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Abstract

Purpose: To bypass manual data preprocessing and optimize deep learning performance, we
developed and evaluated CROPro, a tool to standardize automated cropping of prostate magnetic
resonance (MR) images.

Approach: CROPro enables automatic cropping of MR images regardless of patient health
status, image size, prostate volume, or pixel spacing. CROPro can crop foreground pixels from
a region of interest (e.g., prostate) with different image sizes, pixel spacing, and sampling
strategies. Performance was evaluated in the context of clinically significant prostate cancer
(csPCa) classification. Transfer learning was used to train five convolutional neural network
(CNN) and five vision transformer (ViT) models using different combinations of cropped image
sizes (64 × 64, 128 × 128, and 256 × 256 pixels2), pixel spacing (0.2 × 0.2, 0.3 × 0.3, 0.4 × 0.4,
and 0.5 × 0.5 mm2), and sampling strategies (center, random, and stride cropping) over the
prostate. T2-weighted MR images (N ¼ 1475) from the online available PI-CAI challenge were
used to train (N ¼ 1033), validate (N ¼ 221), and test (N ¼ 221) all models.

Results: Among CNNs, SqueezeNet with stride cropping (image size: 128 × 128, pixel spacing:
0.2 × 0.2 mm2) achieved the best classification performance (0.678� 0.006). Among ViTs,
ViT-H/14 with random cropping (image size: 64 × 64 and pixel spacing: 0.5 × 0.5 mm2)
achieved the best performance (0.756� 0.009). Model performance depended on the cropped
area, with optimal size generally larger with center cropping (∼40 cm2) than random/stride
cropping (∼10 cm2).

Conclusion: We found that csPCa classification performance of CNNs and ViTs depends on the
cropping settings. We demonstrated that CROPro is well suited to optimize these settings in a
standardized manner, which could improve the overall performance of deep learning models.
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1 Introduction

Prostate cancer (PCa) is the fifth cause of death in men and the second most common cancer
worldwide.1 The current diagnostic procedure for PCa is associated with overdiagnosis leading
to overtreatment and misdiagnosis of PCa.2 Magnetic resonance imaging (MRI) is used to assist
the biopsy procedure when PCa is suspected.3 Multiparametric MRI (mpMRI) can improve the
detection rate of clinically significant PCa (csPCA) and reduce the overdiagnosis of insignificant
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PCa.2,4 In addition, the combination of mpMRI with computer-aided diagnosis (CAD) systems
can contribute to improving decision-making.5 Recently, deep learning has gained significant
attention for performing computer vision tasks, such as segmentation, classification, and object
recognition.6–8 Convolutional neural networks (CNNs) have shown high performance in medical
imaging tasks, such as classification of csPCa,9 breast cancer,10 lung nodules,11 and brain
tumors.12 Vision transformers13 (ViTs) have been shown to outperform conventional CNN
models in image classification,14 semantic segmentation,15 and 3D object recognition.16 More
recently, ViTs have also shown competitive performance for medical imaging tasks.17–19

Training deep learning models requires a large, annotated dataset. Recent work20 has shown
that preprocessing of MRI images, such as denoising, MR bias field correction, co-registration,
and standardization, improves the performance of classification and segmentation models.
However, a subject that has received less attention is how the cropping of these preprocessed
images impacts network performance.

Medical images vary in size depending on modality and application, but typically consist of
thousands of pixels per slice. Although most deep learning models are adaptable, they have been
developed and tested for images of certain sizes, e.g., 32 × 32,21 64 × 46,22 128 × 128,23

256 × 256,24,25 or images of 512 × 51226 pixels. This forces users to adjust the input to different
models.27 At the same time, the balance between foreground pixels, representing the region of
interest (ROI), and background pixels, representing the region around the ROI, is paramount for
deep learning models to achieve robust and accurate results.28

For PCa, due to input constraints, it is challenging for most deep learning models to obtain an
image that contains the entire prostate with a balanced pixel distribution, as shown in Fig. 1(a).
One solution is to crop the image to the region containing the ROI to achieve a better balance
between foreground and background pixels. ROIs can be cropped manually or automatically.

Fig. 1 (a) Prostate slices from the apex, middle, and base of a patient with an original image size
of 384 × 384. The slices have a pixel spacing of 0.5 mm × 0.5 mm, and the cropped square box
(256 × 256, in green) is centered on the midpoint of the prostate. The foreground and background
pixels are unbalanced, resulting in an image that contains little information about the prostate. (b) A
middle slice from a patient with benign prostatic hyperplasia, in which cropping to the center of the
image fails. The area surrounded by red represents the segmented prostate gland. Image size is
384 × 384, pixel spacing is 0.5 mm × 0.5 mm, and cropped area is 256 × 256. The image was
acquired at St. Olavs Hospital, Trondheim University Hospital, Norway. Use was approved by the
institutional review board and The Regional Committee for Medical and Health Research Ethics
(REC Central Norway, identifier 2017/576, 2013/1869).
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Manual cropping is a tedious and time-consuming task. Therefore, automated cropping methods
are more commonly used for tasks that require large numbers of images, such as training deep
learning models. The most common approach is center cropping, which assumes that the ROI is
located in the center of the image. However, due to differences in image acquisition protocols,
there is a risk that the ROI will be cropped inaccurately, and the assumption that the prostate is
always located in the center is not always true, as shown in Fig. 1(b).

A robust, flexible, and accurate tool for automated cropping of ROIs, which is compatible
with deep learning algorithms and can capture balanced foreground and background pixels in a
standardized manner, is currently lacking. Consequently, the contributions of this work are (1) the
introduction of CROPro, an open source, publically available tool for standardizing the auto-
mated cropping of ROIs regardless of patient health status, ROI size, image size, or pixel spacing
and (2) to demonstrate its use by evaluating the impact of image cropping settings in the context
of classification of csPCa on T2-weighted (T2W) MR images with CNN and ViT-based models.

