n∑
l=1

λl

 m∑
q=1

vql − 1

 =

n∑
l=1

λl

m∑
q=1

δklδiq = λk. (7.18)
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Then (7.15) is reduced to

N∑
j=1

h(Xj)W (Xj ,U,W)I{Xjk = aik}
1

vik
− λk = 0

=⇒ vik =
1

λk

N∑
j=1

h(Xj)W (Xj ,U,W)I{Xjk = aik}.

(7.19)

Now use (7.16) to determine λk

m∑
i=1

vik =
1

λk

N∑
j=1

h(Xj)W (Xj ,U,W)

m∑
i=1

I{Xjk = aik}︸ ︷︷ ︸
=1

= 1

=⇒ λk = λ =
N∑
j=1

h(Xj)W (Xj ,U,W).

(7.20)

Finally, the cross entropy solution for a multivariate finite support discrete distribution
with independent variables is

vik =

∑N
j=1 h(Xj)W (Xj ,U,W)I{Xjk = aik}∑N

j=1 h(Xj)W (Xj ,U,W)
. (7.21)

Strictly, the target function must not change sign to guarantee non-negativity of the
weights vik. This derivation is inspired from a similar proof found in [11] and generalizes
it to multiple dimensions.

7.2.2 Estimating optimal probability weights for importance resampling ENS

This subsection will use the results from section 7.2.1 to construct an importance resam-
pling estimator for EENS. When N trajectories are sampled for each component, the
joint empirical distribution of the system is

f̂(j1, . . . , jn) = f̂1(j1) · . . . · f̂n(jn) =
n∏

k=1

N∏
i=1

N−I{jk=jki}. (7.22)

This is a multivariate finite support discrete distribution, thus the resampling probability
weights that solve the CE problem can be estimated by equation (7.21). The stochastic
counterpart reads

vik =

∑M
j=1ENS(J†

j1, . . . ,J
†
jn)I{J

†
jk = jik}∑M

j=1ENS(J†
j1, . . . ,J

†
jn)

,

i = 1, . . . , N,

k = 1, . . . , n.

(7.23)

And the corresponding ISD is

ĝ(j1, . . . , jn;V) =
n∏

i=1

N∏
k=1

vik
I{ji=jik}. (7.24)
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The full simulation process is illustrated in figure 15, note that there are two resampling
steps, one for optimization and one for estimation. First M1 samples are drawn from the
empirical distribution, one may call this uniform resampling as all observations have the
same probability. The M1 samples are used to estimate the optimal probability weights
by equation (7.23). In the second resampling stage M2 samples are drawn according to
the ISD, these samples are used to estimate reliability indices.

Figure 15: Flow chart of the importance resampling method

Results from 3 different simulations, all with N = 104 and M1 = M2 = 106 are shown
in figure 16 and figure 17. When bootstrapping is applied between step 4 and 5 in the
process as illustrated in figure 15, the bootstrap distribution represents the distribution of
the resampling estimator for a given empirical distribution. I.e. the bootstrap distribution
corresponds to the conditional distribution of θ̂†|f̂ , where θ̂† is defined in equation 7.4.
Ideally, bootsrapping should be applied between step 1 and 2 instead as this would yield
the unconditioned distriution of θ̂†. However, steps 2-4 would then have to be repeated
as many times as the number of bootstrap samples which would be very time consuming.
In summary, the boxplots can be viewed as confidence intervals of the resample mean for
a given empirical distribution. The plots show that the variance is consequently lower for
importance resampling compared to uniform resampling. The estimates are relatively far
off from the analytical values which indicates that the resample mean is a poor approxi-
mation of the true mean for a sample size of N = 104. Figure 17 shows that importance
resampling is able to estimate EENS for contingency (2, 3), which is a rare event, while
the uniform resampling approach fails.
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Figure 16: Comparison of EENS estimates from uniform resampling and importance
resampling. Each plot corresponds to an independent simulation, and the pairs of boxlots
show uniform resampling (left) and importance resampling (right). The analytical values
are shown as red lines.

Figure 17: The same plot as in figure 16 focused at contingency (2, 3).

