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A B S T R A C T   

The effect of Al and of pH on the structure of calcium silicate hydrate (C-S-H), the most important hydration 
product in Portland and blended cement, was studied at Ca/Si ~1.0. The presence of Al led to higher amounts of 
secondary phases, larger interlayer distances, longer silicate chains, higher concentrations of dissolved Al and Si, 
and lower Ca concentrations. The amount of secondary phases progressively decreased with increasing pH; that 
of strätlingite and Al(OH)3 dominated at low pH, and katoite at high pH values. High pH was also associated with 
increased Al and Si concentrations, lowered Ca concentrations, shortened silicate chain length and higher 
maximum Al/SiC-S-H ratios. The Al uptake in C-A-S-H increased with aqueous aluminium concentration. XANES 
analysis showed the presence of both Al(IV) and Al(VI) in different coordination environments in C-S-H.   

1. Introduction 

Calcium silicate hydrate (C-S-H) is the main hydration product of 
Portland and blended cements, and greatly affects the durability and 
mechanical properties of the hydrated cement. In the presence of Al-rich 
supplementary cementitious materials (SCMs), C-S-H can retain more Al 
compared to the case of plain Portland cement [1]. The use of SCMs not 
only lowers the CO2 emission [2], but may also enhance long-term 
mechanical properties [3,4], durability [5,6] and can help to suppress 
alkali silica reaction [7]. 

C-S-H and C-A-S-H (calcium silicate hydrate containing aluminium) 
have a layered structure, with calcium oxide sheets sandwiched between 
aluminosilicate chains in a “dreierketten” arrangement as shown in 
Fig. 1. Within the aluminosilicate chains, the two “pairing” silicate 
tetrahedra are coordinated with CaO in the main layer, while the third 
tetrahedron, the bridging Si site, links two pairs of silicate units. 
Aluminium has been assumed to substitute silicon in bridging tetrahe-
dral sites [8–11]. The silicate chain length is influenced by the Ca/Si 
ratio as demonstrated in several 29Si NMR studies [11–19]. Bridging 
silicate tetrahedra are mainly present in C-S-H with low Ca/Si and 
largely absent at high Ca/Si. Between the layers of CaO sheets and sil-
icate chains an interlayer region is present, which contains water 

molecules, Ca2+, and possible alkali ions (Na+ and/or K+) [11]. The 
assignments of bands observed by FTIR and Raman spectroscopy for C 
(-A)-S-H [20–22] are partially contradictory due to the overlapping of 
spectral bands, resonance splitting, and various factors distorting the 
translational symmetry of real crystals [23], as Si and Al reside in to-
pologically similar sites within the dreierketten chain. The effect of Al on 
the interlayer distance of C-A-S-H has been reported in several studies 
[11,19,24], although no clear relation between the amount of Al in C-S- 
H and the interlayer distance could be established. 

27Al MAS NMR studies indicated that the major part of Al in C-S-H is 
present either tetrahedrally coordinated (mainly at low Ca/Si C-S-H) 
and octahedrally coordinated (at high Ca/Si), while <10 % of Al is 
pentahedrally coordinated [8,10,25,26]. 27Al MAS NMR indicated also 
that tetrahedral Al can have different neighbors [27], while little dif-
ference was observed for octahedrally coordinated Al in C-A-S-H. Few Al 
K-edge X-ray absorption spectroscopy (XAS) studies on Al-tobermorite, 
C-A-S-H and cement [6,28,29] have been performed so far, although 
XAS could provide further insights on the local structure of Al in C-A-S- 
H. 

Different studies have shown that at higher pH values, the Al and Si 
concentrations are increased, along with lower Ca concentration and 
shorter mean silicate chain length (MCL) in C-A-S-H [24,30–33]. Despite 
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many studies on the chemistry and structure of C(-A)-S-H 
[10,16,19,24,30–41], the interplay between aluminium, alkali hydrox-
ides in solution, the structure of C-A-S-H, and the aluminium uptake by 
C-A-S-H is still not fully understood, as most studies focused either on 
the study of aqueous concentrations [32] or on the characterization of 
the solid phases [36,37,42]. In particular, it remains unclear whether Al 
or Si is preferentially taken up, and whether pH or Ca/Si would affect the 
uptake preferences or the coordination environment. Thus, this study is 
focused on the interplay between the aqueous concentrations of relevant 
ions, composition and structure of C-A-S-H, and the effect of alkali hy-
droxide on Al uptake. Experimental results are compared with the data 
generated by our newly developed thermodynamic model for C-S-H with 
aluminium and alkali, the CASH+ model [43–46]. The results and 
comparisons presented are important for further development of this 
and other thermodynamic models aimed at predicting aqueous con-
centrations in pore solutions of hydrated blended cements. 

2. Materials and method 

2.1. Synthesis procedure 

SiO2 (Aerosil 200, Evonik), CaO, CaO⋅Al2O3 (CA) and NaOH/KOH 
solutions with concentrations of 0.1, 0.5 or 1 M at a water/solid ratio of 
45 were used to synthesize C-(N,K-)A-S-H. CaO was obtained by 
calcining CaCO3 (Merck Millipore) at 1000 ◦C for 12 h. CA was obtained 
by calcining a mixture of CaCO3 and Al2O3 (Sigma Aldrich) in sequence 
at 800 ◦C for 1 h, at 1000 ◦C for 4 h and at 1400 ◦C for 8 h and then 
cooling down with a rate of 600 ◦C/h. The targeted molar Ca/Si ratio 
was Ca/Sitarget = 1.0 and Al/Si ratios were Al/Sitarget = 0 to 0.2. The 
slurry of C-(N,K-)A-S-H product was equilibrated on a shaker for 3 

months and 1 year. The C-N,K-(A-)S-H samples preparation, filtration 
(nylon membrane, pore size 0.45 μm), washing, drying and storage at 
35 % relative humidity before characterization, followed the procedure 
described in details by L'Hôpital et al. [19]. 

2.2. Analytical techniques 

2.2.1. Solution analysis 
The composition of the liquid phase was analyzed by ion chroma-

tography (IC) as soon as possible after filtration in solutions diluted by 
factor 10, 100 and 1000 with MilliQ water to avoid any carbonation 
and/or precipitation. The concentrations of Ca, Na, Al and Si were 
quantified using a Dionex DP series ICS-3000 ionic chromatography 
system. Independent measurements of solutions with known composi-
tions indicated a measurement error of ≤10 %. 

The pH measurements were carried out in a non-diluted fraction of 
the solution with the Knick pH meter (pHMeter 766) equipped with the 
Knick SE100 electrode. The pH electrode was calibrated against NaOH 
or KOH solutions of known concentrations to minimize alkali error using 
the method detailed in [47]. The pH values were measured at laboratory 
temperature (23 to 24 ◦C) and corrected to 20 ◦C by adding +0.1 pH unit 
to take into account the effect of temperature on the pH measurement 
[30]. 

2.2.2. Solid phase analysis 
Thermogravimetric analysis (TGA) was conducted on ground pow-

der (~20–30 mg) under nitrogen atmosphere at a heating rate of 20 ◦C/ 
min from 30 to 980 ◦C with a Mettler Toledo TGA/SDTA 8513 instru-
ment. Mass losses between 30 ◦C and ~600 ◦C were assigned to dehy-
dration and dehydroxylation of C-(N,K-)A-S-H and portlandite during 

tetrahedron

Dreierketten
chain

Interlayer

Basal
spacing

Fig. 1. Schematic structure of C-A-S-H. Spheres of blue, golden, turquoise, yellow, red and white colors represent Si, Al, Ca, Na, O and H, respectively. The dashed 
circles are Si tetrahedra vacancies in bridging sites. Qn: n indicates the numbers of Si tetrahedral neighbors. Subscripts: b: bridging position, p: pairing position. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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heating. Portlandite and katoite were quantified based on the weight 
loss between ~350 and ~500 ◦C and at ~300 ◦C seperately using the 
tangential method [48] and double-checked with X-ray diffraction and 
Rietveld refinement analysis. Assignment of the weight loss peaks to the 
different hydrates was done based on the reference measurements given 
in [48]. 

