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Abstract

This PhD thesis addresses the following research questions:

• RQ 1: Can we prove tight reductions on isogeny-based schemes?
• RQ 2: How sound are the assumptions underlying some computational

problems in isogeny-based cryptography?
• RQ 3: Can we obtain faster isogeny-based cryptography?

The findings and contributions of this thesis consist in five scientific papers.
More specifically, this thesis presents an adaptation of Cohn-Gordon et al.
[CCG+19] construction to supersingular elliptic curves over Fp, obtaining an
isogeny-based authenticated KEX protocol with an optimally tight proof. The
thesis tests the reliability of certain assumptions and questions the security
proof of the identification protocol based on SIDH. It also analyses the security
proofs available in the literature for the SIDH-based identification protocol,
together with their e�ects on the security of the digital signatures obtained via
the Fiat-Shamir transform. A di�erent approach to restore the security of an
isogeny-based identification protocol is presented: relying on the Generalised
Riemann Hypothesis, a new extractor is introduced, for which rigorous proof
special-soundness property is given.

In one of the papers included in the thesis, there is a proposal of an
isogeny-based signature scheme whose security relies on the computational
supersingular isogeny problem. The protocol is obtained by applying the Fiat-
Shamir transform to the SIDH-identification protocol, and then performing a
series of optimisations both on the signature size and on the signing algorithm.

The thesis also presents a design of an algorithm to solve the constructive
Deuring correspondence for general primes p, translating an ideal in the
quaternion algebra ramified at p and Œ into an isogeny. In that work several
optimisations are applied for speeding up the existing algorithms that work for
more general primes than the ones carefully crafted in SQISign.

Finally, the practicality of SIDH-based signatures is analysed in light of the
new attacks against SIKE and the underlying KEX protocol. In particular, the
last contribution shows how, despite the application of several optimisations to
reduce the signature size and some minor improvements on the signing time,
the design of e�cient SIDH-based protocols is still an open problem.
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Chapter 1

Introduction

Romeo and Juliet:
Had they known of encryption

They would be alive.

December 20221

Despite its etymological origins in the Greek words kryptós, meaning “hidden”
or “secret”, and graphein, meaning “to write”, the term cryptography has gained
several di�erent acceptations nowadays. Centuries ago, only few individuals
of a certain lineage were in need of ways to secretly communicate, most often
about military arrangements. Cryptography actually meant “secret writing”
back then, and today we would refer to the process of “writing in secret” as
encryption of a message. More to the point, we talk about symmetric encryption,
since the conversion from plaintext to ciphertext and vice versa was done via
the same pre-shared key. Early attempts such as the greek scytale and Caesar’s
cipher were rudimental and look ridiculous to our modern eyes, but they were
commensurate with the threat models and tools available at that time.

Mathematical and algorithmic advances changed the field slowly but
constantly, leading to the construction of very famous encryption machines
such as Enigma (sadly, war was and still is a major promoter of cryptographic
developments). Moving towards an interconnected world, with people who had
possibly never met needing to communicate secretly, exchanging symmetric
keys quickly became very expensive if not unfeasible, and new tools had
to be developed. The pioneering works of Di�e and Hellman [DH76], and
of Rivest, Shamir and Adleman [RSA78], opened up a whole new world in
telecommunications: public-key cryptography, a.k.a. asymmetric cryptography
in opposition to the techniques developed over the previous millennia.

The original goal of enabling secret communication still holds; nonetheless,
over the past 40 years cryptography has been enriched with new features and
flavours, most of which were unimaginable before the development of modern
computers and smart devices. Among the countless applications of public-key
cryptography, this thesis deals with five of them. Suppose that each user (in
practice, a device) holds both a public key and a secret key, bound to each other
via some hard mathematical problem. A key exchange protocol (KEX) allows
users knowing each other’s public keys to agree on a shared key that can be used
for symmetric encryption/decryption. One can deploy a public key encryption

1
Loving mathematics and computer science does not imply despising arts and bad jokes.

As a homage to this centennial form of Japanese poetry, I have decided to start each chapter

with a haiku. I hope this is not perceived as cultural appropriation and no reader takes

o�ence in this; if only because maybe 20 people on Earth will read this thesis, which ensures

a negligible probability of the aforementioned event taking place.
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1. Introduction

scheme (PKE) to encrypt outgoing messages using the partner’s public key,
and decrypt incoming messages using its private key. More unilaterally, a key
encapsulation mechanism (KEM) requires the use of a partner’s public key
to create a ciphertext (encapsulation) containing a symmetric key chosen at
random. Using an identification protocol (ID) a user can persuade another of
its identity, which is tied to a public key, by proving knowledge of the secret
key corresponding to that public key. Finally, a digital signature scheme (DS)
allows a user to claim ownership (usually also preventing repudiation) of data.

1.1 Post-quantum cryptography

Until a few years ago, most of contemporary communication has been secured
by protocols built on top of the aforementioned seminal works. The basic
problems that still guarantee the security of these schemes are two: the discrete
logarithm problem and the integer factorisation problem. If these two resist,
by progressively increasing the key-size and applying some tweaks, online
communication is safe.

In 1997, a ground-breaking result by Peter Shor [Sho97] was published,
which included polynomial-time quantum algorithms for integer factorisation
and for computing discrete logarithms. This means that in the future, as
soon as the first large-scale2 quantum computer will be built, the currently
deployed cryptographic schemes securing our communications, online-banking,
and internet access will become insecure. Researchers are still debating on
when this quantum advent will happen, but they widely agree we should not
be found unprepared.

In order to address the quantum menace, new cryptographic primitives are
needed: algorithms that can be implemented on currently available devices,
and still guarantee security against both classical and quantum adversaries.
On 3 January 2017, NIST published a call3 for new post-quantum standards in
public-key encryption and digital signature algorithms. All submissions were
encouraged to provide parameters for five di�erent security levels. The levels
(from 1 to 5) are defined as follows: breaking the hard problem underlying the
security of the cryptographic scheme should require at least the same amount
of resources necessary for

1 ≠æ key search on a block cipher that uses 128-bit keys (such as AES-128)

2 ≠æ collision search on a 256-bit hash function (such as SHA256)

3 ≠æ key search on a block cipher that uses a 192-bit key (such as AES-192)

4 ≠æ collision search on a 384-bit hash function (such as SHA384)

5 ≠æ key search on a block cipher that uses 256-bit keys (such as AES-256)
2
Capable of handling enough quantum gates to run Shor’s algorithm on concrete instances

of the factorisation and the discrete logarithm problems.
3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardisation
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Post-quantum cryptography

At the first round, 69 submissions were accepted, 26 of which made it to
the second step, 7 finalists and 8 alternate candidates survived after the third
round, and the winners (1 PKE scheme and 3 DS scheme ) were announced on
5 July 2022. The proposed protocols move towards new algebraic settings and
hard mathematical problems, and can be categorised in five main families.

Isogeny-Based Cryptography is a very young field with roots in Elliptic
Curve Cryptography (ECC). People often refer to Couveignes’ work [Cou06]
from 1997 as the kick-starter of cryptographic research in this area; a rather
slow start, due to the impracticality of its first schemes. The research e�ort was
significantly boosted by the NIST submission SIKE [JAC+17], the only isogeny-
based cryptosystem in the competition. The scheme based its security on a
variant of the classical problem of computing isogenies between supersingular
elliptic curves. Although it required very short keys, its fastest implementation
was still pretty slow compared to other candidates. Notice how the past-tense
is strictly required here, as result of recent and powerful attacks on SIDH

[CD22, MM22, Rob22]. Being the main topic of this thesis, we will defer a
deeper treatment of this topic to the rest of this document.

Lattice-based cryptography deals with lattices, i.e discrete subgroup of the
n-dimensional Euclidean space R

n, with strong periodicity properties. Most
of the lattices used in cryptography are (modular) integer lattices, since they
are easy to handle and still provide hardness of certain problems. Among all
possible lattices, ideal lattices play an important role in cryptography: some
cryptosystems exploit their additional algebraic structure in order to get small
key sizes and faster implementations. In a generic lattice-based scheme, the
secret key is a lattice vector, and the public key corresponds to the multiplication
of this vector by a large matrix, perturbed by some small secret error. Amongst
the mathematical problems that guarantee the security of these schemes, it is
worth mentioning the Shortest Vector Problem (given an integer lattice basis
as input, find the shortest non-zero vector in the lattice) and the Learning
With Errors problem (recover a secret s œ Z

n
q given a system of random linear

equations on s that have been perturbed by adding a small unknown noise).
Lattice-based cryptography is the most represented area at the late stages
of the NIST competition, with three schemes [SAB+17, LDK+17, PFH+17]
among the four ones chosen for standardisation.

Hash-based cryptography stems from Leslie Lamport’s hash-based One-Time
Signature scheme [Lam79], turned into a Multiple-Time Signature scheme by
introducing Merkle trees. In the generic construction, one creates several key-
pairs with the underlying OTS scheme and uses the digests of the public keys
as leaves of a Merkle tree, whose root becomes a global public key. Hash-based
constructions base their security on the strength of the cryptographic hash
function that is used as building block. Hash-based signature schemes can be
either stateful, if they require the maintenance of an internal state, or stateless.
Despite being easier to implement, stateless schemes tend to be less e�cient,
and are currently further from standardisation if compared to the stateful
ones. The only hash-based candidate in NIST’s competition is the stateless
SPHINCS+ [HBD+17], which was selected for standardisation.

5



1. Introduction

Code-based cryptography is one of the most mature candidates for post-
quantum schemes. In 1978, McEliece [McE78] introduced a public key
cryptosystem based on error correction codes. The author’s original idea was to
use as ciphertext a word of a binary Goppa code (a linear error-correcting code)
to which a random error vector was added. The polynomial-time algorithm
to correctly decode the ciphertext is known only to authorised users, while
adversaries are left to tackle a generic syndrome decoding problem. Several code-
based candidates were submitted to NIST’s competition, and all candidates
in the fourth round are now code-based (despite not having been selected for
standardisation). Together with the supposed robustness against quantum
computers, the main advantage of this scheme comes from the simplicity of
the involved operations, which leads to a fast encryption and decryption. The
major drawback is located in the large size of the keys, which varies from 100
kB to several MB.

Multivariate cryptography bases it security on the Multivariate Quadratic
polynomial problem, i.e. to find a solution to a system of multivariate quadratic
polynomials. Algebraically, the structure corresponding to this system is
the ideal generated by the polynomials defining the system, and therefore
algebraic geometry is the most suitable mathematical tool to handle multivariate
cryptography. The public key is a set of multivariate polynomials, encryption
is the evaluation of these polynomials, decryption requires a trapdoor to invert
the quadratic map to find the plaintext. Similarly, to sign here means to
use the trapdoor to find a solution to the system with the message to be
signed as a target, and verification is simply an evaluation of polynomials.
Multivariate cryptosystems o�er several advantages in terms of speed, given
the simplicity of the involved operations (basically dealing with matrices and
vectors) computational requirements and signature length, the main drawback
with multivariate cryptosystems consists in the large size of the public keys,
necessary to guarantee the security of the schemes.

1.2 History of isogeny-based cryptography in pills

As briefly mentioned in the previous section, the first isogeny-based cryptosys-
tems was proposed by Couveignes in 1997 [Cou06], later made popular by
Rostovtsev and Stolbunov [RS06] in 2006. Couveignes first introduced the
notion of hard homogeneous space (HHS) as a counterpart of cryptographic
protocols based on the discrete logarithm problem. A concrete instantiation
was proposed for ordinary elliptic curves, which show a Di�e-Hellman like
structure under the class-group action of their endomorphism rings. With a
slight change of viewpoint, the scheme uses random walks in graphs of ordinary
elliptic curves. Despite being innovative, the resulting scheme was way far from
practical, and it was forgotten after its rejection from Crypto 1997. Moreover,
Childs, Jao and Soukharev [CJS14] have shown a reduction from the security of
the CRS scheme to the abelian hidden-shift problem, solvable using quantum
algorithms with a time complexity of Lq[1/2] [Kup03, Reg04].

6



History of isogeny-based cryptography in pills

Still in 2006, Charles, Goren and Lauter [CLG09] proposed a new
construction from expander graphs, taking supersingular elliptic curves over F

2
p

as vertices, and isogenies of prime degree ¸ ”= p between such curves as edges.
More specifically, they designed a hash function whose collision resistance
reduces to the di�culty of computing isogenies between supersingular elliptic
curves. While very secure, with the best known attacks having exponential
complexity, the scheme required about 2 log p modular multiplications per input
bit and was thus much less e�cient than other provably secure hash algorithms.
It is worth noticing that further results [KLPT14, PL17] have shown a potential
backdoor threat in standardised parameters.

A major energy and interest boost resulted from the design of the
Supersingular Isogeny Di�e-Hellman (SIDH) protocol [JD11], later reshaped as
the PKE scheme SIKE [JAC+17] submitted to NIST’s competition. In the 2011
paper, the authors provided protocols to achieve zero-knowledge identification,
key-exchange and public-key encryption, all based on isogeny graphs from
supersingular elliptic curves. Supersingular elliptic curves became of particular
relevance for several reasons that will be made clear in Section 2.2, but let us
state a few now. First of all, they are defined over Fp or Fp2 , instead of Fp as in
the general case. Secondly, the isogeny graph Gp2(¸), that has for vertices the
isomorphism classes of supersingular elliptic curves and for edges isogenies of
degree ¸, has very good and rapid mixing properties. Thirdly, one can e�ciently
evaluate isogenies of large (prime-power) degree by choosing a set of curves with
smooth order (in practice, choosing p properly). Lastly, SIDH is not defined on
an HHS: no group action is used, which seemed to suggest a higher resistance
against quantum speed-ups in finding paths on the isogeny graph. We conclude
this brief introduction to SIDH (and related schemes) by noting that the last
point also an extremely negative side. In order to enable a Di�e-Hellman
like structure, which normally requires the presence of a commutative group
action, the action of isogenies on certain torsion points need to be exchanged.
This extra information will turn out to be a fatal weakness of the scheme (see
Section 4.3).

Many new isogeny-based schemes have been designed on the footprint of
SIDH in the last years, but not all of them. In 2018, a paper by Castryck,
Lange, Martindale, Panny and Renes [CLM+18] showed how to adapt the CRS
contruction to supersingular elliptic curves restricted to Fp. They introduce
the group action of Fp-rational endomorphisms on supersingular elliptic curves,
which allows for the creation of Di�e-Hellman like protocols. While still subject
to the reduction by Childs, Jao and Soukharev, which does not dramatically
a�ect its security, it reaches practicality in terms of speed and key-size, and
o�ers public-key validation that SIDH cannot guarantee. For this reason, and
with the recovered commutative group action, a new line of research has started
that uses CSIDH as a drop-in replacement for the Di�e-Hellman KEX.

7



1. Introduction

1.3 Thesis Structure

Plenty of improvements, adaptations, new constructions and attacks have
originated from the aforementioned protocols, some of which are included as
novel results in this thesis. In order to understand them, we first need to
investigate the algebraic and cryptographic landscape they belong to. This
thesis is structured as follows:

• Chapter 1 sets the big picture of classical and post-quantum cryptography.
After a gentle introduction to the main post-quantum families of protocols,
we point at some milestones in the history of isogeny-based cryptography;

• Chapter 2 provides the reader with the algebraic preliminaries which our
contributions are build upon;

• Chapter 3 recalls basic protocols and security notions, and describes the
isogeny-based protocols most relevant to this manuscript;

• Chapter 4 summarises research questions and results of the papers
collected in this thesis, and indicates how the most recent developments
on SIDH and SIKE have a�ected the work hereby contained.

8



Chapter 2

Algebraic and geometric

preliminaries

On projective plane
An elliptic curve stretches:

the endless embrace.
March 2019

This chapter is meant to be a sort of roadmap to the concept one needs
to familiarise with in order to understand the context in which we develop
our results. We cannot aim for completeness, but on the way we will refer the
reader to several excellent books on these matters. Nonetheless, we provide
some preliminaries on elliptic curves (Section 2.1), isogeny graphs (Section 2.2),
algebras and quaternion algebras (Section 2.3) and we conclude with an overview
of the Deuring correspondence (Section 2.4).

2.1 Elliptic curves

With the literature abounding in proofs of the results hereby collected, if after
this section the reader will be left with an unsatisfied thirst for knowledge, I
recommend Washington’s [Was08] and Silverman’s [Sil09] books on the theory
and practice of elliptic curves. Note that only the truly crucial definitions
will be written in the appropriate environment, both for typographical and
environmental-friendly reasons (no pun intended).

The abelian group of elliptic curve points. Let us start with a geometric
definition that might su�ce for some readers.

Definition 2.1.1. Let K be a field. An elliptic curve over K is a pair (E, 0),
where E is a smooth projective curve of genus 1 over K, and 0 is a distinguished
K-rational point1 on E.

To those of you interested in a more down-to-earth definition of elliptic
curves, with numbers and equations: let me first recall some definitions in
preparation to Definition 2.1.2. The projective plane P

2(K) over K is
the set of non-zero triplets (x, y, z) œ K

3 modulo the equivalence relation
(x1, y1, z1) ≥ (⁄x2, ⁄y2, ⁄z2) for all ⁄ œ K

◊. Let us denote each equivalence
class by (x : y : z) := {(⁄x, ⁄y, ⁄z) : ⁄ œ K

◊
}, called a projective point.

The finite points in P
2(K) are those with z ”= 0 that can be represented as

(x/z : y/z : 1), while the points at infinity have form (x : y : 0).
1
The points on E with coordinates in K are called K-rational; for any field K ™ K1, one

indicates with E(K1) all points on E defined over K1.

9



2. Algebraic and geometric preliminaries

The 2-dimensional a�ne plane over K, namely A
2(K) = {(x, y) œ K

2
},

allows us to define the embedding

ÿ : A2(K) ≠æ P
2(K)

(x, y) ≠æ ÿ(x, y) = (x : y : 1)

that identifies A
2(K) with the set of finite points of P2(K).

Given a homogeneous polynomial f(x, y, z) œ K[x, y, z], a plane projective
curve C/K (over K) is the locus of the points in P

2(K) which are zeros of
f . For any field extension F ´ K, the F-rational points of C form the set
C(F) = {P = (x : y : z) œ P

2(F) | f(P ) = 0}. Given a point P œ C, a curve
C is non-singular at P if the partial derivatives of F evaluated at P do not
simultaneously vanish, i.e. if (Fx(P ), Fy(P ), Fz(P )) ”= (0, 0, 0). If C has no
singular point, then we call it a non-singular curve.

In order to properly define the genus of a curve, one would have to introduce
many nasty details from algebraic geometry. Since this thesis only deals with
genus-1 curves, an intuition should su�ce. Topologically, the genus of a curve
in an integer representing how many times a connected surface can be cut
without disconnecting the resulting manifold. For example, a sphere has genus
0, since it cannot be cut along any curve without obtaining a disconnected
result, while a torus has genus 1.

We are now ready for a second, more operational analogue of Definition 2.1.1.

Definition 2.1.2. Let K be a field of characteristic di�erent from 2 and 3.
An elliptic curve E over K (denoted by E/K) is the locus of points in P

2(K)
satisfying the short Weierstrass equation

y2 = x3 + Ax + B (2.1)

with A, B œ K, of discriminant �E = ≠16(4A3 + 27B2) ”= 02, together with a
special K-rational point 0E, called the point at infinity.

There exists a generalised Weierstrass equation, but if char(K) ”= 2, 3 as in
our case-study, it can be a�nely transformed into a short Weierstrass equation.
In this case, one can also prove that any elliptic curve as per Definition 2.1.1 is
isomorphic to an elliptic curve as per Definition 2.1.2.

The point at infinity 0E can be defined as follows. Consider the homogeneous
form of Equation (2.1), i.e. y2z = x3 + Axz2 + Bz3, such that each point
(x, y) œ E corresponds to the point (x : y : 1) in the projective version. In order
to define the point at infinity, intersect the curve with z = 0, which implies
that x = 0. Therefore (0 : y : 0), with y ”= 0, lies at infinity, and by rescaling,
we get that 0E := (0 : 1 : 0) is the only point at infinity on E.

When we move away from homogeneous coordinates, we lose the point at
infinity; we must reintroduce it as a formal point to define a binary operation
on E and endow the elliptic curve with an additive group structure. In fact,

2
This condition on � is equivalent to requiring the curve E to be non-singular, i.e. that

the polynomial x3
+ Ax + B does not have multiple zeros.

10



Elliptic curves

[Was08][Theorem 2.1] proves that the elliptic curve points form an abelian
group with respect to the famous addition operation, visually defined via the
secant line. The point 0E acts like the identity of the group, and results from
adding any two points of the form (x1, y1) and (x1, ≠y1) (y1 being possibly 0).
Interestingly enough, three points (counted with multiplicity) add to 0E if and
only if they lie on the same straight line.

Scalar multiplication and supersingularity. Let E be an elliptic curve
over K; given an integer m, we define the multiplication-by-m (at times
scalar multiplication) as the homomorphism [m] : E ≠æ E adding m copies
of P together. Its kernel, denoted by E[m] := {P œ E | [m]P = 0E}, is called
the m-torsion subgroup of E. We now state an important theorem that
unravels the algebraic structure of torsion subgroups.

Theorem 2.1.3 ([Was08][Theorem 3.2). Let E be an elliptic curve over a
field K and let m be a positive integer. If char(K) ”= 0 or char(K) - m, then
E[n] ƒ Zn ü Zn. If char(K) = p > 0 and p|n, split n = p · nÕ with p - nÕ. Then
E[n] ƒ ZnÕ ü ZnÕ or ZnÕ ü Zn.

In particular, the p-torsion subgroup plays a crucial role in determining an
elliptic curve property we are highly interested in through this document, that
was already mentioned in Section 1.2.

Definition 2.1.4. An elliptic curve is called supersingular if E[p] ƒ 0, or
ordinary if E[p] ƒ Zp.

Oddly enough at first sight, the definition of singular points is unrelated
with Definition 2.1.4, and they actually have a very di�erent aura. The
former means something usually “bad”, meaning that it deals with elliptic
curves that somehow misbehave at some points. The latter is conversely very
“good”, because it turns out that supersingular elliptic curves have the largest
possible endomorphism rings (see [Was08][Theorem 10.2] and the theory of
complex multiplication) and are, for this and many other reasons, excellent for
cryptographic purposes.

The non-singularity of an elliptic curve allows us to define an invariant with
respect to isomorphisms (where an isomorphism between elliptic curves is
defined as a morphism of curves of degree 1, which is invertible).

Definition 2.1.5. Let E : y2 = x3 + Ax + B be an elliptic curve over K with
char(K) ”= 2, 3. We define the j-invariant of E to be

jE = 1728 4A3

4A3 + 27B2

It is important to notice that two particular values will be relevant in our
case-study: j = 0, occurring when A = 0 in curves of the form y2 = x3 + B,
and j = 1728, occurring when B = 0 in curves of the form y2 = x3 + Ax.
Notice also that the isomorphisms in question are defined over K; if the field is
not algebraically closed, there might not exist rational functions over K able to
transform a curve into the other.

11



2. Algebraic and geometric preliminaries

The Frobenius endomorphism and point counting. Another prominent
map on elliptic curves defined over Fq is the Frobenius endomorphism fiq

(at times the subscript q is omitted when clear from the context), that maps
(x, y) ‘æ (xq, yq). Recurring in several aspects of elliptic curve and isogeny-based
cruptography, we now see its first appearance in determining the cardinality of
an elliptic curve. In first approximation of this number, we must mention Hasse’s
famous theorem [Was08][Theorem 4.2]: the number of Fq-rational points of an
elliptic curve E defined over a finite field Fq satisfies |q + 1 ≠ #E(Fq)| Æ 2Ô

q.
The range [q + 1 ≠ 2Ô

q, q + 1 + 2Ô
q] is also known as Hasse’s interval. It is

interesting to see how the cardinality of an elliptic curve is not immediately
determined by q and by the curve’s equation. To this day, determining the
cardinality of an elliptic curve is still somewhat slow, with the fastest algorithm
of complexity O(log3 p) (or O(log2 p) in some special cases [YM21]).