Looking at figure 16 and 17, it is clear that a sample size of N = 104 is insufficient, i.e the
empirical distribution does not contain enough information to provide an accurate resam-
ple mean. The caveat with this approach to importance resampling is that the number
of probability weights that needs to be estimated for each component is N . Therefore, if
the sample size N is increased, more parameters needs to be estimated. This leads to a
substantial increase in the computational load of the optimization step since the number
of resamples during optimization should be much larger than the number of parameters
to estimate, M1 >> N . Because of the challenging optimization stage, this approach is
mainly of theoretical interest. The following section will present a new method named
subspace partitioning, which gives a dramatic reduction in the number of free parameters.

7.2.3 The subspace partition method

The subspace partitioning method (SPM) is a cross entropy solution for finite support
discrete distributions where the ISD is constrained in a way that reduces the number of

43



free parameters in the optimization stage. Before the cross entropy solution is derived,
the idea behind the method will be illustrated.

Example. (The subspace partitioning method visualized.) Consider the generic case
where one wants to use importance sampling to estimate the expected value of a target
function θ = E[h(X)], where X is a discrete random variable with finite support. The
optimal ISD is

g∗(x) =
h(x)

∏m
i=1 u

I{x=ai}
i

θ
.

A hypothetical sketch of g∗ is shown in figure 18a. Note that the average likelihood in the
subspace to the right of the dashed line is much higher than in the subspace to the left.
This indicates that the right subspace is the important region to sample from. The idea
of the subspace partition method is to constrain the ISD to have uniform likelihood in
each subspace equal to the average likelihood under g∗. This reduces the number of free
parameters of the ISD to the number of subspaces chosen for the problem. The subspace
partition ISD (gSP ) is sketched in figure 18b. When sampling form gSP , the same portion
of samples will lie in the important region as if one had sampled directly from g∗.

(a) (b)

Figure 18: (a): The optimal ISD. (b): The subspace partitioning ISD.

When the subspace partition method is applied to importance resampling of ENS, the
sample space is partitioned into two subspaces. One subspace contains all the component
trajectories that visit a failure state, and the complementing subspace contains the re-
maining trajectories. There is one parameter for each of the two subspaces, but only one
of them needs to be estimated since the other one is determined by normalization.

7.2.4 The cross entropy solution for the subspace partition method

Now a formal derivation of the cross entropy solution given the subspace parametrization
will follow. Consider the same situation as in section 7.2.1 with a random vector X =
(X1, . . . , Xn) where each variable can take the m values

Xk ∈ Ωk = {a1k, . . . , amk}.

As earlier, the PDF of X is

f(x;U) =
n∏

k=1

m∏
i=1

uik
I{Xjk=aik}. (7.25)
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Partition the sample space Ωk of each variable into G disjoint subspaces

Ωk = Ω1k ∪ . . . ∪ ΩGk, (7.26)

Ωik ∩ Ωjk = ∅ i ̸= j. (7.27)

With the subspace paramterization, the ISD can be written as

g(x;V) =
n∏

k=1

G∏
i=1

vik
I{Xjk∈Ωik}. (7.28)

where vik are the subspace parameters. Following a very similar procedure as in section
7.2.1, the cross entropy problem will be solved by Lagrange multipliers. The cross entropy
problem reads

V = argmax
vik

1

N

N∑
j=1

h(Xj)W (Xj ;U,W) ln g(Xj ;V). (7.29)

The normalization constraints can be written as

G∑
i=1

mi · vik − 1 = 0, (7.30)

wheremi are the number of elements in each subspace, m = m1+. . .+mG. From equations
(7.29) and (7.30), the Lagrange function can be defined as

L(v1, . . . ,vn, λ1, . . . , λk) ≡
N∑
j=1

h(Xj)W (Xj ;U,W)
n∑

k=1

G∑
i=1

I{Xjk ∈ Ωik} ln vik −
n∑

k=1

λk

(
G∑
i=1

mi · vik − 1

)
.

