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‘LatticeKrig’ (LK) is a spatial model that is often used for modeling multiresolution 
spatial data with flexible covariance structures. An extension to LK under a Bayesian 
framework is proposed that uses integrated nested Laplace approximations (INLA). The 
extension enables the spatial analysis of non-Gaussian responses in latent Gaussian 
models, joint spatial modeling with structured and unstructured random effects, and 
native support for multithreaded parallel likelihood computation. The proposed extended 
LatticeKrig (ELK) model uses a reparameterization of LK so that the parameters and prior 
selection are intuitive and interpretable. Priors can be used to make inference robust 
by penalizing more complex models, and integration over model parameters allows for 
posterior uncertainty estimates that account for uncertainty in covariance parameters. 
ELK’s ability to reliably resolve multiresolution spatial structure for pointwise and areal 
predictions is demonstrated in both simulation study and two applications with non-
Gaussian observations: a set of 188,717 LiDAR forest canopy height observations in 
Bonanza Creek Experimental Forest in Alaska, and a set of 1,612 clusters containing counts 
of secondary education completion from the 2014 Kenya demographic health survey. ELK 
has improved central predictions as well as uncertainty characterization according to the 
considered scoring rules when compared against a number of other models, particularly in 
the forest canopy height application, and performed faster than LK in our tests in part due 
to its support for and use of parallelization.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The increasing size and complexity of spatial point datasets in fields such as climatology, public health, ecology, and 
the social sciences have been concurrent with methodological developments in spatial statistics. One popular method of 
spatial analysis developed to handle such datasets is known as ‘LatticeKrig’ (LK) (Nychka et al., 2015), with an associated 
package sharing the name (Nychka et al., 2016). Unlike many other models that are able to handle large spatial datasets, 
LK focuses on the ability to model complex spatial dependence structures, particularly those that exhibit multiple scales of 
spatial correlation, by separating the modeled spatial process into multiple ‘layers’, each with its own spatial resolution and 
correlation scale.

* Corresponding author.
E-mail address: john.paige@ntnu.no (J. Paige).
https://doi.org/10.1016/j.csda.2022.107503
0167-9473/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.csda.2022.107503
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2022.107503&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:john.paige@ntnu.no
https://doi.org/10.1016/j.csda.2022.107503
http://creativecommons.org/licenses/by/4.0/


J. Paige, G.-A. Fuglstad, A. Riebler et al. Computational Statistics and Data Analysis 173 (2022) 107503
While there are a number of other available methods that can, in theory, be used to model large datasets exhibiting 
multiscale spatial behavior, such as Vecchia approximations (Katzfuss and Guinness, 2020; Katzfuss et al., 2018; Zilber 
and Katzfuss, 2019), and related methods, their available implementations provide no simple way of accounting for this 
behavior in practice. For a review of general spatial methods for ‘big data’, see Heaton et al. (2019). Autoregressive co-
kriging, introduced in Kennedy and O’Hagan (2000), is able to account for multiple datasets, each observed at different 
resolutions. However, it is not intended for modeling multiscale spatial correlations in a single dataset.

Although LK is a very useful tool for modeling multiscale spatial data, it has a number of shortcomings that we hope to 
address in this work. LK is unable to model non-Gaussian responses, which considerably limits its applicability in practice. 
Moreover, the LatticeKrig package is unable to account for multiscale spatial correlation jointly with structured or 
unstructured random effects. Many nonlinear covariate or temporal effect models, such as those involving random walks or 
some kinds of smoothing splines, incorporate such random effects, and would therefore be unable to be included within 
the LatticeKrig package. While LK allows for more flexible covariance modeling than is typically allowed under other 
models assuming isotropic spatial covariances, LatticeKrig does not allow for any way to penalize this added flexibility 
or encourage simpler models, and little guidance is given as to how to structure the spatial layers and how to choose 
their resolutions. Lastly, LatticeKrig does not natively support multithreaded parallel computations, which limits its 
applicability to large datasets.

These limitations prevent LK from being applied to datasets that might otherwise be ideally suited for it due to their 
multiresolution spatial structure. In LiDAR data, for instance, observations are collected along long, thin tracts and in poten-
tially very high resolution relative to the size of the spatial domain (Abdalati et al., 2010; Schutz et al., 2005; Dubayah et 
al., 2020; Cook et al., 2013). Such data can be used to identify fine scale spatial structure if present, but also contain gaps 
between the measurement transects where long scale correlations may be especially important for prediction. Finley et al. 
(2020b) consider a forest canopy height dataset with LiDAR measurements, and find evidence suggesting that forest canopy 
height is associated nonlinearly with percent tree cover. Since forest canopy height is nonnegative, it is also inherently 
non-Gaussian. Despite the potential for multiscale spatial structure, LK is not well suited to analyze this dataset due to the 
non-Gaussian responses as well as the nonlinear effect of percent tree cover.

In other cases, where areally aggregated predictions are required, a model’s ability to accurately account for multiple 
correlation scales can be especially important. In Appendix A, we show that uncertainties in an areal average are most 
impacted by correlation ranges close to the radius of that area. Different correlation scales therefore become important when 
producing areal averages over different sized areas. Estimates of population averages require such areal averaging, and are 
of great importance in survey statistics and small area estimation, where estimates of population averages may be desired 
over multiple different administrative areas with different shapes and sizes. Many population quantities of interest in such 
contexts are based on non-Gaussian responses, such as population prevalence estimates that typically rely on count data. 
Estimating the prevalence of women’s secondary education completion, for instance, relies on population count data, and 
is important for Sustainable Development Goal (SDG) 4 (United Nations, 2020), which calls for improvements in secondary 
education to the point where everyone can complete their secondary education by 2030 regardless of their gender or where 
they live.

Although multiscale spatial correlations may be relevant in many applications, the most common approach to spatial 
modeling is to use parametric classes of spatial covariance functions such as the Matérn family that do not necessarily 
account for multiscale structure. It is known that, under infill asymptotics, it is the behavior of the Matérn covariance 
function at short spatial scales that most affects the likelihood and pointwise predictions (Stein, 1999, Ch. 3). This means 
that while short scale behavior of the Matérm covariance may be fit accurately, long scale correlations in the data will often 
not be accurately reproduced by the fit model. However, as we later show in the simulation study, long range correlations 
become increasingly important when making predictions far from observations, and for certain areal averages.

The difficulty in identifying spatial covariance parameters can make it especially important to integrate over their un-
certainty when estimating uncertainty in the predictions, and when an estimate of the covariance function is desired. In a 
frequentist setting, and in LK, the bootstrap can be applied, but it relies on asymptotics, and is computationally expensive 
since it requires the model to be refit many times (Sjöstedt-de Luna and Young, 2003). While conditional simulation (see, 
e.g. Lantuéjoul 2013) is a computationally tractable frequentist method for estimating predictive uncertainty, it does not 
account for uncertainty in the covariance parameters. Handock and Stein (1993) and Gelfand et al. (2010, Ch. 3.7) recom-
mend using Bayesian inference in spatial statistics due to the importance of accounting for uncertain covariance structure 
when making predictions and also note that prior information can improve model identifiability when available. However, 
Markov Chain Monte Carlo (MCMC) techniques are often difficult to implement with long running times and large memory 
requirements, especially with large numbers of observations (Filippone et al., 2013). Detailed output diagnostics are also 
necessary to assess convergence.

As such, the key limitation in providing Bayesian inference for multiresolution spatial models is the computational com-
plexity involved. In this work, we propose to take advantage of the deterministic algorithm for Bayesian inference based on 
Integrated Nested Laplace Approximations (INLA) (Rue et al., 2009). INLA is able to account for uncertainty in model param-
eters by approximating the joint posterior distribution of the model hyperparameters using a multivariate spline. INLA then 
samples from the joint hyperparameter distribution, and, conditional on each sample from the hyperparameter posterior, 
INLA samples from the rest of the posterior. Rather than conditioning on a single set of hyperparameter estimates, this al-
lows for INLA to account for hyperparameter uncertainty when generating a predictive distribution. LK uses different layers 
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of compact basis functions together with an associated sparse precision matrix, and we show how it can be included in the 
INLA framework of latent Gaussian models. We provide an implementation using the R package INLA, which permits fast 
and accurate estimation of posterior marginal densities provided that the number of parameters is not too big (typically 
2 to 5, but not exceeding 20 (Rue et al., 2017)). This extended version of LK is termed extended LatticeKrig (ELK). A key 
change from the original LK formulation is a reparametrization that improves interpretability and facilitates modeling and 
prior selection. Furthermore, the INLA implementation allows the ELK spatial model to be fit jointly with other random 
effects such as models for temporal trends or nonlinear covariate effects, to handle non-Gaussian responses, to integrate 
over parameter uncertainty, and to incorporate prior knowledge through expert knowledge and/or for the purpose of ro-
bustness. Importantly for the purposes of analyzing large datasets, ELK’s implementation in INLA gives it native support for 
multithreaded parallel computation, unlike LK.

We will contrast ELK to different spatial models throughout this work in order to better understand its performance 
relative to existing methods. A number of state of the art spatial models are reviewed in Heaton et al. (2019), although in 
this work we focus in particular on comparing ELK to LK when possible.

In Section 2 we introduce the two main applications that motivated this work, namely forest canopy height in Bonanza 
Creek Experimental Forest and secondary education prevalence for women in Kenya. In Section 3 we describe LK and ELK. 
We evaluate ELK, LK, and a stochastic partial differential equation (SPDE) Matérn model in a simulation scenario when fit 
to random fields with realistic mixtures of short and long-range correlations in Section 4, demonstrating the importance 
of multiples scales of spatial correlation in both point and areal predictions far from the nearest observation. In Sections 5
and 6 the ELK model is applied to real data introduced in Section 2 where mutliresolution spatial structure is relevant 
for prediction, and ELK’s predictive performance is assessed relative to LK when possible, and an SPDE model otherwise. 
Section 7 concludes this work with a discussion.

