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Abstract: The need for maritime freight transport of various goods has never been greater. Con-
sequently, ships are designed with ever-increasing dimensions, with the emphasis, of course, on
length. One of the many challenges in the design of large ships is the prediction of their behavior
in waves, i.e., motions, and consequently, added resistance. In this paper, a comparative study of
two numerical tools for estimating ship motions and added resistance is presented. The first tool is
the well-established DNV’s commercial seakeeping code Wasim, a weakly nonlinear potential flow
(PF) solver based on a Rankine panel method. The other is the increasingly recognized open-source
Computational Fluid Dynamic (CFD) toolkit OpenFOAM®, a viscous flow solver with a turbulence
model; it is based on the finite volume method (FVM) combined with a volume-of-fluid (VOF) tech-
nique for sea-surface evolution. The study is carried out for two ship seakeeping cases in head-sea
regular waves, respectively, without and with ship forward speed. The first case refers to a 6750 TEU
containership scale model developed at the LHEEA laboratory in Nantes for a benchmark study,
providing experimental data for all test cases. Pitch and heave response is calculated and compared
with the experimental values. The second case refers to a KRISO container ship, an extensively
researched hull model in ship hydrodynamics. In addition to the pitch and heave, added resistance
is also calculated and compared with the experimental values. Hence, it provides a comprehensive
basis for a comparative analysis between the selected solvers. The results are systematically analyzed
and discussed in detail. For both cases, deterioration of the PF solution with increasing wave steep-
ness is observed, thus suggesting limitations in the modeled nonlinear effects as a possible reason.
The accuracy of the CFD solver greatly depends on the spatial discretization characteristics, thus
suggesting the need for grid independence studies, as such tools are crucial for accurate results of the
examined wave–body interaction scenarios.

Keywords: seakeeping; added resistance; potential flow; CFD

1. Introduction

In ocean engineering, predicting seakeeping responses in high-amplitude waves is
of high value for various design aspects. Avoiding unwanted motions and accelerations
can result in significant savings in fuel, equipment damage, general comfort, etc. From
a structural safety viewpoint, navigating in an extreme sea state can cause large vertical
bending moments amidships for slender, long, ocean-going vessels. As for seakeeping
performance, relevant wave-induced motions and scattering effects, for instance, lead to
added resistance contributions. The adequate prediction of added resistance in waves
enables for interventions in terms of reducing fuel consumption in the early stage of
ship design. Today, the most common methods for the numerical estimation of ship
motions and added resistance involve potential-flow three-dimensional (3D) or strip-
theory codes within a perturbation approach. However, these methods cannot properly
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capture all nonlinear effects relevant in rather steep waves [1]. The use of Reynolds-
averaged Navier–Stokes (RANS) equations coupled with rigid body motion solvers can
overcome the limits of the methods above, as it allows nonlinear effects associated with
both potential- and real-flow effects to be accounted for. Numerical investigations of
the seakeeping characteristics of floating objects in large waves with fully viscous CFD
within a finite volume framework are still limited [2–5]; this is reasonably due to the
high computational cost on one side and reliability issues on the other. A distinguishing
challenge when dealing with high-amplitude body motions within CFD is the generation
and application of an appropriate dynamic mesh strategy. This is especially crucial when
targeting second- and higher order wave-induced loads, as they are smaller than linear
loads and therefore more sensitive to numerical discretization strategies; one must note that
they also represent a challenge for experimental studies—in fact, those in this context are
somewhat limited. Gao et al. [6] compared and validated several dynamic mesh strategies,
including the scenario of ship capsizing in regular beam-sea waves. For large amplitudes
of motion, overset (chimera) grids seem to be the most appropriate. The concept behind
the overset is to combine any number of independent computational domains with the
motion pre-specified or computed for each individual domain. In computational marine
hydrodynamics, this concept is a useful tool for evaluating, e.g., rudder–hull–propeller
interaction, zig-zag maneuvers, or any other complex hydrodynamic scenarios involving
large body motions. For instance, Galbraith and Boulogouris [7] simulated roll motions of
a tumblehome hull undergoing a parametric resonance, which can result in very high roll
angles depending on the hull geometry, level of damping, ship heave and pitch motions,
and incident-wave features. The overset mesh technique has proved its robustness in
numerous seakeeping numerical investigations [8] in which large amplitude motions are
not restricted, as in more conventional morphing meshes. The price to pay for such a
technique is the increased computational cost. Apart from the dynamic mesh strategy,
simulating free-surface waves is by no means trivial in computational fluid dynamics.
Challenges encountered in creating a numerical wave tank include a loss of wave height
in the case of an insufficiently fine mesh (dissipative errors), inaccuracies in the wave-
propagation mechanisms (dispersive errors), unwanted wave reflections at the outlet
boundary, etc. Jacobsen et al. [9] provide substantial documentation in this field in the
context of a publicly available toolbox for free surface wave generation and absorption in
OpenFOAM® [10]. Furthermore, appropriate turbulence modeling needs to be addressed
for wave generation if turbulence is expected to matter for the examined wave–body
interaction problems. The most used turbulence models in marine applications are k-ε and
k-ω SST [11]. However, with both models, numerical instability occurs with free-surface
waves through the non-physical build-up of turbulent viscosity, thus creating high and
unrealistic damping of the waves [12]. The overall influence of turbulence modeling in
seakeeping simulations within CFD is speculative, since the pressure and velocity gradients
in the flow are very high near the hull, making single-phase turbulence models rogue [13].
Moctar et al. [14] even suggest omitting fine boundary layers along the hull if viscous effects
are to be neglected. However, further investigations are needed in this area. In the present
paper, a seakeeping response assessment, with added resistance included, is performed for
two ships for which model-test results are available. The first case concerns a 6750 TEU
containership model with zero speed in head-sea regular waves, in which pitch and heave
responses are analyzed. Preliminarily, a thorough investigation was performed regarding
the mesh quality within CFD for the propagation of waves with a two-dimensional (2D)
numerical wave tank; an assessment was performed for five different wave heights and
keeping the wavelength fixed and equal to the ship length. The second case refers to the
KRISO containership model advancing in head-sea waves. Both cases are investigated with
two numerical tools for marine hydrodynamics: (A) the commercial code Wasim from DNV
classification society, based on potential flow theory, i.e., a Rankine panel method, and
including second-order nonlinear effects within a perturbation approach, hereafter briefly
indicated as PF; and (B) the open source CFD toolkit OpenFOAM® based on the co-located
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finite volume method (FVM), hereafter briefly indicated as CFD. This comprehensive study
provides additional insights into the performance of these two hydrodynamic tools for
estimating ship response and added resistance in waves, their shortcomings, and their
advantages. The rest of this paper is structured as follows. In Section 2, the experimental
setups and test matrices for the two studied cases are outlined. The two selected numerical
tools are described in Section 3. In the same section, the incident-wave parameters for the
first experimental case are used to carry out a systematic analysis to identify the grid size
and time-step needed to limit the numerical errors of the CFD solver. The results from
all seakeeping simulations are documented in Section 4, together with their comparison
against the corresponding physical data, and the main conclusions are drawn in Section 5.