It turns out ([Was08][Theorem 4.10]) that the Frobenius endomorphism
satisfies the quadratic equation X2

≠ tX + q = 0 for some |t| Æ 2Ô
q. We call t

the trace of the Frobenius endomorphism, and X2
≠tX +q the characteristic

polynomial of Frobenius. A more precise formulation of Hasse’s theorem
tells us that #E(Fq) = q + 1 ≠ t, where |t| Æ 2Ô

q is the trace of fiq. This
leads to an opening for point counting algorithms: one can try compute t
modulo several di�erent primes, and reconstruct the value in the target interval
using the Chinese Remainder Theorem. This line of thinking was initiated in
1985 with Schoof’s algorithm [Sch85], which was further improved by Atkin
and Elkies [Sch95], by Bostan-Morain-Salvy-Schost [BMSS08] and by Lercier-
Sirvent [LS08] to say a few. We conclude this subsection linking the trace t of
fiq with the number of points on a supersingular elliptic curve.

Theorem 2.1.6 ([Was08][Theorem 4.31). Let E be an elliptic curve over Fpn

for some prime p and n œ N. Then E is supersingular if and only if t © 0
mod p, which happens if and only if #E(Fpn) © 1 mod p.

2.2 Isogenies and isogeny graphs

Many of the definitions contained in this subsection are available in slightly
di�erent formulations that turn out to be equivalent. Here we adopt an algebraic
point of view, following [Was08][Chapter 12.2].

Definition 2.2.1. Given two elliptic curves E1, E2 over a K, an isogeny
Ï : E1 ≠æ E2 is a surjective morphism that induces a group homomorphism
from E1(K) to E2(K). The curves E1 and E2 are called isogenous. A famous
result by Tate [Tat66] tells us that two elliptic curves over K are isogenous over
K if and only if they have the same number of K-rational points.

An isogeny can be represented via rational functions as Ï(x, y) = (r1(x), y ·

r2(x)); if r1, r2 take coe�cients in F, then we say that Ï is defined over F

(not necessarily equal to K). The degree of Ï is defined as

deg(–) = max{deg(p1(x)), deg(q1(x))},

12



Isogenies and isogeny graphs

where r1(x) = p1(x)/q1(x). Sometimes we talk about an ¸-isogeny to indicate
that the latter has degree ¸.

The typical operation defined over isogenies is composition. Two isogenies
Ï1 : E ≠æ E1 and Ï2 : E1 ≠æ E2 can be composed as homomorphisms. The
resulting isogeny Ï2 ¶Ï1 : E ≠æ E2 has degree deg(Ï2 ¶Ï1) = deg(Ï1) ·deg(Ï2)
For any ¸-isogeny Ï : E1 æ E2 there exists a dual isogeny Ï̂ : E2 æ E1
of degree ¸ such that their composition is the multiplication-by-¸ (on the
corresponding elliptic curves).

If the derivative rÕ
1(x) is not identically zero, we say that – is separable,

and inseparable otherwise. For example, the Frobenius endomorphism fiq

is an inseparable isogeny from E(Fq) to itself: in this case, r1(x) = xq by
definition and rÕ

1(x) = qxp≠1 is identically 0 in Fq. On the contrary, the
multiplication-by-m map (m /œ {0, p}) is separable and has degree m2. More in
general, it is possible to prove that any inseparable isogeny Ï in characteristic p
can be uniquely decomposed as Ï = „ ¶ fir

p for some r œ N and some separable
isogeny „.

Theorem 2.2.2 ([Was08][Proposition 12.8). If an isogeny Ï : E1 ≠æ E2
is separable, then deg(Ï) = # ker(Ï). Otherwise, deg(Ï) > # ker(Ï). In
particular, the kernel of an isogeny is a finite subgroup of E1(K).

The kernel of a separable isogeny is actually very important: as proven in
[Was08][Proposition 12.12], the image of an isogeny is uniquely determined
(up to isomorphisms) by the kernel of the isogeny itself. Mutatis mutandis,
the j-invariant of the image curve of an isogeny is uniquely determined by the
kernel of the isogeny itself. In practice, given any finite subgroup G µ E(Fp),
there exist a unique (up to isomorphism) elliptic curve E2 ƒ E1/G and a
separable isogeny Ï : E1 æ E2 such that ker(Ï) = G. Given the kernel of an
isogeny, one can use Vélu’s formulae [Vél71] to e�ciently3 compute the isogeny
Ï together with its codomain curve E2 in O(# ker(Ï)) bit operations. When
ker(Ï) is a cyclic group, we say that Ï is a cyclic isogeny.

Isogeny graphs. We now have a brief look into isogeny graphs, whose vertices
are elliptic curves and edges are isogenies of a fixed degree. More precisely, we
consider every curve and every isogeny up to isomorphism.

Let us fix a prime ¸ and a field K. We have seen in Definition 2.1.5 that
j-invariants identify isomorphism classes of elliptic curves, so each vertex of
the graph can be represented uniquely via a j-invariant. Two j-invariants are ¸-
isogenous if there is an ¸-isogeny between any two curves with such j-invariants.
One way check this, at least when ¸ is small enough, is to see whether the ¸-th
modular polynomial �¸ vanishes at a pair of j-invariants. Modular polynomials
can also be used to define isogeny graphs as in the following.

Definition 2.2.3. [Sut13, Definition 3]) The ¸-isogeny graph has vertex set
K and directed edges (j1, j2) with multiplicity equal to the multiplicity of j2 as
root of �¸(j1, Y ).

3
when ¸ is small enough and p is within a few thousand bits
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2. Algebraic and geometric preliminaries

We have mentioned in Definition 2.2.1 how Tate’s theorem proves that
elliptic curves are isogenous if and only if they have the same cardinality. This
implies that, for fields of positive characteristic p, the isogeny graph can be
split in two components: a supersingular one (where all elliptic curves have
p + 1 points by Theorem 2.1.6) and an ordinary one.

Basically all recent and practical cryptosystems that involve an isogeny
graph are built on its supersingular component. In fact, the ordinary component
is quite problematic: the vertices have degree (¸ + 1) only for finitely many
choices of ¸, in most cases they are either isolated or 2-regular. The structure
corresponding to an ordinary isogeny graph is known as volcano.

Definition 2.2.4. An ¸-volcano V of depth d is a connected undirected graph
whose vertices are partitioned into levels V0, . . . , Vd such that:

• the surface V0 is a regular graph of degree at most 2, possibly with loops;
• for i > 0, each vertex at level Vi has exactly one edge to a node in level

Vi≠1;
• for i < d, each vertex in Vi has degree ¸ + 1.
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Figure 2.1: A 3-isogeny volcano of depth 2, with 3-isogenies drawn in black
(thickness changes only for visibility reasons).

A single volcano does not seem to guarantee good mixing properties, nor a
short diameter. Ordinary isogeny graphs are still impractical, with the most
recent and e�cient implementation (to the best of our knowledge) of the CRS
cryptosystems to be found in [DKS18]. The reader further interested in isogeny
volcanoes can take [Sut13] as a good starting point.
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Isogenies and isogeny graphs

On the contrary, the supersingular component is excellent for cryptographic
purposes. Let us re-define it introducing some notation, and highlight some of
its interesting features. Let p Ø 5 be a fixed prime, and ¸ ”= p another prime.

Definition 2.2.5. The supersingular ¸-isogeny graph Gp2(¸) has for
vertices the Fp2-isomorphism classes of supersingular elliptic curves defined over
Fp2 , and for edges all ¸-isogenies up to post-composition with Fp2 isomorphisms.

Let us now list some cryptographically handy properties of Gp2(¸).

• The vertices are defined over Fp2 . In general, j-invariants of elliptic curves
over Fp are defined over the algebraic closure Fp. From [Sil09, Chapter 5,
Thm. 3.1], we know that every supersingular j-invariant in Fp actually
lies in Fp2 . This also means that every supersingular elliptic curve can
be defined over Fp2 with a change of coordinates.

• The vertex set is almost as large as p. There are quite many j-invariants
for a large prime p: more precisely, there are

7
p

12

8
+

Y
_]

_[

0 p © 1 mod 12
1 p © 5, 7 mod 12
2 p © 11 mod 12

isomorphism classes of supersingular elliptic curves over Fp (and thus
over Fp2 for the previous point).

• The graph is undirected and connected (away from curves with extra
automorphisms, such as those with j = 0 or j = 1728). The existence of
the dual isogeny implies that the graph is undirected: if the ¸-isogeny
Ï links E1 with E2, the dual isogeny Ï̂ has degree ¸ and links E2 with
E1. Moreover, while the ordinary isogeny graph is connected only for
a few choices of ¸, an algorithmic proof by Mestre [Mes86] shows that
supersingular isogeny graphs are always connected (by isogenies that are
defined over Fp in general).

• The graph is (¸+1)-regular. This means that every vertex has degree (the
number of edges to and from it) ¸ + 1. We have seen that the ¸-torsion
subgroup E[¸] is isomorphic to (Z/¸Z)◊(Z/¸Z), so there are ¸+1 distinct
subgroups of order ¸ in E[¸]. Since an isogeny is uniquely determined by
its kernel, we also have ¸ + 1 possible isogenies from any vertex in Gp2(¸).

• The supersingular ¸-isogeny graph is a Ramanujan graph. The definition
of Ramanujan graphs is a bit more involved and deals with eigenvalues of
the adjacency matrix associated with the graph. Let us just say that this
property implies optimal expansion factor (i.e. short diameter, i.e. each
vertex can be reached from any other vertex after a relatively short walk)
and excellent mixing properties (the distribution of the vertices reachable
with O(log n) steps is close to uniform). We refer the reader interested
in the definitions and the proof that supersingular isogeny graphs are
Ramanujan towards Pizer’s work [Piz90].
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2. Algebraic and geometric preliminaries

We conclude this subsection talking about endomorphisms.

Definition 2.2.6. An endomorphism is an isogeny from an elliptic curve
E to itself; the set of endomorphisms of E, together with the zero map and
equipped with pointwise addition and composition, forms the endomorphism
ring End(E) of E.

Being isogenies, endomorphisms are defined over the algebraic closure of
the underlying field; when E is defined over the finite field Fq, we denote by
Endq(E) the subring of endomorphisms defined over Fq, called the Fq-rational
endomorphism ring. The simplest example of endomorphism is the scalar
multiplication; in fact, it is typically the case that End(E) = Z in characteristic
0 (otherwise we have Complex Multiplication (CM) curves). The analysis is not
as simple for elliptic curves defined over finite fields though, that always have
some non-scalar endomorphisms. Actually, we have already seen the Frobenius
endomorphism fiq as an example of a typically non-scalar endomorphism, so
we know at least that Z[fiq] µ Endq(E) .

For ordinary curves, it holds that Endp(E) = End(E), while for
supersingular curves we have that Endp(E) µ End(E). In particular, End(E)
is an order in a quaternion algebra, while Endp(E) is an order in the
imaginary quadratic field Q(Ôp). A classical result by Deuring [Deu41] links
endomorphism rings to the realm of quaternion algebras, revealing that End(E)
is a maximal order in Bp,Œ, the quaternion algebra ramified at p and at Œ.
Providing a roadmap to the background of the aforementioned result — and
understanding what it actually means — is the motivation behind the upcoming
section.

2.3 Quaternion algebras

In order to have a clear picture of the algebraic structure of endomorphism
rings in characteristic p, let us first take a digression on quaternion algebras and
orders. In fact, we would really like to simply assume a communal understanding
of the fact that End(E) over Fp is isomorphic either to an order in an imaginary
quadratic field, or to an order in the quaternion algebra ramified at p and Œ.
But we should not. One of the goals of this first part of the manuscript is to
provide at least some insights on the algebraic concepts not all cryptographers
may know (or remember on the spot). Since this manuscript targets an audience
educated in cryptography but not too well-versed in quaternion algebras, let
us take some time (and space) to provide the reader with an overview of some
definitions and theorems that a quaternion algebra apprentice (such as myself a
year ago, and now to various extents) would seek for first. The main reference
for this section is the amazing book “Quaternion algebras”, by John Voight
[Voi21].
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Quaternion algebras

2.3.1 Valuations, local fields and p-adic numbers
Definition 2.3.1. For any field F, a valuation of F is a map ‹ : F ≠æ

R fi {Œ} such that

1. ‹(x) = Œ if and only if x = 0;

2. it is a group homomorphism, i.e. ‹(xy) = ‹(x) + ‹(y) for all x, y œ F;

3. ‹(x + y) Ø min{‹(x), ‹(y)} for all x, y œ F.

It follows from point 2. that ‹(1) = 0; by convention, we set k + Œ =
Œ + k = Œ. A valuation ‹ is discrete if the value group ‹(F◊) is discrete in
R, i.e. at every x œ ‹(F◊) there always exists a neighborhood with radius ‘ > 0
whose only point in common with ‹(F◊) is x. In other words, ‹(F) has no
accumulation points. We will only take into account discrete valuations. Since
every discrete subgroup of R is isomorphic to Z, we can think of our valuations
as maps ‹ : F ≠æ Z fi {Œ}.

Definition 2.3.2. An absolute value on F is a map | · | : F ≠æ R
+

fi {0}

that

1. is positive-definite, i.e. |x| = 0 if and only if x = 0;

2. is multiplicative, i.e. |xy| = |x| · |y| for all x, y œ F;

3. satisfies the triangular inequality |x + y| Æ |x| + |y| for all x, y œ F.

We say that an absolute value is non-archimedean if it satisfies the
ultrametric inequality if |x + y| Æ max{|x|, |y|} for all x, y œ F, otherwise
it is said archimedean. A field is archimedean if its absolute value is.

Note how the defining properties of valuations and absolute values seem to
mirror each other. This happens because there is a relation between valuations
and absolute values, and thus between ‹(F) as an additive subgroup of R and
|F| as a multiplicative subgroup of R. For any real c > 1, every valuation ‹
corresponds to an absolute value

|x| :=
I

c≠‹(x) if x ”= 0
0 if x = 0

Conversely: for any s œ R
+, every non-Archimedean absolute value | · |

corresponds to a valuation

‹s :=
I

≠s log |x| if x ”= 0
Œ if x = 0

For example, the trivial valuation ‹(x) = 0 for all x œ F corresponds to the
trivial absolute value |x| = 1 for all x œ F. Any absolute value |x| := c≠‹(x)

arisen from a valuation is non-Archimedean, and viceversa.
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2. Algebraic and geometric preliminaries

We say that two valuations ‹1, ‹2 are equivalent if there exists ⁄ œ R
+

such that ‹2(x) = ⁄‹1(x) for all x œ F. By the correspondence with absolute
values, we can analogously say that two absolute values | · |1, | · |2 are equivalent
if there exists an s œ R

+ such that |x|1 = |x|
s
2 for all x œ F. A place or prime

of F is an equivalence class of absolute values. Since the absolute values in the
same equivalence class are either all Archimedean or all non-Archimedean, it
makes sense to say that a place is either Archimedean or non-Archimedean.

Given a field F and a nontrivial discrete valuation ‹, the discrete valuation
ring (DVR for short) of ‹ is R := {x œ F : ‹(x) Ø 0}. Its invertible
elements, collected in R

◊, are those with norm equal to 0: since ‹(1) = 0 and
‹(1) = ‹(xx≠1) = ‹(x) + ‹(x≠1), it follows that ‹(x≠1) = ≠‹(x), and thus
‹(x) = 0 (otherwise either x or x≠1 would be in R despite having negative
norm). A valuation ring is a local ring, i.e. a ring with a unique maximal
ideal (either left or right if the ring is non-commutative). It is also an integral
domain, i.e. a commutative ring with no zero-divisors. Putting these notions
together, we get that a valuation ring is a local domain, i.e. a commutative
ring with no zero-divisors and the unique maximal ideal

p = R \ R
◊ = {x œ F : ‹(x) > 0}

Any element fi œ p of minimal norm is called a uniformiser. By comparing
valuations, one can prove that fiR = (fi) = p. As for any nontrivial maximal
ideal, the quotient K = R/p is a field, called the residue field of R. R is
a complete DVR if every Cauchy sequence (a sequence of numbers whose
distance monotonically tends to 0) of its elements converges in R. The DVR
R is compact if it is complete and its residue field K = R/p is a finite field.

As a worked example, for any prime p and any integer n, we define the
p-adic order ordp(n) of n is the exponent of the largest power of p dividing
n. By convention, we set ordp(0) = Œ. One can extend this definition to any
a/b œ Q by defining ordp(a

b ) = ordp(a) ≠ ordp(b). It is easy to see that the
p-adic order extended to Q is a valuation, that we denote by ‹p.

ordp : Z ≠æ N fi {Œ}

n ‘æ

I
Œ if n = 0
max{e œ N : pe

|n} if n ”= 0

‹p : Q ≠æ N

x =a

b
‘æ ordp(a) ≠ ordp(b)

We can now define the p-adic norm | · |p as p≠‹p(x) for any x œ Q \ {0},
and 0 otherwise. The p-adic norm is an absolute value on Q.

| · |p : Q ≠æ N

x ‘æ

I
0 if x = 0
p≠‹p(x) if x œ Q \ {0}
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Quaternion algebras

We are used to defining the field of real numbers R as the completion of Q
with respect to the absolute value |·|. In a nutshell, this means that each Cauchy
sequence over Q converges to an element in R. However, this is not the only way
to complete the field of rational numbers. By completing Q w.r.t. |·|p, we obtain
the field of p-adic numbers Qp. Given a prime p and a rational x œ Q, the
p-adic representation of x is x = x≠m

pm + · · ·+ x≠1
p +x0 +x1p+ · · ·+xnpn, and

we will write x = (xnxn≠1 . . . x1x0.x≠1x≠2x≠3 . . . )p. If we restrict ourselves
to the integers, we obtain the ring of p-adic integers Zp, which consists of
the elements x œ Q with |x|p Æ 1 (or equivalently, with ‹p(x) > 0). The ring
of p-adic integers is a complete DVR, and its residue field is Z/pZ. If we had
followed an algebraic approach to define the p-adic numbers, Qp would have
turned out to be the field of fractions of Zp (as an integral domain), i.e. the
smallest field containing all fractions of the form a/b with a, b œ Zp.

Later on, we will want to work with finite-degree field extensions of Q,
which are called number fields, and thus we now see how to extend Qp. Let
K be a degree n extension of Qp and call it a p-adic field (not to be confused
with the field of p-adic numbers Qp). The ring of integers OK of K is the
set of all elements x œ K with minimal polynomial in Zp[t], and it is therefore
the integral closure of Zp in F. In order to extend the p-adic norm to K, we
first need to introduce the norm NK/Qp

: K ≠æ Qp, which maps x œ K to
the determinant of the matrix Mx representing the left multiplication-by-x.
Then, the normalized p-adic absolute value is defined as |x|p = |N(x)|p.
The ring of integers OK consists of the elements x œ K with |x|p Æ 1. As it
happens for Qp, one can show that K ƒ OK ¢Z Q ƒ OK ¢Z Qp.

The prime p generates the ideal pZp which is unique and prime in Zp, but
the ideal pOK that generates in OK might not be prime. A uniformiser of
OK is an element fi œ OK of maximal |fi|p < 1. There are several uniformisers,
but they all can be written as N(fi) = upf for di�erent units u œ Z

◊
p but

for a unique f œ N. Therefore, the quantity q := |fi|
≠1
p = pf is invariant

w.r.t. the choice of the uniformiser. The group of units is characterized by
O◊

K = x œ K : |x|p = 1, and K
◊ can be decomposed as

K
◊ = fiZO◊

K :=
h

mœZ
fimO◊

K

2.3.2 Algebras

From now on, we consider finite fields of characteristic char(p) > 3, since it is
our case of interest.

Definition 2.3.3. An algebra over F is a ring A equipped with a homo-
morphism from F to A such that Im(F) µ Z(A), i.e. the image of F is in
the center of A, i.e. the elements in the image of F commute with any other
element of A. An algebra A is a division algebra if it is a division ring, i.e.
every non-zero element has a two-sided multiplicative inverse, so that division
is always well-defined.
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It is very useful to think of an algebra in terms of a F-vector space that
is also a ring. For example, the dimension dimF A (or simply dim A) of an
F-algebra is its dimension as a vector space over F, and it therefore makes sense
to talk about basis. Moreover, it follows that all homomorphisms of F-algebras
are linear, once seen as homomorphic transformations of vector spaces.

Example 2.3.4. The first classical example of an algebra is the ring Mn(F) of
square matrices over a field F. It is an F-algebra of dimension n2 with respect
to matrix addition and multiplication, and for n > 1, one can easily prove that
it is neither a division algebra nor commutative. A second example are the
well known Hamilton’s quaternions H := R[i, j, k]/Èi2 = j2 = k2 = ijk = ≠1Í,
which form a non-commutative division R-algebra. Both examples will come in
handy in the following sections.

An homomorphism of F-algebras is a ring homomorphism that acts like
the identity when restricted to F. The endomorphism ring of A, denoted
by End(A), is the set of all homomorphisms from A to itself with respect to
composition. If we take the automorphisms from A to A w.r.t. composition,
we get the automorphism group Aut(A).

Algebras have a nice structure: any unitary n-dimensional F-algebra can be
represented as a subalgebra of Mn(F), and here we show how. For each – œ A,
consider the linear operator L– : A ≠æ A defined via the left multiplication-
by-–, mapping x ‘æ –x. Let {a1, . . . an} be a basis of A as a F-vector
space, and let M– be the matrix representation of L– with respect to
this basis. The matrix representation of A is the matrix representation of the
map L : – œ A ‘æ M– œ Mn(F).

An algebra is simple if, as a ring, it has no non-trivial two-sided ideals.
Wedderburn shows that any simple algebra is isomorphic to Mn(D), where D is
a division algebra over F. Furthermore, n and D are uniquely determined by A
up to isomorphisms. But what is the structure of Mn(D)? One can furthermore
prove that if D is a division algebra, then Mn(D) is a simple F-algebra for any
n œ N.

An F-algebra A is central if its center Z(A) consists exactly of F. One can
prove that Z(Mn(D)) = Z(D) for every division algebra. This fact, together
with Wedderburn’s structure theorem, allows us to prove that we can study
central simple algebras (CSA for short) instead of central division algebras.

Since algebras can be seen as sorts of vector spaces, can we also “combine”
them? Yes, we can. Let A, B be two finite F-algebras. The direct sum A ü B
is an F-algebra of dimension dim(A) + dim(B): it is the direct sum of A and
B as vector spaces, and it becomes a ring if we consider the component-wise
multiplication. Since we can represent the two algebras A and B as submatrices
in Mdim(A) and Mdim(B) respectively, we can intuitively see that

A ü B ƒ

; A
a 0
0 b

B
: a œ A, b œ B

<
µ Mdim(A)+dim(B)
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Similarly, one can prove the tensor product A ¢ B to be an F-algebra of
dimension dim(A) ·dim(B): it is the tensor product of A and B as vector spaces,
and it becomes a ring if we consider the multiplication (a¢b)◊(c¢b) := ac¢bd.
This multiplication is first defined on the basis vectors, and then extended by
linearity to any vector in A ¢ B. One can easily see that

A ¢ B ƒ

;
a § b : a œ A, b œ B

<
µ Mdim(A)·dim(B)

where § represents the Kronecker product which results in the block matrix
consisting of all submatrices obtained by multiplying the matrix representing a
by each element of the matrix representing b.

It is possible to define a new algebra by extending the scalars of an
existing one, i.e. to redefine an F-algebra A over an extension field K of F. From
the tensor product of A and K to the K-algebra A ¢F K of dimension dim(A),
there exists a canonical isomorphism that leaves the basis of A unchanged and
maps the scalars to K, obtaining a K-vector space instead of a F-vector space.
More explicitly, let {a1, . . . am} be a basis of A, let {e1, . . . en} be a basis of K
as a vector space over F, and let {a1, . . . am} ¢ {e1, . . . en} be the vector basis
of A ¢F K as a mn-dimensional vector space over F. With a slight abuse of
notation, the isomorphism is defined as follows:
mÿ

i=1

nÿ

j=1
⁄i,j(ai ¢ej) ‘≠æ

! nÿ

j=1
⁄1,jej

"
a1 +

! nÿ

j=1
⁄2,jej

"
a2 + · · ·+

! nÿ

j=1
⁄m,jej

"
am

where
qn

j=1 ⁄i,jej is represented as a field-element K for each i = 1, 2, . . . m.

Endomorphism algebras. As another example of algebra that is even more
relevant for this thesis, let us now and forever fix F = Q, and let us talk
about endomorphism algebras. As we said in Definition 2.2.6, the set of
all endomorphisms of E, equipped with pointwise addition and composition,
forms the ring End(E). The endomorphism ring, being an abelian group, is a
Z-module4: for all –, — œ End(E) and for all m, n œ Z, we have that

(m + n)– = m– + n–, m– + m— = m(– + —), m(n–) = (mn)–, 1– = –.