2. Motivating applications

2.1. Forest canopy height in Bonanza Creek experimental forest

A forest can influence nearby ecosystems in many ways, and forest structure is often a key input to ecosystem and 
earth system models (Klein et al., 2015; Hurtt et al., 2004; Finney, 1998). There is not only a demand for national and 
biome scale forest canopy height (FCH) estimates, but also an increasing ability to collect high quality and large scale LiDAR 
data. Examples of LiDAR systems capable of such mapping efforts include ICESat-2 (Abdalati et al., 2010; Schutz et al., 
2005), Global Ecosystem Dynamics Investigation LiDAR (Dubayah et al., 2020), and NASA Goddard’s LiDAR, Hyperspectral, 
and Thermal (G-LiHT) Airborne Imager (Cook et al., 2013).

In this application, revisited in Section 5, we will consider a G-LiHT LiDAR forest canopy height dataset in Bonanza 
Creek Experimental Forest (BCEF) in Alaska, USA. The dataset consists of 188,717 observations. Our goal is to both smooth 
estimates of FCH over the support of the data if necessary, and in particular to provide estimates of FCH between the 
LiDAR data transects. Since FCH is nonnegative, Gaussian response models will likely be problematic. We will also use 
Landsat derived estimates of percent tree cover (PTC) from Hansen et al. (2013) as a covariate in the prediction. Since 
past evidence suggests the association between FCH and PTC may be nonlinear (Finley et al., 2020b), we will model this 
nonlinear association with ELK using a structured random effect model specified in Section 5. Both FCH and PTC are shown 
in Fig. 1. The dataset is available in the spNNGP R package (Finley et al., 2020a).

ELK may be relevant for this particular application due to its ability to model both long and short scale spatial structure, 
to handle large datasets of non-Gaussian responses, and to account for the nonlinear effect of PTC on FCH using structured 
random effect models jointly with the spatial effect. In this dataset, the LiDAR data take the form of long, thin tracts of 
very dense (13 m × 13 m) resolution measurements exhibiting considerable short scale structure, but often with large gaps 
in between. This finely spaced data over a relatively large spatial domain could allow a model to identify both long and 
short scale spatial variation if present in the observations, and both may be relevant when producing estimates—and their 
uncertainties—within the LiDAR observation transects as well as in the large gaps between them.

2.2. Prevalence of secondary education completion for women in Kenya

Sustainable Development Goal (SDG) 4 (United Nations, 2020) calls for improvements in secondary education to the 
point where everyone can complete their secondary education by 2030 regardless of their gender or the place where they 
live. Reliable spatial estimates of secondary education completion for young women are of particular importance to SDG 
4. Yet in many developing countries, estimates of secondary education completion rely on complex, multistage household 
surveys (Li et al., 2019; Wagner et al., 2018) such as demographic health surveys (DHS) (USAID, 2019), multiple indicator 
cluster survey (MICS) (UNICEF - Statistics and Monitoring, 2012), AIDS indicator surveys (AIS) (DHS Program, 2019), and 
living standard measurement surveys (LSMS) (The World Bank, 2019).

Often, these household surveys are stratified by administration area and urbanicity; see for instance ICF International 
(2012). However, the classifications of urban or rural for the sampled clusters was made at the time of the last census, 
which at best takes place every 10 years, and the specific continuous spatial classifications of urbanicity used in the censuses 
are generally not made publicly available. This forces modelers to either ignore urbanicity or assume that the classification 
3
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Fig. 1. Forest canopy height in meters (a), and estimates of percent tree cover (b) in the Bonanza Creek Experimental Forest in Alaska, USA. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this article.)

remains accurate over large time spans, and to estimate urbanicity for unobserved locations based on proxy data such as 
population density (Paige et al., 2020; Wakefield et al., 2019). Because population averages over administrative areas are 
relevant for policymakers, any spatial model used in this context must be able to produce accurate averages in areas of 
varying size. In addition, socioeconomic indicators and other confounders may vary on multiple spatial scales. Models in 
this context will therefore need to accurately estimate correlations at spatial scales relevant for the administrative areas 
considered, for the potential confounders present, to be able to offset potential inaccuracies in urbanicity classification over 
short spatial scales near urban boundaries, and to reduce oversmoothing observed in Paige et al. (2020) when urbanicity is 
not accounted for. The response is population counts in this case, which are non-Gaussian, making LK poorly suited for this 
application.

It is in this context that we consider the prevalence of secondary education completion for young women in Kenya in 
2014. Data are obtained from the 2014 Kenya DHS (KDHS, 2014) consisting of 1,612 clusters, each with official urban/rural 
designations, and age and educational achievement information for the sampled women within the cluster. The modeled 
response is the number of women aged 20-29 that have completed their secondary education. Since the response is non-
Gaussian, LK cannot be applied, making this an ideal setting for ELK. We consider this application in more depth in Section 6. 
The dataset is illustrated in Fig. 2.

3. Methods

3.1. Background on LatticeKrig

LK, introduced by Nychka et al. (2015), has been used to analyze spatial datasets in a number of contexts (Bradley et al., 
2013; Nychka et al., 2018; Thomas et al., 2014; Thomas, 2015). LK is a computationally efficient method for spatial modeling 
of the stochastic process Y = {y(x) : x ∈ D} in spatial domain D measured at observation locations x1, x2, . . . xn ∈ R2. The 
observation model is assumed to be Gaussian, with y(xi)|ηi, σ 2

N ∼N (ηi, σ 2
N), i = 1, . . . , n, where η = (η1, η2, . . . , ηn) are the 

linear predictors and σ 2
N is the nugget variance. The linear predictor is assumed to follow the linear model η = Zβ+u, where 

Z is a n × p matrix where each column specifies a covariate, β = (β1, β2, . . . , βp)T is a vector containing the coefficients 
associated with the covariates, and u = (u(x1), u(x2), . . . , u(xn)) is the vector of values of the spatial Gaussian random field 
(GRF) u at the observation locations.

LK is characterized by the decomposition of u into a series of lattices of increasing spatial resolution, and over which 
increasingly fine basis functions are spaced:

u(x) =
L∑

l=1

gl(x) =
L∑

l=1

m(l)∑
j=1

cl
jφl, j(x), x ∈ D ⊂ R2.

Here L is a fixed, predetermined small number of lattice layers, usually between 2 and 4, and g1, ..., gL are a series of 
smooth spatial functions associated with each lattice and composed of m(1), ..., m(L) basis functions respectively. Each gl is 
4
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Fig. 2. (a) Map of binary urbanicity classification in Kenya, where blue is urban and white is rural, and (b) 2014 empirical proportion of women aged 20-29 
in Kenya that completed their secondary education.

respectively decomposed into a linear combination of basis functions φl,1, ..., φl,m(l) with basis weights cl
j , which are random 

variables.
Nychka et al. (2015) choose radial Wendland basis functions (Wendland, 1995), which have compact support. The basis 

functions are represented as φl, j(d) = φ
(

d
2.5δl

)
, where φ(d) = (1 − d)6(35d2 + 18d + 3)/3 for 0 ≤ d ≤ 1, and 0 otherwise. 

Here δl is the layer l lattice cell width, and the factor of 2.5 ensures that the radius of each basis function is 2.5 times the 
respective layer lattice cell width. This overlap reduces artifacts in the predictive spatial means and standard errors (Nychka 
et al., 2015).

The basis coefficients for each layer respectively follow independent spatial autoregressive (SAR) models with mean zero 
multivariate normal distribution, cl = (cl

1, . . . , c
l
m(l)) ∼ MVN(0, αlσ

2
S B−1

l B−T
l ), where αl determines the proportion of spatial 

variance σ 2
S attributed to layer l. We also require 

∑L
l=1 αl = 1. Bl is an autoregression matrix for layer l with elements 4 +κ2

l
on the diagonal and up to four additional non-zero elements on each row corresponding to each neighbor, and with values 
of −1. As described in Lindgren et al. (2011), each layer l is a Gaussian Markov random field that approximates a Gaussian 
process with Matérn covariance function having smoothness ν = 1 and effective spatial range approximately ρl ≡ √

8δl/κl . 
Hence, LK is similar to the SPDE model, except LK uses Wendland basis functions that are arranged in multiple lattice layers, 
and each layer is able to account for different spatial correlation scales. Also, Nychka et al. (2015) give theoretical results 
based on convolution processes (Higdon, 1998) showing that the LK class of covariance functions contains close approx-
imations to Matérn covariances of arbitrary smoothness and range given sufficient lattice layers, and also give numerical 
results showing 3 or 4 layers is enough to closely approximate a variety of different covariance functions in practice. Note 
that Nychka et al. (2015) ensures the desired spatial variances at each point match the spatial variance σ 2

S by numerically 
normalizing them. The interpretation of αl as the proportion of variance attributed to layer l is not exact as the marginal 
variance of the different layers will vary depending on the values of κl .

Let Al be the n × m(l) regression matrix from the basis coefficients for layer l to the basis function values at the coordi-
nates of the observations so that (Al)i, j = cl

jφl, j(xi). We can then write the regression matrix from all basis coefficients to 
the values of the spatial effect at the observation locations as A = (A1 ... AL) so that u = Ac , where c = ((c1)T ... (cL)T )T . 
This means that the linear predictor can be written as η = Zβ + Ac .