Powder X-ray diffraction (XRD) data were collected using a PAN-
alytical X'Pert Pro MPD diffractometer equipped with rotating sample 
stage in a θ-2θ configuration applying Cu radiation (λ = 1.54 Å) at 40 mV 
voltage and 40 mA, with steps of 0.019◦ 2θ with a fixed divergence slit 
size and an anti-scattering slit on the incident beam of 0.25◦ and 0.5◦ 2θ. 
The samples were scanned between 5◦ and 70◦ 2θ with an X'Celerator 
detector. 

Attenuated total reflectance (ATR) Fourier Transformation Infrared 
(FTIR) spectra were collected by averaging 32 scans measured on a 
Bruker Tensor 27 FTIR spectrometer by transmittance between 340 and 
4000 cm− 1 at a resolution of 4 cm− 1 on ~3 mg of powder. The IR 
spectral data obtained were preprocessed using the software package 
OPUS (Bruker Optics GmbH, Ettlingen, Germany). Baseline correction 

and normalization to the intensity of the peak at around 950 cm− 1 were 
applied to every recorded spectrum. The second derivative of FTIR 
spectra was used in order to identify the different bands and differentiate 
the wavenumbers. 

Raman spectra were recorded using a WITec Alpha 300 R confocal 
Raman microscope in backscattering geometry. A diode-pumped green 
laser with a wavelength of 532 nm was used in combination with a 50×
objective lens. The Rayleigh scattered light was blocked by an edge 
filter. The backscattered light was coupled to a 300 mm lens-based 
spectrometer with a grating of 600 g/mm equipped with a cooled 
deep-depletion CCD. Back-illuminated CCD chip with 1024 × 127 pixel 
format, pixel size 26 × 26 μm. The laser output power was set to 20 mW. 
To diminish possible carbonation, the C-A-S-H powders were loaded and 
sealed in quartz glass capillary tubes with a 2.0 mm out diameter and 
0.01 mm wall thickness. Raman spectra of the loaded and empty tubes 
were recorded, with the spectrum of the empty tube being subsequently 
subtracted. Each C-A-S-H phase was measured and averaged at 10 spots 
with an exposition of 10 s and 10 accumulations for each spectrum. 
Spectral analysis, including glass tube signal subtraction, individual 
baseline correction, spectra average and smoothing, was conducted 
using Spectragryph [49]. 

Aluminium K-edge (1559 eV) XANES measurements were conducted 
at the Phoenix II, elliptical undulator beamline at the Swiss Light Source 
(SLS), Paul Scherrer Institute (PSI), Villigen, Switzerland. Energy se-
lection, X-ray energy calibration, sample preparation and measurement 
were followed as described in [50]. 

Data integration, reduction, and correction (e.g., fluorescence self- 
absorption) of X-ray absorption near edge structure (XANES) spectra 
were performed using the Demeter software package [51]. Al K-edge 
XANES spectra of samples were interpreted by iterative-target trans-
formation factor analysis (ITFA) to quantify the proportions of Al- 
containing components [52]. FEFF8.4 [53] was employed to calculate 
the theoretical Al K-edge XANES spectra of representative Al coordina-
tion environments (tetrahedral AlO4 in bridging site v.s. octahedral AlO6 
in interlayer) in C-A-S-H; the corresponding atomic structures were 
generated using Material Studio (MS) software V7.0. 

2.2.3. C-S-H composition 
The effective Ca/Si and effective Al/Si in C-S-H (Ca/SiC-S-H and Al/ 

SiC-S-H) were obtained by mass-balance calculations, considering the 
initial amount of CaO, CA and SiO2 in the system, the amount of other 
solids present as well as the fraction of SiO2 Al2O3 and CaO in solution 
following the procedure outlined in [30]. 

The amount of alkalis bound in the solid was determined following 
the direct method (i.e. complete acid digestion of 20 mg of washed and 
dried C-S-H phase in 10 mL 100 mM HCl). The total amount in the solid 
was obtained from the measured Ca, Na and K concentrations in the acid 
solution as detailed in [31]. The amount of alkali metal was also ob-
tained indirectly from mass balance calculations using the total amount 
of present minus the fraction which remained in the equilibrium 
solution. 

The incorporation of Al into C-S-H phases can also be expressed in 
terms of the distribution coefficient (Kd), to quantify the relative affinity 
for Al to sorb to C-S-H [54]. The Kd values were calculated according to: 

Kd =
Cs,eq

Cl,eq
≈

(
C0 − Cl,eq

)

Cl,eq
×

V
M

(
m3

kg

)

(1)  

where Cs,eq is the Al concentration sorbed into C-S-H phases [mol/kg] in 
equilibrium, and Cl,eq is the aqueous concentration in equilibrium [mol/ 
m3]. The difference between the initial Al concentration in suspension 
(C0) and the concentration determined in the supernatant (Cl,eq) corre-
sponds to sorbed Al. M is the dry weight of the C–S–H phase [kg], and V 
is the volume of solution [m3]. 

Fig. 2. XRD and TGA of C-N,K-(A-)S-H with target Ca/Si = 1.0 synthesized in 
NaOH 0.5 M with different initial Al/Si, equilibrated for 1 year. C: C-N,K-(A-)S- 
H, K: katoite (Ca3Al2(OH)6, PDF# 00-024-0217), Hc: Hemicarbonate (Ca4A-
l2(OH)12(OH)(CO3)0.5(H2O)5, PDF# 00-041-0221), Mc: monocarbonate (Ca4A-
l2(OH)12(OH)(CO3)(H2O)5, PDF# 01-087-0493). *: The weight loss between 
300 and 400 ◦C in (b) is tentatively assigned to C-N-A-S-H. 
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2.2.4. Thermodynamic modelling 
Thermodynamic modelling was carried out with the Gibbs free en-

ergy minimization program GEM-Selektor v3.7 [55,56]. GEMS is a 
geochemical modelling code that computes the equilibrium speciation 
in aqueous, gas and stable solid phases using the Gibbs free energy 
minimization algorithm. The standard thermodynamic data for the 
species or components of aqueous, solid, and gas phases were taken from 
the PSI-Nagra thermodynamic database [57], while the standard molar 
properties for cement minerals were taken from the Cemdata18 data-
base [58]. The C-S-H phase with alkali metal- and Al uptake was 
modelled using the CASH+ solid solution thermodynamic model 

[43–46], which has been parameterized against experimental data in-
dependent of this study. The formation of CaSiO2(OH)2

0 aquocomplex 
was described using log K = 4.0 for the reaction Ca2+ + SiO2(OH)2

2− ⇔ 
CaSiO2(OH)2

0 [43], instead of the log K = 4.6 reported in [57]. 
Saturation indices (SI) for relevant solid phases were calculated from 

the experimentally measured concentrations. Activity coefficients were 
calculated using the extended Debye-Hückel equation in Truesdell- 
Jones form with common ion-size parameter ai = 3.31 Å for NaOH so-
lutions and third parameter by = 0.098 kg/mol; for KOH ai = 3.67 Å and 
by = 0.123 kg/mol [59]. 

3. Results and discussion 

3.1. Influence of aluminium 

Fig. 2 shows the effect of Al on C-S-H with Ca/Sitarget of 1.0 in 0.5 M 
NaOH solution; additional data for 0.1 and 1.0 M NaOH and for 0.5 M 
KOH are given in the supplementary information (SI), Fig. S1. The XRD 
and TGA data show that C-N,K-(A-)S-H is the main phase in all cases, and 
indicate the formation of secondary phases at higher Al content. In 0.5 M 
NaOH, katoite is observed at Al/Sitarget ≥ 0.1, in 0.1 M NaOH already at 
Al/Sitarget ≥ 0.05 (see SI, Fig. S1), while strätlingite is observed only at 
0.1 M NaOH, due to the destabilization of strätlingite with increasing pH 
values, as illustrated in Fig. 3. Hemicarbonate and monocarbonate are 
identified in some samples and their presence is attributed to minor 
carbonation during sample preparation, drying and measurement. 
Hemicarbonate can contain different amounts of carbonate [60] so the 
peaks can be relatively broad. A small amount of portlandite is observed 
only in 1 M NaOH at Al/Sitarget = 0.15. 