2 Related Work

Recently, several deep learning-based approaches have been developed for PCa detection and
classification,9,23,29–36 and the cropping strategy varied between papers. Wang et al.33 trained a
deep CNN to discriminate PCa patients from benign prostate conditions. T2W MR images from
172 patients were used. Each image was downsized to 360 × 360 pixels and then cropped
into multiple subimages of 288 × 288 pixels, resulting in a area under the receiver operating
characteristic curve (AUC) of 0.84. Yoo et al.9 proposed a two-level (slice and patient level)
automated deep CNN-based pipeline to detect csPCa. Diffusion-weighted MR images (DWI)
from 427 patients were used as the dataset. Each DWI slice was resized to a fixed size of
144 × 144 and then center cropped to 66 × 66 pixels, resulting in an AUC of 0.87 and 0.84
at slice and patient level, respectively. Vente at al.29 used 2D U-Net to both detect and identify
the Gleason grade group to estimate lesion aggressiveness on the PROSTATEx-2 challenge
dataset. This resulted in a lesion-based weighted kappa of 0.13� 0.27. Cropped ROIs of
90 mm × 90 mm × 80 mm, with visual verification of the prostate gland presence within the
cropped images were resized to 192 × 192 × 32 voxels for training. Yang et al.34 developed
a deep CNN for PCa detection using mpMRI from 780 patients. They cropped the prostate gland
using the prostate segmentation mask with a fixed bounding box of 196 × 196 × 16 voxels and
spacing of 0.4 mm × 0.4 mm × 0.5 mm and achieved an AUC of 0.96. Saha et al.35 proposed
two parallel 3D CNNs for patient-level detection of csPCa with an AUC of 0.882� 0.030

trained on 1584 MRI scans and tested on 486 scans with PI-RADS v2 annotation, with an input
ROI of 144 × 144 × 18 voxels for the detection model and 112 × 112 × 12 voxels for a residual
classifier. In their study, the residual classifier takes multichannel batches of 64 × 64 × 8 voxels

with a stride of 16 (in-plane) and 4 voxels (through-plane) as input to generate a malignant
score per image patch, which is fused with the detection model to identify csPCa. 296 scans
with external biopsy confirmation were used to test agreement between model, radiologists
(kappa ¼ 0.51� 0.4) and pathologists (kappa ¼ 0.56� 0.6). The input was resampled to a
common resolution of 0.5 mm × 0.5 mm × 3.6 mm. Hosseinzadeh at al.36 used U-Net for detec-
tion and localization of csPCa (PI-RADS ≥4) with an AUC of 0.88, where input images were
resampled to 0.5 mm × 0.5 mm and then cropped by 9.6 × 9.6 cm around the center. A dataset
of 2734 mpMRI scans was used for training and testing.

Pachetti et al.23 evaluated ViTs for classification low-grade versus high-grade PCa lesions
(Gleason score ≤3þ 4 versus ≥ 4þ 3) trained from scratch on ProstateX-2 with axial volumet-
ric T2W images, with a mean AUC of 0.775� 0.094 on fivefold cross validation. All images
were scaled to the largest image size in the dataset (384 × 384) and cropped with a fixed size of
128 × 128, assuming that the prostate was located in the center of the image. Lesion volumes of
size 128 × 128 × 5were used for analysis. In summary, the size of the input images to the models
reported above varied and none of the studies reported optimization of the cropping strategy.

An automated tool for standardized cropping of prostate images would presumably help
increase model robustness, comparability, and generalizability between centers. In their PCa
detection system, Yang et al.37 proposed to automatically crop the image using a regression
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CNN model to prune a square region containing the entire prostate gland. For this purpose, T2W
original images were paired with manually labeled square bounding boxes. Although the sub-
sequent step in their detection network can handle varying image sizes resulting from this
approach, it is limited to the size of the manual square bounding boxes and does not take into
account pixel spacing, which can vary from patient to patient and protocol to protocol. Zaridis
et al.38 proposed an automated prostate gland cropping approach based on a U-Net to predict
an amorphous region around the prostate. A bounding box was determined using the minimum
and maximum coordinates of the amorphous mask and resampled to 256 × 256 pixels. This
approach improved the deep learning-based segmentation accuracy with up to 8.9%. However,
resampling an image to a fixed size will cause the image to be scaled and stretched, which may
affect model performance since the original image is modified.

3 Proposed Method

There is a need for an automated cropping tool for deep learning applications that works under
the following conditions:

• Image size. The tool can handle arbitrary-sized images as input and return cropped images
of chosen size as output.

• Image resolution. The tool can handle images with any resolution (pixel spacing) as input
and return cropped images with chosen resolution as output.

• Coverage. The tool offers different sampling strategies to cover the complete ROI.

Meeting these conditions enables flexible image sampling, compatible with any deep learn-
ing method and allows optimizing the balance between foreground and background pixels for
the problem at hand.

CROPro, our proposed tool, can crop images of any size and resolution using three sampling
strategies: center cropping, random cropping, and stride cropping. Each of these strategies is
based on a (manually or automatically) segmented ROI, e.g., the whole prostate gland or
a suspected lesion. The general method is illustrated in Fig. 2 and outlined in detail in the next
sections.

3.1 Image Resampling

Medical images are acquired at different institutions with varying scanners and slightly different
scanning protocols. Consequently, the image resolution or pixel spacing (measured in mm) of
the input images in a dataset may be different. This is not ideal for deep learning purposes as
the model performance can be affected if a trained model is tested on data with a different
resolution. Resampling the images to the same pixel spacing helps solving this problem. In
addition, adjusting the pixel spacing in combination with the crop size can help optimize the
balance between foreground and background pixels. Figures 3–6 show different pixel spacings
and crop sizes based on the segmentation mask. For example, images of size 128 × 128 pixels

with pixel spacing of 0.5 mm × 0.5 mm (Fig. 3) have more background pixels than images of
size 128 × 128 pixels with a pixel spacing of 0.4 mm × 0.4 mm (Fig. 4).