2. Benchmark Tests
2.1. 6750 TEU Containership

The experimental data for the first case presented in this paper originate from [15],
which addresses the uncertainties of different numerical approaches for the evaluation of
extreme vertical bending moments in ship structures. The experiment was conducted in
the Hydrodynamic and Ocean Engineering Tank in The Research Laboratory in Hydro-
dynamics, Energy and Atmospheric Environment (LHEEA) in Nantes, France. The tank
is 50 m long, 30 m wide, and with a water depth of 5 m. The ship model, a 6750 TEU
containership at 1:65 scale with main dimensions given in Table 1, and the body plan and
model are shown in Figure 1a,b, respectively.

Table 1. Main dimensions of a 6750 TEU containership scale model.

Units Model Full Scale

LPP, length between perpendiculars m 4.41 286.6
B, breadth m 0.615 40
T, draught m 0.1843 11.98

∆, deadweight kg 312.61 85,849,972
LCG, longitudinal center of gravity m 2.13 143.7

VCG, vertical center of gravity m 0.256 16.66
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Figure 1. Experimental setup of a 6750 TEU containership: (a) body plan; (b) actual model.

The prescribed regular head-sea waves are given in Table 2. With the intention of
limiting excessive surge of the ship, soft mooring is imposed with a resulting surge natural
period of 11.8 s. This is achieved using four springs, k1, k2, k3 and, k4, all of which have the
same stiffness of 56 N/m. The angle α between pairs of springs at the bow and stern is
equal to 45◦. The mooring arrangement is shown in Figure 2.
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Table 2. Wave conditions from 6750 TEU containership benchmark study (model scale).

Case Number Wave Height H (m) Wavelength λ (m) Steepness H/λ %

1. 0.09 4.41 2.1
2. 0.17 4.41 3.8
3. 0.23 4.41 5.2
4. 0.38 4.41 8.7
5. 0.45 4.41 10.5
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2.2. KRISO Container Ship

The KRISO container ship (KCS) model [16] was conceived as a design of a modern
container ship with a bulbous bow and tested in a towing tank by the Korea Research
Institute for Ships and Ocean Engineering [17,18] to provide benchmark data for validation
purposes. The prescribed regular head-sea waves are given in Table 3, while the main ship
dimensions are documented in Table 4, with the body plan depicted in Figure 3. The entire
set of experimental data is publicly available at [19]. No full-scale ship exists with this exact
geometry. Note that the wetted surface S includes the wetted surface area of the rudder as
the only appendage included in the experiments.

Table 3. Wave conditions for KRISO containership benchmark study.

Case Number Wave Height H (m) Wavelength λ (m)

1. 0.062 3.949
2. 0.078 5.164
3. 0.123 6.979
4. 0.149 8.321
5. 0.196 11.840

Table 4. Main dimensions of a KRISO containership model.