(7.31)

And the CE solution is given by

∂vikL = 0, (7.32)

∂λk
L = 0. (7.33)

(7.32) reduces to

N∑
j=1

h(Xj)W (Xj ;U,W)I{Xjk ∈ Ωik}
1

vik
− λkmi = 0

=⇒ vik =
1

λkmi

N∑
j=1

h(Xj)W (Xj ;U,W)I{Xjk ∈ Ωik}.

(7.34)

And using equation 7.33 one finds that

λk = λ =

N∑
j=1

h(Xj)W (Xj ;U,W). (7.35)

Thus the stochastic counterpart of the CE solution for the subspace partition approach is

vik =
1

mi
·
∑N

j=1 h(Xj)W (Xj ;U,W)I{Xjk ∈ Ωik}∑N
j=1 h(Xj)W (Xj ;U,W)

. (7.36)
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7.2.5 The subspace partition method for importance resampling ENS

One may use the stochastic counterpart for the subspace parameters in (7.36) directly, but
there are strong arguments for using the iterative CE algorithm as described in section
2.4. Using iteration, the estimate for the optimal parameters typically becomes more
accurate, and fewer samples are needed. In addition, the iterative algorithm incorporates
an automatic stop criterion. Both approaches were tested with similar results, but the
iterative CE algorithm gave more consistent values for the parameters. Therefore, this
section will focus on the iterative approach. The Cross Entropy algorithm for importance
resampling ENS is as follows.

Step 0. (Preparation.) Simulate the N trajectories for each component in the system which
defines the empirical distribution f̂ . For each component k, define the subspace
Ωfk which contains all trajectories that visit a failure state, and let Nfk be the
number of elements in Ωfk. The complementing subspace Ωc

fk contains all remaining
trajectories.

Step 1. Set the initial value of the subspace parameters to the reference parameters

v
(0)
fk ← ufk = 1

N , and set ρ← 0.1.

Step 2. Resample M1 trajectories according to the importance sampling distribution
ĝ(j1, . . . , jn;V(t)), and calculate the corresponding ENS values. Sort the ENS values
such that ENS(1) ≤ . . . ≤ ENS(M1) and set γt to be the 1 − ρ = 90% quantile of
{ENS(j)}.

Step 3. For each component k = 1, . . . , n update the subspace parameter

v
(t+1)
fk ← 1

Nfk
·
∑M1

j=1 I{ENS(X†
j) > 0}W (X†

j ;U,V(t))I{X†
jk ∈ Ωfk}∑M1

j=1 I{ENS(X†
j) > 0}W (X†

j ;U,V(t))
, (7.37)

where X† ≡ (J†
1, . . . ,J

†
n) for brevity. The parameter for the non-failure subspace is

given by normalization.

Step 4. If γt > 0, i.e if at least 10% of the M1 samples give non-zero ENS, use V(t+1) as the
final parameter values. If not, repeat step 2-4.

Step 5. Importance resample M2 trajectories according to ĝ(x;V(t+1)) and estimate EENS.

The results from the subspace partition method using N = 106, M1 = 104 and M2 = 106

samples for 3 consecutive, independent simulations are are shown in figure 21. The results
from uniform resampling withM = 106 are plotted for comparison. The subspace partition
method clearly outperforms the accuracy of uniform resampling for all contingencies, and
the method excels at estimating EENS for contingency (2, 3) which is the rarest event.
In all 3 simulations, the algorithm converged after 2 iterations. In the second step of the
iteration, about 18% of the samples have ENS > 0, while the corresponding number at
step 1 which represents uniform resampling is around 0.1%. The ENS distribution in the
two iteration steps is visualized in figure 19. Not only is the portion of non-zero samples
much larger in the 2nd iteration, but the range of observed ENS values is also considerably
wider. The trajectories of the subspace parameters are shown in figure 20. The values
of the subspace parameters are clearly much more consistent in the 2nd iteration which
justifies the iterative approach. Note that the parameters for branch 1 and 4 remain very
close to their original values, while the parameters for the transformers which are branch
2 and 3 are scaled up to around 140 times the reference value. The number of samples
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used in the optimization stage is 2 ·M1 = 2 · 104 which is only 2% of the total sample size
N , and the CPU time required by the optimization stage is negligible compared to both
the initial MC simulation and the final estimation stage.

