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Abstract—Target tracking algorithms are usually based on
exteroceptive measurements obtained from sensors placed in
the center of some surveillance area. However, information
transmitted from surrounding targets will often also be available.
This information, here dubbed target-provided measurements,
will often include valuable information for a tracking system.
We present a multi-target tracking algorithm utilizing such mea-
surements using a framework of joint integrated data association
(JIPDA). The use case we consider is maritime target tracking
using radar measurements combined with messages from the
Automatic Identification System (AIS). The full details of the
tracking algorithm are presented, including implementation-
specific considerations to account for the different natures of
the incoming measurements. We detail three different methods
of handling the target-provided measurements, one processing
them as they arrive, i.e., sequentially, and the other collecting
and processing them at fixed intervals. The results show that
both improve over the pure radar tracking algorithm and similar
state-of-the-art methods.

Index Terms—Multi-target tracking, data fusion, Automatic
Identification System (AIS), radar, target-provided measure-
ments, Joint integrated probabilistic data association (JIPDA).

I. INTRODUCTION

One of the many important puzzle pieces for increased
degrees of autonomy in the maritime sector is the ability of
a ship to observe its surroundings. To avoid collisions and
safely navigate the waters it is necessary to know where the
surrounding ships are situated. For this to work safely and
robustly, target tracking algorithms have to provide precise
estimates of the position and direction of surrounding vessels,
also known as targets. Radar-based target tracking algorithms
have largely been the norm when navigating outside of close
encounter harbor areas. There is, however, also a standardized
system to help with collision avoidance at sea: the Automatic
Identification System (AIS). This system provides target-
provided measurements with valuable information that could
help give better estimates than what only radar measurement
can provide. However, this valuable source of information
often remains unused in modern target tracking algorithms.

When monitoring aircraft, target-provided measurements are
also used, with measurements based on the Automatic De-
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pendent Surveillance-Broadcast (ADS-B) protocol. The latter
protocol can, together with radar, be used in air traffic control
to provide a better picture of the airspace [4]. The availability
of target-provided measurements makes it possible to identify
targets and utilize information that is impossible to get from
radar measurements alone, such as the ship destination. For,
e.g., long-time vessel prediction, the additional information
provided by target-provided measurements can be very valu-
able [31].

The two measurement types are inherently different. The
radar is attached to the ship, scanning the surrounding area.
The measurements are unlabeled, can be false alarms, and
can provide several detections for each target. The last issue
is often solved using a clustering algorithm, while the problem
of false alarms has no single simple solution. The radar
measurements are also often noisier than the target-provided
measurements, with the noise becoming more prominent when
the target is far away. Target-provided measurements, on the
other hand, are sent out from the surrounding ships as data
packages containing not only the position of the target but
additional information as well, such as the ID number of a
transmitting ship. Because a target needs to send a target-
provided measurement for it to be received, there are no
false alarms, and the precision of the transmitted kinematic
information is independent of the distance to the target because
the positional data comes from GPS measurements. However,
not all targets have a transmitter, and the messages will
often be received somewhat infrequently, as high-frequency
transmitting is not always required, see, e.g., [26]. Thus, a
robust target tracking system based only on target-provided
measurements will not be feasible.

There are two established approaches to the fusion of
sensor signals: track-to-track fusion and track-to-measurement
fusion [1]. Here track-to-measurement fusion is examined,
and a model suitable for incorporating target-provided mea-
surements, and a tracking algorithm utilizing this model,
is presented. E.g., Gaglione et al. [13] have previously in-
vestigated track-to-measurement fusion for radar and target-
provided information. The tracking algorithm presented here
differs from previous work in some significant ways. We use a
hybrid state framework based on [7], which can include motion
and visibility models in addition to target IDs. Furthermore,
building upon [7], we derive the tracking algorithm as a special
case of the Poisson Multi-Bernoulli Mixture (PMBM) filter
originally proposed in [34]. An important technical detail to
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enable this is to model the birth model as a marked Poisson
point process (PPP), where the target IDs take the role of the
marks. The resulting algorithm can be seen as a generalized
version of Joint Integrated Probabilistic Data Association [23].

The contributions of this paper are as follows. It derives a
framework that includes target-provided measurements based
on a PMBM formulation of the JIPDA. The resulting target
tracker includes both a visibility state and multiple kine-
matic models. Furthermore, the paper details a sequential
way of handling the incoming target-provided measurements,
a method more similar to the one described in [13], and a
method similar to how radar measurements are processed.
Lastly, we present some implementation-specific considera-
tions to make when handling target-provided measurements
in a tracker.

The paper is organized as follows. We detail the problem
formulation in Section III. In Section IV, we explain the struc-
ture of the hybrid state that facilitates the inclusion of target-
provided information. We present the mathematical expres-
sions needed for calculations in Section V. In Section VI, three
different methods for handling the incoming measurements
are detailed. Section VII presents the implementation choices,
together with considerations to make to accommodate the
target-provided measurements. Lastly, Section VIII presents
the results. We compare the performance of the different
measurement handling methods and how they compare to
using only radar and the method from [13].