Units Model

LPP m 6.0702
B m 0.8498
T m 0.2850
∆ kg 956

LCB(%LPP), fwd+ m −1.48
VCG m 0.378

S m2 6.697
U m/s 2.017
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3. Numerical Methods

Details of the numerical features specific to PF and CFD are outlined in this section.
The numerical schemes that were used are briefly described, followed by computational
grid properties for each case. Regarding CFD, OpenFOAM® is an open-source type of
software; hence, detailed information about the numerical set-up ensures the reproducibility
of this study. Turbulence modeling is summarized for such applications with appropriate
boundary conditions used.

3.1. Numerical Schemes—Potential Flow

The potential flow solver used in this study is the DNV’s commercial code Wasim. It
is a 3D panel method, distributing Rankine sources on the free surface as well as the body,
and solves equations of motion in the time domain. It can be applied for ships of arbitrary
speeds and shapes with linear or nonlinear motion and wave load analysis [20]. In PF
theory, idealization is introduced as fluid being inviscid, irrotational and incompressible.
Such idealizations significantly reduce the computational costs in seakeeping problems
and are, therefore, one of the main tools for such tasks in marine applications. In the basic
Wasim implementation, the restoring and Froude–Krylov pressures are computed at the
instantaneous wetted body surface, which is defined by the rigid body motions and the
incident waves; the radiation/diffraction effects are estimated within the linear theory,
with the corresponding pressures integrated along the mean wetted surface, with the
quadratic term in the Bernoulli equation included. The nonlinearities of the incident waves
can be modeled using Stokes wave theory or Stream function; other nonlinear terms may
be included in the free-surface elevation of the wave–body interaction problem. For the
seakeeping of advancing vessels, both Neumann–Kelvin and double-body linearization can
be used. In both cases examined in the paper, the Neumann–Kelvin linearization method is
applied. The influence of the double-body linearization method was not investigated due
to the slenderness of involved ship hulls. Comparative studies of these two methods are
extensively documented in [21,22]. Added resistance in waves is calculated as a result of
direct pressure integration in time. Temporal discretization within Wasim offers first- and
second-order schemes, the choice of which depends on the so-called grid Froude number
Fh, Equation (1).

Fh =
U√
ghx

(1)

where U stands for ship speed, g is the gravitational acceleration and hx represents the
smallest panel length in the longitudinal ship direction. For more detailed information on
this, the reader is referred to [23]. Computational meshes are shown in Figure 4 for the
6750 TEU containership and KRISO containership, respectively. HydroMesh utility within
Wasim offers fast, automatic meshing of both the hull and free surface.
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3.2. Numerical Schemes—CFD

The CFD simulations in this paper are established using OpenFOAM®, in which the
co-located finite volume method is applied to solve fluid mechanics equations. Fluid flow
is governed by Navier–Stokes (NS) equations for incompressible flows, the continuity
Equation (2) and momentum Equation (3):

∇·u = 0 (2)

∂u
∂t

+ (u·∇)u− ν∇2u = −1
ρ
∇p + g (3)

where u is the local fluid velocity. The LHS of the NS equation contains the total derivative,
i.e., the change of velocity in time, convective term and viscous term, respectively. ∇p is the
pressure gradient, g is the gravitational acceleration and ν stands for effective kinematic viscosity.
For solving these equations, the interFoam solver is engaged for two incompressible, isothermal
immiscible fluids (water and air). The air–water interface is modeled using the Volume of Fluid
method (VOF), in which indicator function α is introduced into the partial differential equations.
The α function represents a scalar field that enters the NS equations through density ρ and
effective kinematic viscosity ν, as depicted in Equations (4) and (5), respectively.

ρ = (1− α)ρair + αρwater (4)

ν = (1− α)νair + ανwater (5)

The MULES algorithm [24] is used for the bounding of α with the conservation equa-
tion. For temporal discretization, the Crank–Nicolson scheme is applied with a coefficient
of 0.9, which is a second-order time scheme suitable for such transient problems. The
first-order scheme is skipped since it is prone to excessive numerical diffusion. Convective
terms are solved with the linear scheme that limits towards upwind, i.e., the direction
of the flow in regions of strong gradients. Other gradient terms, i.e., diffusive terms, are
discretized with Gaussian linear interpolation. The pressure–velocity coupling is resolved
using the PIMPLE algorithm with four iterations per time-step in total, two for pressure
residual and two for a momentum matrix. For the hydro-mechanical coupling of the rigid
body motions of the ship and fluid flow, the six degrees of freedom solver is employed
with imposed restrictions for sway, yaw, and roll.

3.2.1. Two-Dimensional Numerical Wave Tank

To ensure that the selected CFD solver can adequately generate and simulate the
incident regular waves required for the seakeeping analysis, a 2D numerical wave tank
with no body is preliminarily examined. The length of the tank is obtained from [25] and
the height from [26]. The computational grid is created using blockMesh and topoSet tools
within OpenFOAM®, setting the breadth (i.e., the domain size normal to the flow motion)
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equal to one-cell size and using proper boundary conditions to ensure two-dimensional
wave conditions. Due to the reduced number of cells, this procedure provides results within
minutes. Relaxation zones [9] are employed to tackle the problem of wave reflections at
the outlet and artificial velocities at the inlet during wave build-up. The length of the
relaxation zones is determined as a function of the wavelength λ of the targeted generated
waves, as proposed in [25]. The second-order Stokes wave model is used as input for the
wave kinematics. Five different wave heights are tested at a given λ, corresponding to the
experimental waves listed in Table 1. To measure the simulated wave height, a virtual wave
gauge is placed at a longitudinal distance from the wave-generation side that corresponds
to the forward perpendicular of the ship model (when the seakeeping simulations are
performed); this position is hereafter indicated as LPP. The main individual zones of the
numerical wave tank are depicted in Figure 5.
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Figure 5. Schematic representation of zones in CFD numerical wave tank.