In the above formulation, LK requires p parameters for fixed effects, and 2L + 1 parameters for the covariance including 
the spatial variance σ 2

S , error variance σ 2
N , L − 1 parameters for the layer weights, and L effective range parameters. It 

is sometimes assumed for simplicity that κ1 = κ2 = . . . = κL , in which case the effective range of each layer is controlled 
exclusively by the layer resolution. Under this assumption, LK requires only L + 2 covariance parameters.

3.2. A Bayesian extension to latent Gaussian models

We make two major additions to the formulation in the previous section: we allow for the model to be fit jointly with 
other structured random effects, and we allow for non-Gaussian responses. The model for the linear predictor is extended to
5
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η = Zβ + Ac +
K∑

i=1

Miγ i, (1)

where each matrix Mi for i = 1, . . . , K is fixed, and defines a mapping to the observations from random effects collected in 
each vector γ i associated with a component of the model such as temporal trends, space-time interactions, and other mod-
eled effects. The vector γ = (γ T

1 , . . . , γ T
m)T is assumed to follow a joint Gaussian distribution. Examples to help illustrate 

the importance of the 
∑K

i=1 Miγ i term are given in Section 3.3. Denote by θM and θL the vectors containing all model and 
family likelihood hyperparameters respectively. We can then formulate a latent Gaussian model in three stages. In stage 1, 
we have conditionally independent observations that may be non-Gaussian with likelihood π(y(xi)|ηi, θL), i = 1, 2, . . . , n. In 
stage 2, the latent model is a joint Gaussian distribution for (β, γ , c)|θM. Lastly, in stage 3, we assign a prior π(θ), where 
θ = (θM, θL).

The key computational contribution of this work is the adjustment of the LK formulation to be compatible with INLA, 
making Bayesian inference for the multiresolution latent Gaussian model computationally feasible. The combination is prac-
tically achieved by the development of the new model within the INLA package, which allows for the inclusion of the 
suite of models already included in INLA such as random walks which can be included temporally or for nonlinear mod-
els for covariate effects. We term the extended version of LatticeKrig, with computationally feasible inference, as extended 
LatticeKrig (ELK). Our approach exploits GMRFLib-library (Rue and Follestad, 2001) functions for sparse symmetric posi-
tive definite matrices based on methods described in Rue and Held (2005) when generating the latent coefficient precision 
and covariance matrices, and also precomputes relevant matrices and normalization factors whenever possible. Details on 
computations involved in our ELK implementation are given in Appendix S.1.

To ensure σ 2
S can be approximately interpreted as the spatial variance and (α1, . . . , αL) as the proportion of spatial 

variance attributed to the layers, which is necessary to construct interpretable priors for these parameters, we normalize 
separately the SAR processes associated with each layer so that the variance of each gl in the center of the spatial domain is 
αl ·σ 2

S . This requires the computation of normalization constants ω1, ..., ωL . Letting A∗
l be the 1 ×m(l) regression row vector 

that maps the layer l basis coefficients to the value of the basis functions at the center of the spatial domain, each ωl can 
be calculated as: ωl = (A∗

l B−1
l B−T

l (A∗
l )T )−1. This is different from LK, since we only normalize the process to have variance 

σ 2
S in the center of the domain rather than at every point. This has the advantage that it is faster computationally, and we 

find that if the lattice resolutions and buffers are chosen using the method discussed in the following paragraph, then the 
resulting process has spatial variance close to σ 2

S across the whole spatial domain. In order to avoid matrix inversion and 
quadratic form computations each time Q is calculated, we precompute the mappings fl : κl 	→ ωl using smoothing splines 
over a reasonable range of the values of κl .

3.3. Modeling additional structured random effects

To better understand the 
∑K

i=1 Miγ i term in (1), and to see why it adds so much generality to ELK, we could consider a 
number of simple examples below:

Nonlinear covariate effect: INLA natively supports random walk (RW) models that can be used for modeling nonlinear 
covariate effects. We might have n spatial observations, and a covariate of interest we wish to model using a RW of order 
one. We can divide the domain of the covariate into a set of 30 evenly spaced intervals, assigning a random walk coefficient 
to each interval. We then set γ ∼ RW(1)

(
σ 2

RW

)
to be the assigned RW(1) coefficients, and let M be a n × 30 matrix where 

Mi j is 1 if the covariate associated with observation i lies in the interval associated with RW coefficient j and 0 otherwise. 
We also include an intercept and linear trend in the covariate considered given by Zβ . The linear predictor is then: η =
Zβ + Ac + Mγ . This is essentially the same as the ELK model used later in Section 5.

Nonlinear covariate interactions: In addition to one dimensional RW models, INLA also supports 2D RW models. This 
allows not just for using random walks to model individual nonlinear covariate effects, but also for modeling nonlinear 
interactions between two covariates. Perhaps we have n binomial observations in space, and we wish to model them using 
two covariates that might have a complex nonlinear interaction. We could use a 2D random walk of order 1 in this case. 
Similar to the previous example, we may divide the domain of the covariates into a 30 × 30 grid, assigning a random 
walk coefficient to each grid cell. We set γ ∼ RW2D

(
σ 2

RW2D

)
to be these 2D RW(1) coefficients, and let M1 be a n × 900

matrix where (M1)i j is 1 if the covariates associated with observation i lie in the grid cell associated with RW coefficient 
j and 0 otherwise. Perhaps we believe there might be a spatial nugget effect (mean zero Gaussian variation) associated 
with each observation for non-Gaussian responses. Then we can define M2 = In and let γ 2 ∼ MVN(0n, σ 2

nuggetIn). We also 
include an intercept and linear trends in the two covariates considered given by Zβ . The resulting linear predictor is then: 
η = Zβ + Ac + ∑2

i=1 Miγ i .

Repeated measurements through time: We might choose to model a set of T repeated observations at n spatial locations 
through time points t = 1, . . . , T , making nT observations in total. If our covariates aside from β0, the intercept, can be split 
into one set of covariates changing only in space and one set of covariates changing only in time, we could then model 
the fixed effects in space and time as ZSβS and ZTβT respectively for n × pS matrix ZS and T × pT matrix ZT. Similarly, we 
6
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might assume that the spatial random effect varied only in space and the temporal random effect varied only in time. If the 
temporal trend is autoregressive order 1 (AR(1)), then we can set γ ∼ AR(1) with correlation parameter ρar and variance 
σ 2

ar , for T dimensional vector γ . We could then define the linear predictor as,

η = 1nT β0 + (1T ⊗ ZS)βS + (ZT ⊗ 1n)βT + (1T ⊗ A)c + (IT ⊗ 1n)γ ,

where ‘⊗’ represents the Kronecker product, and IT is a T × T identity matrix so that M = IT ⊗ 1n adds the coefficients of γ
identically to the coefficients of η associated with the corresponding time point. This model can be fit in the ELK framework 
with K = 1. Although not included in this model, interactions between the spatial and temporal effects could be included 
as well.

Note that this example shows how one might extend the ELK-Tu and ELK-TU models introduced in Section 6 to space-
time, since the urbanicity covariate used in that application is a spatial variable.

3.4. Recommended ELK settings

In LK, it is recommended that layer resolutions follow the relation δl = 2−(l−1)δ1, and when this relation is used in ELK 
under the assumption that κ1 = . . . = κL , we call this the ‘fixed’ model (ELK-F). Since the κl parameters are assumed to be 
equal to each other, ELK-F requires L + 1 hyperparameters, although more would be required if other latent effects were 
included in the Mγ term or for any likelihood family hyperparameters. A conservative guideline is for lattice resolutions to 
be at most a fifth of the effective range of the corresponding layer to avoid lattice artifacts and for accurate interpretation of 
the layer’s effective range parameter. Since correlation lengths near the spatial domain diameter are very difficult to identify, 
we recommend choosing δ1 to be finer than a fifth of the spatial domain diameter (typically around a twenty-fifth of the 
domain diameter), and setting L = 3 as a starting point. Spatial variation occurring on correlation scales smaller than δL will 
not be well-represented by g(·), so one must be careful when selecting basis layer resolutions so as to be computationally 
feasible, and also to be able to represent relevant correlation scales. The correlation lengths representable by ELK-F can 
differ by at most a factor of 2L−1, which means that if the true spatial correlation function is a mixture of correlation 
functions with correlation lengths differing by factors larger than 2L−1, ELK-F will not capture all relevant correlation scales 
in its predictions. One indicator of whether the correlation scales represented by an ELK-F model are adequate is to add an 
extra lattice layer, checking whether the estimated spatial covariances remains approximately the same. In particular, it is 
important to check that short scale correlations are not substantially changed by the added layer.

In the case where ELK-F model correlations change with the added layer, we propose to also consider a ‘tailored’ ELK 
model (ELK-T) with resolutions chosen for capturing variation at different spatial scales and with κl parameters allowed to 
vary for each layer. Since ELK-T allows the κl parameters to vary for each layer, it requires 2L hyperparameters, including 2L
hyperparameters for the layer weights, total spatial variance, and correlation scales. Again, more would be required if other 
latent effects were included in the Mγ term or for any likelihood family hyperparameters. Just as for ELK-F, we recommend 
choosing δ1 to be about a twenty fifth of the spatial domain diameter. However, since more hyperparameters are required, 
we recommend setting L = 2 and setting the fine scale resolution to be least as fine as a fifth of the minimum desired 
representable correlation scale that is computationally feasible. On most laptops, for about 1000 observations and for L = 2, 
a 100 × 100 lattice would be feasible for the fine layer, so we could choose δL to be about one ninetieth of the spatial 
domain diameter for ELK-T (adding a buffer of 5 basis elements in each direction makes a 100 × 100 lattice). Choosing δL

to be larger would speed up computation at the cost of making very fine scale spatial correlations unable to be represented 
by the model.