The TGA shows a main water loss between 30 and 300 ◦C from 
interlayer and structurally bound water in C-N,K-(A-)S-H. A hump at 
400–500 ◦C, marked with ‘*’, is observed at high sodium and aluminium 
concentrations (Al/Sitarget = 0.15 and 0.2 in 0.5 M NaOH, Al/Sitarget =

0.05 and 0.1 in 1 M NaOH) but not in the presence of KOH. This weight 
loss is tentatively assigned to thermal decomposition of more ordered 
water in C-N-A-S-H because none of other phases identified by TGA, XRD 
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Fig. 3. Effect of pH on dissolved Al concentrations of microcrystalline Al(OH)3, 
strätlingite and katoite (all solids 1 mol/L) at equilibrium conditions. Above pH 
13.7, the formation of portlandite is calculated in the presence of katoite. 
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presented here or by Al and Si NMR [27] can explain the weight loss 
associated with these peaks. Similar weight losses have also been 
observed for C-N-A-S-H in the presence of high concentrations of NaOH 
[24,61] or for samples equilibrated at 50 and 80 ◦C [34]. TGA indicates 
also minor carbonation (weight loss < 0.5 %) in some samples during 
sample preparation, storage and/or analysis as visible in the region from 
600 to 800 ◦C. The peaks above 800 ◦C are assigned to the water loss due 
to the decomposition of C-K-(A-)S-H to wollastonite (CaSiO3) [34,62]. 

The position of the main C-N,K-(A-)S-H peak observed by XRD and 
total weight loss does not vary systematically with Al content, indicating 
that the presence of Al is not the primary factor controlling the interlayer 
and structural water content of C-N,K-(A-)S-H products. However, a 
broadening of the maximum diffraction at ~3.1 Å (~29◦ 2θ Cu Kα) is 
observed in the presence of Al, as shown in SI, Fig. S3. The XRD data 
confirm that the addition of Al leads to more secondary phases, and thus 
to a higher total weight loss in particular at lower NaOH and KOH 
concentrations. The basal spacing, d001, in Fig. 2 moves to lower 2θ 
values in the presence of Al, indicating that the presence of aluminium 

increases the interlayer distance within C-N,K-(A-)S-H. The same effect 
is also observed for 0.1 and 1 M NaOH and 0.5 M KOH (see SI, Fig. S3). 
The broad reflection at ~17◦ 2θ (d-spacing ~5 Å) assigned to a d101 
reflection indicates occupation of bridging sites in the silica chain and is 
more visible at higher Al/Si, which points out a prolongation of the 
mean silica chain length due to the incorporation of Al into the bridging 
sites. 

The simulated Al solubility in equilibrium with amorphous Al(OH)3, 
strätlingite and katoite with Ca/Si = 1, Al/Si = 0.1 are plotted against 
pH in Fig. 3. The dissolved Al concentrations of microcrystalline Al 
(OH)3, strätlingite and katoite decrease with increasing pH, reaching 
minimum at pH ≈ 6.5, 12.2 and 13.6, respectively, and increase again at 
higher pH values, due to the increased formation of aqueous anionic 
aluminate species (Al(OH)4

− ). 
Measurements of the interlayer distance in C(-A)-S-H by XRD are 

associated with considerable variations, as it also depends strongly on 
the relative humidity [63,64] and thus on the drying procedure and 
duration. In both, the present study and the study of L'Hôpital et al. [30], 
all samples were equilibrated for at least two weeks in a desiccator with 
the relative humidity of ~30 %, thus the water contents in C-A-S-H 
phases are comparable. In fact, a systematic increase of the basal spacing 
with Al/Si ratio in C-S-H is observed, as shown in Fig. 4. In contrast, no 
clear trend is found between the basal spacing and the water content 
(H2O/Si obtained from TGA, see SI, Fig. S2), which confirms that the Al 
substitution in C-S-H is a dominant factor for the observed increase of 
the basal spacing. 

In 0.5 M NaOH, for C-S-H without Al, a basal spacing of ~10.8 Å is 
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Fig. 5. (a) FTIR and second derivative and (b) Raman spectra of C-N-(A-)S-H 
with target Ca/Si = 1.0 after an equilibration time of 1 year with different 
initial Al/Si, synthesized in 0.5 M NaOH. Normalized to the most intensive band 
at ~970 cm− 1 of FTIR and ~670 of Raman. *, †: unidentified peaks from sec-
ondary phases. 

Table 1 
Assignments of FTIR spectra for C-A-S-H.  

FTIR absorption band 
(cm− 1) 

Assignment of vibration References 

400–550 Deformation of Si and/or Al tetrahedra [75,78] 
~480a Deformation of Si and/or Al tetrahedral (Q1) [76] 
~480a O–Si–O and/or O–Al–O bending [83] 
~525 Si–O–Si and/or Al–O–Si bending [83] 
~525 Deformation of Si(Al) tetrahedral and water 

librations 
[75] 

670 Si–O–Si and/or Al–O–Si (O–Si–O) bending 
and water librations 

[75,78] 

810a Si–O and/or Al–O stretching of Q1 

tetrahedra 
[78] 

920a Si–O and/or Al–O stretching of Q2 

tetrahedra 
[75,76] 

960 Si–O and/or Al–O stretching modes [75] 
1050a Si–O and/or Al–O stretching of Q2 

tetrahedra 
[76] 

~810, ~537 Al–O vibration from katoite [84,85] 
~536, ~670, ~954 Al–O vibration from Hc and Mc [84] 
~1360 C–O vibration from Hc and Mc [84] 
~3660 H–O vibration from katoite [84,85]  

a Bands visible as a shoulder. 

Table 2 
Assignment of Raman spectra for C-A-S-H.  

Raman shift 
(cm− 1) 

Assignment of vibration References 

316–333 Ca–O lattice vibration [79] 
445 Internal deformation of the Si-tetrahedra [80] 
445 O–Si–O bending [79] 
477 ‘Breathing’ vibrations of the 4-membered rings [86,87] 
~600 Si–O–Al symmetrical bending  
~670 Si–O–Si symmetrical bending [15,79,80] 
~840 Si–O symmetrical stretching Q1 [15,79,80] 
~950 Si–O symmetrical stretching Q2 [15,79,80] 
1065 C–O symmetrical stretching from 

hemicarboaluminate 
[15] 

2881, 2933, 2976 νs(CH2), νs(CH3), ν′s(CH3) from ethanol [88]  
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observed, and it increases strongly to 12.3–12.5 Å at Al/SiC-S-H = 0.05 
and levels off at ~12.5 Å at higher Al contents. This broadening of the 
interlayer with Al can be explained i) based on the increase of negative 
charge due to the uptake of AlO4 in the bridging tetrahedra, thus 
increasing the repulsive forces between the negatively charged main 
layers [19], and ii) based on the about 8–10 % longer Al–O than Si–O 
bonds [65,66], which is also visible in the, although more limited, in-
crease of the interlayer distance observed for the cross-linked 11 Å Al- 

tobermorite [67,68] in the presence of Al, as shown in Fig. 4. 
The changes in the structure upon the addition of Al have been 

investigated by 29Si- and 27Al-solid state NMR, FTIR and Raman spec-
troscopies, as well as by XANES. Detailed 29Si- and 27Al-solid state NMR 
investigations of these samples have recently been published by Yang 
et al. [27]. They show that at Ca/Si = 1.0, Al in C-S-H is mainly bound as 
Al(IV) in the bridging sites, with only minor amounts (<10 %) of Al(VI) 
present at all pH values and Al contents investigated. In addition, minor 
amounts of secondary phases are observed at low NaOH and/or high Al 
concentrations, in agreement with the XRD and TGA results reported 
here. The presence of Al increases the total chain length considering 
both Si and Al, but does not increase the length of the silica chain only 
[27]. 