The main objective of this wave study is to determine the spatial and temporal dis-
cretization suitable for accurate and efficient simulations of wave propagation, given the
selected wave parameters. Variables to which wave propagation is sensitive include: the
number of cells per wave height, number of cells per wave length, and the time-step of the
simulation. Since all wave conditions have the same wave length, only the variation of
the cells per wave height is investigated. In terms of numerical stability, the time-step ∆t
should be chosen so that the Courant number Co, Equation (6):

Co =
vi∆t
∆xi

< 1 (6)

where vi is the local fluid velocity and ∆xi is the local cell size in the x direction. Here, to
reduce the numerical dissipation at the free surface, the Courant number is kept below
0.2. As for the number of cells per wave height N, three grid densities are examined while
keeping the Courant number at the free surface equal to 0.2, so the time-step is modified
consistently. Figure 2 confirms the significant influence of N for the development of the
free surface wave prescribed for case 3 (see parameters in Table 1) in terms of the wave
elevation at the selected virtual gauge. Time histories appear very coarse due to the plotting
time interval set to 0.2 s. Asymmetry between wave trough and crest also appears, which
happens due to nonlinearities in free surface flows for the examined wave parameters.
Turbulence modeling was not employed, since turbulence effects are expected to play a
negligible role for these scenarios of wave propagation, as we have in mind sufficiently
long gravity-driven waves. Nevertheless, it was also investigated, as seen in Figure 6. After
17 s of simulation time, the damping of the wave height becomes more exaggerated for the
targeted wave height of 0.23 m.
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Figure 6. Influence of realizable k-ε turbulence model on wave height dissipation at wave gauge at
LPP, after 10 oscillation periods and for N = 8.

The issue of the artificial damping of the wave height relates to the instability of the
turbulence model and is expected to be much more relevant for simulations of longer
duration and irregular waves. Therefore, one needs to take proper care of the turbulence
modeling in such conditions. One of the possible solutions within OpenFOAM is to
implement one of the stabilized turbulence models from Larsen and Fuhrman [12]. In this
study, stabilized turbulence models were not implemented.

Following this parametrical study, eight cells per wave height were confirmed to be
sufficient for wave propagation and are adopted as a minimum value of cell number per
wave height further in the paper. In the horizontal wave-propagation direction, the guideline
from Moctar et al. [14] for the coarsest discretization of at least 30 cells per wavelength is
far exceeded. For the quantification of wave-height propagation error in a wave tank, the
procedure from [27] is adopted. The maximum, ηmax, and minimum, ηmin, values of the wave
elevation are estimated at the position of x = LPP in a time interval nT, equal to n = 7 wave
periods T, when nearly steady-state conditions are established. This is used to estimate the
wave height in each oscillation period kT, with 1 ≤ k ≤ n, as shown in Equation (7). The
mean value of the wave height is calculated according to Equation (8), and the percentage
error is estimated using Equation (9), where H is the targeted wave height given in Table 1 for
each wave case. Corresponding results for N = 8 are given in Table 5. while the influence of N
on the wave amplitude error is documented in Figure 7 for case 3.

HLPP,k = [|ηmin|+ ηmax]LPP,k (7)

HLPP,n =
∑k=n

k=1 HLPP,k

n
(8)

e =
HLPP,n

H
·100 (9)

Regarding the possible errors associated with the temporal discretization, i.e., time-
step, three values are examined with respect to the wave period: T/200, T/400, and T/600.
Since the benchmark cases involve almost the same wave period, the temporal discretization
analysis is only examined for case 3. The procedure is the same as for spatial discretization,
i.e., it uses the error in the wave height at x = LPP. The results are documented in Table 6.
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Table 5. Wave propagation errors due to spatial discretization with eight cells per wave height.

Case Number HLPP,n (m) e (%)

1. 0.086 4.28
2. 0.162 4.37
3. 0.22 3.12
4. 0.37 2.81
5. 0.45 2.52
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Table 6. Wave propagation errors due to temporal discretization for case 3.

Case Number HLPP,n (m) e (%)

T/200. 0.222 3.32
T/400. 0.222 3.17
T/600. 0.222 3.07

Sensitivity due to time-step size in these ranges is negligible, while the number of
cells per wave height has much greater influence over wave propagation within the finite
volume framework. Considering the presented results of this wave study, values of eight
cells per wave height and a time-step of T/400 are obtained as numerical guidelines for the
modeling seakeeping response in OpenFOAM®. A computational grid with refinement
zones within free surface for case 5 is shown in Figure 8.
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Case 5 corresponds to the steepest incident-wave scenario examined. In this case, wave
breaking is noticed with features similar to spilling breakers, as documented in Figure 9.
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The breaking itself is purely numerical, since the wave parameters are far from the wave
breaking criteria of H/λ > 0.142.
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Figure 9. Mild wave breaking noticed in the CFD simulations with H = 0.43 m.