For most practical purposes we see little reason to include more than 3 layers for ELK-T and 5 layers for ELK-F even if 
computation is feasible due to difficulty in model identification and lack of difference in predictive performance. However, 
more layers should be included, if feasible, for ELK-F in the case that relevant spatial scales differ by a factor larger than 
2L−1.

Fig. B.8 in Appendix S.2 in the supplementary material illustrates how the lattices might be arranged for a specific 
problem. In the figure and in Section 4 we use a buffer of 5 cell widths to avoid edge effects due to the zero boundary 
condition for the basis coefficients of each layer. The buffer size can be adjusted depending on the estimated effective 
correlation range for that layer.

3.5. Priors and specification

Expert knowledge on spatial scales at which dependence is expected could be used to choose appropriate lattice reso-
lutions in ELK-T. Furthermore, the Bayesian formulation allows the inclusion of expert knowledge when setting priors for 
the interpretable parameters. For simplicity, we suggest a Dirichlet distribution of order L for the proportion of variances 
assigned to each layer, that is α ∼ Dirichlet(a1, . . . , aL) with al = 1.5/L for l = 1, . . . , L in order to place equal weight in 
the prior on each layer, and to ensure the prior is slightly concave for the sake of identifiability. Since the chosen prior 
concentration parameter is 1.5, the Dirichlet prior is only slightly more concave than the flat Dirichlet distribution that 
would result if the concentration parameter were 1. If the goal were to penalize differences from a Matérn covariance with 
smoothness ν , it would also be possible to apply Theorem 1 of Nychka et al. (2015) by setting al ∝ δ2ν , provided ν < 4 + 2K
l
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for Wendland basis functions of order K . On the spatial and nugget standard deviation we place penalized complexity (PC) 
priors satisfying P(σS > 1) = 0.01 and P(σN > 1) = 0.01, although this will depend on the context and prior information. 
See Simpson et al. (2017) for details on PC priors. As an alternative, it would be possible to select priors shrinking fine scale 
spatial variance relative to the large scale variance, or to place a joint PC prior on the layer variances using the method 
proposed in Fuglstad et al. (2020).

We propose setting independent inverse exponential priors for the effective range in each layer, where the effective 
range for layer l is computed as ρl = √

8δl/κl . Throughout this work, we set the median effective range of the coarsest layer 
at a fifth of the spatial domain diameter, determining any other effective range priors accordingly. However, the effective 
range priors can be customized to better suit the context as well as the expert knowledge of the modeler. For ELK-T, 
we recommend beginning by placing a prior on one layer’s effective range, scaling priors for other layer effective range 
parameters proportionally to the lattice grid cell width δl for ELK-T. For ELK-F, a single κ parameter is estimated so that 
κ = κ1 = ... = κL , and only one effective range parameter requires a prior. When placing priors on ELK-F or ELK-T effective 
ranges in this way, a prior on the effective range for one of the layers would therefore determine all effective range priors.

Note that if, under the ELK-T model, ρ1/ρL < 2k−1 for some integer k > 0, then the spatial correlation scales can be 
effectively represented by an ELK-F model with k layers. Hence, in addition to checking whether ELK-F spatial covariances 
are robust to adding an extra layer, the ELK-T model can be used as a test to check whether a given ELK-F model is able to 
represent all relevant spatial correlation scales.

A fully functional proof-of-concept implementation of ELK is freely available on Github at https://github .com /paigejo /ELK. 
Since it is implemented in R and not natively in C++, it does not reach its full potential in terms of speed.

4. Assessing performance under multiscale dependence

4.1. Simulation setting

We first simulate a spatial GRF u on the square [−1, 1]2. The GRF has the covariance function C(d) = 0.5(C∗
1(d; 0.08) +

C∗
1(d; 0.8)), where C∗

1(d; ρ) = (
√

8d/ρ)K1(
√

8d/ρ) denotes the Matérn correlation (Stein, 1999) at distance d with smooth-
ness ν = 1 and effective spatial range ρ , and where K1 is the modified Bessel function of the first order and second kind. 
The correlation function is plotted in Fig. 3 along with an example realization. The domain is then subdivided into a regular 
3 × 3 grid, and we draw 800 observations at random locations, x1, x2, . . . , x800, in the outer eight grid cells, but draw no 
observations within the central grid cell. We assume the unobserved latent process is ηi = u(xi), and draw each observation 
Y (xi) from Y (xi)|ηi ∼ N (ηi, 0.12) for i = 1, 2, . . . , 800. We fit several models, which we will describe in the next section, 
to the data, and generate predictions of the spatial process Y on a fine 70 × 70 grid. We also generate predictions of areal 
averages of the process Y for the nine subdivision areas, where areal averages are approximated numerically as averages of 
the values of Y on the 70 × 70 fine grid over each of the 9 areas. The whole procedure is repeated 100 times, and, for each 
realization, the predictions are scored in comparison to the truth. We choose to use Y as the process for comparing pre-
dictions rather than u so that comparison metrics are more similar to cross-validation, where only Y , and not u, is directly 
observed at the observation locations.

Computations for the simulation study are run on one of the Department of Mathematical Sciences’ high performance 
computing servers at Norwegian University of Science and Technology (NTNU). The computing server has 47 24-core Intel(R) 
Xeon(R) Gold 6240R CPU 2.40 GHz central processing units (CPUs), and has a total of 376 Gb random access memory (RAM). 
We ran each model in serial using only 1 thread, although with only a single line of R code, more threads could have been 
used natively in INLA to speed up the SPDE and ELK calculations.

4.2. Prediction quality measures

The different spatial models are compared using three measures of predictive performance: root mean square error 
(RMSE), continuous rank probability score (CRPS) (Gneiting and Raftery, 2007), and empirical coverage of 80% prediction 
intervals. RMSE measures the average square error of the central predictions, whereas CRPS measures the integral of the 
squared difference between the empirical cumulative distribution function (CDF) and the predicted CDF, accounting for both 
error in the central predictions and uncertainty in those predictions. We also compared each model’s runtime including 
setup, model fitting, and prediction and covariance parameter uncertainty calculations. We consider a number of different 
hold out schemes that are discussed in more detail in the sections that focus on the applications. For count responses, we 
rescale the counts to be empirical proportions with yi = y∗

i /Ni for observed count y∗
i with denominator Ni for observation 

1 ≤ i ≤ n. For each model considered, we calculate the measures as an average of its values over each held-out observation.
Unlike RMSE, CRPS is a strictly proper scoring rule (Gneiting and Raftery, 2007), and takes into account the accuracy of 

the central predictions as well as the calibration of the uncertainty. Smaller values are preferable. Prediction intervals at the 
80% level are derived from the 0.1 and 0.9 quantiles of the predictive distribution. They are used to compute the prediction 
interval empirical coverage. For empirical proportions, and especially for small denominators, a fixed prediction interval will 
generally not provide the correct coverage even if the predictive distribution is correct due to the discreteness of the sample 
space (Geyer and Meeden, 2005). We therefore follow Geyer and Meeden (2005) by calculating fuzzy coverage instead, with 
8
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Fig. 3. (a) One of the 100 spatial field realizations. Black dots indicate the 800 observation locations and dashed lines indicate the 3 × 3 grid used for areal 
predictions. (b) True and estimated correlation functions averaged over 100 realizations.

details given in Appendix S.1. We have found that fuzzy coverage is much more precise, allowing us to be sure that observed 
over- or undercoverages are due to the accuracy of the predictive uncertainty rather than the discreteness of the CIs.

4.3. Models used in the simulation study

We use ELK-T with two layers: a grid of 14 × 14 basis knots and a grid of 126 × 126 knots over the spatial domain (not 
including the five knot buffer for each layer), which results in lattice resolutions of 0.154 and 0.016 respectively. In this 
case, the coarse and fine scale layers have at least five basis functions per 0.8 and 0.08 spatial units respectively. Further 
we use LK and ELK-F with three layers composed of 14 × 14, 37 × 37, and 53 × 53 lattice grids over the spatial domain 
with 0.154, 0.077, and 0.038 resolutions respectively. LK is fit using LatticeKrig in R, and for both LK and ELK-F, we 
use a single layer-independent parameter κ . Additionally, we fit an approximation to the Gaussian process with Matérn 
covariance and smoothness ν = 1 using the SPDE approach with INLA (Lindgren et al., 2011; Lindgren and Rue, 2015). The 
mean triangular mesh segment length is approximately 0.0064 within the spatial domain.

This gives a total of four models: ELK-T, ELK-F, LK, and SPDE. In all cases we use a PC prior for the nugget variance 
satisfying the tail probability P(σε > 1) = 0.01, and for the SPDE model we use the prior derived in Fuglstad et al. (2019) on 
the effective range and spatial variance. The median effective range for the prior is a fifth of the spatial domain diameter, 
and the spatial standard deviation again satisfies P(σS > 1) = 0.01. We use PC priors for the ELK-T and ELK-F spatial standard 
deviation also satisfying P(σS > 1) = 0.01, and use the effective range priors recommended in Section 3.2.

4.4. Results

For each realization and each of the Bayesian models, we generate 1,000 independent samples from the posterior dis-
tribution of Y (or conditional distribution in the case of LatticeKrig), estimate uncertainty in the parameters, and calculate 
covariance functions for 100 parameter samples out of the full set of 1,000. We used only 100 parameter samples when 
generating covariance function draws since for each draw the corresponding precision matrix for u must be inverted, which 
is especially computationally intensive for LatticeKrig since it does not take advantage of GMRFLib library functions for 
factoring sparse symmetric positive definite matrices, and since LK does not use ELK’s simplified normalization scheme that 
precomputes normalization factors. In the case of LatticeKrig, we use the Hessian of the negative log likelihood to draw 
covariance parameter samples.