But End(E) is more than just a Z-module: being a ring, the composition (its
multiplication) is compatible with its structure as a Z-module, and it becomes
a Z-algebra. In fact, Z can be seen as a subring of End(E) under the injective
map sending m ‘æ [m]. We can now use the tensor product to lift this Z-
algebra to a Q-algebra, obtaining the endomorphism algebra of E defined
as End(E)Q := End(E) ¢Z Q, whose elements are of the form m– for m œ Q

and – œ End(E).
If E is defined over a finite field Fq, then one can prove ([Voi21, Lemma

42.1.5]) that the endomorphism algebra End(E)Q is either an imaginary
4
For those unfamiliar with this term, a module is the generalisation of a vector space to

a base ring, so that vectors consist of ring elements instead of field elements.
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quadratic field or a quaternion algebra. More to the point, the endomorphism
ring Endq(E) is either an order in an imaginary quadratic field or an order
in a quaternion algebra. It is the Frobenius endomorphism that gets to set
the rules: if fi œ Z, the endomorphism ring is non-commutative and we get
a quaternionic structure. On the other hand, if fi /œ Z, then Endq(E) is an
order in the imaginary quadratic field Q(fi) ƒ Q(


t2 ≠ 4q) that contains

Z[fi] ƒ Z[


t2 ≠ 4q], where t is the trace of fi.
If we take ordinary elliptic curves over finite fields or supersingular elliptic

curves defined over Fp with p > 3, we fall under the first case, that in fact
establishes the foundations of CRS and CSIDH (presented in Section 3.3). The
second case sets instead the background for SIDH (see Section 3.2), KLPT (see
Section 3.4) and related algorithms. We delay our investigation on the latter
case until Section 2.3.3 and the remainder of this section.

We immediately continue our analysis of the imaginary quadratic field case,
recalling some results and definitions that provide the reader with a roadmap
to the group action behind the CSIDH algorithm. Most of the definitions here
below will be rephrased (and better explained) for quaternion algebras, because
that is where we will build the more “advanced” of our results. Let E be a
supersingular elliptic curve over Fp and let A = End(E)Q ƒ Q(

Ô
≠d) = K be

the imaginary quadratic field that the endomorphism algebra of E is isomorphic
to5.

• A lattice in K is a free Z-module of rank 2. An order in K is a lattice
that is also a subring. A fractional left O-ideal is a lattice in K closed
under multiplication to the left by O. We denote fractional ideals in
quadratic fields by a, b, . . . .

• Let d < 0 be a square-free integer and K = Q(
Ô

≠d) be an imaginary
quadratic field. The discriminant of K is

�K :=
I

≠d d © 1 mod 4
≠4d otherwise

There exists a unique maximal order OK in K given by

OK = Z

5
�K +

Ô
�K

2

6
.

Any other order in K can be written O = Z + fOK, where f = [OK : O]
is the conductor of O, and it has discriminant � = f2

· �K.

• The conjugation map a + b
Ô

≠d = a ≠ b
Ô

≠d is an automorphism of
K that allows to define the norm N(–) := –– = a2 + b2d. The norm of
a fractional ideal a is then defined as N(a) := aa, or more practically as
the gcd{N(–) : – œ a}.

5
more in general, A could simply be a Q-algebra of dimension r.
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• A fractional ideal is integral if it is contained in O. A fractional O-ideal
a is invertible if there exists another fractional O-ideal a≠1 such that
aa≠1 = O. If gcd{N(a), f} = 1, then a is invertible. We denote by I the
set of invertible fractional O-ideals.

• A fractional ideal is principal if it is of the form –O for – œ K
ú; all

principal ideals, collected in the set P(O), are invertible. The quotient
cl(O) := I(O)/P(O) is an abelian group under ideal multiplication, and
it is called the ideal-class group of O. Mutatis mutandis, it can be
seen as the class set of the equivalence relation a ≥ b ≈∆ a = bc for
some c œ K

◊. The cardinality of cl(O) is approximatively
Ô

�K.

Now, let us focus our attention on how the ideal class-group of O acts on
supersingular elliptic curves over Fp. Let E¸¸p(O) be the set of supersingular
elliptic curves over Fp with Endp(E) isomorphic to an order O in an imaginary
quadratic field and let E œ E¸¸p(O). The action of an O-ideal a on E, denoted
by a ú E, is defined by translating a into an isogeny: compute the ideal kernel
E[a] := fl–œa{ker(–)} and define the isogeny Ïa : E æ Ea ƒ E/E[a].

Any O-ideal a can be decomposed as the product of O-ideals a = (fipO)ras,
where fip is the p-th Frobenius endomorphism and as ”™ fipO. Translated
into an isogeny, Ïa has a separable part with kernel fl–œasker(–), and a
purely inseparable part consisting of r iterations of fip. The isogeny Ïa and the
codomain aúE are both defined over Fp and are unique up to Fp-isomorphism. It
follows that multiplying ideals and composing isogenies are equivalent operations
in the two realms.

We conclude this subsection recalling a fundamental result by Schoof [Sch87,
Theorem 4.5] as stated by Castryck et al. [CLM+18, Theorem 7] on the ideal-
class group action of cl(O) on the set of supersignular elliptic curves over Fp.
Let E¸¸p(O, fi) be the set of elliptic curves defined over Fp whose endomorphism
ring is isomorphic to O such that the Frobenius endomorphism fip corresponds
to fi.

Theorem 2.3.5. Let O be an order in an imaginary quadratic field and fi œ O

such that E¸¸p(O, fi) is non-empty. Then the ideal class group cl(O) acts freely
and transitively on the set E¸¸p(O, fi) via the map

cl(O) ◊ E¸¸p(O, fi) ≠æ E¸¸p(O, fi)
([a], E) ≠æ [a] ú E.

We defer further details on CSIDH and the practical aspects of the ideal-class
group evaluation until Section 3.3.

2.3.3 Quaternion algebras
A quaternion algebra B is a central simple algebra of dimension four, which
is constructed as an extension of Q by adjoining three non-square elements
i =

Ô
a, j =

Ô
b and k such that k2 = (ij)(≠ji) = ≠ab for some a, b œ Q

◊. We
sometimes denote this quaternion algebra by the Hilbert symbol

! a,b
Q

"
(that
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we will write as HQ(a, b) for typographical reasons), which indicates that B
admits a basis {1, i, j, k} such that

i2 = a, j2 = b, ij = k = ≠ji. (2.2)

The basis elements {i, j} are called the standard generators of the quaternion
algebra, since {i, j} equivalently represent the same quaternion algebra with
respect to the basis {1, i, j, ij}, given that they satisfy Equation (2.2) (see
[Voi21, Lemma 2.2.5]). It follows from the definition that HQ(a, b) contains
three quadratic subalgebras, as depicted in Figure 2.2.

Q

Q(i) ƒ Q ü Q
Ô

a

Q(j) ƒ Q ü Q
Ô

b

Q(ij) ƒ Q ü Q
Ô

≠ab

HQ(a, b)

Figure 2.2: Three quadratic subalgebras of H(a, b).

In order to extend scalars, i.e. to redefine the same algebra on an extension
field K ∏ Q, one can use the canonical isomorphism between HQ(a, b)¢QK and
HK(a, b) that leaves the basis unchanged, but spans a K-vector space instead of
a Q-vector space by taking coe�cients over K. More explicitly, let {e1, . . . ed}

be a d-vector basis of K over Q, and let {1, i, j, k}¢{e1, . . . ed} be the 4d-vector
basis of HQ(a, b) ¢Q K over Q. The isomorphism maps

ÿ

vœ{1,i,j,k}

dÿ

m=1
⁄v,m(v ¢ em) ‘≠æ

dÿ

m=1
⁄1,mem + (

dÿ

m=1
⁄i,mem)i+

+ (
dÿ

m=1
⁄j,mem)j + (

dÿ

m=1
⁄k,mem)k

There is a particular case that will be crucial when we will define ramification
of quaternion algebras. When we extend scalars of a quaternion algebra
B = HQ(a, b) to R, we obtain BŒ := B ¢Q R.

We have defined quaternion algebras as 4-dimensional central simple F-
algebras. This characterization actually comes from a corollary of a theorem
due to Wedderburn and Artin [Voi21, Theorem 7.1.1]. This corollary says more:
a quaternion algebra is either a division algebra or it is isomorphic to M2(F).

2.3.4 Standard involution, trace and norm
Before restricting our attention to quaternion algebras, let us first define some
invariants (w.r.t. the chosen basis) of elements in an algebra A over F. Let
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us fix an element – œ F, and let M– œ Mn(F) be the matrix associated
to the linear operator L– defined as in Section 2.3.2. Then the trace of
– is the trace of the matrix M–, i.e. the sum of the elements on its main
diagonal. The norm of – is the norm of M–, i.e. the determinant of M–.
The characteristic polynomial of – is the characteristic polynomial of M–,
i.e. p–(t) := pM–(t) = det(tI ≠ M–) œ F[t], whose roots are exactly the
eigenvalues of M–. If n = 2, then p–(t) = t2

≠ trd(M–) + det(M–). In general,
notice that the constant term of the characteristic polynomial is always equal
to (≠1)n det(A). The minimal polynomial of – is the monic polynomial
µ– := µM– over F of minimal degree such that µM–(M–) = 0. By Cayley-
Hamilton’s theorem, the minimal polynomial always divides the characteristic
polynomial.

Given an F-algebra A, an involution ¯: A ≠æ A is an F-linear map such
that

1) 1 = 1 2) – = – for all – œ A 3) –— = —– for all –, — œ A

Moreover, if –– œ F for all – œ A, then we talk about standard involution,
in which case

• – + – œ F (since F – (– + 1)(– + 1) = (– + 1)(– + 1) = –– + – + – + 1
and F is additively closed);

• –– = ––.

Given a standard involution, we define the reduced trace and the reduced
norm of – respectively as

trd(–) = – + – and nrd(–) = ––.

It easily follows from the definition that the trace is F-linear, i.e. trd(m–+n—) =
mtrd(–) + ntrd(—) for all m, n œ F, and that the norm is multiplicative, i.e.
nrd(–—) = nrd(–)nrd(—). The norm induces an inner product as follows:

(–, —) := 1
2(nrd(– + —) ≠ nrd(–) ≠ nrd(—)) = 1

2 trd(–—) (2.3)

Let us now see some interesting properties, which actually hold for every
CSA of degree n over F:

1. by noticing that –2
≠ (– + –)– + –– is identically zero, we conclude that

any – œ A is a root of x2
≠ trd(–)x + nrd(–), the so-called reduced

characteristic polynomial of –, that is also its minimal polynomial if
– /œ F.

2. the invertible elements of B are all and only the ones of non-zero norm:
– œ A◊

≈∆ nrd(–) ”= 0. In fact, if – is invertible, then

1 = nrd(1) = nrd(––≠1) = nrd(–)nrd(–)≠1 =∆ nrd(–) ”= 0
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Viceversa, if nrd(–) ”= 0, then the constant term a0 of the characteristic
polynomial p–(x) = tn + an≠1xn≠1 + · · · + a1t + a0 is non-zero. Given
that p–(–) = 0 by definition, then –(–n≠1 + an≠1xn≠2 + · · · + a1) = ≠a0,
and

– has inverse –≠1 = (–n≠1 + an≠1xn≠2 + · · · + a1)
≠a0

In particular, if B is a quaternion algebra, the quaternion involution
(sometimes called conjugation) ¯: B ≠æ B of an element – = t + xi + yj + zk
is defined as – = t ≠ xi ≠ yj ≠ zk. Following from the definitions of
reduced trace and norm, we can see that trd(–) = – + – = 2t, and that
nrd(–) = t2

≠ ax2
≠ by2 + abz2.

2.3.5 Ramification
We have seen how to construct the field of p-adic numbers Qp by completing
Q w.r.t. the p-adic absolute value | · |p, and we know that R is obtained by
completing Q w.r.t. the usual absolute value | · | = | · |Œ. This slight abuse
of notation will help us in consistently defining the ramification of quaternion
algebras.

We are interested in whether we can invert multiplication in a quaternion
algebra B over Q when we extend its scalars to Qp, obtaining the quaternion
algebra Bp := B ¢Q Qp. If Bp is a division algebra, then we say that B is
ramified at p; if not, i.e. if Bp is isomorphic to M2(Qp) as we saw in Section
2.3.3, then we say that B is split or unramified. In particular, by saying
that B is ramified at Œ we mean that BŒ := B ¢Q QŒ = B ¢Q R is a
division algebra. A quaternion algebra is ramified only at a finite and even
number of places (so either a prime or Œ for Q), as shown in [Voi21, Lemma
14.5.3, Theorem 14.6.1]. A quaternion algebra is uniquely determined (up to
isomorphisms) by the set of places at which it ramifies. The product of the
primes at which B ramifies is called the discriminant of B.

2.3.6 Orders, ideals and a group action
Of all the subsections of Section 2.3, all necessary to understand what will
be discussed below, this one contains the most relevant objects for this thesis.
We now specialise the upcoming definitions to the quaternion algebra Bp,Œ
ramified at p and Œ. There are two motivations behind this subsection: the
first one is that endomorphism rings of supersingular elliptic curves are orders
in Bp,Œ, the second one is that kernels of isogenies can be described as ideals
of the endomorphism ring.

Let us start o� with the definition of an order, which is totally analogous
to the usual one for algebraic number fields.

Definition 2.3.6. A lattice in Bp,Œ is a finitely generated Z-submodule of
rank 4. An order O in a quaternion algebra Bp,Œ is a lattice that is also a
subring of Bp,Œ.
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The simplest example of order one can find is O = Z+Zi +Zj +Zk, but in
general we write O = Z–1 +Z–2 +Z–3 +Z–4 for any basis {–1, –2, –3, –4} of O.
Let D :=

!
(–i, –j)

"
i,jœ{1,2,3,4} be the matrix whose elements are computed via

the inner product defined in Equation (2.3). The (reduced, some textbooks
would specify) discriminant of O is the quantity disc(O) :=


| det(D)|, and

is independent of the chosen basis. An order is maximal if it is not strictly
contained in any other order. If O1 µ O2, then the index N = [O2 : O1] is the
order (cardinality, in this case) of the quotient #(O2/O1). The index satisfies
the equality disc(O2) = N2disc(O1), and two orders are equal if and only if
N = 1 (i.e. disc(O1) = disc(O2)) [Voi21, Lemma 15.5.1].

Given any lattice I (repetita iuvant, a Z-submodule of rank 4 in Bp,Œ), the
left order of I is the set OL(I) := {– œ Bp,Œ : –I ™ I}, and the right order
of I is the set OR(I) := {– œ Bp,Œ : I– ™ I}. Both sets actually turn out to
be orders in the quaternion algebra, and can be intuitively seen as the largest
subrings of Bp,Œ that turn I into a module (over OL or OR respectively).

Definition 2.3.7. Let O be an order in Bp,Œ. A left fractional O-ideal is
a lattice I in Bp,Œ such that O ™ OL(I). Analogously, a right fractional
O-ideal is such that O ™ OR(I).

A simple example of a left fractional O-ideal is a principal ideal O–, where
we take any – œ B◊

p,Œ and we multiply to the left by every element in O.
These ideals are called fractional because they can all be obtained as d≠1–O

for some – œ O and d œ N
+. In other words, all the ideals we will deal with

are fractional, so we will simply drop the adjective from now on.
An ideal I is integral if it is contained in its left (or equivalently, right)

order, and is said two-sided if OL(I) = OR(I). The reduced norm of I is a
positive generator of the submodule generated by the set {nrd(–) : – œ I};
equivalently, it is the g.c.d. of the norms of all the elements in I. One may
try to multiply two ideals I and J , but this operation is not well-defined in
general. This is possible only when OR(I) = OL(J), in which case we say
the ideals are compatible and the product IJ is the ideal generated by the
products of pairs in I ◊ J . One can easily check that OL(IJ) = OL(I) and
that OR(IJ) = OR(J).

At this point, one may ask whether inverses exist or not. An ideal I is
invertible if there exists I≠1 such that

II≠1 = OL(I) = OR(I≠1) and I≠1I = OR(I) = OL(I≠1). (2.4)

Borrowing the definitions in Section 2.3.4, the conjugate6 ideal I := {– : – œ I}

satisfies OL(I) = OR(I) and OR(I) = OL(I). Moreover, II = nrd(I)OL(I)
(and analogously for the reversed order), which put together with Equation (2.4)
allows for computing the inverse ideal in terms of the conjugate ideal as follows:

I≠1 = 1
nrd(I)I

6
It might seem weird at first to define the conjugate using the involution map and keeping

the same symbol. It is actually not, since the involution map defined in Section 2.3.4 is at

the same time a conjugate map that flips the signs of all imaginary parts, so to say.
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For a given order O, let us denote by I(O) the set of invertible left O-ideals.
We say that two orders O1, O2 are connected if there exists an invertible ideal
I such that OL(I) = O1 and OR(I) = O2; at times we will say that I is an
O1O2-ideal meaning that O1 and O2 are connected by I. The set of orders
connected to O is the genus of O. Two orders are of the same type if they
are conjugated7 as subgroups: there exists an invertible quaternion – œ B◊

p,Œ
such that O

Õ = –≠1
O–. Note that, if O, O

Õ are of the same type and – realises
this conjugation, then O– is a principal ideal connecting O with O

Õ.
Two left O-ideals might have right ideals of the same type: two left O-ideals

I, J are equivalent if there exists an invertible quaternion — œ B◊
p,Œ such that

J = I—.

2.4 The Deuring correspondence

Now that we have some intuition on quaternion algebras, ideals and orders,
let us put them into practice. In this section, we resume our analysis of the
link between endomorphism rings of supersingular elliptic curves and isogeny
graphs, better equipped with our quaternionic notions.

A classical result by Deuring [Deu41] bridges endomorphism rings and
quaternion orders: the endomorphism ring End(E) for a supersingular curve E
is isomorphic to a maximal order in Bp,Œ, the quaternion algebra ramified at
p and at Œ. The connection is unique, up to elliptic curve isomorphisms and
Galois conjugacy of supersingular j-invariants. But this is not all, folks. In fact,
we can draw lines between quantities and properties of supersingular elliptic
curves and their counterparts in the quaternion algebra setting. For example,
every ideal corresponds to an isogeny: for a given integral left O0-ideal I, we
can compute the corresponding separable isogeny

„I : E0 ≠æ E ƒ E0/E0[I]

by computing its kernel E0[I] as

E0[I] = {P œ E0 | –(P ) = 0 for all – œ I}.

Viceversa, every isogeny corresponds to an ideal: given the kernel GÏ of a
supersingular elliptic curve Ï, the kernel ideal corresponding to Ï is defined
as

I(GÏ) := – œ End(E) : –(G) = 0.

We summarise the most relevant analogies in Table 2.1.
It is of course nice and important to have abstract connections, but we would

really like to get something useful out of them, building new cryptanalytic
tools and cryptosystems. So far, this correspondence has been exploited
pursuing two goals. The first is cryptanalysis: with KLPT [KLPT14], later
refined in [EHL+18, Wes22], the Deuring correspondence is used to assess the

7
Conjugation appears once again with yet another slightly di�erent meaning. This is just

a hint of the hardest problem of all: the common notation problem!
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Supersingular elliptic curves Quaternion algebras
Supersingular j-invariant (Maximal order in

over Fp2 up to Galois conj.
j(E0) O0

Bp,Œ up to isom.)
Isogeny from E0 to E1 Ï IÏ O0O1-connecting ideal

Isogeny kernel ker(Ï) I(ker(Ï)) Kernel ideal
Isogeny degree deg(Ï) nrd(IÏ) Ideal orm
Dual isogeny Ï̂ IÏ Conjugate ideal

Endomorphism ◊ O0 · ◊ Principal ideal
Isogenies from E0 to E1 Ï, „ IÏ ≥ I„ Equivalent ideals

Supersingular j-invariants {j} cl(O) Class of O0O-ideals
Composition Ï ¶ „ I„ · IÏ Ideal multiplication

Table 2.1: The Deuring correspondence in more details.

security of cryptosystems based on supersingular isogeny problems, drawing an
equivalence between the supersingular isogeny path and endomorphism ring
problems. The second is the design of new protocols for digital signatures
[GPS20, DKL+20a, DLW22, GPV21], encryption [DdF+21] and key-exchange
[Ler21].

In this thesis, we are particularly interested in the so called constructive
Deuring correspondence: given a maximal order O in Bp,Œ, find a curve
E over Fp with End(E) ƒ O. Oddly enough, despite this connection being
called “correspondence”, the other directions is at times referred to as the
endomorphism ring computation problem. In fact, the state of the
art marks a clear distinction: certain problems are hard for elliptic curves
and isogenies, but are easy when translated to their quaternionic equivalent.
Speeding up the translation from ideals to isogenies under the Deuring
correspondence is therefore a quite relevant task for the applicability of the
above (and future) results.
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Chapter 3

Isogeny-based cryptographic

protocols

Isogenies bloom
In supersingular graph:

Cryptographic keys.

December 2022

We start this chapter by recalling in Section 3.1 some basic cryptographic
definitions and security properties. Then we overview four isogeny-based
protocols: SIDH in Section 3.2, CSIDH in Section 3.3, KLPT in Section 3.4 and
SQISign in Section 3.5. These are probably the four most prominent schemes
in isogeny-based cryptography, and surely those that have been most relevant
to the results collected in this thesis.

3.1 Cryptographic foundations

Even though we could assume the reader is familiar with these basic concepts
of public-key cryptography, we hereby define key-exchange, encryption and
digital signature protocols, together with the relevant security notions and some
security models. In some cases, extending a protocol between two parties to
one between multiple parties may not be trivial, but extending the definitions
is; let us thus focus on a two-party scenario from now on.

Remark 3.1.1. Notation is a very sensitive topic in research, particularly in
cryptography. The attentive reader will soon realise that we have used the
same symbol sk for secret keys, decryption keys, decapsulation keys and signing
keys, and the symbol pk for public keys, encryption keys, encapsulation keys
and verification keys. This choice was made to underline the secrecy of the key
material throughout the following protocols, and to facilitate some connections
we will draw between the di�erent mechanisms.

3.1.1 Key-exchange

Let us now define a KEX protocol. With respect to other definitions to come,
this is not a technical one. This is because we want to capture the most general
meaning of key-exchange, without making otherwise necessary distinctions that
would inevitably specialise it.
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Definition 3.1.2. A key-exchange1 protocol (KEX for short) is a mecha-
nism by which two parties connected via an adversarially-controlled network can
agree on a shared key known only to the two parties, for subsequent cryptographic
(typically symmetric) use.

In the simplest case, each party holds a pair (sk, pk) of secret key and
a public key, linked by some mathematical operation that is easy in one
direction (from sk to pk) and hard in the other. This will be the case in all
future definitions that will involve key-pairs.

Let PA, PB be the two parties involved in the protocol, and let A be the
adversary. Assume that each party holds some long-term key material and
produces some ephemeral key material during the protocol run to establish
a shared key K. There is a set of the extra security goals that a KEX may
have on top of key-establishment, among which we have:

• key confirmation: once the KEX has been completed, each party has
assurance that the other one is in possession of K;

• authentication: PA is persuaded that the other party it has shared key
with is the intended PB , and viceversa. Authentication can be explicit if
achieved using another mechanism on top a KEX (e.g. a digital signature),
or implicit if it is argued directly from a successful KEX run;

• forward-secrecy: even if A compromises the long-term key material
used in a KEX protocol, the shared keys based on that material are still
known to PA and PB only;

• key compromise impersonation (KCI) resistance: if A compro-
mises the long-term key material of a party, it cannot impersonate that
party in a subsequent KEX run.

Once we have set some security goals, we have to define what the adversary
can do. Trivially, the security strength of the protocol depends on how powerful
adversary it can stand. Is the adversary simply allowed to eavesdrop the
conversation, or can it change the order of the messages in the protocol, tamper
with them, or do even more? One represents the adversarial capabilities as a
list of queries that, together with the security goals, form a security model.
There are several security models available in the literature, all capturing
somewhat di�erent adversaries and security notions. The Bellare-Rogaway
model [BR94] is considered to be the first one in practical provable security,
and has been extended in several ways throughout the years. We provide as
example the the security model we used in our contribution presented in Paper
1, in which we use a modified version of the Real-or-Random (ROR) model.

Suppose that we have a certificate authority CA that holds and issues
certificates for the long-term public keys of the parties P1, . . . Pn in the set P.
At any time and without limitations, a new party can join by communicating a

1
sometimes called key-establishment
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long-term public key to CA. Di�erent parties are not required to hold di�erent
long-term public keys, but each party can register to only key at a time.