3.2.2. 6750 TEU Containership: Computational Grid, Linear Solvers and Boundary Conditions

Regarding the PF setup, details are outlined in Section 3.1. Setting up the computa-
tional grid for CFD is usually followed by discretizing the hull model into the appropriate
format beforehand. The STL (stereolithography) format of the file is chosen, in which the
hull surface geometry is split into a series of linked triangles that encloses a watertight
volume object. For the case of the 6750 TEU containership, container stackings are also
included but with a simplified geometry in order to reduce unwanted sharp edges. Green
water protection is also accounted for at the forecastle, which will likely decrease the
overflow volume of the water fraction on the deck. The STL geometry of the hull model
is shown in Figure 10. No appendages are included in both experimental and numerical
models. Hull models for both cases are available online as a Supplementary Material for
reproduction of the results.
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Figure 10. STL hull model of 6750 TEU containership for CFD simulations.

Volume mesh is constructed with the blockMesh tool and consists of regular polyhedron
cells with an aspect ratio of approximately 1, since it is an intrinsic requirement for overset
interpolation. The length of the domain is set to be 5.5λ, while breadth and height are
2λ in total, with λ being the incident wavelength. The relaxation zones are the same as
described in Section 3.2.1. Imposing relaxation zones on the sidewalls is skipped because
the simulation duration is predicted not to be long enough to capture reflections from the
diffracted waves of the ship motions. Since the overset mesh technique is adopted for this
case, two separate meshes must be constructed and then coupled through interpolations
and information exchange. The SnappyHexMesh and topoSet tools are used for refinements
in the relevant regions. The global arrangement of the computational domain is depicted
in Figure 11 with the nomenclature of boundary faces. The background mesh is colored in
blue, while the overset mesh is in yellow.
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Figure 11. CFD computational domain with relevant boundary faces.

The origin of the coordinate system is located at the intersection between the aft per-
pendicular of the ship and the free surface for calm water conditions. Particular attention is
dedicated to the overlapping region of the overset and background meshes. The connection
between these regions is obtained through numerical interpolation, in which the user can
choose several numerical schemes for interpolation. In this work, the inverse-distance
weighted interpolation method is selected. Detailed numerics and performances of overset
interpolation strategies within OpenFOAM® are covered in [28]. The refined mesh in the
vicinity of the hull can be seen in Figure 12.
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Figure 12. CFD mesh in the vicinity of the 6750 TEU containership.

For the closure of NS equations, a realizable k-ε turbulence model is applied. Boundary
conditions specific for wave applications are set for velocity and phase fraction field at
the inlet and outlet. The boundary condition for the pressure is the same at the inlet and
outlet to correct the pressure gradient accordingly, so that the flux on the boundary is
specified by the velocity boundary condition. The slip boundary condition is imposed at
both sidewalls, while wall functions are applied to the hull surface. Regarding the mesh
size, approximately 4 to 5 million cells are generated for computation for every benchmark
case. The leading concept for mesh generation is the minimum of eight cells per wave
height, as shown in Section 3.2.1. The entire computational domain is shown in Figure 13,
where intense refinements can be seen in the free-surface region, and in the vicinity of the
hull, where high gradients of velocities and pressure are expected.
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The time-step for every case is set to 0.005 s, ensuring that the local Courant number
is less than 0.2 in the free surface area. All calculations are made on an HPC cluster,
most often on eight nodes with 24 cores each, making 192 physical cores available for
computation. For the decomposition method, the scotch method is used, where the same
number of computational cells are assigned to each physical core. Regarding linear solvers,
for solving large sparse matrices that are yielded from a FV mesh, a conjugate gradient (CG)
method is chosen with a Cholesky preconditioner. Residual tolerance is set to 1−8. Velocity
components and turbulence terms are solved using a smooth solver, i.e., Gauss–Seidel
smoother with a residual tolerance of 1−8.

3.2.3. KRISO Containership: Computational Grid, Linear Solvers and Boundary Conditions

Numerical details for the PF solution are listed in Section 3.1. For CFD, the overset
approach is skipped, presuming that, due to the lower wave heights, the deforming
grids would be sufficient. Moreover, wave damping along the tank differs from the
first case. The damping itself is modeled as an explicit damping force applied to the
momentum equation proportional to the momentum of the flow in the direction of gravity.
For detailed information on this, the reader is referred to [29]. As the first condition of the
experimental study of the KRISO case includes calm water resistance with free sinkage and
trim, computational grids are adequately built for the calm water and waves scenarios. The
grid for the calm water condition is outlined first. For this case, the computational domain
is modeled for only half of the ship, thus imposing a symmetric boundary condition, which
coincides with the vertical symmetry plane of the center line of the ship. The domain
extents are according to ITTC standards [30]. The boundary faces are of the same topology
as in Figure 8, except for the omitted overset region. Numerical schemes are the same as
those depicted in Section 3.2, except for the calm water condition, where an implicit Euler
scheme is chosen for temporal derivatives. The thickness of the boundary layer in the grid
is equal to 18.5 mm with an expansion ratio of 1.5, which ensures the average value of y+ on
the hull of approximately 40. These values are determined based on the author’s previous
experience with such calculations. The K-ω SST turbulence model is applied for calm
water conditions, where turbulent kinetic energy k for the far-field boundary conditions is
specified as:

k =
3
2

(
U f s I

)2
(10)