Fig. 5 (a) illustrates the effect of Al on C-N-(A-)S-H deduced from the 
FTIR spectroscopy; the second derivative of the FTIR is also displayed as 
it allows to better identify partially overlapping bands. The vibrations 
from secondary phases are not discussed here because the maximum 
amount of secondary phases is <8 wt%, such that they are hidden by the 
bands from C-A-S-H (see Table 1). The vibrational spectra can be divided 
into two regions: the bands in the region 800–1200 cm− 1 are due to 
stretching vibration of O–Si and/or O–Al, while from 400 cm− 1 to 800 
cm− 1 the spectra have contributions from SiO4 and/or AlO4 deforma-
tion, bending vibrations of the O–Si–O and/or O–Al–O groups in the 
dreierketten chains and from water liberations [23,75,76], as detailed in 
Table 1. Fig. 5 (a) shows that the most intense band moves from 933 
cm− 1 to 947 cm− 1 in the presence of additional Al in 0.5 M NaOH. This 
movement to higher wavenumbers is also observed in 0.1 M and 1 M 
NaOH (see SI. Figure S5). Similarly, the shoulder at ~1050 cm− 1, 
characteristic of stretching vibration of O–Si and/or O–Al in Q2

b position 
[75,76], is moving to higher wavenumbers while the bridging Q2

b band 
shifts from 920 cm− 1 (in the absence of any Al [76]) to 880 cm− 1 at Al/ 
Siinitial = 0.2 (see second derivative of the FTIR in Fig. 5 (a)). This shows 
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a higher polymerization degree of the silicate chains [77,78] due to the 
addition of Al, which increases the total (Al + Si)/Ca ratio. In fact, the 
intensity of the Q1 signals (bands at ~810 cm− 1 and at 490 cm− 1) is 
decreasing as more Al is present, while the Q2

b signal at ~920 cm− 1 in-
creases confirming the increase of connectivity also observed by NMR 
[27] and the Al-uptake in the bridging sites of C-S-H. 

The Raman spectra in Fig. 5 (b) show that the peak at 316–333 cm− 1 

attributing to vibrations of Ca–O [79,80] becomes weaker and broader 
with increasing Al/Siinitial. A peak assigned to internal deformation of 
the Si-tetrahedra [80] or to O–Si–O bending [79] is visible at 445 cm− 1, 
while a main Si–O–Si symmetrical bending peak is present at 670 cm− 1. 
The presence of Al had only a very weak effect on the positions of these 
peaks, but had a clear effect on the intensity of the signals assigned to Q1 

and Q2 sites. The Si–O symmetrical stretching (SS) band at ~840–940 
cm− 1, assigned to SS Q1 [15,79,80], decreases in intensity with Al/Sii-
nitial indicating less Q1. In contrast, the peak area of the signal at 
~950–1040 cm− 1, assigned to SS Q2 [15,79,80], increases with Al/Sii-
nitial confirming the FTIR data presented above and the solid state NMR 
[27]. The peak width of these Si–O silicate Q1 and Q2 signals broadens, 
which indicates a higher degree of disordering in the silicate chains 
[81,82], due to the presence of more different Q2 species (Q2

p, Q2
b, and 

Q2
p(1Al)) with additional Al in C-A-S-H. The peaks located at 1065 cm− 1 

are attributed to the C–O SS vibrations from hemicarboaluminate [15]. 
A small peak located at 602 cm− 1 appeared at Al/Siinitial = 0.1 and 

increased systematically with additional Al. Peak located at similar 
Raman shift has been reported for tobermorite [80] and Al-tobermorite 
[6,42], where it has been assigned to Q3 or Q3(1Al). However, in the C- 
A-S-H phases analyzed here, no Q3 signal has been observed from 29Si 
NMR [27], such that this signal is tentatively assigned to Al-O-Si sym-
metrical bending. A sharp peak at 477 cm− 1 present at Al/Siinitial = 0.05 
and the peaks at 437 cm− 1, 1114 cm− 1 and 2410 cm− 1 and 810 cm− 1 are 
tentatively assigned to signals from secondary phases (Table 2). 

The local structure and coordination geometry of Al sites in C-A-S-H 
samples were further investigated by Al K-edge XANES spectra. Spectra 
of katoite (C3AH6), AFm-CO3 (as a structural analogue to strätlingite) 
and CaO⋅Al2O3 (CA) were collected for comparison. The Al sites in both 
C3AH6 and AFm-CO3 are octahedrally coordinated Al(VI) with a main 
signal C at 1572 eV in the XANES spectra (see Fig. 6 (a)), while the main 
signal C of tetrahedrally coordinated Al(IV) of CA appeared at a lower 
energy of 1565 eV. The peaks A, C and E in Fig. 6 (a) correspond to the 
transitions of 1s to 3s-like, 3p-like and 3d-like states, respectively, while 
peak D corresponds to the multiscattering within adjacent neighbor 
shells [89,90]. The 1s to 3s-like transition is forbidden for the tetrahe-
dral geometry of Al and thus results in weak peak A intensity, while it is 
permitted in the case of octahedral geometry due to the hybridization of 
s and p orbitals [89,90]. Thus, peak A is quite weak in Al(IV) pre-
dominated environments (e.g., CA and C-A-S-H), whereas it is more 
visible in C3AH6 and AFm-CO3 where Al(VI) is predominant. The posi-
tion of peak C for Al(IV) in CA is a few eV lower than the position for 
octahedral Al(Vl) in C3AH6 and AFm-CO3, in good agreement with 
previous studies [29,89–93]. 

The iterative-target transformation factor analysis (ITFA) of the Al K- 
edge XANES dataset was performed to quantify the proportions of Al- 
containing components. XRD results suggest that the solid products 
mainly consist of C-A-S-H, katoite, and AFm phases. In combination with 
the assessments on the indicators of theoretical error functions (see SI, 
Table S1) and the principal component analysis (PCA), the number of 
abstract spectra (see SI, Fig. S7) to reproduce the Al K-edge XANES 
spectra of C-A-S-H samples is determined to be three. Via the iterative 
target test (ITT), the three components were identified as C-A-S-H, 
katoite, and AFm-CO3, in good agreement with the XRD results. C-A-S-H 
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with Al/Siinitial = 0.05, having no visible secondary phases in XRD and 
TGA analysis, was used as a reference of pure C-A-S-H in ITFA analysis. 
The ITFA fitting curves together with the experimental spectra of C-A-S- 
H with Al/Siinitial 0.1, 0.15, and 0.2 are illustrated in Fig. 6 (a). In 
accordance with XRD Rietveld analysis, ITFA analysis shows that the 
majority of the solid phase is C-A-S-H, and the maximum mol fraction of 
Al in secondary phases is about 15 %. With increasing Al/Si ratios, the 
intensity of peak C of C-A-S-H samples becomes stronger, partially 
related to the growing proportion of secondary phases such as katoite 
and AFm phases. A directly proportional relation can be found in the 
amounts of secondary phases from the quantification by ITFA and 
Rietveld analysis (see Fig. 7). 

With increasing Al/Si ratios, the C-A-S-H sample spectra were 
reproduced less satisfactorily (Fig. 6 (a)), characterized by more dif-
ferences compared to the fitting curves in the peak C region. It indicates 
some contributions from other coordination environments of Al sites not 
included in the ITFA fitting. The local structures of Al sites in C3AH6 and 
AFm-CO3 are well known and not expected to change with the Al/Si 
ratios, which is, however, not the case for C-A-S-H. Thus, the fitting 
difference could result from changes of the Al coordination environment 
and/or Al content in C-A-S-H samples. 

To further investigate the relationship between the XANES spectrum 
features and the local structures of Al sites in C-A-S-H, the theoretical Al 
K-edge XANES spectra were calculated based on the atomic structures of 
different possible Al-centered C-A-S-H structures, including Al(IV) in 

bridging site without neighboring cations, Al(IV) in bridging site with a 
neighboring Ca, and with a neighboring Na, loosely bound Al(VI) 
without neighboring cations, Al(VI) with neighboring Ca, with neigh-
boring Na and Al(VI) at end-of-chain, Q1, position. As shown in Fig. 6 
(b), the theoretical spectra differ clearly between the coordination ge-
ometries, i.e., Al(IV) and Al(VI), in both shape and peak position. The Al 
(VI) spectra are characterized by a strong peak at ~1571 eV, distinct 
from the main peak of Al(IV) spectra at ~1566 eV. However, different 
second neighboring atomic shells near Al(IV) or Al(VI) have no obvious 
effect on the calculated spectra, which might be explained by not good 
enough resolution of spectrum calculation or not large enough influence 
of the second neighboring shell on Al K-edge XANES spectra of C-A-S-H, 
in particular considering that the second neighbors are light elements 
with little difference in mass number. The comparison between the 
calculated spectra and the fitted experimental spectra indicates pre-
vailing Al(IV), which is in agreement with the Al-NMR data of these 
samples [27]. Note that the fitting difference is located in the same 
energy range as the white-line peak of Al(VI) coordination environ-
ments. Thus, the missing contribution of Al sites in ITFA should be Al(VI) 
sites in C-A-S-H, which would indicate that with increasing Al/Si ratios, 
the amount of Al(VI) sites in C-A-S-H increases or that chemical envi-
ronments of Al(VI) change with the initial Al/Si. 