CROPro allows resampling of images with different pixel spacings. The mask image
(segmentation) is interpolated using nearest neighbor interpolation, and B-spline interpolation
is used to convert the original images into the new pixel space. Both techniques are commonly
used for resampling of medical images.20 The resampling is performed using SimpleITK (Python
version 1.2.0).39

3.2 Image Cropping

CROPro can crop input images to output images of any chosen size with three different sampling
techniques (center, random, and stride). In center cropping, a single output image of chosen size
is sampled from the center of the segmented ROI. In random cropping, one or more output
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images of chosen size are sampled from the ROI by setting the center of the cropping mask to
a random pixel in the ROI. In CROPro, the number of randomly cropped samples (Nsamples) is
controlled by the parameter Crandom in the following equation:

EQ-TARGET;temp:intralink-;e001;116;249Nsamples ¼
Nroi

Ncrop

� Crandom; (1)

where Nroi is the number of pixels in the ROI and Ncrop is the number of pixels in the cropped
output images, e.g., 64 × 64, 128 × 128, or 256 × 256. Crandom is an empirically chosen factor
that controls the number of samples required to cover the ROI and is only used in random
cropping mode. Setting Crandom too low could result in undersampling of the ROI, whereas too
high values of Crandom could result in oversampling. For example, with Nroi ¼ 10;000 and
Ncrop ¼ 128 × 128, the division in Eq. (1) is equal to 0.610. Setting Crandom to 10 will then result
in Nsamples equal to 6.10. Nsamples is rounded down to the nearest integer, resulting in six samples
in this example. Of note, the choice of Crandom is not affected by pixel spacing, ROI size, and
crop size, as Nsamples scales automatically with these parameters.

In stride cropping, one or more output images of chosen size are sampled from a rectangular
box around the ROI by systematically moving from top left to bottom right, skipping Cstride

Fig. 2 The pipeline of the CROPro tool. Among the different settings, the pixel spacing, the size of
the cropped image, and three different sampling techniques can be freely selected, along with
several other settings, such as cropping factors depending on the selected sampling technique,
the patient’s health status, the type of MRI sequence, and the type of image to be stored.
Depending on the patient’s health status regarding prostate cancer (positive, negative, or
unknown), a loop is started for all MRI slices, checking the availability of a segmentation mask
and the fulfillment of threshold ROI size criteria (i.e., cropped area > minimum ROI area) before
applying the cropping techniques.
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Fig. 3 Slices through the apex, middle, and base of the prostate for a negative patient, using
the random cropping function. Three different cropped image sizes (64 × 64, 128 × 128, and
256 × 256) are shown, overlaid with cropping boxes in light green color. The images have
0.5 mm × 0.5 mm pixel spacing.

Fig. 4 Slices through the apex, middle, and base of the prostate for a negative patient, using
the random cropping function. Three different cropped image sizes (64 × 64, 128 × 128, and
256 × 256) are shown, overlaid with cropping boxes in light green color. The images have
0.4 mm × 0.4 mm pixel spacing.
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pixels in each direction. Consequently, the number of samples is given by the following
equation:

EQ-TARGET;temp:intralink-;e002;116;204Nsamples ¼
Hbox −Him

Nstrideþ1

�Wbox −Wim

Nstrideþ1

; (2)

where Hbox and Wbox are the height and width, respectively, of a box covering the entire ROI
rounded up to the nearest multiple of Cstride, andHim andWim are the chosen height and width of
the output image.

3.3 Image Selection

To present the deep learning network with only the information relevant to the task at hand,
we often want to select the images that contain a significant part of the ROI. Images that have

Fig. 5 Slices through the apex, middle, and base of the prostate for a negative patient, using
the random cropping function. Two different cropped image sizes (128 × 128 and 256 × 256) are
shown, overlaid with cropping boxes in light green color. The images have 0.3 mm × 0.3 mm pixel
spacing.

Fig. 6 Slices through the apex, middle, and base of the prostate for a negative patient, using
the random cropping function. Two different cropped image sizes (128 × 128 and 256 × 256) are
shown, overlaid with cropping boxes in light green color. The images have 0.2 mm × 0.2 mm pixel
spacing.
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limited task-related information, e.g., containing only a very small part of a lesion, could poten-
tially harm the training procedure. To ensure that images with too little task-related information
are not included in the training set, we introduce a threshold parameter Cmin _area, which specifies
the minimum area (in mm2) of ROI that needs to be present in a cropped image. The value of
Cmin _area depends on the clinical problem and needs to be determined and adjusted per use case.
In CROPro, a cropped image will only be processed if Eq. (3) is true:

EQ-TARGET;temp:intralink-;e003;116;662Cmin _area < Nroi � pixel_spacing2: (3)

4 Experiments and Results

The Ubuntu 18.04.5 LTS operating system with a single NVIDIATesla V100S PCIe 32 GB GPU
was used for all experiments. Using transfer learning, five CNN-based models and five ViT-
based models13 were trained, validated, and tested for image-level csPCa classification. Our
hypothesis is that the performance of the models depends on the CROPro settings for cropping
of the input images. The code is written in Python (version 3.6.9).