Figure 19: Histograms of samples with non-zero ENS from the 1st and 2nd iteration of
the CE algorithm. The x-axis is logarithmic, and both plots show the same data. In the
right plot, the y-axis is logarithmic to better show the distribution from the 1st iteration.
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Figure 20: Evolution of all 4 subspace parameters for 3 simulations. The values are relative
to the reference parameters (iteration 0). Only one line is visible for branch 4 since all 3
trajectories are virtually indentical.
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(a)

(b)

Figure 21: EENS per contingency for 3 consecutive, independent simulations using N =
106 and M2 = 106 with uniform resampling (left box plots) and the SPM (right box plots).
Analytical values are shown in red. (a): Showing all contingencies. (b): Focused at the
(2, 3) contingency.

The SPM can only be as good as as the resample mean, and an important and partly
unanswered question is how good the resample mean represents the true mean. The
resample mean is a function of the empirical distribution, and thus it must be regarded
as a random variable. It follows from the central limit theorem that the resample mean
is normally distributed. Thus, the main unanswered question is how the variance of the
resample mean scales with the number of samples N , the number of components n, and
whether there exist a general asymtotic convergence rate as a function of these. Answering
this question is far from trivial since the resample mean is not computable in practice for
any relevant value of N . In summary, the SPM offers substantialy better accuracy than
CMC or uniform resampling with the caveat that one looses the possibility of assesing
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the true uncertainty in a simple manner. Table 3 gives a quantitative comparison of the
precision between uniform resampling and and the subspace partition method, but the
reader should keep in mind that these values represent the uncertainty relative to the
resample mean, and not the true mean.

Table 3: Bootstrap standard deviation in kWh for each of the three independent simula-
tions. The three main rows represent uniform resampling, the subspace partition method
and the relative reduction in uncertainty. Each subrow represent an independent simula-
tion.

Contingency (3, 4) (2, 4) (2, 3)

Uniform [kWh] 19.6 30.5 42.4

19.0 31.4 32.2
16.9 27.5 12.4

SPM [kWh] 2.91 3.00 0.210
3.06 2.87 0.217
3.11 2.81 0.216

Improvement [%] 85.2 90.2 99.5
83.9 90.9 99.3
82.6 89.8 98.7

7.3 Application to the Foros-Istad model

To verify that the subspace partition method is applicable to a very general sequential
simulation, the SPM was used with the Foros-Istad transformer model. In the previously
used reference case, the lines have unrealistically high failure rates, λ1 = 2 for branch
1 and λ4 = 5 for branch 4. To test the method on a more reliable system, the failure
rates for the lines were set to λ1 = 0.0045 and λ4 = 0.027. These are representative
parameter values for power lines found in SINTEF’s 4-area test network [24]. The initial
health index for both the transformers were set to HI0 = 0.95 which corresponds to good
technical condition. As previously, 3 independent simulations were run in order to get
some indication of the consistency in the results. EENS for 2nd order contingencies for
all 3 simulations are presented in figure 22. One million samples were used both in the
initial simulation and in the final estimation step, and the crude estimator is shown for
comparison. An analytical approximation was computed as reference value using the same
procedure as in [25].

The portion of samples containing a loss of load event is in the range (1− 3) · 10−5 for the
crude Monte Carlo simulations, thus the system is very reliable and interruptions are truly
rare events. The results suggest that the subspace partition method retains its efficiency
on more reliable grid configurations. As a measure of performance, the bootstrap root
mean square error (RMSE) is reported in table 4 and compared to the crude estimator.
The analytical approximation is used as the true mean to compute the RMSE.
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Figure 22: EENS with the crude estimator (left box plots), the subspace partition method
(right box plots) and an analytical approximation (red lines). Each row corresponds to an
independent simulation, and each column corresponds to a given contingency.

Table 4: Bootstrap root mean square error for three independent, consecutive simulations.
The three main rows report RMSE from crude Monte Carlo, the subspace partition method
and the relative reduction in RMSE. The average reduction in RMSE over all contingencies
is 92.8%.