The Al/Si ratio affects also the composition of the solutions as shown 
in Fig. 8, where changes of Ca, Si and Al concentrations are plotted as a 
function of the Al/Si in the solid. An increase of the Al/Sitarget ratio leads 

Fig. 10. (a) XRD, (b) TGA, (c) FTIR and second derivative of FTIR and (d) Raman of C-A-S-H with a target Ca/Si of 1.0 and target Al/Si of 0.2 synthesized in NaOH 
from 0.1 M to 1 M after an equilibrium time of 1 year. C: C-(K-)A-S-H; K: katoite, S: straetlingte, Cc: carbonates *: unidentified peak from secondary phase. 
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to higher dissolved aluminium concentrations, while the silicon con-
centrations are only moderately increased indicating a lower tendency 
of Al than of Si to be taken up in C-A-S-H. The presence of additional 
aluminium also decreases the calcium concentrations. The measured 
dissolved concentrations are compared to the results of thermodynamic 
modelling using the CASH+ model [43–46] and a good agreement is 
observed, as shown in Fig. 8 (a). 

As at Ca/Sitarget = 1.0 aluminium is taken up mainly as tetrahedral Al 
(IV) in the “dreierketten” chains [27] (Fig. 6), the uptake of aluminium 
is expected to have a similar effect as the presence of more silica (Fig. 8 
(b)): a higher silicon concentration and lower calcium concentration 
corresponding to longer silica chains due to an increase of the fraction of 
bridging tetrahedra. Fig. 8 (b) shows that the measured trends are much 
better reproduced by accounting for the effect of Al and Si separately (C- 
A-S-H), than if the effect of Al is considered to be the same as the effect of 
Si (C-S-H). While little difference is predicted at low Al contents (Ca/(Al 
+ Si) ≥ 0.95), a higher (Al + Si) concentration is predicted for C-A-S-H 
than for C-S-H, which confirms a lower tendency of Al than of Si to be in 
C-A-S-H at 0.81 < Ca/(Al + Si) < 0.95. 

Fig. 9 illustrates the distribution of Al between C-A-S-H, aqueous 
phase and different secondary phases as a function of the initial Al 
content. At lower Al nearly all aluminium (>99.9 %) is present in C-A-S- 

H. The fraction of Al bound in C-A-S-H decreases at higher Al concen-
trations as secondary phases precipitate for both solutions containing 
NaOH and KOH. 

3.2. Influence of NaOH and KOH 

Increasing concentrations of NaOH lower the amount of secondary as 
shown in Fig. 10 (a) and (b). While in 0.1 M NaOH, strätlingite and 
katoite are present, in 1 M NaOH, only katoite is present. Rietveld 
analysis indicates that the amounts of secondary phases reduce from 7 % 
katoite plus 5 % strätlingite in 0.1 M NaOH to 2 % katoite plus 4 % 
strätlingite in 0.5 M NaOH and 1 % katoite in 1 M NaOH (error ± 1 %). 
This is due to the destabilization of strätlingite with increasing pH 
values, as illustrated in Fig. 3. Fig. 10 indicates also that the presence of 
alkali hydroxide shows no significant influence neither on the amount of 
water in C-A-S-H (see main water loss up to 300 ◦C in TGA) nor on the 
basal spacing observed by XRD for C-A-S-H, see also Fig. 4. However, a 
somewhat more narrow d001 reflection is observed in 1 M NaOH 
compared with 0.5 M, which could indicate a more ordered structure of 
C-A-S-H along the c-axis and/or more stacking layers in c-axis direction 
[76,94]. Such a narrower d001 reflection has been observed previously 
for C-S-H without Al at higher NaOH concentrations [76], which has 
been assigned to an increased stacking in c-direction at higher pH 
values. 

Fig. 10 (c) shows that increased NaOH concentrations shift the most 
pronounced FTIR band at 950 cm− 1 to lower wavenumbers (redshift 
from 957 cm− 1 to 943 cm− 1), indicating that additional NaOH de-
polymerizes the silicate chains [77,78], in agreement with the effect 
observed by Si-NMR [27] and the observations for C-S-H without Al 
[76]. Also the intensity of the stretching vibration of O–Si and/or O–Al 
from Q1 signal located at ~810 cm− 1 and the bending vibration of 
O–Si–O and/or O–Al–O [83] or the deformation of Si and/or Al tetra-
hedral [75,78] of Q1 signal located at ~480 cm− 1 increase, indicating 
the presence of more Q1 silica and thus a shortening of the silica chain 
length. At higher NaOH concentration, the shoulders located at ~900 
cm− 1 and 1020 cm− 1 are more visible, which indicates lowering of the 
symmetry resulting from the transformation of structural equivalent 
sites into groups of non-equivalents sites [23]. This lowering of the 
symmetry seems to be caused by the presence of increasing amounts of 
Na+ in the interlayer, i.e. by the changes in the second coordination 
sphere [23]. 

Similar conclusions can be drawn from the Raman spectra (Fig. 10 
(d)). The area of the SS Si–O Q1 signal increases and SS Si–O Q2 signal 
decreases at higher NaOH concentrations. The C-A-S-H synthesized at 1 
M and 0.5 M NaOH are more prone to be carbonated than the C-A-S-H at 
0.1 M NaOH. The peak at ~600 cm− 1, assigned to SB Si–O–Al, is more 
visible in C-A-S-H with 0.5 and 1 M, which indicates that increased 
substitution of Si by Al occurs in the presence of more alkali hydroxide. 
This is in agreement with the stronger uptake of Al observed by mass 
balance calculations (as detailed below), which was also confirmed by 
density function calculations, which predict a slight stabilization of Al- 
uptake in the presence of Na+ [95], as well as with recent NMR obser-
vations which indicate a positive correlation between Na and Al uptake 
at Ca/Si ≥1.0 [27]. 

Fig. 11 shows the Al K-edge XANES spectra of C-A-S-H with initial 
Al/Si 0.05 synthesized in 0.1 M NaOH for 1 year and 1 M NaOH for 3 
months. These two samples were chosen to minimize the disturbance 
from secondary phases, since no secondary phases are visible in both 
samples from XRD. The energy positions of the Al(IV) peak in C-A-S-H 
remains the same independent of the NaOH concentration, although the 
peak in 0.1 M NaOH is slightly narrower. This may indicate different 
chemical environments of Al(IV) in C-A-S-H formed under different 
alkaline conditions, in agreement with recent 27Al NMR data [27]. In 
contrast, the shape, position and intensity of the Al(VI) peaks in C-A-S-H 
varies and an additional signal at 1568 eV is observed, which could 
suggest that the content and chemical environment of octahedral Al in 

Fig. 11. K-edge XANES spectra for C-A-S-H equilibrated for 1 year in NaOH 0.1 
M, C-A-S-H equilibrated for 3 months in NaOH 1 M and calculated Al(IV) and Al 
(VI) spectra. 
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the interlayer of C-A-S-H also change with NaOH concentrations. The 
content of Al(VI) sites in C-A-S-H with initial Al/Si 0.05 is likely to in-
crease or the chemical environment is different with increasing NaOH 
addition. 