Fig. 3b) shows the central correlation function estimate for each of the models together with the true correlation func-
tion. The ELK-T model approximates the true correlation function over all distances well, while the other models strongly 
underestimate the spatial correlation after distance of 0.1, and have negligible correlation after distances of approximately 
0.5.

Pointwise predictive scoring rules calculated by distance from prediction location to nearest observation are shown in 
Fig. 4. The RMSE and CRPS of ELK-T are the best in all of the distance bins. Differences in RMSE and CRPS among the models 
tend to increase as the distance to the nearest observation increases, but interestingly the differentiation is larger in the first 
bin than in the second bin. We believe this is due to the fact that ELK-T is able to capture the short range spatial correlation 
better than the three other models. The differences in RMSE and CRPS values for each model become increasingly large as 
9
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Fig. 4. Scoring rules calculated in bins depending on distance to nearest observation. The scores are averaged over 100 simulations, and include (a) RMSE, 
(b) CRPS, and (c) 80% uncertainty interval coverage.

Table 1
Scoring rules averaged over 100 simulated realizations and over a regular 70 × 70 grid of prediction locations 
across the entire spatial domain and areally integrated over all nine cells in the 3 ×3 regular grid partitioning the 
domain. Averages are calculated for each of the considered models. Italics indicate worse performance, boldface
indicates better performance.

RMSE CRPS 80% Cvg Runtime (min.)

Pointwise
SPDE 0.605 0.342 80 2.0
LK 0.594 0.334 80 51.1
ELK-F 0.594 0.335 80 9.4
ELK-T 0.587 0.329 80 12.1

Areal
SPDE 0.137 0.056 75 2.0
LK 0.121 0.051 77 51.1
ELK-F 0.125 0.052 77 9.4
ELK-T 0.108 0.048 79 12.1

distance to the nearest observation grows, indicating increasingly differing ability to accurately predict at locations far from 
the data.

Table 1 shows the summarized point and areal prediction scores. In terms of both pointwise and areal scores, the SPDE 
predictions have the worst RMSE, CRPS, and coverage in all cases, although the coverage of all the models matches the 
nominal level of 80% in the pointwise case. The coverage of the SPDE model is especially poor near the observations, 
indicating its inability to simultaneously capture short and long scale spatial correlations. Fig. 4 clearly demonstrates that 
even though SPDE achieves the correct nominal coverage overall, this is in spite of considerable over- and undercoverage 
depending on how far prediction locations are from the observations. There is also far more variability in coverage between 
bins for the SPDE model than ELK-T.

The SPDE model has the fastest runtimes. This is in part due to having an implementation built into and optimized in the
INLA package, whereas ELK-T and ELK-F were implemented manually using the comparatively slow rgeneric framework 
(Gómez-Rubio, 2020, Ch. 11.3) intended for prototyping new models and special cases in INLA. However, the fact that the 
SPDE model requires only two hyperparameters excluding any family likelihood hyperparameters, compared to the four 
required in this case for ELK-F and ELK-T, further improves its computational performance. LK had the longest runtimes 
in large part due to the implementation of the predictive distribution sampling when calculating SEs. Drawing the 1,000 
samples took over 33 minutes on average for LK, whereas drawing the same number of samples for the ELK-F model took 
under 2 minutes on average, and also included sampling over uncertainty in the hyperparameters.

The areal scores in Table 1 indicate a strong improvement from the SPDE model to ELK-F, and from ELK-F to ELK-T in 
terms of RMSE and CRPS. From the SPDE model to ELK-T, pointwise RMSE and CRPS scores improved respectively from 0.605
to 0.587 (3.0%) and from 0.342 to 0.329 (3.8%). However, in the integral prediction case, RMSE and CRPS scores improved 
respectively from 0.137 to 0.108 (21%) and from 0.056 to 0.048 (14%).

Table B.5 in Appendix S.2 in the supplemental material shows that the improvements in areal predictions are even 
larger when considering only the central grid cell, but Table B.6 in Appendix S.2 shows that there are improvements even 
when only the eight outer grid cells are considered. In summary, the results of this simulation study show that multiscale 
covariance models are essential both for accurate estimation of the covariance structure and for making pointwise and areal 
predictions when the true covariance function has both short and long scale structure.
10
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5. Forest canopy height in Bonanza Creek experimental forest

5.1. Analysis

In this section, we consider the forest canopy height dataset introduced in Section 2.1. Due to exceptionally fine scale 
patterns in the observations, we use a similarly fine scale set of basis functions in the final lattice layer despite the larger 
computational costs. We consider 3 different models, including one LK model, an ELK-F model, and an ELK-T model. The LK 
and ELK-F models have an identical set of 4 layer lattices, where the coarsest lattice is 29 × 50 and the finest is 160 × 323, 
including the 5 cell buffer, resulting in 71,597 basis functions in total. The ELK-T model uses only the second and fourth 
layers from the ELK-F and LK models, where the second layer has dimension 48 × 89 including the 5 cell buffer, resulting 
in 55,952 basis functions in total for ELK-T. While this might seem like a relatively small reduction in the number of basis 
functions, the likelihood computations require O(m3/2) operations where m is the number of basis functions (Lindgren et 
al., 2011), so reductions in basis functions may result in nonlinear reductions in computational cost. All lattice layers are 
rotated 49.5◦ clockwise in order to better align with the spatial domain and thereby reduce the number of basis functions 
required for modeling.

The LK model assumes the response is Gaussian as in Finley et al. (2020b), with yi |ηi, σ 2
N ∼N (ηi, σ 2

N), whereas the ELK 
models assume the response follows a gamma distribution with mean exp{ηi} and variance σ 2

N in order to avoid potentially 
problematic negative predictions, and due to a lack of heavy tailed behavior in the marginal distribution of the responses. 
All three models assume the following model for the linear predictor,

ηi = β0 + u(xi) + f (PTC(xi)), (2)

where β0 is the intercept, u is the spatial field, and f is a function of PTC(xi), the known percent tree cover at the spatial 
location of the i-th observation, xi . For LK, f (PTC(xi)) is linear with f (PTC(xi)) = β1PTC(xi), whereas in the ELK-F and ELK-T 
models f is assumed to follow an order 1 random walk with 30 knots, a1, . . . , a30, so that f (a j) − f (a j−1)|σ 2

RW ∼N (0, σ 2
RW), 

where the knots are spaced evenly throughout the range of percent tree cover in the spatial domain. Hence, in the ELK 
models f can be represented within the 

∑
i=1 Miγ i term introduced in Section 3.2 as a n × 30 matrix M1 multiplied by a 

vector of 30 random walk coefficients, γ 1, where (M1)i j is 1 if a j is the closest knot to PTC(xi) and 0 otherwise. A sum to 
zero constraint is applied to the random walks to ensure identifiability.

For the ELK models, A PC prior is placed on the random walk increment standard deviation so that P (σRW > 1) = 0.01. 
The random walk is scaled to have unit variance in the null space of the covariance matrix to improve prior interpretability. 
We apply the recommended priors in Section 3.5 on the spatial range, variance, and layer weights.

All models are fit to a set of 105,504 observations from the dataset, lying along the majority of the main, longest data 
transect as well as on every other cross transect. The remaining 83,213 observations lie on every other cross transect as 
well as where they intersect with the main transect. Fig. C.11 in the supplement shows the locations of the in sample and 
out of sample data. The indices of the holdout indices can be obtained from the BCEF dataset in the spNNGP package.

Computations for this application are run on one of the Department of Mathematical Sciences’ high performance com-
puting servers at NTNU. This computing server has 27 14-core Intel(R) Xeon(R) CPU E5-2690 v4 2.60 GHz central processing 
units (CPUs), and has a total of 756 Gb RAM. It is different from the server used in the simulation study and other appli-
cation due to the size of the dataset. We take advantage of the native support of INLA for multi-threaded computations by 
using a relatively modest 8 threads in the ELK-F and ELK-T models, whereas only 1 thread is used by LK due to its lack 
of native support for multithreaded computations. While we could easily use more threads when fitting the ELK models to 
speed up the computations further, 8 threads is a reasonable number for many laptops.

Central predictions and 80% uncertainty interval widths are plotted spatially in Fig. 5, and parameter estimates and 
uncertainties, where available, are given in Tables C.7-C.9 in Section S.3 in the supplement. Predictions and uncertainties 
are also given for ELK-F in the supplement in Fig. C.9. Some predictions and uncertainty interval widths lie outside of the 
[0 m, 40 m] range even though the maximum observed FCH was 37.16 m. For LK, all predictions outside of the range (about 
1.5% of the predictions) are below 0, and are due to the Gaussian response assumption and basis function artifacts. For both 
ELK-F and ELK-T, a small proportion of the predictions and CI widths are above 40 m (less than 0.05% of them) due to basis 
function artifacts.

ELK-T gives central predictions that show longer correlation scales than LK, which signals improved ability to predict 
far from observations (this verified in the next Section via validation). The correlation scales influencing the predictions 
are especially noticeable in the uncertainties, which show stark contrast between uncertainties at locations within the in 
sample data transects and the locations immediately off of the data transects. While the effect of PTC is somewhat visible 
in LK’s central predictions, they are much more noticeable in ELK’s central predictions and ELK’s uncertainties. This is due 
to both the nonlinear effect of PTC modeled by ELK, and ELK’s log link, which causes the uncertainty to change as a result 
of the central prediction.