4.1 Dataset

The publicly available PI-CAI challenge dataset40 (N ¼ 1500) was used to train, validate, and
test the 10 deep learning models. 25 cases were excluded, due to having more than one scan per
patient (N ¼ 24) or lacking clinical information (N ¼ 1). The cases were classified as positive
(N ¼ 425) or negative (N ¼ 1050) for csPCa based on International Society of Urological
Pathology criteria for grading of PCa.41 The dataset was divided into a training set (70%,
N ¼ 1033, 736 negative and 297 positive cases), validation set (15%, N ¼ 221, 157 negative
and 64 positive cases), and a test set (15%, N = 221, 157 negative and 64 positive cases). The
split was done randomly for both negative and positive cases, with the exception that the val-
idation and test sets were assigned only positive cases with human labels. In contrast, the training
set contained a mix of human (N ¼ 92) and AI-labeled (N ¼ 205) positive cases. The T2WMR
images were normalized using AutoRef 42 and used as input for the networks. The pixel spacing
of the original images varied from 0.23 mm × 0.23 mm to 0.78 mm × 0.78 mm, and interslice
spacing ranged from 2.2 to 5.0 mm. Image size varied from 256 × 256 to 1024 × 1024. In this
study, PI-CAI data version 1.0 was used for all experiments.

4.2 CROPro Parameters

The following CROPro settings were investigated for cropping the T2W MR images in the
training set: pixel spacing 0.2 mm × 0.2 mm, 0.3 mm × 0.3 mm, 0.4 mm × 0.4 mm, and
0.5 mm × 0.5 mm; image size 64 × 64, 128 × 128, and 256 × 256 pixels; and sampling with
center cropping, random cropping, and stride cropping. Crandom was empirically set to 12 and
Cstride to 32. Cmin _area was set to 1 cm2 (prostate mask) for negative cases, and to 0.2 cm2 (lesion
mask) for positive cases. This means that only cropped images containing more than 1 cm2 of
the prostate ROI were used for the negative cases, and cropped images with more than 0.2 cm2 of
lesion ROI were used for the positive cases. Segmentations of the first (apex) and last (base)
slices of the prostate gland were excluded to avoid bias in AI-based segmentation. Furthermore,
segmented lesions were retained only if they overlapped with ≥50% of the prostate mask. During
validation and testing, images were systematically sampled using stride cropping (with the same
Cstride and Cmin _area) to ensure that the entire prostate ROI was covered. Table 1 provides infor-
mation on the datasets generated with the investigated CROPro settings. The combinations of
image size 64 × 64 and pixel spacing of 0.3 mm × 0.3 mm and 0.2 mm × 0.2 mm were con-
sidered to provide too small images and were excluded from further analysis. Figures 3–6 show
three slices (apex, middle, and base) from a selected negative patient using the random cropping
technique with different image sizes and different values for pixel spacings. Figure 7 shows an
example of a positive patient for a pixel spacing of 0.5 mm × 0.5 mm and different cropped
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image sizes. The number of sampled images increases for smaller cropped image sizes, smaller
pixel spacings, and larger prostate ROIs.

4.3 csPCa Classification with CNNs and ViTs

AlexNet,43 VGG-19,44 ResNet50,8 SqueezeNet,45 and DesnseNet12146 and five ViT13 models
were trained, validated, and tested for image-level classification of csPCa. Each ViT model rep-
resents a different combination of model size (base, large, and huge)13 and patch size (14 × 14,
16 × 16, and 32 × 32). Table 2 provides an overview of all deep learning models used in this
study. We investigated the impact of the different CROPro settings on model performance.

Overall, 30 different training datasets were investigated for each model, leading to 300 com-
binations. Each model was trained 5 times for each combination. The cases in the training,
validation, and test sets were kept the same to allow for fair comparison between experiments.
Each generated dataset was balanced by randomly selecting the same number of negative images
as the available number of positive images.

Table 1 Details about all datasets generated using center, random, and stride cropping with three
different cropped sizes (64 × 64, 128 × 128, and 256 × 256) and four different pixels spacings
(0.5 mm × 0.5 mm, 0.4 mm × 0.4 mm, 0.3 mm × 0.3 mm, and 0.2 mm × 0.2 mm).

Cropped
image
(pixels2)

Pixel
space
(mm2)

Train center neg.
ðN ¼ 736Þ∕pos:

(N ¼ 297)

Train random neg.
ðN ¼ 736Þ∕pos:

(N ¼ 297)

Train stride neg.
ðN ¼ 736Þ∕pos:

(N ¼ 297)

Val. stride neg.
ðN ¼ 157Þ∕pos:

(N ¼ 64)

Test stride neg.
ðN ¼ 157Þ∕pos:

(N ¼ 64)

256 × 256 0.5 × 0.5 9143/1069 9322/1058 9145/1069 1891/265 1940/288

256 × 256 0.4 × 0.4 9183/1088 12,327/1220 9183/1089 1917/275 1945/319

256 × 256 0.3 × 0.3 9156/1091 22,731/2221 9218/1091 1920/274 1965/320

256 × 256 0.2 × 0.2 5796/843 55,945/5616 18,711/1407 3970/388 4563/537

128 × 128 0.5 × 0.5 8595/1086 34,290/3408 9873/1102 2066/279 2132/331

128 × 128 0.4 × 0.4 5712/826 55,946/5613 15,267/1324 3254/343 3456/458

128 × 128 0.3 × 0.3 1917/212 102,937/10,429 41,719/2667 9059/725 9513/943

128 × 128 0.2 × 0.2 276/16 237,376/24,131 167,816/7489 35,902/2008 37,575/2781

64 × 64 0.5 × 0.5 816/70 150,304/15,255 44,407/2454 9483/664 9783/838

64 × 64 0.4 × 0.4 256/15 237,392/24,118 75,527/3412 16,089/900 16,566/1187

Fig. 7 A slice through the middle of the prostate for a positive patient using the random cropping
technique. Three different cropped image sizes (64 × 64, 128 × 128, and 256 × 256) are shown,
overlaid with the cropping boxes in light green color. The orange area represents the lesion
delineation. The images have 0.5 mm × 0.5 mm pixel spacing.
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The deep learning models were pretrained with ImageNet47 on ImageNet-1k (CNNs) and
ImageNet-21k (ViTs). Transfer learning of the CNNs was implemented using feature extraction,
where only the weights of the last layer related to the prediction were updated. Hyperparameters
were the same for all models and experiments: batch size 64; the number of epochs 100 with
early stopping and a patience count of 10; Adam optimizer with learning rate 0.001, beta1 0.9
and beta2 0.999. The ViT models were implemented using huggingface transformers library.48

Hyperparameters were the same for all ViT models and experiments using the class trainer API
provided by huggingface: batch size 30, epochs 5, learning rate 0.0002, evaluation strategy with
steps, fp16 bit precision, save steps 100, evaluation steps 100, and logging steps 10. PyTorch
(version 1.9.1) python library49 was used for implementation.