Fig. 8 showed that at constant alkali hydroxide concentration, the 
measured aqueous Al and Si concentrations increase with rising Al/ 
Sisolid, while the Ca concentrations decrease. However, Fig. 12 illustrates 
the strong effect of NaOH or KOH, which further elevates aluminium and 

silica concentrations and lowers calcium concentrations. The concen-
trations measured in this study are consistent with the previous solu-
bility data of C-A-S-H in NaOH or KOH solutions at 20 ◦C [30,33], 
although there is some scatter in the measured data points. The dis-
solved Al, Si and Ca concentrations show similar trends in the absence of 
NaOH and KOH as well as in their presence: a rise of Al and Si and a 
decline of Ca with increasing Al/Sisolid. This suggests that C-(N,K-)A-S-H 
solubility does not vary greatly as a function of the alkali cation (Na or 
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referred to the web version of this article.) 
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K) present, but that the concentrations are just shifted at higher pH 
values, due to the common ion effect with C-S-H between hydroxide, Al, 
Si and Ca. The measured Al, Si and Ca concentrations (data in Table A1) 
and their trends are in general well reproduced by thermodynamic 
modelling using the recent CASH+ solid solution model [43–46]. In 
agreement with the experimental data, the use of NaOH or KOH did not 
significantly affect the modelled concentrations. 

The thermodynamic model predicts higher Al and Si concentrations 
in the presence of alkali hydroxides due to the preference of Al to form 
negatively charged Al(OH)4

− aqueous complexes and of Si to form SiO 
(OH)3

− and SiO2(OH)2
2− complexes at higher pH values. The opposite 

effect can be observed for Ca concentration: in presence of higher con-
centration of alkali hydroxide, Ca concentrations decrease. 

The aluminium uptake in C-S-H as a function of dissolved aluminium 
concentration and pH is shown in Fig. 13. The presence of alkali hy-
droxide increases the fraction of Al in solution and decreases the fraction 
in C-S-H in agreement with previous experimental studies 
[19,30,31,33,96], due to the increased tendency of Al to remain as Al 
(OH)4

− in solution at higher pH values. The maximum Al/SiC-S-H of C-(N, 
K)-A-S-H is also affected by the alkali hydroxide concentration, since at 
pH > 13, the Al concentrations in equilibrium with secondary phases 
such as katoite and strätlingite increase (see Fig. 3). The higher Al 
concentrations at elevated pH values allow more Al uptake in C-S-H: the 
maximum Al/SiC-S-H increases from 0.09 in alkali free solution [30] to 
0.13 in 0.1 M NaOH, and to 0.17 in 1 M NaOH for C-N-A-S-H with Al/ 
Sitarget = 0.2 equilibrated for 15 months. A linear relation between 
aluminium concentration in aqueous solution and Al/Si in C-A-S-H at 
different alkali hydroxide concentrations is observed in Fig. 13. 

The Al uptake in C-S-H can also be described by distribution co-
efficients, Kd values as defined by Eq. (1), which depict the relative af-
finity of Al to sorb on C-S-H, as shown in Fig. 14. While in the absence of 
alkali hydroxides, Kd values of 55 ± 40 m3/kg are observed, they 
decrease strongly to approximately 2 in 0.1 M NaOH, to 0.6 in 0.5 M 
NaOH and to 0.3 in 1 M NaOH according to Kd (Ca/Si = 1.0) = 1014.7 

(±0.4)− 1.1(±0.1)*pH. The decrease of Al uptake at higher pH values is in 
accordance with ref. [33], and can be explained mainly by the fact that 
aluminium preferentially dissolves as Al(OH)4

− species in solution at 
higher pH values, which lowers the tendency of Al to be sorbed by C-S-H. 
The mean Kd value of ≈600 m3/kg reported for similar C-A-S-H samples 
with Ca/Si = 0.8 in the absence of NaOH or KOH [97] is significantly 
higher, which could indicate a strong effect of pH and/or Ca/Si on the Kd 
values of Al on C-S-H. 

4. Conclusion 

In this paper we report the observed effects of Al and of KOH and 
NaOH concentrations on the structure and solubility of C-S-H with Ca/Si 
= 1.0. XRD, TGA and ITFA analysis of XANES show the presence of more 
secondary phases at higher Al contents and at lower pH values. The 
uptake of Al increases the interlayer distance of C-A-S-H, much stronger 
than that observed in Al-tobermorite [67], indicating that the increase of 
the negative charge due to the uptake of AlO4 in the bridging tetrahedra 
increases the basal spacing. The uptake of Al in the bridging tetrahedral 
of the silica chain results in more Q2 and less Q1 sites as observed by 
FTIR and Raman spectroscopy, indicating longer dreierketten chains in 
C-A-S-H. In agreement with Al NMR studies [27], XANES data show that 
Al in C-S-H with Ca/Si = 1 is present mainly as tetrahedral Al inde-
pendent of the Al concentration or pH values. 

A higher initial Al loading increases both the dissolved Al and Si 

concentrations due to their competition for uptake in the bridging sites 
in the silica chain and lowers the Ca concentrations in the aqueous 
phase. The aqueous data show a slight preference of Si over Al for uptake 
in the bridging sites of C-A-S-H, although under all conditions studied, 
Al is predominantly bound in C-A-S-H in 0.5 M NaOH: Al in C-A-S-H >
99 % at Al/Siinital ≤ 0.05, while >70 % at Al/Siinitial = 0.2 due to the 
formation of secondary phases. 

Higher NaOH or KOH concentrations progressively destabilize 
strätlingite and stabilize katoite, and reduce the amounts of secondary 
phases. In the C-A-S-H phase, less Q2 and more Q1 silicate are observed 
at higher pH, indicating a shortening of the silica chain length. XANES 
spectra show the presence of predominantly Al(IV) in the absence of 
alkali hydroxide, but more Al(VI) at higher pH values. High NaOH or 
KOH concentrations in solution also change the spectra of octahedrally 
bound Al(VI) but less for tetrahedral Al(IV). 

At higher pH values the aqueous Al and Si concentrations increase, 
and Ca concentrations decrease. Higher Al concentration lead to a 
higher fraction of Al bound in C-A-S-H. The linear correlations between 
the aluminium concentration in solution and Al/Si in C-A-S-H indicate 
that Al is taken up at the same kind of sorption sites in C-S-H indepen-
dent of Al concentration or pH values. The distribution coefficients of Al 
on C-S-H strongly decrease with increasing pH values. 

The comparison of the measured concentrations with those predicted 
by thermodynamic modelling using the CASH+ solid solution model, 
shows in general a good agreement, thus providing an independent 
validation of the CASH+ model for the aluminium and alkali metals 
uptake in C-S-H. 
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Appendix A  

Table A1 
Aqueous dissolved concentrations and pH values for the C-(N,K-)A-S-H samples (target Ca/Si = 1.0).  

Synthesis solution Time Target Al/Si [Si] [Ca] [Al] [Na] [K] [OH− ] pHa 

(Months) (mM) (mM) (mM) (mM) (mM) (mM) 

0.1 M NaOH  12  0  0.179  0.0818  0  82.9  0  92.7  13.0  
15  0.05  0.323  0.207  0.085  74.2  0  41.2  12.6  
15  0.1  0.431  0.173  0.212  71.0  0  38.4  12.6  
15  0.15  0.463  0.132  0.462  69.7  0  34.7  12.5  
15  0.2  0.559  0.0966  0.555  70.6  0  34.8  12.5 

0.5 M NaOH  12  0  0.705  0.0945  0  473  0  322  13.5  
15  0.05  0.322  0.175  0.207  485  0  178  13.3  
15  0.1  0.470  0.126  0.869  483  0  154  13.2  
15  0.15  0.891  0.0944  1.39  468  0  132  13.1  
15  0.2  0.856  0.0889  2.22  405  0  122  13.1 

1 M NaOH  12  0  0.713  0.189  0  940  0  689  13.8  
15  0.05  0.56  0.238  0.590  994  0  216  13.3  
15  0.1  1.03  0.138  1.53  974  0  232  13.4  
15  0.15  1.16  0.141  2.53  1200  0  260  13.4  
15  0.2  1.05  0.137  3.79  1027  0  312  13.5 

0.1 M NaOH  3  0  0.146  0.399  0  78.7  0  111  13.0  
3  0.05  0.298  0.212  0.069  80.4  0  105  13.0  
3  0.1  1.25  0.0681  0.342  80.1  0  74.7  12.9  
3  0.15  11.4  0.0177  0.327  69.3  0  79.5  12.9  
3  0.2  0.541  0.0293  0.701  63.6  0  96.6  13.0 

0.5 M NaOH  3  0  0.357  0.1476  0  472  0  341  13.5  
3  0.05  0.489  0.0426  0.056  580  0  409  13.6  
3  0.1  0.556  0.0396  1.09  493  0  289  13.5  
3  0.15  1.15  0.0108  1.47  512  0  443  13.6  
3  0.2  1.36  0.0112  2.37  511  0  284  13.5 

1 M NaOH  3  0  0.472  0.218  0.00  978  0  572  13.8  
3  0.05  0.699  0.204  0.490  1097  0  524  13.7  
3  0.1  1.10  0.0591  2.04  986  0  469  13.7  
3  0.15  1.19  <0.0025  3.16  1236  0  585  13.8  
3  0.2  1.25  <0.0025  5.74  1165  0  444  13.6 

0.5 M KOH  3  0  0.392  0.222  0  0  493  309  13.5  
3  0.01  0.465  0.197  0.027  0  496  309  13.5  
3  0.03  0.578  0.151  0.136  0  483  309  13.5  
3  0.05  0.641  0.128  0.276  0  503  309  13.5  
3  0.1  0.750  0.109  1.02  0  473  309  13.5  
3  0.15  0.738  0.103  2.08  0  475  297  13.5  
3  0.2  0.744  0.0936  3.03  0  478  309  13.5  

a pH measured at ~24 ◦C.  