Ufs stands for free stream velocity and I is the turbulence intensity, which is assumed at 3%.
The specific dissipation rate is defined following the guideline from Eça and Hoekstra [31]:

ω = 10
U

LPP
(11)

where LPP is the length between the ship perpendiculars. The realizable k-ε turbulence
model is chosen for wave conditions, since the dissipation and dispersion errors in the wave
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propagation are sufficiently small for short-duration simulations including regular waves
if compared to the k-ω SST model. It is assumed that using different turbulent models will
not affect any of the physical quantities being investigated in the paper, i.e., rigid body
motions and second-order longitudinal force (added resistance in waves). Computational
grids are shown in Figures 14 and 15 for calm water and wave conditions, respectively.
For the wave application, the mesh in the free-surface zone is refined in horizontal and
vertical directions, thus drastically increasing the number of cells. As for the linear solvers,
for asymmetrical matrices (turbulence terms, velocity components and α), the setup is the
same as depicted in Section 3.2, while for symmetrical matrices, i.e., pressure equation,
a Generalized Geometric–Algebraic multigrid solver (GAMG) is chosen with a Gauss–
Seidel smoother with a residual tolerance of 1−7. Computational grids for the KRISO
containership are outlined in Figures 14 and 15.
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2
(𝑈𝑓𝑠𝐼)2 (10) 

Ufs stands for free stream velocity and I is the turbulence intensity, which is assumed at 
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ω = 10
𝑈
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 (11) 
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Figure 14. CFD computational domain of the KRISO containership in calm water conditions:
(a) Kelvin wake refinements; (b) boundary layer.
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4. Results and Discussion

The results of the simulations for the examined ship seakeeping cases are outlined in this
section. Post-processing of the CFD results is also carried out using open-source tools, namely
paraView® for visualization and python Spyder for Fourier transformations and plots.

4.1. Heave and Pitch Response of the 6750 TEU Containership

The heave and pitch response for the 6750 TEU containership are examined in this
section. Heave amplitude z is made nondimensional by the wave amplitude ς, while the
pitch amplitude θ is normalized with wave number k multiplied by wave amplitude. The
heave results from PF and CFD are plotted in Figure 16, showing a drastically different trend
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of the heave from the two codes. The CFD results indicate a minimum with the unusually
low response of the heave for H = 0.17 m, while the PF results predict a monotonous
decrease with the wave height. For the two largest wave heights, the heave response
from Wasim is significantly lower than from the CFD. Experimental data for heave motion
are not shown since they are omitted even in the benchmark study due to insignificantly
low amplitudes. However, the results are shown in Figure 16. Figure 17 documents the
nondimensional amplitude of pitch for all results. Regarding CFD, overprediction of the
pitch motion appears for H = 0.17 m, while the experimental response is underestimated for
the lowest wave condition. The solution from the potential-flow solver shows a significant
reduction in accuracy for almost all wave conditions, except for the lowest wave case.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 26 
 

 

 

Figure 16. The nondimensional amplitude of heave response for the 6750 TEU containership. 

 

Figure 17. The nondimensional amplitude of pitch response for the 6750 TEU containership. 

The quantitative difference of the nondimensional pitch amplitudes from the exper-

iment is listed in Table 7, while it is graphically shown on a bar diagram in Figure 18. 

Table 7. Difference of nondimensional numerical and experimental pitch amplitudes for the 6750 

TEU containership. 

H, m 0.09 0.17 0.23 0.38 0.46 

OpenFOAM, % 3.06 5.08 0.05 1.60 1.96 

Wasim, % 0.82 1.46 3.9 2.03 3.33 

Figure 16. The nondimensional amplitude of heave response for the 6750 TEU containership.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 26 
 

 

 

Figure 16. The nondimensional amplitude of heave response for the 6750 TEU containership. 

 

Figure 17. The nondimensional amplitude of pitch response for the 6750 TEU containership. 

The quantitative difference of the nondimensional pitch amplitudes from the exper-

iment is listed in Table 7, while it is graphically shown on a bar diagram in Figure 18. 

Table 7. Difference of nondimensional numerical and experimental pitch amplitudes for the 6750 

TEU containership. 

H, m 0.09 0.17 0.23 0.38 0.46 

OpenFOAM, % 3.06 5.08 0.05 1.60 1.96 

Wasim, % 0.82 1.46 3.9 2.03 3.33 

Figure 17. The nondimensional amplitude of pitch response for the 6750 TEU containership.