Each party Pi is represented as a set of oracles {fi1
i , fi2

i , . . . , fik
i }, one for

each of the k key-exchange sessions the user can participate to. Each oracle
fis

i = (P s
i , Âs

i , Ks
i , sent

s
i , recv

s
i , roles

i ) maintains an internal state consisting of:

• the identity of the party P s
i that Pi intends to exchange key with;

• the session-key state Âs
i œ {ÿ, accept, reject}, indicating whether a session

key was computed and has been accepted or rejected;
• the session key Ks

i , non-empty if and only if Âs
i = accept;

• the transcript sent
s
i collecting all the messages sent by the oracle;

• the transcript recv
s
i collecting all the messages received by the oracle;

• the role roles
i of the oracle (whether initiator “init” or responder “resp”).

We call the view view
s
i of Pi over the session s as the ordered set of messages

sent and received by Pi. Two oracles fis
i and fit

j are called partner oracles if
they have participated in the same KEX session; more formally, if

1. P s
i = Pj and P t

j = Pi, i.e. if they are the intended peer of each other;
2. Âs

i = Ât
j = accept, i.e. they both accepted the session key;

3. view
s
i = view

t
j , i.e. the messages sent and received by Pi match with the

ones respectively received and sent by Pj during the key-exchange session;
4. they have specular roles.

We will later limit the adversary to test only fresh oracles: an oracle is
fresh if and only if its session key has not been revealed, its partner oracle
has not been corrupted or tested and the partner’s session key has not been
revealed. A party is said to be honest if it has not been corrupted yet, i.e. if
all its oracles are fresh.

In this model, an adversary A has full control over the network and interacts
with oracles through the following queries:

• activate an oracle fis
i either as initiator or responder by sending a message

on behalf of a peer Pj ;
• reveal the long-term secret key of a party Pi: the party is then corrupted

and all its oracles will answer ‹ to each later query;
• register the long-term public key for a new user. No knowledge of the

corresponding secret key is required and the public key is distributed to
all other users;

• reveal the session key ks
i stored in the internal state of any oracle fis

i ,
which is is now said to be revealed.

• test an oracle fis
i , which outputs the key if Âs

i = accept, and ‹ otherwise.
If a key is output, then it is either the real session-key or a random key,
according to a random bit set at the beginning of the security game (as
per definition of the ROR-model).
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Once the environment has been set up, we run the following AKE security
game G�(µ, k) between the adversary A and a challenger C, with simulates the
protocol between µ parties that can engage in at most k sessions each:

1. Setup. The challenger C tosses a coin b
$

Ω {0, 1} and sets up µ parties,
providing each of them with a long-term key pair (ski, pki) and with k
oracles.

2. Adversarial queries. The adversary A, knowing the public keys of all
parties, can make any number of the previously defined queries. C only
allows fresh oracles to be tested.

3. ROR guess. After some queries, the adversary A will eventually output
bÕ, its guess on b tossed in the Setup phase. If the tested oracles are fresh
and bÕ = b, then A wins the security game.

An adversary can actually break the KEX protocol in three di�erent ways: it
can break the soundness of the protocol (by tricking two oracles into computing
di�erent session keys), the relation between two partner oracles or the secrecy
of the shared key (by winning the AKE security game). We say that the
KEX protocol is AKE-secure if a polynomial-time adversary has a negligible
probability of breaking the protocol in any of the aforementioned ways.

3.1.2 Public-key encryption and key encapsulation
Let us start with the definition of PKE and KEM schemes, this time more
rigorously: being more precise will allow us to easily compare the two schemes
together and with digital signatures.

Definition 3.1.3. Let ⁄ be the security parameter. Let Ke be the set of
encryption keys, let Kd be the set of decryption keys, let X be the set of
plaintexts (ore generically “messages”) and let Y be the set of ciphertexts. A
public-key encryption scheme (PKE for short) consists of three algorithms:

• a key-generation algorithm KeyGen which, depending on the security
parameter ⁄, outputs a pair (sk, pk) œ (Kd, Ke) where sk is sampled
uniformly at random and pk corresponds to sk;

• an encryption algorithm Enc, which produces a ciphertext y œ Y on
input a message x œ X and an encryption key pk œ Ke;

• a decryption algorithm Dec, which recovers the plaintext x on input the
ciphertext y and the decryption key sk corresponding to the encryption
key used for encrypting x.

In addition, it must be computationally hard to retrieve the decryption key
knowing solely the encryption key.

34



Cryptographic foundations

Together with the fundamental security goal of confidentiality (informa-
tion should be hidden from the adversary), there is a set of the extra security
notions and properties one might go after when designing a PKE scheme:

• semantic security: any information on the plaintext that can be
computed from the ciphertext can also be computed without the
ciphertext;

• non-malleability: it is infeasible to take the ciphertext of a message
and transform it into the ciphertext of a distinct related message without
knowing the initial plaintext.

In security games for PKE schemes, we use a notion that is equivalent to
semantic security: a PKE scheme has (cipthertext) indistinguishability
(IND) if an adversary cannot distinguish between the encryption of any two
messages sampled at random from an adversarially chosen distribution. Let
us briefly indulge ourselves with the IND-CPA security game, first defining
indistinguishability under chosen-plaintext attack, and later modifying it to
achieve two stronger security notions:

1. The challenger C generates a key pair (sk, pk) based on the security
parameter ⁄, store sk and communicates pk to the adversary.

2. The adversary A may submit and receive answer to a polynomial number
of encryptions queries.

3. A submits two distinct chosen plaintexts x0, x1 to the challenger.

4. The challenger tosses a coin b
$

Ω {0, 1} and sends the challenge ciphertext
y = Enc(xb, pk) to A.

5. After number of additional computations or encryptions but on x0, x1, A

outputs a guess for the value of b.

A PKE scheme is Indistinguishable under Chosen-Plaintext Attack
(IND-CPA) if the adversary has a negligible probability of correctly guessing
the bit b.

We can strengthen this security notion by allowing decryption queries:
a PKE scheme is Indistinguishable under Chosen-Ciphertext Attack
(IND-CCA1) if the adversary is given the additional ability of making decryption
queries in Step 2 of the above game. We can take another step further: a
PKE scheme is Indistinguishable under adaptive Chosen-Ciphertext
Attack (IND-CCA2) if the adversary can make decryption queries both in Step
2 and in Step 5 of the above game (C does not answer decryption queries on
the challenge ciphertext y, because this would trivially reveal b).

We now mix the two concepts of key exchange and public-key encryption
defining key encapsulation. In fact, KEMs allow to establish a key for subsequent
cryptographic use (as in KEX) through encryption and decryption mechanisms
(as in PKE).
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Definition 3.1.4. Let ⁄ be the security parameter. Let Kencap be the set
of encapsulation keys, let Kdecap be the set of decapsulation keys, let R
be the randomness set and let Y be the set of ciphertexts. A public-key
encryption scheme (PKE for short) consists of three algorithms:

• a key-generation algorithm KeyGen which, depending on the security
parameter ⁄, outputs a pair (sk, pk) œ (Kdecap, Kencap) where sk is
sampled uniformly at random and pk corresponds to sk;

• an encapsulation algorithm Encap, which produces a ciphertext y œ Y
and a symmetric key k on input an encapsulation key pk and a random
element in R (so to produce di�erent symmetric keys when the input pk

does not change);
• a decapsulation algorithm Decap, which computes the symmetric key k

on input the ciphertext y and the decapsulation key sk corresponding to
the encapsulation key used to encapsulate.

In addition, it must be computationally hard to retrieve the decapsulation key
from the encapsulation key only.

The same security notions we described for PKE schemes hold for KEMs
too.

3.1.3 Digital signatures
Definition 3.1.5. Let ⁄ be the security parameter. Let Ks be the set of
signing keys, let Kv be the set of verification keys, let M be the set of
messages and let S be the set of signatures. A digital signature scheme
consists of three algorithms:

• a key-generation algorithm KeyGen which, depending on the security
parameter ⁄, outputs a pair (sk, pk) œ (Ks, Kv) where sk is sampled
uniformly at random and pk corresponds to sk;

• a signing algorithm Sign, which produces a signature ‡ œ S on input
a message m œ M and a signing key sk œ Ks. In case the algorithm is
randomised, signing the same message with the same key may produce
di�erent signatures;

• a verification algorithm Vrfy, which given a verification key pk œ Kv, a
message m œ M and a signature ‡ œ S, outputs 1 if ‡ was created using
the message m and the key sk corresponding to pk, and 0 otherwise.

In addition, it must be computationally hard to retrieve the signing key knowing
solely the verification key.

The most important security goal for digital signature schemes is unforge-
ability: it must be computationally hard for an adversary to produce a valid
signature on any message that had not been previously signed. Let us properly
define the existential unforgeability under chosen message attack (or
EUF-CMA in short) security with yet another game involving an adversary A.
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1. Setup. We run the KeyGen algorithm to produce a pair sk, pk, and
provide the adversary A with the verification key pk.

2. Signing queries. The adversary A can adaptively submit distinct
messages m to be signed. In other words, it can decide subsequent queries
after having seen the answer to the previous ones. For each message,
we compute a signature ‡ Ω Sign(m, sk) is computed and send it to A.
We record all queries and answers produced during this phase in the set
Q := {(mi, ‡i)}i.

3. Output. Finally, A outputs a message with a forged signature (mú, ‡ú).
We say that the adversary A wins the EUF-CMA game if mú /œ Q and
Vrfy(pk, mú, ‡ú) = 1.

A signature scheme is EUF-CMA≠secure if for all polynomial time
adversaries A, the advantage of A in winning the above game is negligible in
the security parameter ⁄:

Adv
EUF-CMA

A (⁄) = negl(⁄).

3.2 SIDH

In this section we provide an overview of the — now insecure — Supersingular
Isogeny Di�e-Hellman (SIDH) key-exchange protocol. The idea is to let Alice
and Bob choose a secret walk in two distinct isogeny graphs over the same
vertex set. Through an intermediate information exchange, they will later be
able to agree on a shared secret. We refer the curious reader to the excellent
paper by Costello [Cos19] for more details and toy examples.

After introducing the parameters, we will indicate with A and B the degrees
of the two parties’ secret isogenies. This allows us to lighten the notation and
more easily compare the protocols contained in this chapter and in Chapter 4).

Parameters. We denote by pp := (¸A, ¸B , eA, eB , f, p, E0, PA, QA, PB , QB)
the tuple of public parameters in SIDH, where

• ¸A and ¸B are two small distinct primes (typically 2 and 3),
• eA and eB are positive integers such that A := ¸eA

A ¥ B := ¸eB
B ,

• f is a small cofactor coprime to A and B,
• p is a prime of the form p = A · B · f ± 1,
• E0 is a supersingular elliptic curve over Fp2 ,
• {PA, QA} and {PB , QB} are basis of the torsion subgroups E0[A] and

E0[B] respectively.

The condition A ¥ B implies similar security guarantees for Alice and Bob.
The corresponding torsion subgroups are E0[A] ≥= (Z/AZ) ◊ (Z/AZ) and that
E0[B] ≥= (Z/BZ)◊ (Z/BZ); for this specific choices of A and B, we have simple
and large enough subgroups to work with and sample keys from.
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Key generation. Alice randomly picks two integers mA, nA œ Z/AZ not
both divisible by ¸A and secretly computes the point RA = [mA]PA + [nA]QA

of order A. Then, by using Vèlu’s formulae, she computes the isogeny
ÏA : E0 ≠æ EA := E0/ÈRAÍ. Alice’s secret key is the pair skA = (mA, nA),
while her public key pkA = (EA, P Õ

B , QÕ
B) consists of EA := E0/ÈRAÍ and

the torsion point images (P Õ
B , QÕ

B) = (ÏA(PB), ÏA(QB)). Analogously, Bob
randomly picks a secret key skB := (mB , nB) œ (Z/BZ)2 and computes the
public key pkB = (EB , P Õ

A, QÕ
A) from the isogeny ÏB : E0 ≠æ EB := E0/ÈRBÍ.

We note that isogeny computation and evaluation are usually performed at
the same time, following an optimised strategy described in [JAC+17], which
is recalled and further optimised for parallel isogenies computation in Paper 3.

In many papers, the SIDH secret key is reduced to a single integer, by
sampling a single coe�cient n and computing the secret kernel generator as
P + [n]Q (by assuming that one of the two coe�cients is invertible). This
reduces the number of possible secret isogenies from ¸e≠1(¸ + 1) to ¸e. Despite
this leaving the security of the protocol basically una�ected, we prefer to stick
with the “complete” version in our description.

Shared key computation. Once Bob’s public key has been retrieved,
Alice computes RÕ

A := ÏB(A), which is a kernel generator for the isogeny
ÏÕ

A : EB ≠æ E0/ÈA, BÍ. By taking the points P Õ
A, QÕ

A œ EB in Bob’s
public key, she uses her secret key to compute RÕ

A := [mA]P Õ
A + [nA]QÕ

A =
[mA]ÏB(PA) + [nA]ÏB(QA) = ÏB([mA]PA + [nA]QA) = ÏB(RA). This is a
kernel generator of the isogeny ÏÕ

A, through which she computes the j-invariant
j(EBA) of the image curve EBA = EB/ÈRÕ

AÍ. Analogously, Bob computes the
isogeny ÏÕ

B via the kernel generator RÕ
B = [mB]P Õ

B + [nB]QÕ
B, and then the

j-invariant of the image curve EAB := EA/ÈRÕ
BÍ. Note that Alice and Bob do

not necessarily reach the same elliptic curve, but two curves that are guaranteed
to be isomorphic to E0/ÈRA, RBÍ, and thus have the same j-invariant.

E0 (EA, P Õ
B , QÕ

B)

(EB , P Õ
A, QÕ

A) EAB ƒ EBA

ÏA

ÏB ÏÕ
B

ÏÕ
A

Figure 3.1: The SIDH key exchange. Elements in blue are computed by Alice,
those in red are computed by Bob.

Security. The security of SIDH is based on the computational and decisional
SIDH problems, which until not so long ago were believed to be hard.

Unlike the usual Di�e-Hellman key-exchange protocol, SIDH is not role-
symmetric, due to the di�erent degrees of the isogenies Alice and Bob use in the
graph. One can state the CSSI problem regardless of the role, but would then
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have to formally introduce role-specific formulations of the decisional problem;
for simplicity, we provide Alice’s variants in both cases.

Definition 3.2.1 (Computational Supersingular Isogeny Di�e-Hellman
problem). Let pp be the tuple of public parameters in SIDH. Let ÏA : E0 ≠æ

EA be an isogeny whose kernel is generated by RA := [mA]PA + [nA]QA,
following the key-generation algorithm of SIDH. Given EA and the values
ÏA(PB), ÏA(QB), the Computational Supersingular Isogeny Problem CSSI
requires to determine a generator of the subgroup È[mA]PA + [nA]QAÍ.

Definition 3.2.2 (A-Decisional Supersingular Isogeny Di�e-Hellman problem).
Let pp be the tuple of public parameters in SIDH. Suppose that EB and
the images P Õ

A, QÕ
A are known and generated according to the key-generation

algorithm in SIDH. Then, given
• a curve E,
• a basis pair P, Q œ E[B],
• a curve E,

determine whether the tuple (E0, E, EB , E) is a valid SIDH tuple, in the sense
that there is a map Ï : E0 ≠æ E of degree dividing A and kernel generator RA,
which sends PB to P , QB to Q and such that E ≥= E0/ÈRA, RBÍ.

The KEM SIKE and its concrete parameters. The protocol submitted
to NIST’s competition is a key-encapsulation algorithm derived from SIDH,
called SIKE. It is obtained from the KEX SIDH in two steps.

1. KEX ≠æ PKE: an intermediate IND-CPA public-key encryption scheme
is derived from the key exchange in the following standard way. In order
to encrypt a message m under Bob’s public key, Alice first generates a
random key pair (skr, pkr), that she uses to complete the key exchange and
obtain a secret j-invariant. She then hashes the j-invariant and XORes
the result with the message m, obtaining c. The ciphertext consists of
(pkr, c). Bob can complete the key-exchange using pkr, hash the resulting
j-invariant and XOR it with c, thus decrypting to m.

2. PKE ≠æ KEM: an IND-CCA1 key-encapsulation mechanism is obtained
by applying the Hofheinz, Hövelmanns and Kiltz transform [HHK17]
to the intermediate IND-CPA PKE from the previous step. Here, Alice
encrypts a random message m under Bob’s public key pkB (taking the
H(m Î pkB) as the secret key in the encryption). She then computes
the shared key as the hash of m concatenated with the ciphertext, and
sends the ciphertext to Bob. Bob decrypts and checks whether the public
key in the encryption (note that now he can recompute r and repeat the
encryption himself) matches the public key in the ciphertext. Finally,
he computes the key either as the hash of m concatenated with the
ciphertext, or as the hash of a random string concatenated with the
ciphertext.
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In Table 3.1 we indicate the values of p, eA and eB in SIKE that were
recommended for di�erent security levels.

NIST’s security level Parameter set p

1 SIKEp434 2216
· 3137

≠ 1
2 SIKEp503 2250

· 3159
≠ 1

3 SIKEp610 2305
· 3192

≠ 1
5 SIKEp751 2372

· 3239
≠ 1

Table 3.1: Recommended SIKE parameters for di�erent NIST security levels.

3.3 CSIDH

As we said in the introduction, Castryck, Lange, Martindale, Panny and Renes
managed in [CLM+18] to successfully adapt the CRS construction to the
supersingular setting, considering supersingular elliptic curves over Fp instead
of ordinary curves. In this section we describe their CSIDH protocol, whose
underlying algebraic foundations have been provided in Section 2.3, more
specifically in Section 2.3.2. Before getting into the protocol details, we need
to describe how to sample an ideal and compute its action, because it will play
the role of secret key.

3.3.1 Ideal sampling and evaluation
As we said in Section 2.3.2, CSIDH is based on the action of the class group of
O = Z[

Ô
≠p] on the isomorphism classes of supersingular elliptic curves. We

have defined ideals and their correspondence to isogenies, but we still need to
define practical ways to sample and evaluate them.

In order to properly sample uniformly at random from cl(Z[
Ô

≠p]), one
would need to compute its exact structure. An algorithm by Hafner and
McCurley [HM89] can solve this task in subexponential time, but becomes
impractical for orders of large discriminants (as in the CSIDH case) if one
would need to change the order. By heuristically assuming that the ideals
li = (¸i, fip ≠ ⁄2) do not have very small order and are evenly distributed
in the class group, the authors of [CLM+18] argue that two ideals produced
as le1

1 le2
2 · · · len

n for uniformly random ei lie in the same class with negligible
probability. In practice, the exponents ei are sampled from {≠m, . . . m}, where
m œ N is such that 2m + 1 Ø

n


#cl(O).
Now that we have an ideal of the form

r
lei
i œ cl(O), we translate it to

an isogeny in order to evaluate its action on a curve in E¸¸p(O, fi) (the set of
elliptic curves defined over Fp whose endomorphism ring is isomorphic to O

2⁄ œ Z/¸Z is an eigenvalue of fip in the ¸-torsion subgroup.
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such that the Frobenius endomorphism fip corresponds to fi). The fastest way
to evaluate the action of li on E is to find a basis of the torsion subgroup E[¸i]
(over some extension of Fp if necessary), compute the eigenspaces of fi and
apply Vélu’s formulae to a basis point of the eigenspace to obtain the codomain.
The optimal scenario is when the torsion subgroup is defined over a small
extension field (more specifically, when ⁄ = 1 we can work with points defined
over Fp), and when p/⁄ = ≠1 (so that the eigenspace of fip mod ¸ is defined
over Fp if we work with Montgomery curves, and we Vélu’s formulae remain
e�cient). Note that these conditions can be enforced by carefully choosing the
base prime p, as successfully done in CSIDH.

We now describe how ideal evaluation works. Let (e1, e2, . . . en) be the list
of exponents in

r
lei
i ; while some ei ”= 0,

1. sample x
$

Ω Fp representing an Fp-rational point P œ E (curves in
Montgomery form allow for nice and e�cient x-only arithmetic);

2. use P to compute as many isogenies as possible: define k as the product
of all ¸i dividing the order of P , compute Q = [(p + 1)/k]P , and for each
¸i|k,

a) compute the isogeny Ï of kernel [k/¸i]Q;
b) push Q through Ï, update the curve to the image curve E Ω Ï(E),

reduce the corresponding ei by 1 (or increment by 1 if ei < 0) and
update k Ω k/¸i;

3. once P has been exhausted and at least one ei is still di�erent from 0,
repeat from 1.

3.3.2 The protocol
Now that we know (or at least have some intuition on) hot to sample and
evaluate random isogenies by sampling and translating ideals in cl(O), let us
define how the protocol works. We start with a careful parameter selection
that guarantees e�cient sampling and translation of ideals into isogenies. Then
we see how keys are generated and how the key-exchange is performed.

Parameters. Choose several distinct and small odd primes ¸i such that
p = 4 · ¸1 · ¸2 · · · · ¸n ≠ 1 is a large prime. In practice, the proof-of-concept
implementation that meets NIST’s security level 1 uses 74 primes ¸i: the first
73 are the smallest odd primes, while ¸74 = 587. The fixed starting curve is the
supersingular elliptic curve in Montgomery form E0 : y2 = x3 + x over Fp, with
endomorphism ring isomorphic to the order O = Z[

Ô
≠p]. A positive integer m

such that 2m + 1 Ø
n


#cl(O) is fixed.

Key generation. Alice’s secret key skA is a tuple (a1, . . . , an), where each ai

is sampled uniformly at random from {≠m, . . . , m}. This tuple corresponds to
the ideal class a = la1

1 la2
2 · · · lan

n œ cl(O). The public key pkA is the Montgomery
coe�cient A œ Fp of the elliptic curve Ea := aúE0 : y2 = x3 +Ax2 +x, obtained
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by applying the action of a to the curve E0. Analogously, Bob randomly picks
a secret key skB := (b1, . . . , bn) $

Ω {≠m, . . . , m}
n and computes the public key

pkB = B, the Montogmery coe�cient of the curve Eb := (lb1
1 · · · lbn

n ) ú E0.

Shared key computation. The only step left for Alice to compute the
shared key is to evaluate the action of her secret ideal a on Eb; analogously,
Bob will evaluate the action of b on Ea. They will both share the secret
a ú Eb = Eab = b ú Ea.

If we drew the key exchange diagram, we would obtain something shaped
as in Figure 3.1, with the crucial di�erence that no torsion point images are
needed to enable the key exchange, which can now be non-interactive. The
reason is the existence of the commutative action of the ideal class group, a
strong point of resemblance to the classical Di�e-Hellman protocol. More
importantly, the lack of torsion point information seems enough to prevent the
applicability of Castryck and Decru’s attack to CSIDH.

Security. As for SIDH, we can state a computational problem that should
secure against key-recovery attacks, and a decisional problem that secures the
key-exchange; what follows is formulation of the former one.

Definition 3.3.1 (CSIDH key-recovery). Given two supersingular elliptic
curves E0, E defined over Fp with the same Fp-rational endomorphism ring O,
find an e�cient representation of an ideal class [a] of O such that Ea = E .

3.4 KLPT

A case in which dealing with quaternion algebras allows for tackling isogeny-
related problems is the application of the KLPT algorithm [KLPT14]. The
motivation behind this work lies in the equivalence of categories provided by
the Deuring correspondence: finding an ¸-isogeny between two supersingular
elliptic curves E1, E2 is analogous to determining an ¸-power O1O2-ideal, where
O1 ƒ End(E1) and O2 ƒ End(E2). More to the point, their algorithm was
designed as an attack to the Charles-Goren-Lauter hash function [CLG09], and
aims to solve the following problem:

Definition 3.4.1 (Quaternion ¸-isogeny path problem). Given a prime p, a
maximal order O0 of Bp,Œ and a left O0-ideal I, find an equivalent left O-ideal
J ≥ I of norm ¸e for some e œ N.

Under the Deuring correspondence, we have that O0 ƒ End(E0) and the left
O0-ideal I corresponds to an isogeny ÏI : E0 ≠æ E of any degree; the problem
in Definition 3.4.1 is equivalent to that of finding a ¸e-isogeny „J : E0 ≠æ E.
Definition 3.4.1 can be easily generalised to the powersmooth-norm case, which
is the one we focus our attention on.