Table A2 
Saturation indices for the relevant reaction products in the C-A-S-H specimens: C-(A-)S-H is represents CASH+ solid solution model [43–46], portlandite: Ca(OH)2, 
Amorphous SiO2: SiO2, katoite: Ca3Al2(OH)6, strätlingite: Ca2Al((AlSi)1.11O2)(OH)12(H2O)2.25, AH3 (mic): microcrystalline Al(OH)3. Zeolitic phases: gismondine-P1: 
Na6Al6Si10O32⋅12H2O, natrolite: Na2Al2Si3O10⋅2H2O, zeolite X: Na2Al2Si2.5O9⋅6.2H2O.  

Synthesis solution (Months) Target Al/Si C-(A-)S-H Portlandite Amorph.-SiO2 Katoite Strätlingite Gismondine-P1 Natrolite Zeolite X AH3 
(mic) 

0.1 M NaOH  12  0  − 2.5  − 2.0  − 4.4 – – – – – –  
15  0.05  − 0.9  − 1.7  − 4.1 − 5.8 − 2.2 − 1.8 − 1.4 − 2.3 − 2.3  
15  0.1  − 0.6  − 1.8  − 3.9 − 5.3 − 1.4 − 1.4 − 1.0 − 1.8 − 1.8  
15  0.15  − 0.7  − 1.9  − 3.9 − 5.0 − 1.0 − 1.2 − 0.8 − 1.5 − 1.5  
15  0.2  − 0.8  − 2.1  − 3.8 − 5.3 − 1.0 − 1.0 − 0.6 − 1.3 − 1.4 

0.5 M NaOH  12  0  − 1.2  − 1.2  − 5.1 – – – – – –  
15  0.05  − 1.2  − 0.9  − 5.5 − 4.4 − 2.9 − 2.5 − 2.1 − 2.8 − 2.7  
15  0.1  − 1.0  − 1.1  − 5.3 − 3.6 − 1.8 − 2.0 − 1.5 − 2.1 − 2.0  
15  0.15  − 0.6  − 1.2  − 5.0 − 3.6 − 1.4 − 1.6 − 1.1 − 1.7 − 1.8  
15  0.2  − 0.4  − 1.3  − 4.9 − 3.3 − 0.9 − 1.4 − 0.9 − 1.4 − 1.6 

1 M NaOH  12  0  − 0.7  − 0.7  − 5.7 – – – – – –  
15  0.05  − 0.6  − 0.6  − 5.9 − 3.0 − 2.3 − 2.5 − 2.0 − 2.6 − 2.5  
15  0.1  − 0.5  − 0.8  − 5.6 − 2.9 − 1.7 − 2.0 − 1.5 − 2.0 − 2.1  
15  0.15  − 0.4  − 0.8  − 5.7 − 2.5 − 1.5 − 1.9 − 1.4 − 1.9 − 2.0  
15  0.2  − 0.4  − 0.8  − 5.6 − 2.1 − 1.0 − 1.8 − 1.3 − 1.7 − 1.7 

0.1 M NaOH  3  0  − 1.2  − 1.3  − 4.5 – – – – – –  
3  0.05  − 0.9  − 1.6  − 4.2 − 5.9 − 2.4 − 1.9 − 1.6 − 2.4 − 2.4  
3  0.1  − 0.6  − 2.2  − 3.5 − 6.4 − 1.6 − 0.8 − 0.5 − 1.2 − 1.7  
3  0.15  − 0.6  − 3.6  − 2.3 − 10.3 − 3.0 0.3 0.7 − 0.1 − 1.6  
3  0.2  − 1.9  − 2.6  − 3.7 − 6.7 − 1.8 − 0.9 − 0.5 − 1.2 − 1.3 

0.5 M NaOH  3  0  − 1.3  − 1.0  − 5.4 – – – – – –  
3  0.05  − 2.3  − 1.5  − 5.4 − 7.3 − 5.3 − 2.8 − 2.4 − 3.2 − 3.3  
3  0.1  − 1.8  − 1.6  − 5.2 − 4.9 − 2.6 − 1.9 − 1.4 − 2.0 − 2.0 

(continued on next page) 
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Table A2 (continued ) 

Synthesis solution (Months) Target Al/Si C-(A-)S-H Portlandite Amorph.-SiO2 Katoite Strätlingite Gismondine-P1 Natrolite Zeolite X AH3 
(mic)  

3  0.15  − 2.3  − 2.1  − 5.0 − 6.4 − 3.2 − 1.5 − 1.0 − 1.6 − 1.8  
3  0.2  − 2.0  − 2.1  − 4.9 − 5.9 − 2.7 − 1.3 − 0.8 − 1.4 − 1.6 

1 M NaOH  3  0  − 1.0  − 0.6  − 5.9 – – – – – –  
3  0.05  − 0.7  − 0.6  − 5.8 − 3.4 − 2.6 − 2.5 − 2.0 − 2.6 − 2.6  
3  0.1  − 1.2  − 1.2  − 5.6 − 3.8 − 2.2 − 1.9 − 1.4 − 1.9 − 2.0  
3  0.15  − 16.8  − 8.9  − 5.8 − 26.7 − 17.6 − 1.9 − 1.4 − 1.8 − 1.9  
3  0.2  − 16.5  − 8.9  − 5.7 − 26.2 − 17.0 − 1.7 − 1.2 − 1.6 − 1.6 

0.5 M KOH  3  0  − 0.9  − 0.8  − 5.5 – – – – – –  
3  0.01  − 0.9  − 0.8  − 5.4 − 6.0 − 4.5 − 8.2 − 8.4 − 10.4 − 3.6  
3  0.03  − 0.9  − 1.0  − 5.3 − 4.9 − 3.2 − 7.7 − 7.8 − 9.7 − 2.9  
3  0.05  − 0.9  − 1.0  − 5.3 − 4.5 − 2.8 − 7.5 − 7.6 − 9.4 − 2.6  
3  0.1  − 0.8  − 1.1  − 5.1 − 3.6 − 1.7 − 7.0 − 7.1 − 8.9 − 2.0  
3  0.15  − 0.7  − 1.1  − 5.2 − 3.1 − 1.1 − 6.8 − 6.9 − 8.6 − 1.7  
3  0.2  − 0.7  − 1.2  − 5.2 − 2.9 − 0.9 − 6.7 − 6.8 − 8.5 − 1.5   

Table A3 
Solid phase assemblages of the C-(N,K-)A-S-H samples, as determined by XRD Rietveld analysis. The estimated absolute error is ±2 wt%.  