The quantitative difference of the nondimensional pitch amplitudes from the experi-
ment is listed in Table 7, while it is graphically shown on a bar diagram in Figure 18.

Photos from the experiment compared with snapshots from OpenFOAM are shown
in Figure 19 for case 5. As can be seen, both results indicate the occurrence of substantial
water on deck. Therefore, pitch motion is influenced by this effect, which can be seen in
Figure 20 with magnification over the area of the bow emerging from the water. Clearly,
CFD can capture some of these effects; however, for a more accurate solution, the grid
density above the freeboard, along with the appropriate multiphase solver that reduces
smearing of the free surface, should be considered. One of these solvers is implemented in
OpenFOAM, which is based on the more accurate reconstruction of the face fluxes for the
cells containing the interface [32].
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4.2. Calm Water Resistance with Free Sinkage and Trim of KRISO Containership

The results of calm water resistance with the free sinkage and trim of the KRISO
containership are outlined in this section. In Figure 21, the sum of pressure and viscous
components is shown as a blue line, i.e., total force and experimental data (EFD) in red.
Furthermore, the isolated viscous component is compared with the ITTC 1957 correlation
line in Equation (13). The values of the forces are presented in a nondimensional manner
with resistance coefficient CT, Equation (12), in which RT stands for total resistance, r being
the fluid density, U the speed of the ship and S0 the wetted surface area at rest:

CT =
RT

0.5ρU2S0
(12)

CF =
0.075

(log10Re − 2)2 (13)

Re stands for Reynolds number and is equal to 1047 × 107 for model scale.
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Figure 21. Time histories of horizontal forces on the KRISO containership in calm water
and Re = 1047 × 107.

It is important to point out that the ITTC empirical formula is for an equivalent smooth
plate in turbulent flow conditions. It is reasonable for the ship hull to have a larger frictional
coefficient due to its 3D features. Their comparison would indicate a small form factor
of about 0.075, which is consistent with a slender ship hull. The numerical results from
Figure 21 are summarized in Table 8, where CT is the resistance coefficient, θt is the trim
angle in degrees, and zs is the sinkage in meters, normalized with LPP.

Table 8. Results of the calm water resistance for the KRISO containership.

Re = 1047 × 107 CT θT zs/LPP

CFD 3.835 −0.152 −0.001
EFD 4.096 −0.165 −0.002

(EFD/CFD)·100% 6.372 7.87 50.771

Aside from sinkage, the results agree well with the experiment following the assumption
that the coarse mesh adopted for this study yields a high discrepancy of the sinkage.

4.3. Heave, Pitch and Added Resistance of KRISO Containership

The results of the heave, pitch and added resistance of the KRISO containership are
outlined in this section. They are presented following the convention of the experiment; raw
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signals are processed via Fourier transforms to evaluate the n-th harmonic amplitude for
one encounter period Te, see Figures 22–26. Furthermore, transfer functions are graphically
shown to satisfy the more conventional presentation. Regarding the fact that the PF
tool, being a seakeeping solver, does not provide calm water resistance, the calm water
component of the total resistance coefficient in Equation (12) for Wasim is taken from CFD
results. Guidelines for the Fourier transform of the signals are given in [23].
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The transfer functions of heave and pitch along with the total resistance coefficient are
plotted in Figures 27–29, in which the transfer function is estimated as a sum of the motion
amplitude in a stable range of the simulations. Discrepancies with the experimental data
are summarized in Tables 9–11 with associated bar diagrams in Figures 30–32.

Table 9. Difference of numerical and experimental heave transfer functions for the KRISO containership.

H (m) 0.062 0.078 0.123 0.149 0.196

OpenFOAM, % −14.33 −26.83 −3.76 −0.42 +0.62
Wasim, % −33.81 +25.12 −31.59 −9.75 −0.348

Table 10. Difference of numerical and experimental pitch transfer functions for the KRISO containership.

H (m) 0.062 0.078 0.123 0.149 0.196

OpenFOAM, % −30.41 +26.46 −10.21 +2.40 +2.09
Wasim, % −36.20 +56.85 −38.62 −36.42 −31.76

Table 11. Difference of numerical and experimental total resistance coefficients for the KRISO containership.

H (m) 0.062 0.078 0.123 0.149 0.196

OpenFOAM, % −40.51 −38.82 +19.61 −16.20 −0.79
Wasim, % −44.36 −40.69 n.a.* +22.64 +12.76

* Wasim results non applicable due to resonance in measurements.
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Figure 23. Time histories for case 2 of the KRISO containership: nondimensional (a) heave, (b) pitch,
(c) total resistance.
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Figure 25. Time histories for case C4: nondimensional (a) heave, (b) pitch, (c) total resistance for the
KRISO containership.
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Figure 26. Time histories for case 5 of the KRISO containership: nondimensional (a) heave, (b) pitch,
(c) total resistance.
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Snapshots from the simulations with representative contours of incident waves are
shown in Figure 33.