First of all, we tip our hats at the paper’s authors, since the KLPT algorithm
is quite complicated to get the first (and second, in most cases third) time
one wraps their mind around it. The many pieces and sub-algorithms seem to
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magically fit, and understanding all the steps does not necessarily mean getting
why the algorithm works. Since it is science after all, let us try to explain how
and why each step works, starting from what we want and how to get it. The
description is based on our implementation of the KLPT algorithm provided in
Paper 4.

Step 0: the setup. On input

• p, the field characteristic

• O0, a special extremal order in the quaternion algebra Bp,Œ

• I, a left O0-ideal

• {i, j}, generators in the basis {1, i, j, ij} of Bp,Œ

KLPT outputs a left O0-ideal J equivalent to I, with powersmooth norm t.
Based on [KLPT14, Lemma 5], we know that the ideal

‰–(I) := I
–

nrd(I)

has norm nrd(–)/nrd(I) for any quaternion – œ I, and it is equivalent to I.
Thus, the ultimate goal becomes that of finding — œ I of norm t · nrd(I) for
some powersmooth integer t, so that J := I—/nrd(I) is an equivalent ideal
of norm t. The authors approach a solution by taking several intermediate
steps that involve solving certain norm equations over O0. Unfortunately, little
can we do in the general case. The problem is made solvable by restricting to
some special (literally) cases, trying to reshape the generic equation into one
that we can handle. In particular, Cornacchia’s algorithm [Cor08] that solves
Diophantine equations of the form x2 + y2 = m will be crucial to get us by.
Remark 3.4.2. For the original version of the KLPT algorithm, the norm of
the output ideal was expected to be around p7/2. The algorithm was later
improved in [DLW22] to output ideals of norm t ¥ p5/4.
Remark 3.4.3. The order O0 is less general than it may seem. In fact, it must
be special p-extremal, which means that it must contain a subring ZÈÊ1, Ê2Í

with nrd(Ê1) = q, nrd(Ê2) = p for q coprime to p. This is required essentially to
a�ord solving norm equations for any element – = x+yÊ1 +zÊ2 +kÊ1Ê2 in the
subring, since its norm nrd(–) = (x2 + qy2) + p(z2 + qk2) can be manipulated
to resemble a Diophantine equation. One can trivially solve the general case for
a non-special order O1 by forcing the solution via a special O0 as in Figure 3.2,
at the cost of allowing large norm outputs.

Step 1: computing an ideal I” of prime norm p” equivalent to I.
With equivalentPrimeIdeal, one searches for an ideal I” equivalent to I with a
small prime norm. One may ask why shifting to another ideal; the motivation
lies in Step 3. Since the generic norm equation cannot be e�ciently solved, we
want to perform some modular reductions and reduce it to a Cornacchia-friendly

43



3. Isogeny-based cryptographic protocols

O1 O2

O0

I

J1
J2

Figure 3.2: The trivial strategy to generalise KLPT for non-special orders: use
KLPT from a special O0 to compute J1 and J2, then output J1

≠1J2.

equation. Thus the need for an ideal I” of prime norm p”, in which we can
reduce norm equations modulo p”.

In light of [KLPT14, Lemma 5], we shift the problem to that of finding
” œ O0 of norm nrd(I) · p” for a small3 prime p”. Since there are su�ciently
many such quaternions (especially if we let p” be large enough) and generating
them is also quite e�cient if the basis of I is short, one can

1. compute a Minkowski-reduced basis {–1, –2, –3, –4} of I

2. compute a bound m œ N

3. generate quaternions using coe�cients in [≠m, m] until one is met with
norm nrd(I) · p” for some prime p” < p5/9.

Let us define I” := ‰”(I) the resulting I-equivalent ideal of prime norm p”.
Notice how the lattice structure of ideals has proven itself to be very

handy. The integer m must be carefully chosen in such a way that [≠m, m]
contains su�ciently many primes to guarantee a good chance of finding one.
See [KLPT14, Section 3.1] for some heuristic arguments; in Paper 4 we set
m = max(

% log p
10

&
, 7).

Step 1.2 (optional): looking for a target powersmooth norm t. Given
the state of the art on isogeny computation and evaluation, it is more e�cient to
compute a long sequence of small-degree isogenies than to compute a few high-
degree ones. For this reason, we would like our final ideal J to be decomposable
into a sequence of two-by-two compatible ideals, each of norm ¸ei

i for some
distinct small primes ¸i. In the original algorithm, t was supposed to be given
or to be computed along the way as t = t1 · t2, first finding a suitable t1 in Step
2.1 and then a suitable t2 in Step 2.3. A key to our improvement in Paper 4
is that we allow the isogenies to be defined over a larger extension fields than
the quadratic one. In some cases, it is indeed more e�cient to compute more
isogenies of small base degree allowing further extensions than it is to reach
the desired degree via isogenies of larger base degree. Not to lose e�ciency, we

3
In our implementation, we settle for any prime p” < p5/9
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can compute t while keeping track of the smallest necessary extension for each
prime ¸i, and we fine-tune the parameters to empirically reach the optimal
balance. See Paper 4 for details on the computation of t.

Step 2: looking for an element — œ I” of powersmooth norm t · p”.
We now work in I” and look for an element of good norm there: since I” and
I are equivalent, we can use elements in I” instead of those in I to compute
ideals equivalent to I.

First, we rearrange the elements of I” in order to simplify our quest. Since
all elements in I” have norm multiple of p” by definition, we keep generating
random elements – œ I” until we find one that satisfies gcd(nrd(–), p2

”) = p”.
This allows us to write the ideal as I” = O0 · p” + O0 · –, or I” = O0Èp”, –Í in
short.

What we just did is incredibly useful, because we can now try to find — by
solving norm equations that would be unapproachable otherwise.

• Step 2.1: looking for an element “ œ O0 of norm p” · t1 for some
powersmooth t1.
We start o� in O0 because norm equations can be solved quite easily in
there, being the order special: given any quaternion “ = a+b·i+c·j+d·ij
in O0 , its norm is nrd(“) = a2 + b2 + p · c2 + p · d2. Finding an
element of norm p” · t1 thus amounts to solving the norm equation
p” · t1 = a2 + b2 + p · (c2 + d2). A solution “ can be produced by randomly
sampling pairs of small integers (c, d) until one successfully solves the
Diophantine equation

a2 + b2 = p” · t1 ≠ p · (c2 + d2)

using Cornacchia’s algorithm. The guessing game presented above is
implemented in the RepresentInteger(p” · t1, p, i, j) algorithm.

• Step 2.2: looking for integers c, d satisfying “ · (c · j + d · ij) = –
mod p”O0, where – is a quaternion such that I” = O0– + O0p”.
Now we have “ œ O0 with a good norm, but we are actually looking for an
element in I” of good norm. Being I” a left O0-ideal, we want to find an
element in I” to multiply to the right of “. By first taking the operations
mod p”O0, we look for integers c, d such that “·(c·j+d·ij) = – mod p”O0.
This is implemented in the function IdealModConstraint(I”, “, –, p”, p, i, j).

• Step 2.3: looking for ‹ œ O0 with powersmooth norm t2 and an integer
h not divisible by p” such that ‹ = h · (c · j + d · ij) mod p”O0.
Once again, we translate this problem to a norm equation, and solve it
step-by-step with di�erent modular reductions:

1. Write ‹ = h · (c · j + d · ij) + p”(x + y · i + z · j + k · ij). Switching
to the norm equation

t2 = p2
”(x2 + y2) + p ·

!
(h · c + z · p”)2 + (h · d + k · p”)2"

, (3.1)

our goal becomes that of finding h, x, y, z, k.
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2. Taking Equation (3.1) modulo p”, we obtain

p · h2
· (c2 + d2) = t2 mod p”. (3.2)

By making sure that t2 is a quadratic residue modulo p” (possibly
multiplying t2 by some small primes), we solve the equation for h.

3. Now that we have h from Equation (3.2), we can take Equation (3.1)
modulo p2

” and solve for (c, d)

p · h2
· (c2 + d2) + 2 · p · h · p” · (z · c + k · d) = t2 mod p2

” . (3.3)

A solution is obtained by sampling either c or d at random and
solving for the other variable.

4. Rewrite Equation (3.1) as a Diophantine equation:

x2 + y2 =
(t2 ≠ p ·

!
(h · c + z · p”)2 + (h · d + k · p”)2"

p2
”

and solve it with Cornacchia’s algorithm. If no solution can be
found, repeat from Step 3.1 to find di�erent values for (c, d).

This is implemented in StrongApproximation(p”, p, t2, c, d, i, j).

Step 3: compute J ≥ I of powersmooth norm. Finally, we can compute
— = “ · ‹, which lies in I” since ‹ does, and has norm nrd(—) = nrd(“ · ‹) =
nrd(“) ·nrd(‹) = p” · t1 · t2. Through — we can finally compute J = I” ·—/nrd(I)
by multiplying each basis element of I” by —/nrd(I).

3.5 SQISign

The SQISign [DKL+20b, FLW22] protocol is an isogeny-based digital signature
scheme, classically obtained from an identification protocol via the Fiat-Shamir
transform. Our main goal for this section is to provide the reader with an
overview of this construction, providing a description of its algorithms based
on the preliminaries in Chapter 2 and on the KLPT algorithm in Section 3.4.
Let us start o� with the identification protocol.

Parameters and Key generation. Choose a prime p, a supersingular
elliptic curve E0 over Fp of known special extremal endomorphism ring O0 and
an integer d = 2e such that e is the diameter of Gp(¸). For a given security
level ⁄, choose an odd number dch of ⁄ bits.

To generate a key pair, one first selects a left O0-ideal I of small prime
uniformly at random. Then, a left O0-ideal J equivalent to I is computed via
the KLPT algorithm, where J has reduced norm equal to a power of 2. Finally,
the secret isogeny Ïsk : E0 ≠æ EA corresponding to J is computed, and the
public key is set to pk = EA.
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Interactive �-protocol. The interactive part of the identification protocol
goes as follows:

1. Commitment: the prover P samples at random a secret isogeny Ïcom :
E0 ≠æ Ecom and sends Ecom to the verifier V.

2. Challenge: V sends a cyclic dch-isogeny Ïch : Ecom ≠æ Ech to P. The
implicit request is to produce an isogeny from Ecom to Ech.

3. Response: a honest prover is able to compute a d-isogeny Ïresp : EA ≠æ

Ech equivalent to Ïch ¶ Ïcom ¶ Ï̂sk, and send Ïresp to V.
4. Verification: V accepts if Ïresp is a d-isogeny from EA to Ech and Ï̂ch¶Ïresp

is cyclic.

P V

Ïcom

Ïch

Ïresp Verify

EA

Ecom

Ïch

Ïresp

E0 EA

Ecom Ech

Ïsk

ÏrespÏcom

Ïch

Figure 3.3: The identification protocol at the basis of SQISign. On the left the
protocol flow, on the right the corresponding movements on the isogeny graph,
with elements in blue produced by P and those in red produced by V.

A very crucial and delicate operation in the protocol is the response
computation. Having just talked about the KLPT algorithm in Section 3.4,
a question may arise: since we need to compute an isogeny equivalent to
Ïch ¶ Ïcom ¶ Ï̂sk, why don’t we translate the three isogenies to three ideals
Ich, Icom, Isk and use KLPT to compute an ideal equivalent to Ich ¶ Icom ¶ Isk?
As noted in [DKL+20b], a direct application of the KLPT algorithm would
leak information on the secret key. Thus, many improvements and ad-hoc
adjustments were made to the generalised KLPT algorithm, in order for it to
work for arbitrary maximal orders instead of special p-extremal orders. This
e�ort lead to the SigningKLPT algorithm [DKL+20b, Algorithm 5], which takes
the left O-ideal Ich ¶ Icom ¶ Isk and outputs an equivalent ideal J of prime-power
norm (exactly 2e).
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The result was not flawless. First of all, a distinguishability issue was
spotted in [FLW22], which broke the zero-knowledge property of the digital
signature. In the first paper, the authors formulate a computational assumption
on the indistinguishability of SigningKLPT outputs from random ideals of equal
norm. This assumption fails due to the subalgorithm RepresentInteger (recall
Section 3.4, Step 2.1), which outputs quaternions from a space smaller than
necessary to guarantee indistinguishability at later steps. The weakness was not
critical enough to lead to a full key-recovery attack, but su�cient to invalidate
the computational HVZK property of the scheme. The indistinguishability was
restored in [FLW22] with a modified RepresentInteger algorithm. Secondly,
SQISign’s main bottleneck lied in the large norm of the endomorphisms output
by SigningKLPT, which lead to a signing time of 2 seconds. The e�ciency of
the signing algorithm was improved in [FLW22] by allowing a variant of KLPT

to work with endomorphisms of smaller norm. These and many other small
modifications prompt a di�erent protocol version, and this is the reason behind
the very general protocol description provided above. We refer the reader
interested in all the juicy details on all the other algorithms, the parameter
selection and the timing analysis to the two original works [DKL+20b, FLW22],
or to Antonin Leroux’ excellent PhD thesis.
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Chapter 4

Summary of Results

Contributing to the Thesis

Self-doubt takes its toll
Imposter fears fill my mind.

Will my work su�ce?

December 2022

This is the conclusive chapter of this thesis. In Section 4.1 we list the
research questions that drove the research presented in this manuscript. We
then present the results hereby collected, summarising them in Section 4.2 and
linking them to the relevant research questions. Given the apparently unusual
proportion between published and unpublished papers, we wrote Section 4.3
to explain why some of our contributions cannot be published as they are, in
light of the recent attacks on SIDH.

4.1 Research questions

The scope of this PhD thesis was not entirely defined at its early stage, since it
originates from a generic call for an investigation of post-quantum primitives.
Due to their broad and open nature, the research questions were refined only in
fieri, once isogeny-based cryptography gained the upper hand in the candidate’s
interests. Here is the final set of research questions that drove the investigation
presented in this document.

RQ 1: can we prove tight reductions on isogeny-based schemes?
There is an incredibly large amount of classical and post-quantum protocols
available in the literature. When choosing one over another, theoretically-sound
parameters should always be considered. In fact, the parameter’s size that
guarantees a certain security level depends on the security proof of the protocol
under examination. When writing a security proof, one must define

• a security model, in which the adversarial capabilities (represented as
various types of queries that it can make) are described and limited at
various extents;

• a sequence of games that result in a security reduction, a set of operations
that turn an adversary into a hard-problem solver.

49



4. Summary of Results Contributing to the Thesis

The “quality” of a reduction can be measured by computing its security
loss: if tA and ‘A are the adversarial running time and success probability
respectively, and tB and ‘B are the reduction’s running time and success
probability, we define the security loss L via the equation

tA
‘A

= L
tB
‘B

.

Tight reductions have a constant security loss.
In some cases, however, it is impossible to obtain a tight reduction. In a

simple scheme the adversary is run only once, in comparison to other protocols
which use the Forking Lemma in order to run multiple copies of the adversary.
A linear loss in the number of participants to the protocol is inherent to simple
schemes, while applying the Forking Lemma tends to result in non-tight proof.
Whenever a constant tightness loss cannot be achieved by construction, we
focus on optimal tightness instead, aiming to prove that non-constant tightness
loss cannot be lowered in order of magnitude.

This question is interesting both in the classical and in the post-quantum
scenario, but we focused our attention on the case of isogeny-based post-
quantum protocols. In fact, many post-quantum schemes incur in significant
security losses, and some protocols do not even have a security proof.

RQ 2: how sound are the assumptions underlying some computa-
tional problems in isogeny-based cryptography? Being still “in its in-
fancy”, isogeny-based cryptography relies on problems that still need to be crypt-
analysed and to stand the test of time. Recent attacks [CD22, MM22, Rob22]
on SIDH, outlined at the end of this chapter, are clear evidence that we need to
better understand there problems and assess their strength. More specialised
work can be done considering specific assumptions made when proving secu-
rity of a protocol: since this research field is progressing at a fast pace, new
information on the algebraic and geometric structures of isogeny graphs can
strengthen or hinder some conjectures. In addition to a cryptographic analysis,
it is therefore important to follow an algebraic/geometric/number theoretic
approach in assessing the security of cryptographic schemes, particularly in
isogeny-based cryptography, an area that is still relatively youthful compared
to other post-quantum alternatives.

RQ 3: can we obtain faster isogeny-based cryptography? One of the
major drawbacks in choosing isogeny-based cryptographic schemes is still their
relative slowness compare to other post-quantum alternatives. There are two
ways that lead to improvements on existing schemes:

• algorithmic improvements. As often happens in algorithmics, several
techniques and tricks can be implemented to speed up computations
or reduce sizes. Some are of mathematical lineage, others are more
cryptographic in nature, others again purely stem from computer science.
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• security proof improvements. Correlated with our first research question,
better performances can result from having a tighter security proof. In
fact, reducing the tightness loss has the positive e�ect of lowering the
parameter sizes while maintaining the same security confidence.

4.2 Contributions

The research done throughout this thesis resulted in several contributions to
the field of isogeny-based cryptography:

• in terms of cryptographic protocols, we provide a CSIDH-based key-
exchange protocol and an SIDH-based signature scheme. With the former,
we construct the first provably secure CSIDH-based KEX with a special
focus on the tightness of the security reduction. With the latter, we
design an SIDH-based signature scheme, and apply several optimisations
to shorten its signature size and running time. Despite not being novel in
the literature, these optimisations are not often taken into account in the
design of a digital signature scheme. Morevoer, we extend the unbalanced
challenge space analysis to the ternary challenge case, proving results of
novel and independent interest in cryptography.

• in terms of generic knowledge on supersingular isogeny graphs, we analyse
the occurrence of cycles formed by two same-degree isogenies. After
assessing how they a�ect the security of the SIDH identification protocol,
we argue that these cycles are few under some reasonable assumptions.
In light of our findings, the original SIDH identification protocol was not
secure anymore. Nevertheless, we salvage it without any modifications
by simply providing a new knowledge extractor, which never fails despite
the existence of (arguably few) cycles.. Our study on the supersingular
isogeny graph is of independent interest, even though our applications
are tailored to the deceased SIDH protocol.

• in terms of algorithmic improvements, we speed up the computation
of the Deuring correspondence in general characteristic, while previous
work focused on specially crafted primes. This has two main impacts:
we tighten up the security reductions that are based on KLPT-like
algorithms, and we provide faster (sage) implementation of algorithms
for computational number theorists and cryptographers working with
endomorphism rings of supersingular elliptic curves.

In the following we summarise the contributions in the five papers presented
in chronological order, while the authors are listed in alphabetical order.
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Paper 1 - Practical Isogeny-Based Key-exchange with Optimal
Tightness. Bor de Kock, Kristian Gjøsteen, Mattia Veroni. Selected Areas
in Cryptography, 2020.

Our motivation behind Paper 1 is to be found in RQ1. Our goal in this work
was to adapt a construction by Cohn-Gordon et al. [CCG+19] to supersingular
elliptic curves over Fp, obtaining an isogeny based authenticated KEX protocol
with an optimally tight proof. After studying the problem, we looked at SIDH

and CSIDH for random self-reducibility, a crucial point in the tightness of the
security proof. We were able to exploit the Di�e-Hellman-like structure of
CSIDH to build the post-quantum authenticated KEX scheme we aimed for.
Compared to previous isogeny-based authenticated key-exchange protocols, our
scheme is rather simple, its security relies only on the CSIDH version of the
Strong Di�e-Hellman problem and it has optimal communication complexity
for CSIDH-based protocols. Our security proof crucially depends on the re-
randomizability of CSIDH-like problems, and carries on in the ROM.

Paper 2 - Collisions in Supersingular Isogeny Graphs and the
SIDH-based Identification Protocol. Wissam Ghantous, Shuichi Kat-
sumata, Federico Pintore, Mattia Veroni. Submitted at Journal of Algebra
in March 2022.

With this paper we addressed RQ 2, testing the reliability of certain
assumptions and questioning the security proof of the identification protocol
based on SIDH. We analysed the security proofs available in the literature
for the SIDH-based identification protocol, together with their e�ects on the
security of the digital signatures obtained via the Fiat-Shamir transform. All
such proofs consider the same extraction algorithm when it comes to proving the
special-soundness property. The scope of this extractor is to output the witness
for a statement that appears in two valid transcripts with equal commitments
and di�erent challenges.

Our doubts on the reliability of such extractor were raised after we run some
tests on SIDH (instantiated with toy-example parameters), that showed how
this was not always true. We were then able to produce a few counterexamples
with parameters of cryptographic size that invalidated the property claim. The
general argument, in fact, fails due to the existence of some collisions (cyclic
isogenies with di�erent kernels and equal domain and codomain curves) in
supersingular isogeny graphs.

After detecting the fault, we began to study the existence of such collisions
from a theoretical point of view, discussing their impact on the security of
the SIDH-based digital signatures. We could argue that such cycles occur
in negligible quantity, after making some mild assumptions. We also took a
di�erent approach to restore the security of the identification protocol: relying
on the Generalised Riemann Hypothesis, we introduced a new extractor for
which we rigorously proved the special soundness property.
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Paper 3 - Sigh: faster and shorter SIDH signatures. Wissam Ghantous,
Federico Pintore, Mattia Veroni. Cannot be published as is, due to the recent
attacks on SIDH.

In this paper we tackled RQ 3 in light of our results from Paper 2. We
presented an isogeny-based signature scheme whose security relied on the
computational supersingular isogeny problem. The protocol was obtained
by applying the Fiat-Shamir transform to the SIDH identification protocol,
and then performing a series of optimisations both on the signature size and
on the signing algorithm. Compared to other SIDH-based signature schemes,
our protocol allowed for faster and smaller signatures, since we relied on the
original SIDH identification scheme (proven secure in Paper 2), rather than on
modified versions such as in [DDGZ21], that aims to restore special soundness
by changing the protocol at the cost of extra computation.

We were working on the implementation of our scheme when the devastating
attacks on SIDH appeared in August 2022. Unfortunately, all attacks on SIDH

apply to our scheme as well, since we make use of the torsion points images in
the same fashion of SIDH. Further investigation on recent masking techniques
[Fou22, Mor22] needs to be conducted before we can analyse their e�ects on
our scheme, and the paper would need further polishing and proof-reading.

Paper 4 - Deuring for the People: Supersingular Elliptic Curves
with Prescribed Endomorphism Ring in General Characteristic.
Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni.
Available on ePrint, in submission to LuCaNT 2023.

In this work, we design an algorithm to solve the constructive Deuring
correspondence for general primes p, translating an ideal in the quaternion
algebra ramified at p and Œ into an isogeny. The fastest algorithms to compute
such correspondence are the ones used in SQISign, but they work only for a very
special family of primes. Instead, we apply several optimisations to speed up
existing algorithms that work for more general primes than the ones carefully
crafted in SQISign. The most significant gain comes from the observation
that it is advantageous to allow for higher degree isogenies, lowering in this
way the necessary extension field degree. We show the impact of this simple
improvement (together with other, but less impactful, ones) by computing the
Deuring correspondence for generic primes up to 75 bits. Additionally, our
method further exploits the particular structure of the primes typically used
in isogeny based cryptography; for example, choosing p such that p2

≠ 1 has
many small prime-power divisors.

The version attached to this thesis is a preliminary draft of the version that
we will submit to LuCaNT in January 2023. There we plan on incrementing
the size of the prime p where we solve the constructive Deuring correspondence
to cryptographic size, and produce figures of di�erent running time as log p
increases.
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Paper 5 - E�ciency of SIDH-based signatures (yes, SIDH). Wissam
Ghantous, Federico Pintore, Mattia Veroni. Pre-print version available on
ePrint.

In this note, we try to salvage some work from Paper 3 adapting the same
techniques to a new SIDH-like identification protocol. Specifically, we assess
the e�ciency of a SIDH-based digital signature built on a recent identification
protocol proposed by Basso et al, which we denote by �SEC. Despite the
devastating attacks against SIDH, the protocol �SEC is secure, since it relies on
a di�erent (and more standard) isogeny-finding problem.

We apply some known cryptographic techniques to decrease the signature
size, and propose minor optimisations to compute many isogenies from the same
starting curve (and their kernels) in parallel. Our assessment confirms that
the problem of designing a practical isogeny-based signature scheme remains
largely open. In fact, we still get signatures of about 35KB for ⁄ = 128, and
we expect a significantly large signing time (probably in the order of tens of
seconds). However, we concretely determine the current state of the art which
future optimisations can compare to.

4.3 Attacks on SIDH and their e�ects on this thesis

Three major attacks [CD22, MM22, Rob22] have appeared over the past months
compromising the security of SIDH-based protocols. In this section, we first hint
on the Castryck–Decru [CD22] attack, with notation adapted on Section 3.2.
We then highlight some countermeasures that have been recently proposed,
closing with some final remarks on how this attacks have impacted this thesis.