The sharp change in uncertainty interval widths over the LiDAR tracts versus between them is also due to the large 
proportion of spatial variance taken up by the finest resolution lattice layer, which is estimated by LK and ELK-T to be 
approximately 0.53 and 0.88 respectively. ELK-F, however, estimates the proportion of spatial variance in the finest layer to 
be only 0.34. This is due to the influence of the Dirichlet prior on the layer weights penalizing departures from the weights 
11
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Fig. 5. Central predictions (left column) and 80% uncertainty interval widths (right column) for LK (top row) and ELK-T (bottom row).

all being equal. The effective correlation range of the finest lattice layer was estimated to be approximately 24 m for ELK-T. 
For LK and ELK-F, the effective correlation range of the finest lattice layer, obtained by dividing the estimated spatial range 
by 8, was estimated to be approximately 52 m and 47 m respectively.

We show the estimated correlogram according to ELK-T in Fig. 6 when compared against an exponential correlogram 
(i.e. a type of Matérn correlogram) with spatial range fit by minimizing the mean square error to the estimated ELK-T 
correlogram. Despite exponential covariances being used in a number of applications due to their ability to model short 
scale correlations (Berrocal et al., 2008; Liu et al., 2019), the ELK-T correlogram has higher correlation at both very short 
scales and very long scales, with less correlation near 0.2 km. This further suggests that short and long scale correlations 
may be important for predicting FCH, and helps to illustrate the practical importance of multiresolution spatial models and 
flexible covariance structures.

Fig. 6 shows the estimated effect of percent tree cover on forest canopy height according to the ELK-T model, and we 
found that the ELK-F estimated effect of percent tree cover was nearly identical. Overall, the variables appear to be positively 
associated, and while the association appears to be roughly linear on the latent modeled scale for most of the range of the 
percent tree cover variable, there is a sharp dropoff in the estimated effect for percent tree cover near 0%, and the estimated 
effect levels off above 80%, indicating nonlinearity.
12
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Fig. 6. (a) Effect of percent tree cover with 80% pointwise credible bands, and (b) correlogram with 80% pointwise credible bands as estimated by ELK-T for 
the Bonanza Creek Experimental Forest dataset.

5.2. Validation

Validation scores and metrics for the three considered models are given in Table 2. A selection of the scores are plotted 
against distance to the nearest in sample observation in Fig. 7, where the boundaries of the distance bins over which 
scores are averaged are 0 m, 50 m, 100 m, 250 m, 500 m, 750 m,. . . , 2.75 km. Fig. C.10 in the supplement shows all 
of the considered scores plotted against distance to the nearest sample observation. The distances of the left out data to 
the nearest in sample observations are plotted spatially in the supplement in Fig. C.11, which shows that distances above 
approximately 1.75 km are clustered together in only 2 small areas on opposite ends of the same data transect. Hence, 
scores in the associated distance bins will be based on correlated residuals, making them imprecise.

We consider the bias, RMSE, CRPS, interval score (Gneiting and Raftery, 2007) for 80% uncertainty intervals (UIs), empir-
ical 80% UI coverage, 80% UI width, computation time, and the number of threads used in the computation. Interval score 
penalizes both large UI widths and large distances between the response and the UI endpoint if the response lies outside 
for the UI. It is calculated via:

S int
α (l, u; y) = (u − l) + 2

α
(l − y)1{y < l} + 2

α
(y − u)1{y > u}

for a given significance level α, lower and upper UI thresholds given by l and u respectively, and response y. Like CRPS, the 
interval score is a strictly proper scoring rule, but interval score places greater stress on producing optimal UIs in terms of 
both their accuracy and width.

ELK-T and ELK-F performed the best and the second best respectively in every score and metric aside from 80% coverage, 
where LK performed the best with 84% coverage. The RMSE of ELK-F and ELK-T, 5.89 m and 5.52 m respectively, are 
comparable, and both significantly better than that of LK, which had a RMSE of 7.42 m. This shows the importance of ELK’s 
ability to model the effect of PTC on FCH nonlinearly using a random walk model, where LK assumed PTC had a linear 
association with FCH due to its inability to include structured random effects (more specifically in this case, a random walk 
model of the first order). Interestingly, although LK had the best coverage, ELK-F and ELK-T had better interval scores due to 
their significantly lower UI widths of 22.1 m and 20.0 m in spite of their comparable coverages of 88% and 86% respectively, 
and where LK’s UI width is 26.7 m.

Importantly, ELK-T outperforms LK in terms of RMSE, CRPS, and interval score for every considered distance bin, and ELK-
F does as well with the sole exception of CRPS for distances beyond 1.75 km. It is important to note, however, that there are 
fewer left out observations in such high distance bins. This implies that ELK-T in particular is best able to flexibly account for 
multiple scales of spatial correlation in this example, both near and far from the observations. This is especially significant 
because of the many gaps between the data transects in which predictions must be made despite being potentially quite 
far from the observations.

ELK-T took only 12.4 hours to run compared to ELK-F’s 24.7 hour runtime, and LK’s 30.0 hour runtime. This shows the 
benefit of ELK-T’s ability to remove unnecessary basis functions while providing greater flexibility with the basis functions 
retained, as well as the power of INLA’s native support for multithreaded computations. Notably, ELK performs faster than LK 
despite ELK doing the extra work compared to LK of integrating over uncertainty in the covariance parameters. Although we 
have not recorded the runtimes, we found that, when run in serial, ELK-F was slower than LK, and ELK-T was only slightly 
faster than LK. This is most likely due to the optimized linear algebra operations in LK’s likelihood calculations, which use 
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Table 2
Scoring rules and other metrics applied to left out data for the models fit to the Bonanza Creek Experimental 
Forest forest canopy height dataset. Units of bias, RMSE, CRPS, interval score, and 80% CI width are all in meters, 
computation time is in hours, and coverage is in percent. Italics indicate worse performance, boldface indicates 
better performance.

Bias RMSE CRPS 80% Int. score 80% Cvg. 80% Width Time Threads

LK −5.93 7.42 5.30 32.5 84 26.7 30.0 1
ELK-F −3.20 5.89 4.97 26.0 88 22.1 24.7 8
ELK-T −2.79 5.52 4.42 24.0 86 20.0 12.4 8

Fig. 7. RMSE (a), CRPS (b), and 80% interval score (c) versus the distance of the left out point to the nearest in sample observation for the three considered 
models.

a number of tricks to improve performance. Since the vast majority of ELK’s linear algebra operations occur within INLA 
itself, this is unavoidable, but in this case, ELK-T’s ability to use fewer basis functions in a robust way, and INLA’s support 
for multithreaded computations led to ELK-T’s comparatively fast computational performance.

6. Prevalence of secondary education completion

6.1. Analysis

We return to the data introduced in Section 2.2: counts of secondary education completion for young women aged 20-29 
in Kenya in 2014 using the 2014 Kenya DHS. The 2014 Kenya DHS household survey contains responses from individuals 
sampled from 1,612 clusters in 47 counties, each of which except Nairobi and Mombasa (which are both entirely urban) 
contain both urban and rural strata, making 92 strata in total. These 47 counties subdivide the 8 geographical provinces in 
Kenya. The response at cluster c, conditional on the probability of secondary education completion, p(xc) at cluster spatial 
location xc , c = 1, . . . , 1612, is modeled as, Y (xc)|p(xc) ∼ Bin(nc, p(xc)), where nc is the total number of women aged 20-29 
sampled in the cluster. The probability p(x) is modeled on logit scale as,

ηc = log

(
p(xc)

1 − p(xc)

)
= β0 + u(xc) + βURB1{xc ∈ U } + εc, c = 1,2, . . . ,1612, (3)

with intercept β0, spatial random effect u(xc) with spatial variance σ 2
S , fixed effect for urban areas βURB, and mean zero 

iid Gaussian cluster random effect εc with variance σ 2
ε . The indicator 1{xc ∈ U } is 1 if xc is in U , the set of urban areas in 

Kenya, and 0 otherwise. Equations for predicting at the point and areal level are given in Section S.4.1 in the supplement.
While it is possible to include other covariates, relevant demographic variables are not directly available for unobserved 

clusters, and pixel level estimates are modeled rather than observed directly. Moreover, the survey context of this problem 
makes inclusion of any pixel level covariates without potential for inducing bias in the areal estimates difficult. We therefore 
focus on urbanicity, which already requires precise aggregate estimates of urbanicity at the areal level in order to calibrate 
pixel level population density in urban and rural areas, and in order to generate the areal estimates with reasonable ur-
ban/rural weights. For more information on accounting for urbanicity in this context, see Paige et al. (2020).

The ability to model multiscale spatial correlations for this application is important in part due to the need to model 
short spatial correlations near urban areas (and changing urban boundaries), and long spatial correlations across rural areas. 
Additionally, it is important for policy makers to be able to make decisions at the administrative area level, making popula-
tion averages over administrative areas necessary. However, LK is not applicable due to the binomial likelihood, so ELK will 
14
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Fig. 8. (a) Spatial covariance, and (b) correlation estimates. The spatial nugget is plotted as the dots at zero distance with the color corresponding to the 
model given in the legends. Filled dots are plotted for models including urban effects, and unfilled dots are plotted for models without urban effects.

be necessary to model the multiscale correlations. Rather than compare with LK, we therefore compare two ELK models 
with two SPDE models. The four alternative models we consider are SPDEu/SPDEU, and ELK-Tu/ELK-TU, where ‘U’ and ‘u’ 
respectively denote that urban effects are or are not included.