Contingency (3, 4) (2, 4) (2, 3)

CMC [kWh] 1.246 2.70 103
1.64 2.09 50.5
2.13 3.32 38.4

SPM [kWh] 0.0954 0.138 3.29
0.102 0.403 2.84
0.112 0.215 2.24

Improvement [%] 92.3 94.9 96.9
93.7 80.7 94.4
94.7 93.5 94.2
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7.4 Remarks on extended application of the subspace partition method

To further test and develop the subspace partition method, it should be applied to a
larger and more realistic grid, such as the 4-area test network developed at SINTEF [24].
The dimension of the problem increases with a larger system, and importance sampling
is generally more challenging in high dimension. However, the inventors of the cross
entropy algorithm have developed a technique called the two-stage screening method [20]
to manage the degeneracy of the likelihood ratio in high dimension. This was briefly
discussed in section 5.2. The screening method identifies the distribution parameters that
have the largest relative change as bottleneck parameters, and resets the non-bottleneck
parameters to the reference value. As an example, figure 20 suggests that the transformers
are bottleneck components in the reference case since the parameters for the lines remain
close to their original value. For a larger system, the screening method could have a
substantial effect. One can regard the bottleneck components as the most important for
the precision of the estimate. Therefore, the author suggests that the number of samples
should be increased for the bottleneck components in order to obtain better resolution of
their empirical distributions, but this has yet to be tested.

An attempt was also made to apply the SPM to long-term prediction of EENS similar to
what was done in section 4. It was found that the component trajectories should be split
into periods of one year, and resampled individually for each period to achieve variance
reduction. The reason behind this is that when the simulation period is longer, a larger
portion of the trajectories will visit a failure state at some point, but the component spends
very little time in the failure state compared to the total simulation time. Therefore,
failures are unlikely to overlap in time for two individual trajectories which both contain
one failure event. Splitting the time series post simulation is inefficient with the current
implementation of the Monte Carlo model. Therefore, this was only attempted with a
relatively small sample size which means that importance resampling is not very effective.
Modest variance reduction was observed, but these results are omitted from the thesis.
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8 Concluding remarks and suggestions for further research

For the final discussion, it is natural to restate the research question defined in section
1.3:

Q: Can importance sampling reduce the variance of reliability index estimates for a se-
quential Monte Carlo simulation with time dependent component failure rates?

The trajectory likelihood method proposed in section 6 revealed that changing the pa-
rameters which govern the underlying stochastic processes in the system quickly leads to
complicated expressions for the likelihood ratio. This can in turn make the importance
sampling estimator vulnerable to degeneracy, and the cross entropy optimization problem
becomes intractable. To avoid this problem, the remainder of the work was focused on
different variations of importance resampling. The main advantage of importance resam-
pling is that, in principle, no knowledge of the system’s PDF is required which makes it
applicable to a very general model. The subspace partition method is the most important
result from the research. It unites the ideas of resampling, importance sampling, and the
cross entropy algorithm, and it has achieved substantial improvement in precision on a
reliable system configuration. The answer to the research question is clear: The SPM can
reduce the variance of reliability index estimates on a sequential MCS with time depen-
dent component failure rates. This can in turn provide system planners with previously
unavailable information on how time dependent processes such as maintenance and aging
influence the reliability of supply.

Importance resampling can only perform as good as the resample mean which was in-
troduced in section 7.1. The main weakness of the SPM, and importance resampling in
general is that the accuracy and validity of the resample mean is largely unknown. From
a limited number of empirical observations one can however say that it seems to coincide
quite well with the true mean as long as the sample number is sufficiently big. A closely
related problem is that the uncertainty of MC estimates can not easily be evaluated by
bootstrapping. An unbiased estimate of the uncertainty can be obtained by brute force
running multiple independent simulations, but this is unpractical for obvious reasons.
Further research on the subspace partition method, or other resampling techniques should
focus on establishing better theoretical knowledge of the resample mean. Additionally,
the subspace partition method should be tested on a larger, realistic power system.
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