4.3.1 Castryck-Decru’s attack

Let us first recall the notation we introduced when we described the SIDH

key-exchange, with the only di�erence that we consider only one coe�cient for
the secret keys (since this is the case analysed in the attack).

Let A = 2e
¥ 3f = B be two coprime integers such that p = A · B ≠ 1

is prime. Let ÈPA, QAÍ = E0[A] be A-torsion subgroup of E0 with enclosed
basis, and let E0[B] = ÈPB , QBÍ be the B-torsion subgroup with enclosed basis.
Alice’s secret key is computed by sampling nA uniformly at random from Z/AZ

and computing the kernel RA = PA + [nA]QA corresponding to the isogeny
ÏA : E0 ≠æ EA of degree A. Her public key is the triplet (EA, P Õ

B , QÕ
B), where

P Õ
B = ÏA(PB) and QÕ

B = ÏA(QB). Similarly, let nB
$

Ω Z/BZ be the secret
coe�cient sampled by Bob to construct the kernel kernel RB = PB + [nB ]QB

corresponding to the isogeny ÏB : E0 ≠æ EB of degree B. Let (EB , P Õ
A, QÕ

A)
be Bob’s public key, where P Õ

A = ÏB(PA) and QÕ
A = ÏB(QA).

Suppose that we are given Bob’s public key (EB , P Õ
A, QÕ

A), and our goal
is to recover Bob’s secret isogeny of degree B = 3f (equivalently, the secret
coe�cient nB). Retrieving such an isogeny completely breaks the key-exchange
security, since we can then use ÏB to compute the shared key from Alice’s

54



Attacks on SIDH and their e�ects on this thesis

public key. The attack heavily relies on three pieces of information, two of
which are the torsion points images and the fixed degree of Bob’s isogeny. The
third one is the known endomorphism ring of the initial curve E0.

The high-level description of the attacks is quite short and easy to
understand. Suppose there exists a decision oracle, which can tell right from
wrong guesses on steps in Bob’s secret walk. The strategy to reconstruct the
secret scalar nB digit-by-digit is simply to guess a step in Bob’s path and query
the oracle on its correctness. At every iteration, there are only three options
for the next step, since there are four isogenies of degree 3 for each vertex but
one is precluded by the non-backtracking property of SIDH’s isogenies. With at
most two oracle calls, one can thus determine the correct step and move onto
the next one, with a maximum of 2 · f oracle calls to recover the whole path.

The story gets complicated when we dive into the details of the decision
oracle, which exploits a glue-and-split technique. First of all, one needs to be
familiar with (2, 2)-isogeny graphs of superspecial principally polarised abelian
varieties of dimension 2 over Fp. We are far from experts in the field, but would
like to try giving an overview of the reasoning behind the construction of the
decision oracle.

Let p > 3 be prime, q be a power of p and fix ¸ = 2. An hyperelliptic
curve C of genus 2 over Fq is defined as the locus of points satisfying y2 = f(x).
If deg(f) = 6, there are 15 possible factorisations of f as product of polynomials
of degree 2. To each of these factorisations we associate a Richelot isogeny,
which maps C either to another hyperelliptic curve A of genus 2 or to a product
(E, EÕ) of supersingular elliptic curves. Having curves and isogenies, we can
construct a graph: the vertices are either products of supersingular elliptic
curves or Jacobians of superspecial curves of genus 2 (whatever this means),
and the edges are Richelot isogenies.

It turns out that the vertices (defined over Fp2) are not split 50/50 among
the two types we have introduced: there are very few (roughly p2

288 ) products of
supersingular elliptic curves compared to the Jacobians of superspecial elliptic
curves (roughly p3

2880 ). A step represented by a Richelot isogeny is said to
be split if it lands on a vertex of the form (E, EÕ), or glued if it lands on a
Jacobian. Notice how, for primes p of cryptographic size, a random walk of
polynomial length on the graph will end on a vertex of the form (E, EÕ) with
negligible probability.

On the other hand, under certain conditions on the factors of f(x), a
Richelot isogeny actually gives a rational map whose kernel is isomorphic to
(Z/2Z) ü (Z/2Z), and thus can be written as a (2, 2)-isogeny (think of it as
a pair of 2-isogenies). Every Richelot isogeny of the form (2e, 2e) has kernel
isomorphic to (Z/2e

Z) ü (Z/2e
Z) in (E, EÕ)[2e] and can be written as a chain

of e (2, 2)-isogenies. Kani [Kan97] gives us a way to determine whether the
codomain of a Richelot isogeny is a Jacobian or a product of supersingular
elliptic curves. First of all, Kani defines an isogeny diamond configuration
of order N as a triplet (Ï, G1, G2) of an isogeny Ï : E ≠æ EÕ and two
disjoint (but for the point at infinity) subgroups G1, G2 ™ ker Ï such that
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deg Ï = #G1 · #G2 and N = #G1 + #G2. Then the theorem: the codomain
of a given (N, N)-subgroup of (E, EÕ) is the product of supersingular elliptic
curves if and only if it comes from isogeny diamond configuration of order
N , i.e. it is generated by (P, xÏ(P )) and (Q, xÏ(Q)) for an N -torsion basis
ÈP, QÍ = E[N ] and a suitable x œ Z.

The authors of [CD22] brilliantly managed to turn these facts into a
decision oracle to decide whether an attempted step in the key-recover attack
is correct or not. Unfortunately, there is no shortcut to show the exact
operation of the algorithm, so the curious reader must first conquer all the
necessary mathematical background. A good starting point is the Isogeny-
based cryptography school (https://isogenyschool2020.co.uk/schedule/), where
many excellent researchers have contributed with several talks on this topic,
particularly during week 9.

4.3.2 Possible countermeasures

Two recent pre-prints by Fouotsa [Fou22] and Moriya [Mor22] propose
countermeasures to the devastating attack mentioned in Section 4.3. Being
still in their preliminary versions at the time of writing, I will only highlight
some aspects and techniques thereby contained.

In [Fou22], the countermeasure is to mask (by randomly scaling) the
torsion points images, one of the two pieces of information crucial to the
Castryck-Decru’s attack. The idea is to rescale the torsion point images
ÏA(PB), ÏA(QB) by a uniformly random integer b

$
Ω Z/BZ, thus replacing

ÏA(PB), ÏA(QB) with [b]ÏA(PB), [b]ÏA(QB) in Alice’s public key. The key
exchange is preserved: the point [mB]„A(PB) + [nB]„A(QB) and the point
[mB][b]„A(PB) + [nB][b]„A(QB) = [b]([mB]„A(PB) + [nB]„A(QB)) generate
the same subgroup, so the final curves EAB and EBA respectively computed
by Bob and Alice are still isomorphic. At the same time, the Castryck-Decru
attack loses its e�ciency if used to recover the new secret isogeny [b]ÏA of
degree p3/2, and loses it success probability if one tries to recover the original
ÏA, due to the large number of small prime factors of B.

The modified SIDH key-exchange, that we hereby call Masked Torsion-Point
SIDH (MTPSIDH) is depicted in Figure 4.1, where

• p = A · B · f ± 1 is a prime, where A =
r⁄

i=1 pi and B =
r⁄

i=1 qi are
coprime integers, all pi, qi are small distinct primes, A ≥ B and f is a
small cofactor;

• E0 is a supersingular elliptic curve over Fp2 , with torsion bases ÈPA, QAÍ =
E0[A] and ÈPB , QBÍ = E0[B];

• RA = [mA]PA + [nA]QA generates the kernel of Alice’s secret isogeny
ÏA : E0 ≠æ EA, and RB = ([mB]PB + [nB]QB) generates the kernel of
Bob’s secret isogeny ÏB : E0 ≠æ EB ;
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• (P Õ
B , QÕ

B) = ([b]„A(PB), [b]„A(QB)) for a secret integer b œ Z/BZ

sampled at random by Alice, and (P Õ
A, QÕ

A) = ([a]„B(PA), = [a]„B(QA))
for a secret integer a œ Z/AZ sampled at random by Bob;

• RÕ
B = [mb]P Õ

B + [nB]QÕ
B generates the kernel of „Õ

B : EA ≠æ EAB

computed by Bob, and RÕ
A = [ma]P Õ

A + [nA]QÕ
A generates the kernel of

„Õ
A : EB ≠æ EBA computed by Alice.

E0 (EA, P Õ
B , QÕ

B)

(EB , P Õ
A, QÕ

A) EAB ƒ EBA

ÏA

ÏB ÏÕ
B

ÏÕ
A

Figure 4.1: The MTPSIDH key exchange. Elements in blue are computed by
Alice, those in red are computed by Bob.

In [Mor22], the countermeasure is to mask (by varying) the degree of the
secret isogenies, in addition to the masking of the torsion point images (here
necessary to guarantee the secrecy of the degree). Without getting lost in a
forest of indices and superscripts, let us just say that with respect to [Fou22],
the coprime integers A and B are still products of many small di�erent primes,
but each prime pi appears with multiplicity ei which is sampled at random
(from values between 0 and 6 as per parameters suggested in the paper). The
rest of the protocol, which we call Masked Degree SIDH (MDSIDH), is basically
identical to MTPSIDH. Let us summarise in Table 4.1 the di�erences in size
between SIDH, MTPSIDH and MDSIDH.

Conclusive remarks. At the time of submission (16 December 2022), we
are in the uneasy situation of concluding this thesis with the unpublishable
Paper 3 and one at an unclear state. With the latter we refer to Paper 2, where
we study on collisions in supersingular isogeny graphs. The manuscript was
submitted in March 2022 to a journal, but we authors have not received any
reviews yet despite having urged the editors multiple times. The second part of

1
Values for SIDH parameters are taken from the Open Quantum Safe library https:

//openquantumsafe.org/liboqs/algorithms/kem/sike.html
2
These numbers are missing from the original paper. I have computed them directly

from the specific parameters and key-generation algorithm. My computations assume 3 bits

per exponent when the maximum value is 6, 1 bit when the maximum value is 1 and a total

of p bits for the two secret coe�cients (one in Z/AZ and the other in Z/BZ). I would like to

remark that one of the two coe�cients is not necessary to complete the key exchange and

can be removed from the secret key, saving ¥ 425 B and ¥ 700 B.
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SIDH
1

MTPSIDH MDSIDH

A = 2e A =
r⁄

i=1 pi A =
r⁄

i=1 pei
i

B = 3f B =
r⁄

i=1 qi B =
r⁄

i=1 qfi
i

⁄ = 128

p 434 b 2308 b 6806 b
sk 28 B 145 B ¥ 878 B2

pk 330 B 1734 B 5105 B
pkc 197 B 1013 B 2980 B

⁄ = 192

p 610 b 465 b 11191 b
sk 39 B 233 B ¥ 1473 B2

pk 462 B 2796 B 8394 B
pkc 274 B 1631 B 6890 B

Table 4.1: Comparing sizes of base primes, secret keys and public keys in SIDH

and those in the two masked variants from [Fou22] and [Mor22].

the paper is clearly obsolete now, since the SIDH-based identification protocol
is now broken in light of the attacks appeared since August 2022. The first part,
addressing general questions on the supersingular isogeny graph and performing
analysis of independent interest, contains results that are still valid. We are
waiting for the first round of reviews from the journal, but the fate of this paper
is undecided at this stage. Despite appearing here as pre-prints, Paper 4 and
Paper 5 are valid and we expect them to be accepted for publication in 2023.
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Abstract. We exploit the Di�e-Hellman-like structure of CSIDH to
build a quantum-resistant authenticated key-exchange algorithm. Our
security proof has optimal tightness, which means that the protocol is
e�cient even when instantiated with theoretically-sound security param-
eters. Compared to previous isogeny-based authenticated key-exchange
protocols, our scheme is extremely simple, its security relies only on the
underlying CSIDH-problem and it has optimal communication complex-
ity for CSIDH-based protocols. Our security proof relies heavily on the
re-randomizability of CSIDH-like problems and carries on in the ROM.

Keywords: Post-quantum, isogenies, key-exchange, provable-security,
tightness, re-randomization.

1 Introduction

Authenticated key-exchange protocols allow two parties to collaborate in order
to create a shared secret key, providing each of them with some assurance on
the identity of the partner. Authentication can be achieved in two ways: implic-
itly, if the algebraic properties of the scheme imply that the only user who can
compute the shared key is the intended one, or explicitly, by receiving a confir-
mation that the interlocutor has actually computed the key. The latter implies
the use of a second mechanism which provides authentication, like a signature
scheme, a KEM or a MAC. Even if explicit authentication might seem a stronger
and preferable feature, in the real world it does not add much to the security
of the protocol. First of all, it does not guarantee that the partner holds the
shared key for all the time between the key confirmation and the use of the key.
Moreover, the generation of signatures or the use of KEMs and MACs produces
evidence of participation to a key-exchange, while implicit authentication does
not. Finally, the schemes relying on implicit authentication typically require less
computations and message exchanges compared to those involving an explicit
authentication mechanism, with a significant profit in computational cost and
communication e�ciency.

The security proof limits the advantage of an adversary in breaking the
scheme to the probability of solving some mathematical hard problem. Deploy-
ing a cryptographic algorithm should always be done in a theoretically sound
way: the size of the concrete parameters must be large enough to guarantee the
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required � bits of security. If on one hand any security proof asymptotically guar-
antees the desired security level, on the other hand we want to use the smallest
parameters possible, in order to obtain the most e�cient implementation under
the given security constraints. It is therefore extremely relevant to measure the
so-called tightness of the proof by computing its security loss L(�), which should
be as small as possible. The parameters on which we focus are, in particular,
the number of users running the protocol and the number of sessions per user;
both quantities are typically approximated to 216. Note that, nowadays, secu-
rity proofs [JKSS12,KPW13,BFK+14] for a widely deployed protocol such as
TLS have a quadratic loss in the number of sessions, fact that is not taken into
account for the implementation.

In 2019 Cohn-Gordon et al. [CCG+19] developed a key-exchange protocol
with an nearly (but optimally) tight security proof. In particular, the security loss
is linear in the number of users and constant in the number of sessions per user.
The schemes in the latter paper base their security on the Strong-DH assumption
and its variants, defined over cyclic groups of prime order. The re-randomization
of Di�e-Hellman problems plays a fundamental role in achieving the optimal
tightness of the proofs, and thus it is a desirable feature that we cannot disregard.
The tightness and practicality of these schemes raise an interesting question: is
it possible to adapt the protocols (together with their security proofs) in order
to make them quantum-safe?

In 1997, Peter Shor [Sho97] published a quantum algorithm for integer factor-
ization and one for computing discrete logarithms, both running in polynomial
time. As soon as a large-scale quantum computer will become available, the
information security based on primitives like the RSA cryptosystem and the
Di�e-Hellman key-exchange will be breached. In order to address this quantum
threat, many researchers have focused their attention on post-quantum cryp-
tography. The goal is to find new cryptographic primitives which can be imple-
mented on classical computers, still guaranteeing security against both classical
and quantum adversaries. In 2016, NIST announced a world-wide competition
for new post-quantum standards in public-key encryption and digital signature
algorithms. 69 submissions were accepted in the first round, 26 made it to the
second step, and 7 finalists were announced on July 22, 2020. The search for new
post-quantum cryptographic standards is still ongoing.

Supersingular-Isogeny based Di�e-Hellman (SIDH) [JD11] is one of the promis-
ing candidates in the search for post-quantum cryptographic protocols. Key-
exchange protocols based on isogenies are unique in the sense that they provide
key-sizes roughly similar to those of pre-quantum alternatives, but they are also
known for being more complex (algebraically) compared to some of the post-
quantum alternatives. An example of a scheme that is based on SIDH is SIKE
[JAC+19], which is one of the 26 candidates in the second round of NIST’s
2016 competition for post-quantum cryptographic protocols. Even if SIKE is
not among the finalists announced in July 2020, NIST has shown high inter-
est on isogeny-based cryptography, encouraging further research on this field
[AASA+].
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Although SIDH-based schemes have been around for a few years now, there
are still open questions about the security behind them. In particular, ran-
dom self-reducibility of SIDH problems seems very hard to achieve. A di↵erent
isogeny-based scheme is CSIDH [CLM+18]: introduced in 2018, it o↵ers a much
more flexible and adaptable algebraic structure. In this paper we show how to
obtain an optimally tight security proof for a CSIDH-based key-exchange proto-
col, making use of random self-reducibility. This kind of re-randomization plays a
fundamental role in the tight proofs of, for instance, the classical Di�e-Hellman
key-exchange, but is also used in modern schemes: Cohn-Gordon et al. [CCG+19]
exploit this property to construct a tightly-secure AKE protocol.

The protocol we introduce is, to our knowledge, the best proven-secure re-
sult for isogeny-based key-exchange protocols. The proofs presented here draw
on the proofs from Cohn-Gordon et al. [CCG+19], but with changes to the re-
randomization strategy, since re-randomization in the isogeny case is di↵erent
from the one in the cyclic group case. Both e�ciency and tightness are a signif-
icant improvement over the state of the art, and can lead to the deployment of
schemes with more e�cient parameter choices obtaining high security at com-
putational costs which are as low as possible.

1.1 Our contributions

In section 3.2 we adapt protocol ⇧ by Cohn-Gordon et al. [CCG+19] to the
isogeny setting, obtaining the first implicitly authenticated CSIDH-like protocol
with weak forward secrecy, under only the Strong-CSIDH assumption. This is
the first scheme with a security proof (moreover with optimal tightness) in the
same setting as CSIDH. The protocol requires each user to perform 4 ideal-class
evaluations, and its security proof, shown in Appendix B, has a tightness loss
which is linear in the number of sessions performed by a single user.

The adaptation we perform is, however, not entirely straightforward. In the
new setting we have only one operation, namely the multiplication of ideal
classes, while in the original protocol re-randomization is achieved via two op-
erations (addition and multiplication of exponents). This leads to a di↵erent
re-randomization technique which relies one the random self-reducibility of the
computational CSIDH problem shown in appendix 4.1.

We obtain a significant improvement over the state of the art of isogeny-based
key-exchange protocols. Compared to one of the latest scheme, from “Strongly
Secure Authenticated Key Exchange from Supersingular Isogenies” [XXW+19],
we obtain better e�ciency and tightness. Moreover, unlike this latter scheme,
our protocol does not require any authentication mechanism. This allows us to
rely on the same class (and a smaller number) of hardness assumptions, and to
avoid the use of signatures, which are tricky and expensive [DG19] to produce
in the isogeny setting. Compared to the CSIDH protocol, which lacks a security
proof and for which authentication seems hard to achieve, our ⇧-SIDE protocol
has implicit authentication at the cost of a few more ideal-class evaluations. As
shown in section 6, our⇧-SIDE protocol is competitive with other post-quantum
candidates, once instantiated with theoretically-sound parameters.
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1.2 Related work

In the last years, a lot of research has been conducted on SIDH-based schemes.
For example, Galbraith [Gal18] has shown how to adapt generic constructions
to the SIDH setting, and he introduced two new SIDH-AKE protocols. Similar
results were achieved by Longa [Lon18], except for the introduction of the two
new schemes. Assuming a straightforward adaptation, a few other protocols have
a non-quadratic tightness loss. For example KEA+ [LM06] has a linear loss in
the number of participants multiplied by the number of sessions, assuming the
hardness of the Gap-DH problem. Although, it does not achieve wPFS and takes
O(t log t) time only when instantiated on pairing-friendly curves.

In their recent paper, Xu et al. [XXW+19] propose SIAKE2 and SIAKE3,
a two-pass and a three-pass AKE respectively. SIAKE2, whose security relies
on the decisional SIDH assumption, has a rather convoluted construction: they
design a strong One-Way CPA secure PKE scheme, which is then turned into a
One-Way CCA KEM through the modified FO-transform and finally used as a
building block for the AKE scheme. The three-pass AKE SIAKE3 is obtained by
modifying the previously designed KEM, once a new assumption (the 1-Oracle
SI-DH, an analogue of the Oracle Di�e-Hellman assumption in which only one
query is allowed) is made. Compared to this scheme, our result is simpler and
it has a tighter security proof, smaller communication complexity and improved
overall e�ciency.

2 Preliminaries

In this section, we first recall the definition of tightness for security reductions.
Then we provide the reader with key-concepts and results which are indispens-
able to understand the constructions of SIDH and CSIDH. Good references re-
garding elliptic curves and isogenies are Silverman [HS09], Washington [Was08]
and De Feo [Feo17]; the original papers introducing SIDH and CSIDH are Jao-De
Feo [JD11] and Castryck et al. [CLM+18], respectively.

2.1 Tight reductions

When comparing schemes, one should always consider protocols once they have
been instantiated with theoretically-sound parameters, which guarantee the de-
sired level of security. These parameters (such as the bit-length of the prime
defining a base field or the key size) strongly depend on the security proof cor-
related with the protocol. A security proof usually consists of

– a security model, in which we describe an adversary by listing a set of queries
that it can make (and therefore specifying what it is allowed to do);

– a sequence of games leading to a reduction, in which an adversary A against
the protocol is turned into a solver B for an allegedly hard problem.
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The “quality” of a reduction can be measured by computing its security loss: if
tA and ✏A are the running time and the success probability of A respectively,
and tB and ✏B respectively are the running time and the success probability of
B, then we define the security loss L as

tA
✏A

= L
tB
✏B

. (1)

If L is constant, then we say that the reduction is tight. Having a tight proof
is as relevant as building an e�cient protocol, because this leads to deploy the
smallest possible parameters when concretely instantiating a protocol.

In some cases, however, it is impossible to obtain a tight reduction. In a
simple scheme the adversary is run only once, in comparison to other protocols
which use the Forking Lemma in order to run multiple copies of the adversary.
A linear loss in the number of participants to the protocol is unavoidable for
simple schemes, while applying the Forking Lemma leads to a non-tight proof.
We therefore focus on optimal tightness whenever tightness is unachievable: the L
in Equation (1) turns out to be not constant, but one proves that it is impossible
to decrease its order. We rely on the same strategies adopted in the paper by
Cohn-Gordon et al. [CCG+19] to prove the lower bound on the tightness loss,
applying their variant of the meta-reduction techniques by Bader et al. [BJLS16].

Many available schemes, which are actually taken into account for standard-
ization processes, have quite non-tight security reductions. Let µ be the number
of users running the protocol and let k be the number of sessions per user.
HMQV [Kra05], a classically secure protocol in the random-oracle model under
the CDH assumption, has security loss O

�
µ2k2

�
. If we consider a generic signed

KEM approach, we get a O
�
µ2k2

�
loss in addition to the signature scheme loss.

In many cases, parameters are chosen in a non theoretically-sound way, while
tightness loss should always be considered when comparing protocols.

2.2 Elliptic curves, isogenies and endomorphism rings

Let Fp be a finite field for a large prime p and let E be an elliptic curve over
Fp. We say that E is supersingular if and only if it has order #E(Fp) = p + 1.
Consider the isomorphisms of elliptic curves, i.e. all the invertible algebraic maps.
Any two elliptic curves over the algebraic closure Fp are isomorphic if and only
if they have the same j-invariant. Thus we can use isomorphisms to define an
equivalence relation between elliptic curves and identify an equivalence class by
the j-invariant of the curves in the class.

Let E1 and E2 be two elliptic curves defined over Fp and let 0E1 , 0E2 denote
the respective points at infinity. An isogeny from E1 to E2 is a morphism � :
E1 ! E2 such that �(0E1) = 0E2 . For any isogeny � : E1 ! E2 there exists a
dual isogeny �̂ : E2 ! E1 such that �̂�� = [deg(�)]E1 and ���̂ = [deg(�)]E2 . An
isogeny is essentially determined by its kernel: given a finite subgroup G ⇢ E(Fp)
there exist a unique (up to isomorphisms) elliptic curve E2 ' E1/G and a
separable isogeny � : E1 ! E2 such that ker(�) = G. The isogeny � has degree
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` equal to the cardinality of its kernel, and we call it an `-isogeny. Given the kernel
of an isogeny, we can exploit Vélu’s formulae [Vél71] to compute the isogeny �
together with the codomain curve E2 in O(` log(p)2) bit operations. This is the
best approach when ` is small enough and p is shorter than a few thousand
bits. Any separable isogeny defined over Fp can be written as the composition
of isogenies of prime degrees.