4.4 Statistical Analysis

Classification accuracy was used as a metric of performance. The mean and standard deviation
(SD) of 5 runs for each model on the validation and test sets were reported. The performance of
each model was compared to the reference model with image size 256 × 256 and 0.5 mm ×
0.5 mm pixel spacing. Statistical differences were assessed using two-sample paired t-tests.
P-values < 0.05 were considered statistically significant.

4.5 Results

In the following section, the results from the test set are presented separately for each of
the sampling techniques. The results from the validation set are provided to the reader as
Supplementary Material.

4.5.1 Center cropping

Table 3 shows the mean ± SD for all CNN-based models and Table 4 for all ViT-based models.
Both tables represent different settings with center cropping. For CNN-based models, the highest
performance (0.621� 0.022) was obtained by SqueezeNet with a cropped image size of
256 × 256 and a pixel spacing of 0.2 mm × 0.2 mm. For each network, the model with the best
performance was compared with the reference model. Significant improvements were found for
AlexNet and SqueezeNet, but not for VGG-19, ResNet50, and DenseNet121 when using either
a smaller cropped image size or a smaller pixel spacing (Fig. 8). For ViT-based models, the
highest performance (0.662� 0.028) was obtained by ViT-H/14 with a cropped image size of
128 × 128 and a pixel spacing of 0.5 mm × 0.5 mm. The best models performed significantly
better than the reference model for ViT-H/14, ViT-L/32 but not for ViT-L/16, ViT-B/32, and
ViT-B/16.

Table 2 An overview of the CNN and ViT-based models used for classification of csPCa. For
the ViT models, each model represent a variant of the initial ViT model13 in terms of model size
(parameters) and input patch size (14 × 14, 16 × 16, and 32 × 32). The CNN models were loaded
with code from github.com/pytorch. All CNN models can be found here: pytorch.org/vision. The
ViT models were loaded with code from github.com/huggingface/transformers. All available ViT
models can be found here: huggingface.co/models.

CNN models ViT models

AlexNet43 ViT-H/14 (https://huggingface.co/google/vit-huge-patch14-224-in21k)

VGG-1944 ViT-L/32 (https://huggingface.co/google/vit-large-patch32-224-in21k)

ResNet508 ViT-L/16 (https://huggingface.co/google/vit-large-patch16-224-in21k)

SqueezeNet45 ViT-B/32 (https://huggingface.co/google/vit-base-patch32-224-in21k)

DesnseNet12146 ViT-B/16 (https://huggingface.co/google/vit-base-patch16-224-in21k)
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4.5.2 Random cropping

Tables 5 (CNN-based models) and 6 (ViT-based models) show the mean ± SD for all trained
models and different settings with random cropping. For CNNs, the highest performance
(0.662� 0.005) was achieved by ResNet50 with a cropped image size of 256 × 256 and pixel
spacing of 0.2 mm × 0.2 mm. The best models performed significantly better than the reference
model for all networks except VGG19, when using either a smaller cropped image size or a
smaller pixel spacing (Fig. 8). The best models with random cropping performed significantly
better than the best models with center cropping for all models except AlexNet and VGG19.

Table 3 The test accuracy of the five convolutional neural network models for different CROPro
settings with center cropping. The best performing settings are highlighted in bold and significant
differences between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) AlexNet VGG19 ResNet50 SqueezeNet DenseNet121

256 × 256 0.5 × 0.5 0.584 ± 0.017 0.600 ± 0.017 0.599 ± 0.023 0.605 ± 0.010 0.590 ± 0.012

256 × 256 0.4 × 0.4 0.602 ± 0.019 0.586 ± 0.009 0.561 ± 0.015 0.586 ± 0.018 0.569 ± 0.010

256 × 256 0.3 × 0.3 0.609 ± 0.009* 0.607 ± 0.021 0.585 ± 0.019 0.601 ± 0.013 0.578 ± 0.017

256 × 256 0.2 × 0.2 0.570 ± 0.035 0.564 ± 0.022 0.594 ± 0.030 0.621 ± 0.022* 0.572 ± 0.021

128 × 128 0.5 × 0.5 0.607 ± 0.021 0.600 ± 0.011 0.606 ± 0.008 0.609 ± 0.017 0.582 ± 0.033

128 × 128 0.4 × 0.4 0.552 ± 0.007 0.580 ± 0.021 0.576 ± 0.027 0.599 ± 0.016 0.569 ± 0.012

128 × 128 0.3 × 0.3 0.468 ± 0.008 0.497 ± 0.013 0.510 ± 0.019 0.422 ± 0.016 0.493 ± 0.041

128 × 128 0.2 × 0.2 0.438 ± 0.029 0.436 ± 0.039 0.499 ± 0.014 0.478 ± 0.038 0.517 ± 0.018

64 × 64 0.5 × 0.5 0.488 ± 0.028 0.503 ± 0.015 0.496 ± 0.023 0.484 ± 0.018 0.506 ± 0.020

64 × 64 0.4 × 0.4 0.496 ± 0.004 0.459 ± 0.025 0.508 ± 0.019 0.497 ± 0.032 0.492 ± 0.016