4.4. Discussion

A discussion of the results is outlined in this section for the 6750 TEU containership
and KRISO containership, respectively. Regarding the first case, an experiment is chosen in
which only the wave height varies, while the wavelength remains constant. It provides an
opportunity to investigate wave response with regards to wave steepness for a zero-speed
case. Such operating conditions are relevant, for example, FPSO vessels. First, the heave
response is analyzed from both codes. The results indicate significant differences between
the two tools, with a trend of lower values from the PF code compared to CFD. That is,
however, not only the case for the second wave condition (H = 0.17 m). Looking at the pitch



J. Mar. Sci. Eng. 2023, 11, 641 22 of 25

response for which the experimental data are known, CFD performs better as the wave
height increases. For smaller wave heights (H < 0.20 m), PF gives more accurate results. It
can be assumed that for smaller rigid body responses in CFD, more computational cells than
eight are needed in the free surface area. Moreover, it is possible that overset interpolation
errors are magnified for smaller amplitudes; hence, an appropriate interpolation strategy
should be chosen, most preferably the least squares method. Deforming grids should also
be considered if the amplitudes are such that the numerical penalties would not appear due
to morphing. Furthermore, analyzing the wave conditions for the 6750 TEU containership,
at full scale, the biggest incident wave height would be equal to 29.2 m, which represents
very extreme but also improbable conditions at sea. These extreme conditions provide
a valuable experimental dataset for testing and comparing different seakeeping codes in
harsh environments. The second case studied in this paper, the KRISO containership, is
unlike the previous one, which is subjected to milder wave conditions. In this case, a model
scale containership is subjected to head waves only while towed at a constant forward
speed. The results of this case from CFD indicate that all hydrodynamic parameters of
interest are prone to under or overprediction for small wave heights independently of
the accurate incident wave, as stated in the 2D numerical wave tank study. As seen in
Figures 24–26, the difference from the experimental value becomes smaller as the wave
height increases. The reason for this could be that for relatively smaller incident wave
heights, the number of cells per wave height should be greater than eight, enabling the
solver to capture small rigid body amplitudes and pressure changes from cell to cell. The
analysis of the transfer functions of Wasim shows that there is a lack of accuracy, and
the motion is mostly underestimated. Pitch response has the biggest differences from the
experiment, which can be attributed to the lack of viscous damping term; however, further
investigation is needed. Finally, added resistance shows a similar trend for both Wasim
and OpenFOAM®. In Figure 22c, no report is made for the added resistance from Wasim,
since the resonant behavior in the measurements was reported. Interestingly, resonance is
also captured in CFD with two force peaks over one encounter period. Observing the total
resistance coefficient, i.e., added resistance from Wasim, higher harmonics are not captured.
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5. Conclusions

The main objective of this paper is to present a comparison of two hydrodynamic tools for
the assessment of seakeeping characteristics and added resistance of seagoing vessels. The first
is based on potential flow theory and originates from the classification society DNV—Wasim.
The second is an open-source toolbox for computational fluid dynamics—OpenFOAM®. In the
study, two different cases are investigated, the first being a 6750 TEU containership scale
model without forward speed, subjected to steep head waves. Heave and pitch response
are analyzed, while only the latter is compared to the experiment. Regarding heave motion,
a different trend of amplitudes is revealed from Wasim and OpenFOAM®. For Wasim,
the amplitude is significantly smaller for the bigger wave heights compared to the CFD
solver. For the pitch motion, the underestimation of the motion by the potential flow is
clear. CFD shows better agreement with the experimental values, leading to the conclusion
that for increasingly steep waves, heave can be underestimated with the potential flow
tools with Wasim features. The use of CFD can also ensure better accuracy, but grid
independence studies should be carried out. It is particularly evident in the second case
of this work: a KRISO containership subjected to head waves with forward towing speed.
Rigid body motions, i.e., heave and pitch, agree quite well for CFD, while the solution
from PF differs for all cases. For the viscous flow method, differences in the experiment
for lower wave heights are attributed to an insufficient number of computational cells per
wave height, regardless of the accurate incident wave. Regarding second-order effects
such as added resistance, CFD also shows better agreement. From a practical point of
view, the constant towing speed and the restricted surge motion strongly affect the forces
acting on the hull. Hence, the solution is not entirely suitable for estimating the sea margin
for a real ocean-going ship. Clearly, the CFD solver will yield a more accurate solution,
in which careful modeling of the surge response should be taken care of. Comparing
the solutions for the potential flow in both cases, it is clear that the percentage difference
is of a very different order of magnitude. This indicates that the forward speed effect
in the PF tool should be studied in detail using the double-body linearization method,
free-surface nonlinearities, etc. This is the subject of further planned work in future studies.
Investigations of seakeeping performance with stabilized turbulence models within CFD
are scarce, making it a fruitful area for further research. As a general guideline for the
choice of a potential flow tool, or a fully viscous CFD for seakeeping or added resistance
derived from this work: If a very sharp accuracy of the solution is required, i.e., a difference
of less than 3 or 5%, then a fully viscous CFD is an option, considering the expected high
computational cost. If such high accuracy is not of utmost importance, then a potential
flow tool with features such as those analyzed here is the right choice, taking care that the
vessel is in a linear region of motion, i.e., the height of the incoming waves is relatively low
with respect to their characteristic length.
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