An endomorphism is an isogeny from E to itself; the set of endomorphisms
of E, together with the zero map and equipped with pointwise addition and
composition, forms the endomorphism ring End(E). We denote by Endp(E) the
ring of endomorphisms defined over Fp. For ordinary curves Endp(E) = End(E),
while for supersingular curves Endp(E) ⇢ End(E). In particular, End(E) is
an order in a quaternion algebra, whilst Endp(E) is an order in the imaginary
quadratic field Q(

p
p). A classical result by Deuring [Deu41] reveals that End(E)

is a maximal order in Bp,1, the quaternion algebra ramified at p and at 1.

2.3 The ideal class group action

We hereafter provide the reader with the basic definitions and known results
regarding ideal class group action. In particular, this section gravitates around
a recurring sentence in isogeny-based cryptography:

“The ideal class group of an imaginary quadratic order O acts freely via
isogenies on the set of elliptic curves with Endp(E) ' O.”

We will then focus on the computational aspects, essential to understand CSIDH.

Algebraic foundations. An algebra A is a vector space over a field K equipped
with a bilinear operation. If the bilinear operation is associative, then we say that
A is an associative algebra. Given a unitary ring R, a left R-module RM consists
of an abelian group (M,+) and a scalar multiplication R⇥R M �!R M which
satisfies left/right distributivity, associativity and neutrality of ring’s unit. Let
R be an integral domain (a commutative unitary ring without zero-divisors) and
let K be its field of fractions; a left R-module RM is a lattice in the vector space
V over K if RM is finitely generated, R-torsion free and an R-submodule of V .
An order is a subring O of a ring A such that 1) A is a finite dimensional algebra
over Q, 2) O spans A over Q (i.e. QO = A), 3) O is an integer lattice in A.

The ideal class group. Let K be a finite extension of Q of degree 2, which
is called a quadratic number field, and let O ✓ K be an order. The norm of an
O-ideal a ✓ O is defined as N(a) = |O/a|, which is equal to gcd({N(↵) | ↵ 2 a}).
Norms are multiplicative: N(ab) = N(a)N(b). A fractional ideal of O is an O-
submodule of K of the form ↵a, where ↵ 2 K

⇤ and a is an O-ideal. Fractional
ideals can be multiplied and conjugated in the obvious way, and the norm extends
multiplicatively to fractional ideals. A fractional O-ideal is invertible if there
exists a fractional O-ideal b such that ab = O. If such b exists, we denote
a�1 = b. All the principal fractional ideals ↵O where ↵ 2 K

⇤ are invertible.
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The ideal class group of O, defined as cl(O) := I(O)/P (O), is the quotient
of the set of invertible fractional ideals I(O) by the set of principal invertible
fractional ideals P (O): For any M 2 Z \ {0}, every ideal class [a] has an integral
representative of norm coprime to M . There is a unique maximal order of K
with respect to inclusion, which is called the ring of integers and is denoted by
OK. The conductor of O in OK is the index f = [OK/O]. Every O-ideal of norm
coprime to the conductor is invertible and factors uniquely into prime ideals.

The class group action. Let E``p(O) be the set of supersingular elliptic curves
over Fp with Endp(E) isomorphic to an order O in an imaginary quadratic field
and let E 2 E``p(O). Given an O-ideal a, we define the action of a on E as
follows:

1. we consider all the endomorphisms ↵ in a,
2. we compute the a-torsion subgroup E[a] = \↵2aker(↵) = {P 2 E(Fp) :
↵P = 0E 8↵ 2 a},

3. we compute the isogeny �a : E ! Ea ' E/E[a].

It is common practice to denote the action of a on E by a ⇤E.
A fundamental result in isogeny-based protocols is the Deuring correspon-

dence between the set of maximal orders in Bp,1 and the set of elliptic curves:
fixing a supersingular elliptic curve E0, every `-isogeny ↵ : E0 ! E corresponds
to an ideal a of norm `, and vice-versa. Since Ea is determined (up to isomor-
phism) by the ideal class of a, finding di↵erent representatives of an ideal class
corresponds to finding di↵erent isogenies between two fixed curves.

We can rewrite any ideal a of O as the product of O-ideals a = (⇡pO)ras,
where ⇡p is the p-th Frobenius endomorphism and as 6✓ ⇡pO. This defines an
elliptic curve a ⇤E and an isogeny �a : E �! a ⇤E of degree N(a) as follows:

– the separable part of �a has kernel \↵2asker(↵);
– the purely inseparable part consists of r iterations of Frobenius.

The isogeny �a and the codomain a ⇤E are both defined over Fp and are
unique up to Fp-isomorphism. Directly from this construction it is clear that
multiplying ideals and composing isogenies are equivalent operations.

Let E``p(O,⇡) be the set of elliptic curves defined over Fp whose endomor-
phism ring is isomorphic to O such that the Frobenius endomorphism ⇡p cor-
responds to ⇡. As explained by Castryck et al. [CLM+18], we get the following
fundamental result:

Theorem 1. Let O be an order in an imaginary quadratic field and ⇡ 2 O such
that E``p(O,⇡) is non-empty. Then the ideal class group cl(O) acts freely and
transitively on the set E``p(O,⇡) via the map

cl(O)⇥ E``p(O,⇡) �! E``p(O,⇡)

([a], E) �! [a] ⇤E.

From now on, we drop the class notation“[a]” in favor of a simpler “a” by
considering any integral representative in the class.
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The structure of the class group. The class group cl(O) is a finite abelian
group whose cardinality is asymptotically #cl(O) ⇠

p
|�|. As argued by CSIDH’s

authors [CLM+18], computing the exact structure of the class group requires a
lot of computational e↵ort. The best known algorithm (by Hafner and McCurley
[HM89]) for computing the structure of the class group is subexponential in �,
which is typically very large for CSIDH (about the size of p). Therefore, the
authors opt for heuristics which allow to find a very good approximation.

We are interested in the primes for which there exist distinct prime ideals
l, l of O such that `O = ll. If ` is such a prime, we say that it splits in O; ` is
called an Elkies primes in the point-counting setting. The ideal l is generated
as (`,⇡ � �), where � 2 Z/`Z is an eigenvalue of ⇡p on the `-torsion, and its
conjugate is l = (`,⇡ � ⇡/�), where p/� is any integral representative of that
quotient modulo `. The prime ` splits in O if and only if � is a non-zero square
modulo `. The CSIDH protocol is carefully designed such that a long list of
primes (74 in the 512-bit implementation) are Elkies primes.

Computing the group action. According to the heuristics which are assumed
in CSIDH, any element of the group can be represented as the product of small
primes ideals. We can compute l ⇤E, the action of a prime ideal l = (`,⇡��) on
E, in three di↵erent ways:

(a) by using the modular polynomials [Sut13]:
1. find Fp-rational roots of the modular polynomial �l(X, j(E)), which are

the j-invariants of the two possible codomains;
2. compute the kernel polynomials �(x) 2 Fp[x] for the corresponding iso-

genies;
3. determine which of the options is the correct one by checking if ⇡p(x, y) =

[�](x, y) modulo �(x) over the curve;
(b) by using the division polynomials [Was08, XI.3]:

1. factor the `-th division polynomial  l(E) over Fp;
2. match the irreducible factors with the right Frobenius eigenvalues;
3. use Kohel’s formulae to compute the codomain;

(c) by using Vélu’s formulae:
1. find a basis of the `-torsion points and compute the eigenspaces of ⇡p;
2. apply Vélu’s formulae to a basis point of the correct eigenspace to com-

pute the codomain.

In CSIDH, the authors opt for the last method, which is the fastest when the
necessary extension fields (in which the basis points lie) are small.

When � = 1 the curve has a rational point defined over the base field Fp. If
we also have that p/� = �1, the other eigenspace of Frobenius endomorphism
modulo ` is defined over Fp2 , so both codomains can be easily computed using
Vélu’s formulae over the base field, switching from a curve to its quadratic twist
if necessary. The parameters of the implementation are decided such that p ⌘ �1
(mod `) for many di↵erent primes `: in this case, � = 1 automatically implies
p/� = �1.
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3 Isogeny-based key-exchange protocols

Isogeny-based cryptography is a class of allegedly quantum-resistant schemes
resulting from NIST’s competition. Two of the most peculiar features that dis-
tinguish them from the other candidates are the use of shorter keys and the de-
ployment of more sophisticated algebraic structures. In this section, we first pro-
vide an overview of CSIDH (pronounced “seaside”) [CLM+18], a key-exchange
protocol which does not take part in NIST’s competition but is extremely inter-
esting and promising. Then we introduce our new protocol ⇧-SIDE (pronounced
“pie-side”), a translation if the protocol ⇧ [CCG+19] in the CSIDH setting.

3.1 CSIDH

What follows is an outline of the CSIDH protocol, whose underlying algebraic
structures are briefly explained in section 2.3. We dwell in particular on the
aspects which are relevant to our results.

Parameters. Fix a large prime p = 4 · `1 · `2 · · · · `n�1 where `i are small distinct
odd primes. p is designed such that p ⌘ 3 (mod 4), in order to

– easily write down supersingular elliptic curves over Fp;
– make use of the Montgomery form of elliptic curves in the implementation.

The starting curve for each execution of the protocol is the supersingular
elliptic curve in Montgomery form E0 : y2 = x3 + x over Fp. In this case the
characteristic equation of the Frobenius endomorphism is ⇡2

p = �p, which implies
that the Fp-rational endomorphism ring Endp(E0) is an order in the imaginary
quadratic fieldQ(

p
�p); in particular, Endp(E0) = Z[⇡]. The resulting `i-isogeny

graph is a disjoint union of cycles. Moreover, since ⇡2
� 1 ⌘ 0 (mod `i) for each

i = 1, . . . , n, the ideals `iO split as `iO = lili = (`i,⇡� 1)(`i,⇡+1) (so all the `i
are Elkies primes). Furthermore, the kernel of �li is the subgroup generated by
a point P of order `i which lies in the kernel of ⇡� 1. Analogously, the kernel of
�li is generated by a point Q of order `i that is defined over Fp2 but not in Fp

and such that ⇡(Q) = �Q.

Sampling ideals and computing their action. Although we want to sample uni-
formly at random from the ideal class group cl(O), it is preferable not to compute
its exact structure because of the large size of the discriminant �. By heuristi-
cally assuming that

– the ideals li do not have very small order,
– the ideals li are evenly distributed in the class group,

two ideals le1
1
le2
2
· · · lenn for small ei will rarely lie in the same class. The ei are

sampled from a short range {�m, . . .m} for some integer m such that 2m+1 �
n
p
#cl(O). Since the prime ideals li are fixed, we represent any ideal

Q
i l

ei
i (which

will be the user’s secret key) as a vector (e1, e2, . . . , en) 2 [�m,m]n.
Since ⇡2

⌘ �p ⌘ 1 (mod `i), the eigenvalues of all `i-torsion subgroups are
+1 and �1. This allows us to e�ciently compute the action of li by using method
3. in section 2.3.
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Representing and validating Fp-isomorphism classes. SIDHmisses a key-validation
protocol, and countermeasures are expensive. We recall how the authors of
CSIDH solve the problem for their protocol. First of all, they provide a result
[CLM+18, Proposition 8]) which states that, for the chosen p and supersingular
elliptic curve, the Montgomery coe�cient uniquely represents the class of elliptic
curves resulting from the evaluation of an ideal. Secondly, to prove that an ellip-
tic curve is supersingular (and thus #E(Fp) = p+1), it is enough to find a point
Q 2 E whose order is a divisor of p+1 greater than 4

p
p (by Hasse’s theorem, we

have only one multiple of that divisor in the interval [p+1� 2
p
p, p+1+ 2

p
p],

which must be the group order by Lagrange’s theorem). They therefore provide
an algorithm which takes a point at random and computes its order. With high
probability (increasing with `i), this will tell in only one step if the curve is
supersingular or not. If x-only Montgomery arithmetic is used, a random point
P is obtained by randomly picking x 2 Fp, and there is no need to di↵erentiate
points in Fp and in Fp2 (in the second case, the point will correspond to an
Fp-rational point in the quadratic twist, which is supersingular if and only if the
original curve is supersingular).

The CSIDH protocol. We first describe how to perform the Setup and the key-
generation, then we schematise the simple structure of key-exchange protocol.

Setup. In this phase we set up the global parameters of the key-exchange
protocol. In particular, we fix:

– n distinct odd primes `i, corresponding to n isogeny-degrees;
– a large prime p = 4 · `1 · `2 · · · `n � 1;
– the supersingular elliptic curve E0 : y2 = x3+x over Fp with endomorphism

ring O = Z[⇡].

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, ran-
domly sampled from a range {�m, . . . ,m} such that 2m + 1 � n

p
#cl(O), rep-

resenting the ideal class a = le1
1
le2
2
. . . lenn 2 cl(O). The public key is the Mont-

gomery coe�cient A 2 Fp of the elliptic curve a⇤E0 : y2 = x3+Ax2+x, obtained
by applying the action of a to the curve E0.

Algorithm 2: CSIDH, the non-interactive key-exchange protocol.

Alice Bob

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤E0 spkB : EB = b ⇤E0

retrieve EB and check retrieve EA and check

its supersingularity; its supersingularity;

KA = a ⇤ EB KB = b ⇤ EA

KA = ab ⇤ E0 = KB
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3.2 Our protocol: ⇧-SIDE

Algorithm 3: ⇧-SIDE protocol.

Alice: PA 2 Fp Bob: PB 2 Fp

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤ E0 spkB : EB = b ⇤E0

retrieve EB and check

its supersingularity;

eskA : f
$
 � cl(O)

epkA : EF = f ⇤E0 retrieve EA and check

EF its supersingularity;

eskB : g
$
 � cl(O)

epkB : EG = g ⇤E0

EG

ctxt = PA k PB k EA k EB k EF k EG

KB = H(ctxt k g ⇤EA k b ⇤EF k g ⇤EF )

KA = H(ctxt k a ⇤EG k f ⇤EB k f ⇤EG)

Just like in CSIDH, we fix a large prime p = 4 · `1 · `2 · · · `n � 1 for odd
and distinct primes `i. Then we consider the supersingular elliptic curve E0 :
y2 = x3+x defined over Fp, with endomorphism ring O = Z[⇡]. We recall that a
key-pair (a, EA) can be correctly (with heuristic assumptions) formed as follows:

1. for i = 1, 2, . . . , n, sample the exponent ai
$
 � {�m, . . .m}, where m is the

smallest integer such that 2m+ 1 � n
p

#cl(O);
2. construct the fractional ideal a = la1

1
· la2

2
· · · lan

n . The ideal class a will play
the role of secret key;

3. evaluate the action of the ideal class a on the elliptic curve E0, obtaining
the curve EA = a ⇤E0; EA is the Montgomery curve defined by the equation
y2 = x3 +Ax2 + x over Fp and EA will be the public part of the key pair.

The implementation-oriented reader should always remember that each elliptic
curve should be represented using its Montgomery coe�cient. For the sake of
notation we will refer to the curve instead.

Let P be the set of participants to the key-exchange protocol. We assume
that each party in P holds a static secret key ssk and a static public key spk,
the latter registered at a certificate authority CA. The certificate authority, upon
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registering a public key, does not require a proof of knowledge on the correspond-
ing secret key. We do not demand that public keys di↵er from party to party,
but we allow each party to register only one public key.

Suppose now that two parties Alice and Bob (uniquely identified as PA and
PB) in the set P want to establish a shared key. Here we have to distinguish
between the initiator of the protocol (in our example Alice) and the responder.
At the beginning of the session, upon retrieving Bob’s public key, Alice samples
an ephemeral secret key eskA = f, computes the ephemeral public key epkA =
EF and sends the result to PB . Upon receiving EF , Bob first checks that it is
supersingular and that its Montgomery coe�cient is not in {±2}; if so, he in
turn samples an ephemeral secret key eskB = g, computes the ephemeral public
key EG and sends it to Alice. Alice herself verifies the validity of EG. Each of
them can now obtain the session key K: given access to an hash function H,
they can locally compute

K = H(PA k PB k EA k EB k EF k EG k ag ⇤E0 k bf ⇤E0 k fg ⇤E0).

3.3 The SIDH case

A question naturally arises: if ⇧ can be adapted to the CSIDH setting, why
can’t we do the same in the SIDH setting? On one hand, it is surely possible to
translate the protocol itself, since SIDH has a Di�e-Hellman-like structure too.
The adaptation would require a di↵erent parameter choice, allowing two extra
sets of basis points, and the exchange of four extra image points (the images
of the peer’s basis points via the ephemeral isogeny) in order to allow the two
parties to compute the common key.

On the other hand, in this case the security proof wouldn’t hit the optimality
bound in the tightness loss. As it will be clarified in the next section, a property
that plays a fundamental role in this sense is the random self-reducibility of the
computational problem. In the next section we provide a formal proof of this
feature in the CSIDH case. At our knowledge, there exists no evidence that SIDH
shares this property, and it is rather unlikely to find a way to prove it.

4 Random self-reducibility

According to a fundamental definition by Blum and Micali, later rephrased by
Naor [NR97], a problem f is random self-reducible if solving it at any given
instance x can be reduced in polynomial time to the solution of f at one or more
random instances yi. In order to achieve random self-reducibility, there are two
conditions that have to be satisfied:

– the generation of the random instances y1, . . . yn has to be performed non-
adaptively;

– the instances y1, . . . yn must be uniformly distributed.
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Random self-reducible problems are extremely relevant for cryptographic
purposes. First of all, they are used in worst-case to average-case reductions :
a worst-case instance of the problem can be used to generate a set of random
instances, so that solving f on the random instances allows us to solve f at
the worst-case instance in polynomial time. In the early ’80s, Goldwasser and
Micali exploited random self-reducibility of mathematical problems to construct
cryptographic algorithms for probabilistic encryption [GM82] and pseudoran-
dom generation [BM82]. Even more, if the group G and its generator g are
properly chosen, the random self-reducibility of the discrete logarithm problem
guarantees passive security of the plain Di�e-Hellman key-exchange protocol.

g

A

X

B

Y

Z
0

Z

·g
↵

·g
�

E0

EA

ET

EB

EU

ETU

EAB

t⇤

u⇤

Fig. 1: Rerandomization graphs for Computational Di�e-Hellman and
Computational-CSIDH problems.

4.1 Random self-reducibility on CSIDH

It is folklore that the key-recovery problem in CSIDH is random self-reducible,
while SIDH-based problems are not. De Feo and Galbraith [DG19] provide
a short proof of random self-reducibility of CSIDH; hereafter, we prove this
property more verbosely, in a fashion that resembles the classical proof of re-
randomizability for the Computational Di�e-Hellman problem. A fundamental
role is played by the commutative action of cl(O) on the set of elliptic curves
with endomorphism ring isomorphic to O. The presence of a commutative action
is a very strong element of resemblance with the Di�e-Hellman protocol.
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Let us start with the definition of the Computational CSIDH problem. Let
G be the set of elliptic curves defined over Fp.

Problem 1 (Computational-CSIDH problem). Given n distinct odd primes `i
and a large prime p = 4 · `1 · `2 · · · `n � 1, let E0 2 G be the supersingular
elliptic curve in Montgomery form y2 = x3 + x. Given two valid CSIDH public
keys A,B 2 Fp, where A is the Montgomery coe�cient of the elliptic curve
EA = a ⇤E0 and B is the one of EB = b ⇤E0, find the Montgomery coe�cient
Z 2 Fp of the elliptic curve EA,B = ab ⇤E0.

Theorem 2. The computational-CSIDH problem is random self-reducible. In
other words, given any two random elliptic curves ET = t⇤E0 and EU = u⇤E0, for
any algorithm B which solves the computational-CSIDH problem with advantage

AdvComp�CSIDH

G (B) = Prob
⇥
B(ET , EU ) = Z 0

| ET
$
 � G, EU

$
 � G

⇤

there exists an oracle algorithm A
B that, for any input EA, EB 2 G, outputs the

correct solution to the corresponding computational-CSIDH problem with advan-
tage AdvComp�CSIDH

G (B), and has roughly the same running time.

Proof. Let EA = a⇤E0 and EB = b⇤E0 be the two elliptic curves corresponding to
the Montgomery coe�cients A and B; we can construct the following algorithm:

A
B(EA, EB)

t, u
$
 � cl(O)

ET  t ⇤EA = t0 ⇤E0, EU  u ⇤EB = u0 ⇤E0

Z 0
 B(ET , EU )

return Z of [t�1u�1] ⇤EZ0

In other words, the algorithm proceeds as follows. First of all, we pick uni-
formly at random two isogeny classes t, u 2 cl(O): they are defined as t =
lt1
1
lt2
2
. . . ltnn 2 cl(O) and u = lu1

1
lu2
2

. . . lun
n 2 cl(O) where each exponent ti, uj is

picked uniformly at random from the set {�m, . . . ,m}. Then we evaluate the
action of t on EA and the action u on EB , obtaining two random elliptic curves
ET , EU 2 G. Finally, we submit the new random instance to the algorithm B,
which outputs Z’, the Montgomery coe�cient of the elliptic curve EZ0 . Since

EZ0 = t0u0 ⇤E0

= (ta)(ub) ⇤E0

= (tu)(ab) ⇤E0

= (tu) ⇤EA,B ,

we can easily retrieve the Montgomery coe�cient Z of the elliptic curve EA,B =
t�1u�1

⇤EZ0 . The advantage of the algorithm A
B can be calculated as follows:

Prob[AB(EA, EB) = Z] = Prob


t, u

$
 � cl(O) : B(t⇤EA, u⇤EB) = (ta)(ub)⇤E0

�
.

82



Practical Isogeny-Based Key-exchangewith Optimal Tightness

By construction, the ideal classes t and u can be considered as sampled uniformly
at random from cl(O) (for the heuristics assumed in CSIDH), and therefore the
elliptic curves ET = t ⇤EA and EU = u ⇤EB are independent and uniformly
distributed on G. Therefore, the oracle consulted by A

B receives a well formed
instance, so we can conclude that

Prob[AB(EA, EB) = Z] = Prob


B(ET , EU ) = taub ⇤E0

�� t, u $
 � cl(O)

�

= AdvComp�CSIDH

G (B).

As pointed out in section 2.3, we can e�ciently compute the action of the
ideal classes l and l�1 by using Vélu-type formulae. Therefore we can conclude
that, if B runs in t-time, then the algorithm A

B runs in (t+ �)-time, where � is
the small running time required to sample elements and evaluate the action of
ideal classes.

5 Security of ⇧-SIDE

In this section, we define some allegedly hard problems in the CSIDH setting.
The definition of our security model and the full proof can be found in Appendix
B. The structure of the proof is similar to the one for protocol ⇧[CCG+19], but
we have made a number of changes, mostly related to the new re-randomization
technique. A straightforward adaption would have not been possible by simply
substituting exponentiations with class group evaluations.

5.1 Hard problems

In section 4.1, we have seen that the Comp-CSIDH problem consists in find-
ing the Montgomery coe�cient Z 2 Fp of the elliptic curve ab ⇤E0 given the
Montgomery coe�cients of the curves EA = a ⇤E0 and EB = b ⇤E0. In order
to keep the notation as simple as possible, we will formulate the next problems
referring to the elliptic curve itself, instead of its Montgomery coe�cient. The
reader should always keep in mind that, when it comes to the implementation,
each elliptic curve will be represented by its Montgomery coe�cient, which lies
in Fp. We start with defining a decisional problem:

Problem 2 (Decisional-CSIDH problem). In the CSIDH setting, let a, b, r
$
 �

cl(O) be three elements randomly sampled from cl(O) and let b
$
 � {0, 1} be the

result of a fairly tossed coin. If b = 0 set EZ = r⇤E0, otherwise set EZ = ab⇤E0

and run the adversary on input (EA = a ⇤E0, EB = b ⇤E0, EZ). We define the
advantage of A in solving the decisional CSIDH problem over cl(O) as

AdvDec�CSIDH
cl(O)

(A) :=

����Prob
⇥
A(EA, EB , EZ) = b

⇤
�

1

2

����.
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In other words, the decisional problem is hard if the adversary succeeds with
a negligible probability in distinguishing among a properly computed session key
and a random key. Trivially, if we can solve the computational variant of problem
then we can also solve its decisional variant. But does the opposite hold?

Problem 3 (Gap-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O) be

two elements randomly sampled from cl(O), corresponding to the curves EA =
a ⇤E0 and EB = b ⇤E0. Suppose that the adversary A is given access to a
Dec-CSIDH oracle D(·, ·, ·), which outputs 1 if queried on a valid CSIDH triplet
(EA, EB , EAB) and 0 otherwise. We define the advantage of A in solving the
Gap-CSIDH problem over cl(O) as

AdvGap�CSIDH
cl(O)

(A) := Prob
⇥
A(EA, EB) = EA,B, providing A access to D(·, ·, ·)

⇤

The security of protocol ⇧ [CCG+19] relies on the Strong-DH problem
[ABR01], a variant of the Gap problem in which the adversary is granted access
to a more limited decisional oracle.