Table 4 The test accuracy of the five vision transformer models for different CROPro settings with
center cropping. The best performing settings are highlighted in bold and significant differences
between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) ViT-H/14 ViT-L/32 ViT-L/16 ViT-B/32 ViT-B/16

256 × 256 0.5 × 0.5 0.578 ± 0.036 0.600 ± 0.016 0.581 ± 0.008 0.588 ± 0.040 0.592 ± 0.020

256 × 256 0.4 × 0.4 0.633 ± 0.015 0.624 ± 0.021 0.588 ± 0.015 0.627 ± 0.013 0.595 ± 0.028

256 × 256 0.3 × 0.3 0.633 ± 0.036 0.597 ± 0.007 0.578 ± 0.021 0.609 ± 0.029 0.592 ± 0.013

256 × 256 0.2 × 0.2 0.628 ± 0.029 0.557 ± 0.035 0.502 ± 0.005 0.573 ± 0.028 0.566 ± 0.055

128 × 128 0.5 × 0.5 0.662 ± 0.028* 0.627 ± 0.010* 0.594 ± 0.055 0.605 ± 0.038 0.604 ± 0.021

128 × 128 0.4 × 0.4 0.627 ± 0.010 0.577 ± 0.020 0.531 ± 0.036 0.560 ± 0.050 0.559 ± 0.040

128 × 128 0.3 × 0.3 0.566 ± 0.013 0.533 ± 0.027 0.497 ± 0.017 0.529 ± 0.053 0.527 ± 0.015

128 × 128 0.2 × 0.2 0.481 ± 0.018 0.459 ± 0.032 0.427 ± 0.060 0.455 ± 0.043 0.465 ± 0.026

64 × 64 0.5 × 0.5 0.518 ± 0.007 0.517 ± 0.013 0.492 ± 0.024 0.513 ± 0.024 0.504 ± 0.016

64 × 64 0.4 × 0.4 0.462 ± 0.010 0.461 ± 0.027 0.471 ± 0.025 0.471 ± 0.030 0.480 ± 0.022
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For ViTs, the highest performance (0.756� 0.009) was obtained by ViT-H/14 with a cropped
image size of 64 × 64 and a pixel spacing of 0.5 mm × 0.5 mm. The best models performed
significantly better than the reference model for all models. Random cropping performed
significantly better than center cropping for all models.

Fig. 8 The performance of each sampling technique (center, random, and stride) for all CNN and
ViT-based models, as a function of the area of the cropped images. The solid lines represent
the mean accuracy and the shaded areas the 95% confidence intervals.
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4.5.3 Stride cropping

Tables 7 (CNN-based models) and 8 (ViT-based models) show the mean ± SD for all trained
models and different settings with stride cropping. For CNNs, the highest performance
(0.678� 0.006) was achieved by SqueezeNet with a cropped image size of 128 × 128 and a
pixel spacing of 0.2 mm × 0.2 mm. The best found models performed significantly better than
the reference model when using either a smaller cropped image size or a smaller pixel spacing
(Fig. 8) for all models except for VGG19. The best model with stride cropping performed
significantly better than the best model with random cropping for AlexNet, DenseNet121, and

Table 5 The test accuracy of the five convolutional neural network models for different CROPro
settings with random cropping. The best performing settings are highlighted in bold and significant
differences between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) AlexNet VGG19 ResNet 50 SqueezeNet DenseNet 121

256 × 256 0.5 × 0.5 0.577 ± 0.021 0.616 ± 0.013 0.588 ± 0.023 0.605 ± 0.008 0.585 ± 0.008

256 × 256 0.4 × 0.4 0.588 ± 0.011 0.594 ± 0.012 0.568 ± 0.005 0.579 ± 0.017 0.577 ± 0.007

256 × 256 0.3 × 0.3 0.600 ± 0.021 0.618 ± 0.016 0.610 ± 0.007 0.615 ± 0.011 0.589 ± 0.010

256 × 256 0.2 × 0.2 0.611 ± 0.034 0.607 ± 0.034 0.662 ± 0.005* 0.650 ± 0.019 0.630 ± 0.018*

128 × 128 0.5 × 0.5 0.622 ± 0.014* 0.620 ± 0.006 0.619 ± 0.013 0.592 ± 0.015 0.610 ± 0.011

128 × 128 0.4 × 0.4 0.607 ± 0.013 0.591 ± 0.013 0.629 ± 0.011 0.622 ± 0.011 0.630 ± 0.012

128 × 128 0.3 × 0.3 0.590 ± 0.007 0.577 ± 0.028 0.630 ± 0.003 0.642 ± 0.005 0.612 ± 0.008

128 × 128 0.2 × 0.2 0.601 ± 0.018 0.568 ± 0.021 0.622 ± 0.013 0.650 ± 0.003 0.625 ± 0.016

64 × 64 0.5 × 0.5 0.619 ± 0.006 0.585 ± 0.008 0.658 ± 0.010 0.653 ± 0.008* 0.613 ± 0.017

64 × 64 0.4 × 0.4 0.605 ± 0.007 0.576 ± 0.007 0.613 ± 0.010 0.637 ± 0.003 0.587 ± 0.012

Table 6 The test accuracy of the five vision transformer models for different CROPro settings with
random cropping. The best performing settings are highlighted in bold and significant differences
between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) ViT-H/14 ViT-L/32 ViT-L/16 ViT-B/32 ViT-B/16

256 × 256 0.5 × 0.5 0.612 ± 0.014 0.619 ± 0.016 0.582 ± 0.056 0.616 ± 0.030 0.605 ± 0.023

256 × 256 0.4 × 0.4 0.652 ± 0.021 0.619 ± 0.006 0.606 ± 0.010 0.616 ± 0.029 0.616 ± 0.015

256 × 256 0.3 × 0.3 0.654 ± 0.006 0.622 ± 0.014 0.621 ± 0.009 0.616 ± 0.017 0.610 ± 0.019