For ELK-Tu and ELK-TU, the coarse lattice layer has 37 km resolution, while the fine layer resolution was set to be 5 km 
resolution in order to be able to capture sharp changes from urban localities to their rural surroundings. The SPDE model 
has an average triangular mesh segment length of approximately 15 km across the spatial domain. The spatial domain 
diameter is approximately 1, 445 km, so the prior median effective range was set to be one fifth of that, or 289 km, for 
the SPDE model and for the coarsest layer of the ELK models. Computations are run on the same computing server as in 
Section 4.

We use the Dirichlet prior for the layer weights recommended in Section 3.5, with concentration parameters set to al =
1.5/L for l = 1, . . . , L. We again place PC priors on the spatial and cluster variance parameters such that P(σε > 1) = 0.01
and P(σS > 1) = 0.01, except now the parameters should be interpreted on logit scale. All covariates except for the intercept 
are given noninformative Gaussian priors with zero mean and 0.001 precision, and the intercept is given an improper 
Unif(−∞, ∞) prior.

We test the sensitivity of our results to those where the Dirichlet concentration parameters are set to al = 3/L and 
al = 5/L for l = 1, . . . , L in the supplement in Section S.4.3. We find negligible sensitivity to the priors in the central 
predictions, and small, non-systemic differences in relative credible interval widths for the 2 ELK models, with average 
differences at the cluster level of only 3.2%. Part of these differences are due to Monte Carlo error from posterior sampling.

Central estimates for the correlation and covariance functions of the fitted models are shown in Fig. 8. Compared to the 
SPDE models, the ELK-T models incorporate more long scale spatial correlation while also modeling short scale correlations 
with more subtlety as shown by their long tailed covariance and correlation functions with sharp downward trends at 
small spatial distances. Including urbanicity as a covariate substantially reduces the spatial variance for all models, and also 
reduces the variance of the spatial nugget. We find that including an urban effect explains spatial variation at both short and 
long scales, because sharp changes due to urban/rural boundaries are accounted for, as well as long scale correlations across 
rural regions. We see this effect in the estimated correlation function of the ELK-T models, where the magnitude of the 
relatively sharp downward trend in correlation at small distances decreases when the urban effect is included, and where 
the long tail shortens slightly as well. Since the likelihood under Matérn correlation (or Matérn approximations like the 
SPDE model) is primarily affected by short correlation scales, the sharp changes in education due to changes in urbanicity 
rather than the long scale correlations induced by large areas being rural drive the correlation function estimate. Hence, 
including the urban effect in the SPDE model removes some of the otherwise unmodeled spatial correlation at short spatial 
scales, increasing the estimated effective range. It is worth noting, however, that even with an urban effect, the ELK-TU
model covariance estimates are still different from those in the SPDEU model at both short and long scales.

In Fig. 9 we give pixel level predictions at the 5 km × 5 km resolution of secondary education prevalence as well as rel-
ative credible widths, which we define as credible widths divided by the corresponding central estimates. Areal predictions 
are created based on aggregation of pixel estimates weighted by population density as in (5-6) of Paige et al. (2020), except 
we leave out cluster effects by setting them to 0 rather than integrating over them as done in (7) of Paige et al. (2020). As in 
Paige et al. (2020), we use a 1 km × 1 km population density grid over Kenya interpolated assuming constant growth rate 
using WorldPop data (Stevens et al., 2015; Tatem, 2017) from 2010 and 2015 to get a 2014 estimate. The resulting adjusted 
population density surface is available on GitHub at https://github .com /paigejo /U5MR /blob /master /popGridAdjustedWomen .
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Table 3
Scoring rules calculated for each model using leave one province out and stratified 8-fold cross 
validation. Scores are averaged for each province, over urban areas, and over rural areas. Italics
indicate worse performance, boldface indicates better performance.

RMSE CRPS 80% Cvg Width

Leave One Province Out
SPDEu 0.238 0.129 76 0.52
SPDEU 0.224 0.119 74 0.47
ELK-Tu 0.234 0.125 77 0.53
ELK-TU 0.223 0.117 77 0.49

Stratified 8-Fold
SPDEu 0.226 0.119 73 0.46
SPDEU 0.218 0.114 72 0.42
ELK-Tu 0.223 0.117 77 0.49
ELK-TU 0.218 0.113 75 0.45

RData. Locations are determined as being urban or rural based on a population density threshold set for each county to 
ensure the correct proportion of the population is urban/rural using the same method as Paige et al. (2020). Predictions 
and relative credible widths aggregated to the county and province levels using the population density surface are shown in 
Appendix S.4.2 in Figs. D.12 and D.13. Tables of the county level and province predictions for the models with urban effects 
as well summary statistics for the model parameters are given in Appendix S.4.2. in Tables D.11-D.13.

The pixel level predictions show nearly indistinguishable differences in predictions and uncertainties between the SPDEU
and ELK-TU models, but much more significant differences in the predictions between the SPDEu and ELK-Tu models. In 
particular, the ELK-Tu model shows reduced spatial oversmoothing near urban areas, and higher uncertainties overall. These 
uncertainties reflect that an important confounder in urbanicity is not included as a covariate. The reduction in oversmooth-
ing is especially noticeable in the north and east counties with large rural areas and spatially concentrated urban areas, 
although there are reductions in oversmoothing in other areas as well. The differences between the models without urban 
effects, and the similarities between the models with urban effects are further highlighted in the pair plots in Fig. 10, which 
shows the predictions of the SPDEu, ELK-Tu, and SPDEU models sequentially move towards the predictions of the ELK-TU.

That the SPDEU and ELK-TU predictions are essentially indistinguishable lends credence to ELK’s predictions by showing 
they agree with the SPDE model, an established model when fit via INLA, indicating that MCMC can be effectively avoided. 
It also suggests that there is little identifiable spatial covariance at very short scales that is not already accounted for by 
urbanicity, and that the aggregate effect of remaining spatial confounders probably varies smoothly over medium to long 
spatial scales, or scales shorter than 5 km. More broadly, this suggests that ELK could be used as a tool to help identify 
important spatial confounders if they vary on the same spatial scales as ELK’s primary estimated spatial correlation scales.

6.2. Validation

We use two different schemes to validate our models: leave one province out, and stratified, eight-fold cross validation 
(CV). In the leave one province out scheme, we calculate scoring rules based on the predicted distributions of the left out 
clusters in each of the 8 provinces consecutively, averaging the scores within each province, and then averaging the province 
scores to get the final reported scores. In the stratified, eight-fold CV, we randomly partition the set of clusters in each of 
the 92 strata (47 counties except Nairobi and Mombasa have both urban and rural, while Nairobi and Mombasa are entirely 
urban) into eight roughly equal sized folds. The former approach has the advantage of being able to measure predictive 
performance farther from nearby in sample observations, while the latter measures predictive performance closer to nearby 
in sample observations. We make sure that, for a given stratum, the difference between the number of clusters in each fold 
is different by at most one, and that which folds get more clusters than others is random. We choose eight folds since the 
smallest stratum has only eight clusters. The two different validation schemes give an idea of both short and long scale 
predictive errors due to the distribution of how far away left out clusters are from in sample observations. The leave one 
province out scheme better identifies long scale errors, and the stratified CV better identifies short and medium scale errors. 
The boundaries of the 8 provinces are plotted in Fig. 9 along with county boundaries.

The results from the leave one province out and the stratified CV are given in Table 3. The ability of the ELK-T model 
to account for more flexible spatial covariance structures than the SPDE model leads to as good or better predictions from 
RMSE, CRPS, and coverage standpoints, although the improvement is clearly greater when the urban effect is absent in the 
model. Improvements were especially noticeable in the leave one province out CV, where long range correlations mattered 
more, and relative improvements were greater for CRPS than for RMSE. For leave one province out CV, RMSE improved by 
1.7% when urban effects were not included in the SPDE and ELK-T models respectively, and by 0.4% otherwise, while CRPS 
improved by 3.1% when urban effects were not included, and by 1.7% otherwise. The SPDEU model had the worst coverage 
with 74%, and both ELK-T models tied for the best coverage with 77%.
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Fig. 9. Central 5 km × 5 km pixel level predictions (top row) and relative 80% credible interval widths (bottom row) of secondary education prevalence 
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Fig. 10. Pair plot of the cluster level estimates comparing the considered models’ estimates of secondary education prevalence to the ELK-TU. The ‘ ’ 
symbols are rural clusters, while ‘ ’ symbols are urban clusters.

7. Discussion

The LK model introduced by Nychka et al. (2015) attempts to answer the question of how to flexibly model spatial co-
variance at different spatial scales in a way that is computationally feasible even for large datasets. LK also provides a way 
to interpret its modeled spatial process that may be valuable in practical contexts: as a linear combination of independent 
spatial processes, each with its own spatial range. However, LK has a number of limitations that we address in this work. 
For instance, LK is unable to model non-Gaussian observations, which severely limits the datasets it can be applied to. LK 
also is unable to integrate over uncertainty in its covariance parameters (in fact, calculating the uncertainty in the LK pa-
rameters and covariance estimate is surprisingly difficult in the LatticeKrig R package), and does not support penalizing 
covariance parameter values departing from a simple base model, which may limit the robustness of its predictive uncer-
tainties considering the flexibility of the covariance model. LK does not natively support multithreaded parallel likelihood 
calculations, limiting its ability to quickly analyze large datasets. LK also does not support the inclusion of structured and 
unstructured random effects in the model, which limits its ability to model spatiotemporal data using random effects for 
temporal terms, random effects included at the areal level, and nonlinear covariate effects, among other examples.