Problem 4 (Strong-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O)

be two elements randomly sampled from cl(O), corresponding to the curves EA =
a ⇤E0 and EB = b ⇤E0. Let D be an oracle for the decisional CSIDH problem.
Suppose that the adversary A is given access to a decisional oracle with fixed
first input DX(·, ·) := D(EX , ·, ·), which outputs 1 if queried on a valid CSIDH
triplet (EX , EY , EXY ) and 0 otherwise. We define the advantage of A in solving
the Strong-CSIDH problem over cl(O) as

AdvSt�CSIDH
cl(O)

(A) := Prob
⇥
A(EA, EB) = EA,B, providing A access to DX(·, ·)

⇤

Rerandomizability of the Gap-CSIDH and the Strong-CSIDH problems fol-
lows directly from Theorem 4.1. The full security proof, which strongly relies on
these problems, is provided in Appendix B. Based on the current state of the
art, there is no reason to believe that the above problems can be easily solved.

6 Comparison

Comparing the e�ciency of our scheme with other post-quantum schemes is
hard. First of all, many schemes do not have a security proof [Ber19] (and thus we
cannot define theoretically-sound parameters); secondly, it is highly non-trivial
to convert the concrete analysis into security parameters for many schemes.

Castryck et al. [CLM+18] describe an implementation for a 128-bit security
level that requires about 106·106 clock cycles to compute the group action. Since
our protocol ⇧-SIDE requires four group action computations, we have a total
cost of about 400 ·106 clock cycles, ignoring hashing and other cheap operations.

The most natural target for comparison is SIKE [JAC+19]. The original ⇧-
protocol can also be generalized to SIKE, but one would probably not attempt
to build it on top of the defined KEM, but use the underlying isogeny instead.
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Table 2.1 from SIKE [JAC+19] suggests that an isogeny computation using the
optimized implementation (which probably matches the CSIDH implementa-
tion best) requires roughly 50 · 106 clock cycles for the 128 bit security level
(SIKEp434), which becomes roughly 200 · 106 clock cycles for the generalized
⇧-protocol, significantly faster than the CSIDH-based version.

Now suppose we instantiate the protocol with 216 users and 216 sessions
per user. In this case, the apparent security level of our protocol falls to about
110 bits. The SIKE-based protocol with the standard security proof will have a
quadratic security loss. This means that in order to get a similar theoretically-
sound security level from the SIKE-based protocol, we need to switch to SIKEp610.
Again, Table 2.1 from SIKE [JAC+19] suggests that an isogeny computation us-
ing the optimized implementation requires roughly 160 · 106 clock cycles. The
generalized ⇧-protocol then requires roughly 640 · 106 clock cycles, which is
significantly slower than the CSIDH-based version. According to this approxi-
mate analysis, the CSIDH-based version is faster than the corresponding SIKE-
based protocol when instantiated with theoretically-sound parameters. However,
to properly determine which is faster, comparable optimized implementations
would be needed.

Another natural comparison target is the Strongly secure AKE from Super-
singular Isogenies by Xu et al. [XXW+19] referred to in section 1.2. For their
two-pass protocol SIAKE2 and their three-pass protocol SIAKE3, the numbers of
cycles are approximately 7 ·109 and 6 ·109, respectively [XXW+19, Table 6]. Our
protocol is significantly faster, by about an order of magnitude.

7 Conclusions and open problems

In this paper we have shown that it is possible to construct post-quantum
isogeny-based key-exchange protocols with optimal tightness, without compro-
mising e�ciency and key-size. The protocol is an easy adaptation of protocol ⇧
[CCG+19], where we substitute exponentiations in cyclic groups with actions of
ideal classes on elliptic curves. The adaptation of the proof, which requires ran-
dom self-reducibility of the computational-CSIDH problem, could not be done
trivially. Indeed, we have had to exploit a di↵erent re-randomization technique
for the computational challenge, since we only have one group operation on ideal
classes against two operations (addition and multiplication) on exponents. We
have shown that the resulting scheme is competitive with other isogeny-based
protocols, which lack a security proof or have a larger tightness loss.

Our protocol is proven secure in the Random Oracle Model. In a crucial step
we use the Strong-CSIDH oracle to detect if the adversary queries the hashing
oracle on an input which contains the solution to a given computational-CSIDH
challenge. If we allow the adversary to make quantum queries, the target solution
might be hidden in the superposition of states. We believe that collapsing the
input state after the oracle’s answer is not invalidating our security proof, since
we do not need to reprogram the oracle. We leave the proof of security in the
QROM as future work.
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A stronger security notion can be achieved by adding the static-static term
in the session-key computation, or by applying the NAXOS trick [LLM07]. But
security against state compromise (ephemeral key reveal) increases the tightness
loss, since we cannot tightly deal with state reveal queries. How to move to a
stronger security model without losing in tightness is still an open problem.

We have seen how the flexible algebraic structure at the basis of CSIDH
can be exploited to remodel protocol ⇧ in the isogeny setting. Nevertheless,
the simplicity of this scheme might be further exploited. Other quantum-hard
problems might be used to translate the scheme in other algebraic contexts.
Adaptions in this direction are left for further research.

As a last remark, we would like to clarify that our scheme is not a↵ected by
the algorithm recently published by Castryck et al. [CSV20]. This attack, which
breaks some instances of the Decisional CSIDH problem, does not work when
p ⌘ 3 (mod 4), as per our protocol.
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Appendix

A Security model

Suppose that we have a certificate authority CA, a set of parties P := {Pi}
µ
i=1

and an adversary M. The parties can communicate with each other and with
CA by using an unauthenticated network. CA can be seen as a globally trusted
party, or register, who holds and distributes the static public keys of the parties
in P. At any time, a new player can join in P by communicating his static public
key to the CA, and the register can grow indefinitely. As we mentioned before,
we do not require di↵erent parties to hold di↵erent public keys, and neither
we demand any proof of knowledge of the related secret key. Our protocol is
implicitly authenticated and, as such, no identification or proof of knowledge of
any secret information is required. The only constraint we impose is that each
member can commit to only one static public key at a time.

Each Pi is represented as a set of oracles {⇡1

i ,⇡
2

i , . . . ,⇡
k
i }, one for each of the

k sessions the user can participate to. Each oracle ⇡s
i = (P s

i , 
s
i ,K

s
i , sent

s
i , recv

s
i ,

rolesi ) maintains an internal state consisting of:

– the identity of the intended peer P s
i which is supposedly taking part to the

key-exchange session;
–  s

i 2 {;, accept, reject}, which indicates whether the session key has not
been computed yet, or if it has been accepted or rejected;

– the session key Ks
i , which is not empty if and only if  s

i = accept;
– sentsi , the collection of all the messages sent by the oracle;
– recvsi , the collection of all the messages received by the oracle;
– the role rolesi of the oracle (init or resp).

sentsi and recvsi together form the view views
i of Pi of the session s.

We now define the attribute for indicating two oracles that allegedly par-
ticipated to the same key-exchange session. Two oracles ⇡s

i and ⇡t
j are called

partner oracles if

1. P s
i = Pj and P t

j = Pi, i.e. if they are the intended peer of each other;
2.  s

i =  t
j = accept, i.e. they both accepted the session key;

3. views
i = viewt

j , i.e. the messages sent and received by Pi match with the ones
respectively received and sent by Pj during the key-exchange session;

4. they have specular roles.

Slightly simplifying the definition, an oracle is fresh if and only if its session
key has not been revealed, its partner oracle has not been corrupted or tested
and the partner’s session key has not been revealed. We will later constrain the
adversary to test only fresh oracles. A party is honest if all its oracles are fresh,
i.e. if it has not been corrupted yet.
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In this model, the adversary A has full control over the network and interacts
with the oracles through queries that allow it to

– activate an oracle ⇡s
i and assign a role by sending it a message on behalf of

a peer Pj ;
– reveal the long-term secret key of a user Pi. This query provides the target

user with the attribute of corrupted and all its oracles will answer ? to each
later query;

– register the long-term public key for a new user. No knowledge of the corre-
sponding secret key is required and the public key is distributed to all other
users;

– reveal the session key ksi stored in the internal state of any oracle ⇡s
i . The

target oracle is now said to be revealed.
– test an oracle ⇡s

i , which outputs ? if  s
i 6= accept. If  s

i = accept it then
outputs a key, which is either the session-key or one picked at random,
according to a previously defined random bit. The key, may it be real or
the random, is consistently issued in case of further tests.

Note that the adversary cannot query on the ephemeral key of any session.
We work in the Real-or-Random model: when tested, each oracle will output

a real session key or a random key, according to a bit sampled at the beginning
of the security game. If b = 0 each oracle tested during the game will output a
random key, while if b = 1 each tested oracle will output the real session key.

Once the environment has been set up, we run the following AKE security
game G⇧(µ, k), with µ honest parties and at most k sessions per user:

1. at first we toss a coin b
$
 � {0, 1}. We also set up µ parties, providing each

of them with a long-term key pair (ski, pki) and with k oracles;
2. we then run the adversary A, which knows all the public keys and can make

any number of the previously defined queries. The only restriction is that an
oracle must be fresh when it is tested;

3. at some point, A will eventually output b0, its guess on the initial bit b. If
the tested oracles are fresh and b0 = b, then A wins the security game.

An adversary can try to break the system in three di↵erent ways: it can
trick two oracles into computing di↵erent session keys (event breakSound), break
the unicity of the partnership relation between two oracles (event breakUnique)
or successfully guess b0 = b (event breakKE). We formalise these ideas in the
following definition.

Definition 5. In this security model, a protocol ⇧ fails if at least one of
breakSound, breakUnique and breakKE occurs while running game G(µ, k). Given
an adversary A, we define its advantage against the AKE security of protocol ⇧
as

AdvAKE
⇧ (A) := max

⇢
Prob[breakSound], P rob[breakUnique], P rob[breakKE]�

1

2

�

and we say that it (t, ✏A, µ, k)-breaks the AKE security of ⇧ if it runs in time t
and has advantage AdvAKE

⇧�SIDE(A) � ✏A.
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B The security proof

As in the proof by Cohn-Gordon et al. [CCG+19], we prove the following:

Theorem 3. Consider an environment running ⇧-SIDE together with an ad-
versary A against AKE security of ⇧-SIDE. Then there exist 3 Strong-CSIDH
adversaries B1,B2,B3 such that A’s advantage AdvAKE

⇧�SIDE(A) is at most

µ ·AdvSt�CSIDH
cl(O)

(B1) +AdvSt�CSIDH
cl(O)

(B2) + µ ·AdvSt�CSIDH
cl(O)

(B3) +
µk2

N

where µ = |P| is the number of parties, k is the maximal number of AKE-
sessions per party and N is the order of cl(O). The run-time of adversaries
B1,B2,B3 is almost the same as A and they make at most as many queries to
the Strong-CSIDH oracle as A does to the hash oracle H.

The proof structure is analogous to the one of ⇧, rephrased and adapted to
our setting. It consists of six di↵erent games: Game 0 is the AKE experiment,
while the other five games involve the following oracle types:

– type I: an initiator oracle which has received the response from a responder
oracle (honest when the response is received) and with which it agrees on
the transcript ctxt;

– type II: an initiator oracle whose intended peer is honest until the oracle
accepts;

– type III: a responder oracle triggered by an honest initiator, with which it
agrees on ctxt and which is still honest when it receives the response;

– type IV: a responder oracle whose intended peer is honest until the oracle
accepts;

– type V: an oracle (whether initiator or responder) whose intended peer is
corrupted.

Oracle Init. Resp.
Honest partner Honest partner Corrupted Agreement

(before acceptance) (after acceptance) partner on ctxt

Type I

Type II

Type III

Type IV

Type V

Table 1: Oracle types, defined by role, partner’s honesty and agreement on ctxt.

At the time of starting an AKE session, an initiator oracle cannot be entirely
sure about the intended peer’s honesty: we cannot tell if it is of type I or type
II. This uncertainty vanishes when it receives the response and it comes the
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time to compute the session key. This aspect will be taken in account during the
definition of the security games.

We now define six di↵erent security games, which will lead to the definition
of the three adversaries B1,B2,B3 in Theorem 3. In each game we will have to
look at the input to the hash function; for future references, we indicate the
general form of the input to the hash oracle involving a key-exchange session
between parties PA,PB as

PA k PB k EA k EB k EF k EG kW1 kW2 kW3 (2)

For i = 0, 1, . . . , 5 we denote with Sj the event “Game i outputs 1”, which will
indicate a success for the adversary in breaking protocol ⇧-SIDE (i.e. at least
one of the events breakSound, breakUnique and breakKE happens during Game i).

Game 0. In this game, we simply run the usual AKE security game: the adver-
sary can corrupt some players, reveal some session keys (but not any ephemeral
secret key) and delay/redirect messages. When it will be ready, it will pick a
fresh oracle and make a query test on its session key. Game 0 will output 1
whenever the adversary breaks the AKE security of protocol ⇧-SIDE:

Prob[S0] = Prob[breakKE].

Game 1. In this game we abort if the same ctxt is computed by two non-
partnered oracles. We can upper-bound the probability of this event with the
probability that the following conditions are simultaneously verified:

1. two oracles ⇡s
i ,⇡

t
i belong to the same user Pi;

2. they pick the same ephemeral secret key during their respective sessions;
3. they are involved in two key-exchange sessions with the same user Pj (since

the identity of the intended peer is part of the ctxt).

Recalling that we have µ users engaging in at most k sessions, we get that

|Prob[S1]� Prob[S0]| 
µk2

N

and thus, since in this game the unicity of the partner oracle cannot be broken,
we can conclude that

Prob[breakUnique] 
µk2

N
.

Game 2. In this game we modify how each oracle computes the session key:
instead of computing the input to the hash oracle H, it checks if the adversary
has queried the oracle on that same input, and behaves consequently: if the
answer is yes, then it stores that hash value as the session key (i.e. it properly
computes the key), otherwise it picks a key at random and stores that one
instead. Note that, when it comes the time for an initiator oracle to compute
the session key, the oracle type is fully determined.
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A type I oracle (an initiator oracle with a definitely honest partner oracle with
which it agrees on the ctxt) will store the key computed by the corresponding
responder oracle.

Each type II or type V initiator oracles of party PA has to check if the input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG

has been object of any oracle query. If so, it sets its session key to the correspond-
ing hash value (previously stored by the responder oracle), otherwise it picks a
session key at random (answering consistently to any following hash query on
that same input).

Each type III, IV or V responder oracle of a party PB in a session with PA

will check if any queries have been made on input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

If so, it stores the same result; otherwise, it stores a random key. In any case,
each later hash query is consistently answered with the stored session key.

We cannot observe the exact time in which the key derivation oracle is queried
for the first time, thus Game 2 outputs 1 whenever Game 1 outputs 1, and vice
versa. We can therefore conclude that

Prob[S2] = Prob[S1].

Game 3. In this game (which is a variant of Game 2) we modify how a type IV
oracle (a responder oracle whose intended peer is honest until the oracle accepts)
chooses the session key. What it does is 1) to pick a random key; 2) to wait for
the adversary to possibly corrupt the intended peer PA; 3) only then modify the
hash oracle with the random key k.

We can now define the following events:

– L (for Long-term key), in which the adversary queries the hash oracle on
input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF

before the long-term secret key of any initiator oracle is revealed;
– LA is the same event as L, but for a specific intended peer PA. Trivially

Prob[L] =
P

i Prob[Li];
– CA(for Corruption), in which the adversary queries the hash oracle on input

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

before peer PA is corrupted; therefore we have Prob[LA]  Prob[CA].

In order to obtain a bound on Prob[CA] (and thus a bound on Prob[L]), we
construct an adversary B1 against the Strong-CSIDH problem.
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Definition 6. [Adversary B1] Consider now an adversary B1 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
First of all, it chooses a user PA uniformly at random and sets its long-term
public key to EA = ES . Then it sets the ephemeral public key of a type IV

oracle to be r ⇤ET , for a random r
$
 � cl(O). Finally, it runs Game 2. If B1

corrupts PA, the experiment aborts.
We need to recognise the hash queries that involve the user PA (hap-

pening in Game 2) and those involving the type IV oracle of any party PB .
In particular,

1. consider hash queries of the form

PA k PB k EA k EB k EF k EG kW1 k b ⇤EF k f ⇤EG

involving user PA as initiator. We do not know PA’s secret key a = s,
so we have to recognise if W1 is actually EAG = s ⇤EG. This can be
done by checking if DS(EG,W1) = 1;

2. consider hash queries of the form

PB k PA k EB k EA k EF k EG k b ⇤EG kW2 k f ⇤EG

involving user PA as responder. Again, we do not know PA’s secret key
a = s, but this time it is W2 = a ⇤EF that we cannot compute; thus we
have to recognise if W2 is actually s ⇤EF . This can be done by checking
if DS(EF ,W2) = 1;

3. consider hash queries of the form

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

involving the type IV oracle and user PA. We have to recognise if W1 is
actually rt⇤EA = g⇤ES . This can be done by checking if DS(EG,W1) =
1. Whenever we succeed and we find that W1 = ESG = s ⇤EG, since we
computed EG = r ⇤ET , we output

EZ = r ⇤W1 = rs ⇤EG = rsr ⇤ET = rrsET = s ⇤ET = EST .

We have just described an adversary B1 which succeeds whenever event LA

occurs in Game 2. LA can occur only before PA is corrupt, and thus B1’s game
would have gone through. We can therefore define the upper bound

AdvSt�CSIDH
cl(O)

(B1) �
1

µ

µX

i=1

Prob[CI ] �
1

µ

µX

i=1

Prob[LI ] =
1

µ
Prob[L]

from which we get that
��Prob[S3]� Prob[S2]

��  Prob[L]  µ ·AdvSt�CSIDH
cl(O)

(B1)

the first element at the right-hand side of the inequality in Theorem 3.
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Game 4. In this game a type III oracle (a responder oracle triggered by an
honest initiator, with which it agrees on the ctxt and which is still honest when
it receives the response) chooses the session key at random without modifying
the key derivation hash oracle. Consider an oracle belonging to user PB with
static secret key b and ephemeral secret key g whose intended honest peer PA

has static secret key a. The adversary can find out this change only if (call this
event L) it makes a query of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF .

This leads us to the following inequality:

��Prob[S4]� Prob[S3]
��  Prob[L].

Similarly to what we did in the previous game, we want to bound Prob[L]
by constructing an adversary B2 against the Strong-CSIDH problem.

Definition 7. [Adversary B2] Consider now an adversary B2 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
It runs Game 3., re-randomizing the challenge as follows: 1) it sets the
ephemeral public key of type I and II oracles to EF = r ⇤ES for a random

r
$
 � cl(O); 2) it sets the ephemeral public key of type III oracles to EG =

r0 ⇤ET for a random r0
$
 � cl(O).

In this game, since we embed the challenge in two ephemeral keys, all
the static secret keys are known to the adversary. We need therefore to
recognise two types of hash oracle queries:

1. hash queries for type II oracles of the form

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG

given the knowledge of the static secret keys, the only information to
be detected is whether W3 = f ⇤EG = rs ⇤EG or not. The answer can
be obtained by performing the oracle query DS(EG, rW3);

2. hash queries for type III oracles of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF

given the knowledge of the static secret keys, the only information to
be detected is whether W3 = g ⇤EF = r0t ⇤EF or not. The answer can
again be obtained by performing the oracle query DS(EG, [rW3).

If the Strong-CSIDH oracle outputs 1, then we output

EZ = r�1r0
�1

W3 = rr0fg ⇤E0 = rr0rsr0t ⇤E0 = rrr0r0st ⇤E0 = EST .
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We have just described an adversary B2 which succeeds whenever event L
occurs in Game 2. From this fact we get that

��Prob[S4]� Prob[S3]
��  Prob[L]  AdvSt�CSIDH

cl(O)
(B2)

the second element at the right-hand side of the inequality in Theorem 3.

Game 5. In this game a type II oracle (an initiator oracle whose intended peer
is honest until the oracle accepts) chooses a random key EK and modifies the
key derivation hash oracle only if the intended peer is corrupted. Consider an
oracle belonging to user PA with static secret key a and ephemeral secret key
f: if the adversary corrupts the intended peer PB , the hash oracle will output
E : k whenever it is queried on input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG.

Analogously to what we did in Game 3, we define the following events:

– L: a query on the above input happens before the long-term secret key of
any responder oracle is revealed. It follows that

��Prob[S5]� Prob[S4]
��  Prob[L];

– LB : same as L, but for a specific intended peer PB . Trivially, Prob[L] =P
i Prob[Li];

– CB : a query on input

PA kPB kEA kEB kEF kEG kW1 kW2 kW3 W2 = f ⇤EB = b ⇤EF

happens before user PB is corrupted; therefore we have Prob[LB ]  Prob[CB ].

As we did in the previous games, we want to find an upper bound on Prob[L].

Definition 8. [Adversary B3] Consider now an adversary B3 which is given
a Comp-CSIDH challenge (ES , ET ) and is given access to a DS(·, ·) oracle.
It runs Game 4., it embeds the challenge as follows: 1) it sets the static
public key of a uniformly-at-random user PB to EB = ES ; 2) it sets the
ephemeral public key of type I and II oracles whose intended peer is PB to

EF = r ⇤ET for a random r
$
 � cl(O).

If the adversary corrupts party PB , the game aborts, since the corre-
sponding static secret key is unknown. We need therefore to recognise three
types of queries made to the hash oracle:

1. hash queries for which PB acts as responder

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

Given that both b = s and t are unknown, the only information we
cannot compute and that has to be detected is whether W2 = b ⇤EF =
b ⇤ES . The answer can be obtained by performing the oracle query
DS(EF ,W2);
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2. hash queries for which PB acts as initiator:

PB k PA k EB k EA k EF k EG k b ⇤EG k f ⇤EA k f ⇤EG

(note that, in this case, the second part of the challenge has not been
embedded in EF ). The only information to be detected is whether W1 =
b⇤EF = b⇤ES , and the answer can be obtained by performing the oracle
query DS(EG,W1);

3. hash queries defining event CB , i.e. made before the user PB is cor-
rupted:

PAkPB kEAkEB kEF kEGkW1kW2kW3 W2 = f⇤EB = b⇤EF

We have to recognise if W2 is actually f ⇤EB = rt ⇤EB , and this can be
done by checking if DS(EF ,W2) = 1.

If the Strong-CSIDH oracle outputs 1 and realise that W2 = s ⇤EF =
srt ⇤E0, then we output

EZ = r�1W2 = rsrt ⇤E0 = rrst ⇤E0 = EST .

We have just described an adversary B3 which succeeds whenever event LB

occurs in Game 5. LB can occur only before PB is corrupt, and thus B3’s game
would have gone through. We can therefore upper bound

AdvSt�CSIDH
cl(O)

(B3) �
1

µ

µX

i=1

Prob[CI ] �
1

µ

µX

i=1

Prob[LI ] =
1

µ
Prob[L]

from which we get that
��Prob[S5]� Prob[S4]

��  Prob[L]  µ ·AdvSt�CSIDH
cl(O)

(B3)

the third and last element at the right-hand side of the inequality in Theorem
3.

Concluding the proof. Following from how we constructed each game in the
proof, whenever the games do not abort because of adversarial corruption, the
adversary is provided with a random session key, completely independent of
every key and sent message. Therefore

Pr[S5] =
1

2
.

We have seen in Game 1. that

Prob[breakUnique] 
µk2

N

and, due to the perfect correctness of the scheme,

Prob[breakSound] = 0.
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We can therefore exploit the bounds on adversarial winning probabilities
to prove Theorem 3: given an adversary A against protocol ⇧-SIDE, we have
built three adversaries B1,B2,B3 against Strong-CSIDH such that A wins with
advantage AdvAKE

⇧�SIDE(A) at most

µ ·AdvSt�CSIDH
cl(O)

(B1) +AdvSt�CSIDH
cl(O)

(B2) + µ ·AdvSt�CSIDH
cl(O)

(B3) +
µk2

N

where µ is the number of participants to the protocol.
The tightness loss L = O(µ) that we achieve in this security proof is optimal

for simple protocols such as ours. The arguments adopted by Cohn-Gordon et
al. [CCG+19] still hold in our setting and the adaptation is straightforward.
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