256 × 256 0.2 × 0.2 0.710 ± 0.033 0.662 ± 0.019 0.653 ± 0.086 0.675 ± 0.016 0.669 ± 0.029

128 × 128 0.5 × 0.5 0.658 ± 0.015 0.638 ± 0.016 0.629 ± 0.014 0.639 ± 0.013 0.636 ± 0.023

128 × 128 0.4 × 0.4 0.700 ± 0.019 0.680 ± 0.028 0.650 ± 0.008 0.655 ± 0.031 0.678 ± 0.030

128 × 128 0.3 × 0.3 0.731 ± 0.020 0.700 ± 0.030 0.686 ± 0.013* 0.678 ± 0.023 0.704 ± 0.049*

128 × 128 0.2 × 0.2 0.734 ± 0.007 0.703 ± 0.045 0.663 ± 0.012 0.673 ± 0.015 0.693 ± 0.029

64 × 64 0.5 × 0.5 0.756 ± 0.009* 0.732 ± 0.042* 0.665 ± 0.011 0.728 ± 0.038* 0.703 ± 0.037

64 × 64 0.4 × 0.4 0.729 ± 0.015 0.662 ± 0.021 0.655 ± 0.005 0.664 ± 0.016 0.670 ± 0.038
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SqueezeNet, but not for VGG19 and ResNet50. Furthermore, all models performed significantly
better with stride cropping than with center cropping, except VGG19. For ViTs, the highest
performance (0.741� 0.022) was obtained by ViT-L/32 with a cropped image size of
128 × 128 and a pixel spacing of 0.2 mm × 0.2 mm. The best models performed significantly
better than the reference model for all models. The best models with stride cropping performed
significantly better than the best models with center cropping, but not than random cropping,
which performed significantly better for ViT-H/14.

Table 7 The test accuracy of the five convolutional neural network models for different CROPro
settings with stride cropping. The best performing settings are highlighted in bold and significant
differences between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) AlexNet VGG19 ResNet 50 SqueezeNet DenseNet121

256 × 256 0.5 × 0.5 0.587 ± 0.021 0.619 ± 0.006 0.603 ± 0.005 0.611 ± 0.017 0.575 ± 0.013

256 × 256 0.4 × 0.4 0.596 ± 0.025 0.586 ± 0.018 0.584 ± 0.005 0.590 ± 0.007 0.576 ± 0.004

256 × 256 0.3 × 0.3 0.597 ± 0.022 0.589 ± 0.020 0.584 ± 0.011 0.590 ± 0.007 0.574 ± 0.014

256 × 256 0.2 × 0.2 0.642 ± 0.021 0.629 ± 0.022 0.653 ± 0.017* 0.662 ± 0.024 0.642 ± 0.019

128 × 128 0.5 × 0.5 0.609 ± 0.012 0.606 ± 0.005 0.616 ± 0.009 0.606 ± 0.007 0.598 ± 0.005

128 × 128 0.4 × 0.4 0.593 ± 0.011 0.605 ± 0.011 0.612 ± 0.015 0.616 ± 0.011 0.607 ± 0.013

128 × 128 0.3 × 0.3 0.577 ± 0.007 0.591 ± 0.017 0.648 ± 0.006 0.654 ± 0.008 0.633 ± 0.008

128 × 128 0.2 × 0.2 0.647 ± 0.017* 0.605 ± 0.014 0.649 ± 0.012 0.678 ± 0.006* 0.650 ± 0.008*

64 × 64 0.5 × 0.5 0.640 ± 0.004 0.618 ± 0.013 0.655 ± 0.008 0.658 ± 0.006 0.632 ± 0.010

64 × 64 0.4 × 0.4 0.623 ± 0.011 0.595 ± 0.007 0.635 ± 0.004 0.659 ± 0.009 0.618 ± 0.008

Table 8 The test accuracy of the five vision transformer models for different CROPro settings with
stride cropping. The best performing settings are highlighted in bold and significant differences
between these models and the reference model are indicated with a “*”.

Cropped
image
(pixels2)

Pixel space
(mm2) ViT-H/14 ViT-L/32 ViT-L/16 ViT-B/32 ViT-B/16

256 × 256 0.5 × 0.5 0.612 ± 0.007 0.593 ± 0.039 0.526 ± 0.051 0.611 ± 0.017 0.614 ± 0.022

256 × 256 0.4 × 0.4 0.633 ± 0.007 0.602 ± 0.018 0.564 ± 0.045 0.594 ± 0.054 0.613 ± 0.020

256 × 256 0.3 × 0.3 0.647 ± 0.016 0.598 ± 0.026 0.550 ± 0.047 0.638 ± 0.033 0.592 ± 0.013

256 × 256 0.2 × 0.2 0.665 ± 0.025 0.658 ± 0.018 0.678 ± 0.038 0.649 ± 0.026 0.656 ± 0.007

128 × 128 0.5 × 0.5 0.638 ± 0.028 0.615 ± 0.028 0.565 ± 0.049 0.598 ± 0.024 0.594 ± 0.041

128 × 128 0.4 × 0.4 0.661 ± 0.018 0.617 ± 0.040 0.630 ± 0.075 0.619 ± 0.012 0.633 ± 0.039

128 × 128 0.3 × 0.3 0.711 ± 0.033 0.712 ± 0.019 0.690 ± 0.021* 0.703 ± 0.032 0.693 ± 0.018

128 × 128 0.2 × 0.2 0.737 ± 0.010* 0.741 ± 0.022* 0.675 ± 0.009 0.714 ± 0.032* 0.735 ± 0.018*

64 × 64 0.5 × 0.5 0.733 ± 0.011 0.718 ± 0.031 0.674 ± 0.032 0.683 ± 0.036 0.687 ± 0.039

64 × 64 0.4 × 0.4 0.728 ± 0.008 0.687 ± 0.023 0.676 ± 0.043 0.694 ± 0.042 0.678 ± 0.025
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5 Discussion