Synthesis solution Time Target Al/Si C-(N,K)-A-S-H CH C3AH6 C2ASH8 Hc Mc 

(Months) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) 

0.1 M NaOH  12  0  100       
15  0.05  100       
15  0.1  98.8   1.2     
15  0.15  96.0   2.0  2.0    
15  0.2  87.8   7.0  5.2   

0.5 M NaOH  12  0  100       
15  0.05  100       
15  0.1  98.4   1.1    0.4  
15  0.15  94.6   2.5   0.5  2.3  
15  0.2  98.1   2.2  3.9   

1 M NaOH  12  0  100       
15  0.05  98.8   1.2     
15  0.1  99.4   0.6     
15  0.15  96.4  0.3    1.6  1.7  
15  0.2  99.0   1.0    

0.1 M NaOH  3  0  100       
3  0.05  100       
3  0.1  98.7   1.3     
3  0.15  97.5  0.6  1.9     
3  0.2  88.3   3.9  7.9   

0.5 M NaOH  3  0  100       
3  0.05  100       
3  0.1  99.3     0.7   
3  0.15  98.5   1.1   0.4   
3  0.2  96.2   1.4  2.4   

1 M NaOH  3  0  100       
3  0.05  100       
3  0.1  99.3  0.5    0.3   
3  0.15  98.4  0.9    0.2  0.5  
3  0.2  97.0  0.8  0.3   0.6  1.4 

0.5 M KOH  3  0  100       
3  0.01  100       
3  0.03  100       
3  0.05  100       
3  0.1  100       
3  0.15  100       
3  0.2  97.2   0.9    1.9   

Table A4 
Chemical compositions of the C-(N,K-)A-S-H products, determined from Rietveld analysis, mass balance, TGA and dissolution experiments. The estimated absolute 
errors are less than ±0.02 units in the Ca/Si ratios, ±0.2 units in the H2O/Si ratios, and ±0.05 units for the 0.1 M alkali samples in the Na/Si ratios of the C-(N,K-)A-S-H 
products.  

Synthesis solution Time Target Al/Si Ca/Si Na/Sia K/Sib Al/Si H2O/Si Chemical formula 

(Months) 

0.1 M NaOH  12  0  1.00  0.15  0  0  1.30 (CaO)1.00(Na2O)0.15SiO2(H2O)1.3  
15  0.05  1.00  0.12  0  0.05  1.27 (CaO)1.00(Na2O)0.12(Al2O3)0.05SiO2(H2O)1.3 

(continued on next page) 
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Table A4 (continued ) 

Synthesis solution Time Target Al/Si Ca/Si Na/Sia K/Sib Al/Si H2O/Si Chemical formula 

(Months)  

15  0.1  0.98  0.12  0  0.09  1.54 (CaO)0.98(Na2O)0.12(Al2O3)0.09SiO2(H2O)1.5  
15  0.15  0.96  0.16  0  0.11  2.00 (CaO)0.96(Na2O)0.16(Al2O3)0.11SiO2(H2O)2.0  
15  0.2  0.88  0.18  0  0.10  1.57 (CaO)0.88(Na2O)0.18(Al2O3)0.10SiO2(H2O)1.6 

0.5 M NaOH  12  0  1.00  0.45  0  0  1.37 (CaO)1.00(Na2O)0.45SiO2(H2O)1.4  
15  0.05  1.00  0.34  0  0.05  1.94 (CaO)1.00(Na2O)0.34(Al2O3)0.05SiO2(H2O)1.9  
15  0.1  0.99  0.33  0  0.08  1.80 (CaO)0.99(Na2O)0.33(Al2O3)0.08SiO2(H2O)1.8  
15  0.15  0.93  0.39  0  0.10  1.39 (CaO)0.93(Na2O)0.39(Al2O3)0.10SiO2(H2O)1.4  
15  0.2  0.97  0.39  0  0.17  1.81 (CaO)0.97(Na2O)0.39(Al2O3)0.17SiO2(H2O)1.8 

1 M NaOH  12  0  1.00  0.73  0  0  1.53 (CaO)1.00(Na2O)0.73SiO2(H2O)1.5  
15  0.05  0.95  0.36  0  0.03  1.59 (CaO)0.95(Na2O)0.36(Al2O3)0.03SiO2(H2O)1.6  
15  0.1  0.99  0.27  0  0.09  1.60 (CaO)0.99(Na2O)0.27(Al2O3)0.09SiO2(H2O)1.6  
15  0.15  0.95  0.36  0  0.12  1.53 (CaO)0.95(Na2O)0.36(Al2O3)0.12SiO2(H2O)1.5  
15  0.2  0.98  0.34  0  0.17  1.84 (CaO)0.98(Na2O)0.34(Al2O3)0.17SiO2(H2O)1.8 

0.1 M NaOH  3  0  1.00  0.09  0  0  1.14 (CaO)1.00(Na2O)0.09SiO2(H2O)1.1  
3  0.05  1.00  0.12  0  0.05  1.95 (CaO)1.00(Na2O)0.12(Al2O3)0.05SiO2(H2O)1.9  
3  0.1  0.99  0.20  0  0.09  1.73 (CaO)0.99(Na2O)0.20(Al2O3)0.09SiO2(H2O)1.7  
3  0.15  1.02  0.16  0  0.14  2.08 (CaO)1.02(Na2O)0.16(Al2O3)0.14SiO2(H2O)2.1  
3  0.2  0.91  0.24  0  0.10  1.74 (CaO)0.91(Na2O)0.24(Al2O3)0.10SiO2(H2O)1.7 

0.5 M NaOH  3  0  1.00  0.42  0  0  1.44 (CaO)1.00(Na2O)0.42SiO2(H2O)1.4  
3  0.05  1.00  0.32  0  0.05  2.06 (CaO)1.00(Na2O)0.32(Al2O3)0.05SiO2(H2O)2.1  
3  0.1  0.99  0.37  0  0.09  1.81 (CaO)0.99(Na2O)0.37(Al2O3)0.09SiO2(H2O)1.8  
3  0.15  0.98  0.36  0  0.13  1.99 (CaO)0.98(Na2O)0.36(Al2O3)0.13SiO2(H2O)2.0  
3  0.2  0.97  0.46  0  0.16  1.86 (CaO)0.97(Na2O)0.46(Al2O3)0.16SiO2(H2O)1.9 

1 M NaOH  3  0  1.00  0.99  0  0  2.08 (CaO)1.00(Na2O)0.99SiO2(H2O)2.1  
3  0.05  1.00  0.45  0  0.05  1.57 (CaO)1.00(Na2O)0.45(Al2O3)0.05SiO2(H2O)1.6  
3  0.1  0.99  0.34  0  0.09  1.42 (CaO)0.99(Na2O)0.34(Al2O3)0.09SiO2(H2O)1.4  
3  0.15  0.97  0.38  0  0.13  1.48 (CaO)0.97(Na2O)0.38(Al2O3)0.13SiO2(H2O)1.5  
3  0.2  0.95  0.52  0  0.15  1.55 (CaO)0.95(Na2O)0.52(Al2O3)0.15SiO2(H2O)1.6 

0.5 M KOH  3  0  1.00  0  0.11  0  1.52 (CaO)1.00(K2O)0.11SiO2(H2O)1.5  
3  0.01  1.00  0  0.09  0.01  1.43 (CaO)1.00(K2O)0.09(Al2O3)0.01SiO2(H2O)1.4  
3  0.03  1.00  0  0.16  0.03  1.44 (CaO)1.00(K2O)0.16(Al2O3)0.03SiO2(H2O)1.4  
3  0.05  1.00  0  0.06  0.05  1.57 (CaO)1.00(K2O)0.06(Al2O3)0.05SiO2(H2O)1.6  
3  0.1  1.00  0  0.22  0.10  1.50 (CaO)1.00(K2O)0.22(Al2O3)0.10SiO2(H2O)1.5  
3  0.15  1.00  0  0.21  0.14  1.56 (CaO)1.00(K2O)0.21(Al2O3)0.14SiO2(H2O)1.6  
3  0.2  0.96  0  0.20  0.16  1.62 (CaO)0.96(K2O)0.20(Al2O3)0.16SiO2(H2O)1.6  

a Na/Si ratios based on direct methods [31] are associated with an error of ±0.2 units for the 0.5 M alkali samples and ±0.4 for the 1 M alkali samples. 
b K/Si ratios based on indirect methods [31] are associated with an error of ±0.3 units. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cemconres.2022.106957. 
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[29] E. Wieland, R. Dähn, M. Vespa, B. Lothenbach, Micro-spectroscopic investigation 
of Al and S speciation in hardened cement paste, Cem. Concr. Res. 40 (2010) 
885–891. 
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