Our proposed ELK model extends LK, and is able to model a much more general set of responses including exponential 
family responses, and even some non-exponential family responses such as the betabinomial distribution. Additionally, it is 
implemented in INLA, which avoids the computational cost of MCMC, provides native multithreading and support for parallel 
computation, allows for easy integration over covariance parameters and covariance parameter uncertainty estimation, and 
enables multiresolution spatial modeling within a more general class of models: latent Gaussian models. Moreover, we find 
that, computationally, ELK can perform faster than LK when uncertainty in the predictions and covariance parameters is 
desired, even at times when not taking advantage of INLA’s ability to perform multithreaded computations. This is in part 
due to ELK’s ability to tailor its lattice resolutions to the context, removing unnecessary lattice layers, and allowing for the 
remaining layers to have independent spatial ranges without necessarily increasing the number of parameters. Notably, ELK 
has access to the full suite of models that can be fit in INLA such as nonlinear random effects models for time series or 
covariates.

We show using a simulation study that the ability of LK and ELK to model spatial covariance flexibly can be important 
for predictive performance at both short and long scales. We find that, while short scale dependence is most important for 
point level predictions near observations, long scale dependence can matter more when making predictions in data sparse 
regions, and when making areal predictions.

We apply ELK to a 188,717 observation forest canopy height dataset exhibiting both short and long scale structure in 
the data, and show that, like LK, ELK can be applied to relatively large datasets. We find that ELK’s flexibility in tailoring 
the lattice layers to the application can help reduce the number of basis functions as well as computation time, while also 
allowing for greater flexibility in the ability to model multiscale spatial structure. ELK is also able to jointly account for 
nonlinear covariate effects modeled via random walks. Sharp changes in the uncertainties at the edge of the LiDAR tracts, 
contrasted by gradual changes in uncertainties in between the tracts showed how LK and ELK were able to simultaneously 
model the short and long scale spatial structure in the dataset.

We also apply ELK to a 2014 Kenya DHS dataset with information on the prevalence of secondary education for women 
aged 20-29 in 2014, a setting where multiscale spatial correlation is of particular importance due to the tendency for the 
response to change sharply near urban boundaries and vary little over large rural areas, and where spatially aggregated 
predictions for administrative areas—both large and small—are necessary. Under a binomial likelihood, however, LK is not 
applicable. We find noticeable reductions in spatial oversmoothing relative to a SPDE model, especially when confounding 
by urbanicity was accounted for by a fixed effect in the linear predictor. Evidence of short scale spatial confounding was 
present in the estimate of the spatial correlation function in the ELK model with no urban effect, indicating that ELK 
can make predictions more robust to spatial confounding as well as be indicative of the spatial scales at which spatial 
confounding is occurring. This in turn can suggest what variables should be included as covariates, and as an informal 
check for spatial confounding. In general, it is very difficult to tell whether an unmeasured covariate is confounding results, 
18
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but ELK provides at least a modicum of insurance against this. Since DHS household surveys tend to consist of clusters that 
are spatially concentrated in urban areas and sparsely distributed in rural areas, this is an application that ELK is well suited 
for.

In a spatial context where identifiability is already difficult, spatial confounders and the flexibility of LK when layer 
correlation ranges are allowed to independently vary further reduces identifiability. While the LatticeKrig package does 
not support model penalization, ELK supports penalization in the form of the chosen priors. In particular, the Dirichlet prior 
on the lattice layer variances and the negative exponential priors on the spatial effective range parameters can be chosen 
to penalize departure from an approximate Matérn covariance using theoretical relationships established in Nychka et al. 
(2015), or departure from equal layer variances. ELK is also able to integrate over parameter and hyperparameter uncertainty, 
which is especially important for modeling flexible and uncertain covariance structures. By allowing for the incorporation 
of priors and integration over parameter uncertainty without significant reductions in computational performance, ELK’s 
Bayesian framework is a valuable extension over standard LK.

A potential future extension to ELK would be to incorporate joint PC priors (Fuglstad et al., 2020) on the lattice layer 
weights and variances in order to penalize model complexity in a more principled way rather than using a Dirichlet prior, 
although this would come at greater computational cost.

Depending on the context, one may choose to select lattice resolutions that are independent of each other rather than 
changing by a factor of two from one layer to the next as in standard LK. In both the illustrative example and the appli-
cations, we found that forcing each consecutive layer to have double the resolution along each dimension made modeling 
the fine and long scale correlations simultaneously difficult from a computational perspective. This is due to the number of 
hyperparameters and basis functions required to model spatial correlations on scales differing by factors of 10 or more. In 
such situations, we advocate for tailoring the resolutions of each lattice to enable them to model a set of effective ranges of 
interest.

We find that it may be advantageous to choose ELK over a Matérn model in cases where there is reason to believe 
spatial correlations are operating on multiple spatial scales, possibly due to spatial confounding. It may also be worthwhile 
to choose ELK or LK when spatial correlations are non-Matérn, when making areal predictions for areas of many different 
shapes and sizes, and when making predictions using observations with large spatial gaps such as in LiDAR or satellite data.

Acknowledgements

JP was supported by The National Science Foundation Graduate Research Fellowship Program under award DGE-1256082. 
GW and AR were supported by project number 240873 from the Research Council of Norway. JW was supported by the 
National Institutes of Health under award R01 AI029168-30.

Appendix A. Relevant correlation scales for spatial integration

Long-range correlations are especially important when calculating predictions of certain areal averages. With a ‘back of 
the envelope’ calculation one can calculate the variance of a predicted spatial integral over a disk with radius R . Let r̂(d) be 
the estimated covariance, and let r(d) be the true covariance such that,

r̂(d) = r(d) + e(d),

so e is the error in the covariance estimate a function of distance. Then if we denote the disk by A, and the true spatial 
field with g(x), the variance of our spatial integral under the predictive distribution is:

V̂ar(g(A)) =
∫
A

∫
A

Ĉov(u,v) du dv

=
∫
A

∫
A

r(||u − v||) + e(||u − v||) du dv

= Var(g(A)) +
∫
A

∫
A

e(||u − v||) du dv.

Let D be the random distance between any two points chosen in the disk with independent uniform distributions. Then 
Tuckwell (2018) shows the density of D is:

pD(d) =

⎧⎪⎨⎪⎩
4d

π R2

(
arccos

(
d

2R

)
− d

2R

√
1 −

(
d

2R

)2
)

, 0 ≤ d ≤ 2R

0, otherwise.

Hence,
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Fig. 11. The distribution of distances between points uniformly distributed on a disk of radius R .

V̂ar(g(A)) = Var(g(A)) +
2R∫

0

e(D) · 4d

π R2

⎛⎝arccos

(
d

2R

)
− d

2R

√
1 −

(
d

2R

)2
⎞⎠ dD.

Fig. 11 shows that the density pD (d) roughly parabolic with peak just under R (approximately 0.834R), and has zeros at 0 
and 2R . Because of this, errors in very short and very long-range correlations are less relevant than errors in the assumed 
correlation function at the spatial scale near the radius of the area over which we integrate, R , when calculating predictive 
uncertainties. This is of course not the full story, since the covariance structure conditional on the data will not be so neatly 
stationary and isotropic, and will likely have shorter spatial range. At the same time, we believe this shows greater emphasis 
must be placed on long range spatial correlations when producing area level predictions, especially in large areas.

Appendix B. ELK sparse matrix computations

The computational performance of our implementation of ELK within inla is almost entirely determined by how quickly 
the sparse precision matrix of the basic coefficients c can be generated. As such, we precompute any information for this 
task that will improve the performance. Recall that the basis coefficients for each layer follow independent SAR models with 
mean zero Gaussian distribution, cl ∼ MVN(0, αlσ

2
S B−1

l B−T
l ), with,

Bl,i, j =

⎧⎪⎨⎪⎩
4 + κ2

l , i = j

−1, i ∈ Nl( j)

0, otherwise,

where Nl( j) is this set of indices of lattice knots in layer l neighboring lattice knot i. The precision matrix for layer l, Ql , 
can therefore be represented as,

Ql = ωl

αlσ
2
S

(
κ4

l Im(l) − κ2
l (Dl + (Dl)T ) + (Dl)T Dl

)
,

for matrices,

Dl = Dl
x + Dl

y

Dl
x = Imy(l) ⊗ ∇2

mx(l)

Dl
y = Imx(l) ⊗ ∇2

my(l),

where mx(l) and my(l) are the number of basis functions in the horizontal and vertical directions of layer l, Imx(l) and Imy(l)
are mx(l) × mx(l) and my(l) × my(l) identity matrices respectively, and ‘⊗’ denotes the Kronecker product. Note that the 
variance normalization factor ωl is a function of κl , although we leave out this dependence in the notation for simplicity. 
We can therefore precompute Dl + (Dl)T and Dl)T Dl in order to calculate Ql as quickly as possible for each chosen value of 
κl .

Since there is no exact closed form solution for the functions fl : κl 	→ ωl, l = 1, . . . , L, they are approximated using 
monotonic smoothing splines (Hyman, 1983) fit on a log-log scale over a set of reasonable effective ranges for each layer. 
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Throughout this paper, the effective ranges used for fitting f1 vary from a fifth of the first layer lattice width to the diameter 
of the spatial domain, and the effective ranges used when fitting subsequent fl shrink proportionally with the corresponding 
lattice widths. Hence, if w is the diameter of the spatial domain, then each fl is fit with effective ranges varying in the 
interval 

(
δl
5 , δ1

δl
· w

5

)
. We find the splines are nearly linear, so estimates of fl are very accurate even somewhat outside of 

the interval used for fitting.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107503.
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