In this study, we introduced CROPro, an automated tool for standardized cropping of prostate
MRIs to tackle challenges associated with manual preprocessing. We found that carefully opti-
mizing the cropping of the prostate gland from the MR images improved csPCa classification
with both CNN and ViT-based models. For both model types, the performance of the tested
architectures showed similar dependencies on the cropped image size. For center cropping, the
optimal performance was found for medium-sized images (∼40 cm2). This corresponds to a
cropped area that would cover the complete prostate in most images, but does not include too
much of the surrounding tissue. For random and stride cropping, the optimal performance was
generally associated with smaller images (∼10 cm2). These would be large enough to cover most
lesions while also capturing parts of the surrounding healthy tissue. VGG19 and AlexNet were
exceptions to this behavior, but generally showed the lowest performance. It is important to stress
that our results could have been different if yet other types of deep learning models, such as
U-Net28 or GANs50 had been used, if the models had been trained from scratch, if a different
classification task had been chosen (e.g., any PCa versus benign patients), and/or if different
cropping settings had been tested.

All preprocessing steps for cropping images from the segmented prostate and lesion masks
were automated and dependencies on ROI size, input image size and pixel spacing were elim-
inated. We used transfer learning with five pretrained CNN51 and five pretrained ViT13 models
for all experiments as a faster alternative to training all models from scratch. This is a valid
approach since we only aimed to investigate the impact of cropping parameters on model per-
formance. Although we used state-of-the-art approaches to optimize the pretrained networks, the
classification task could potentially benefit from further optimization of the hyperparameters and
absolute model performance should therefore be evaluated in this context.

In our experiments, the stride count (Cstride) was set to 32 (stride cropping) and Crandom was
set to 12 (random cropping) to balance under and oversampling of the ROI. Cmin _area was set to
0.2 cm2 for both AI- and human-derived lesion segmentations. The investigated crop sizes
(256 × 256, 128 × 128, and 64 × 64 pixels2) and pixel spacings (0.2 × 0.2, 0.3 × 0.3, 0.4 × 0.4,
and 0.5 × 0.5 mm2) cover a sensible range of values but could be set to any number.

For the CNN-based models, random and stride cropping generally outperformed center crop-
ping, potentially due to the larger number of images available for training and/or a better ratio of
foreground to background pixels. The best performance (0.678� 0.006) was obtained with
SqueezeNet trained on stride-sampled images of size 128 × 128 with a pixel spacing of
0.2 mm × 0.2 mm. This was the highest image resolution tested and in accordance with findings
in the literature52 that show a beneficial effect of higher resolution on classification performance.

For the ViT-based models, random and stride cropping generally outperformed center crop-
ping, in line with results from the CNN-based models. The best performance for the ViT-based
models was equal to 0.756� 0.009 with ViT-H/14 trained on random-cropped images of size
64 × 64 with a pixel spacing of 0.5 mm × 0.5 mm. For all cropping techniques, the best ViT-
based model performed better than the best CNN-based model, confirming the potential of ViTs
for image classification tasks.

In this study, we used both manual expert and AI segmentations of the prostate glands and
lesions as input to CROPro. It should be noted that CROPro works with all types of segmenta-
tions, including those automatically generated by deep learning models, such as nnU-Net,6

which could reduce the workload of radiologists. This approach is in line with the proposal
of Vente at al.,28 who mentioned that the selection of ROIs could be based on the segmentation
of the prostate rather than capturing a fixed image center portion.

Several deep learning models have achieved high performance in classifying PCa9,28,34,36,37

but are dependent on input images of a specific size and pixel spacing. CROPro can be used as a
simple tool to prepare the dataset for optimization and fair comparison of these models. In this
regard, CAD systems, which have the potential to improve PCa detection, localization, staging,
and biopsy targeting, can benefit from tools, such as CROPro to overcome challenges in auto-
mated analysis, such as selecting the correct ROI and dealing with input data that varies in pixel
spacing and image dimensions.
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Although cropping of the prostate appears to be a simple task, it can be quite challenging due
to differences in image sources, the size of the prostate, and its location. For example, cropped
images missing parts of the prostate may lead to misclassification, as 70% of PCa are located in
the peripheral zone of the prostate.53 In addition, an automated tool should be adaptable and
interpretable depending on the patient’s health status. For example, during training, it should
avoid capturing slices from a positive patient that do not contain lesions. This is critical because
these slices may be cancer-free (negative), meaning there is no useful information for classifi-
cation. Unlike current approaches that focus on sectioning the entire prostate area,9,28,33–35,37,38

CROPro allows for the assignment of specific ROI types based on health status.
One limitation of our work was that we only tested CROPro with transfer-learned CNN-

based and ViT-based models. Furthermore, only image-level accuracy for the test set was
reported. Optimization of the csPCa classification task should be done with patient-level accu-
racy, but was considered outside the scope of this study. Another limitation was that we tested
only 256 × 256, 128 × 128, and 64 × 64 input size images, whereas larger or smaller variations
could have been considered. Moreover, the 3D MRI volumes were processed in such a way that
cropped, 2D images were sampled and saved for each slice. Currently, CROPro does not take
into account differences in through-plane resolution (slice thickness) between datasets. The
implementation of cropping 3D volumes and handling different through-plane resolutions is
subject of future work. Finally, our proposed CROPro tool was implemented and evaluated only
for MRI and the task of csPCa classification. Evaluating the tool on other image modalities
and/or clinical challenges would be interesting in the future.

6 Conclusion

We proposed and evaluated CROPro, a tool for automated cropping of prostate MRI to bypass
manual data preprocessing and improve deep learning performance. We showed that the per-
formance of the csPCa classification task depended on cropping parameters, indicating that
fine-tuning these is important for reaching the full potential of deep learning applications.
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