II. BACKGROUND

This work builds upon the multi-target tracking method
presented in [7] and can be considered an extension of the
framework described there. The tracking algorithm, denoted as
Visibility Interacting Multiple Models Joint Integrated Prob-
abilistic Data Association (VIMMJIPDA), combines Interact-
ing Multiple Models (IMM) and a visibility state with the
well-established JIPDA framework. The tracking method was
derived with a basis in the Poisson Multi-Bernoulli Mixture
(PMBM) filter [34].

Darko Musicki and Rob Evans introduced the JIPDA in
[23], where the concept of visibility is mentioned and indicates
whether the tracked target is visible to the sensor or not.
Later, e.g., [35] has explored visibility in connection with the
problem of estimating target detectability. The JIPDA is an
extension of the Joint Probabilistic Data Association (JPDA)
method developed by Yaakov Bar-Shalom [12], which again is
an extension of Bar-Shalom’s Probabilistic Data Association
(PDA) method [3]. These methods are well established in the
target tracking community and have been used for a range of
different purposes, such as collision avoidance for marine ves-
sels [29], autonomous navigation [11], and air traffic control
[19]. Henk A. P. Blom and Yaakov Bar-Shalom introduced
the IMM method [5], and it has been used for several decades
in,e.g., air traffic control. Furthermore, Musicki and Suvorova
presented an IMM-JIPDA algorithm in [24].

The PMBM filter and subsequent tracking algorithms [15]
utilize the PMBM density, which is the union between a
Poisson point process (PPP) and a multi-Bernoulli mixture.

The PPP represents unknown targets, i.e., undetected tar-
gets hypothesized to exist, and the multi-Bernoulli mixture
represents already detected targets. Links between PMBM
and JIPDA have been established in [34] (single kinematic
model, loopy belief propagation as an alternative to hypothesis
enumeration) and in [7] (multiple kinematic models, standard
hypothesis enumeration and mixture reduction).

Some work on the track-to-measurement fusion of radar
and target-provided measurements has been done previously,
both by Habtemariam et al. [17] and by Gaglione et al. [13].
The first approach includes target-provided measurements in
a JPDA-like tracking algorithm, while the second uses a
framework that also includes track existence. The second
approach utilizes probabilistic graphical models and loopy
belief propagation for the calculations. Furthermore, Gaglione
et al. use particle filtering for performing the calculations. Both
works perform data association on batches of target-provided
measurements simultaneously as on the radar measurements.
Gaglione et al. nevertheless consider that target-provided mea-
surements can arrive at any time. They also share similar
modeling of the target-provided measurement IDs, from which
the model presented here deviates. However, neither method
directly addresses the initialization of tracks using target-
provided measurements. In [20], a multiple hypothesis tracking
(MHT) approach is presented, which also showed promising
results but relied on pre-processing of the AIS measurements.
Track-to-track fusion using radar and AIS measurements has
also been done previously, e.g., in [9]. Here, a multi-sensor
network for maritime surveillance is described, utilizing sev-
eral sensors, including radar and AIS. More recently, research
has been conducted into the track-to-track association of radar-
and AIS-tracks [27].

III. PROBLEM FORMULATION

The unknown target intensity u(y) describes the not yet
discovered targets present in the surveillance area. We model
the unknown targets as a Marked PPP, which is equivalent
to a PPP on the Cartesian product of the space Rnx and the
discrete spaces the discrete hybrid states can take values from
[30, p. 205]. In its general form, this process is

b(y) = p(v)p(τ |v)p(s|v, τ)pγ(x|s, v, τ). (1)

where pγ(x|s, v, τ) is an intensity function on the the space
Rnx , and p(·) are distributions over the discrete states. Rather
than using the birth intensity directly, we use Proposition 1
from [7] to get the converged unknown target intensity

u(y) = Uovuξ
τ
uµ

τ
ufu(x). (2)

Here, U is the overall birth rate of new targets, ovu is the
probability of visibility state v, ξτu is the probability of ID τ ,
µτ
u is the probability of the kinematic mode s, and fu(x) is the

distribution of the kinematic state. The subscript u indicates
that the individual expressions are part of the unknown target
intensity. Equation (2) does not contain the initial values of
new targets, as it is a function of the birth intensity and the
transition probability matrices. However, for simplicity, the
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TABLE I: Nomenclature

a Association hypothesis
b(·) Birth intensity function
1Ω(·) Indicator function
H Measurement matrix
H∗ Complementary measurement matrix
N (·) Gaussian probability density function
µ Mode probabilities
η Probability of a target being visible
ξ ID probabilities
f(·) Generic (single-target) probability density function (pdf)
fy(·) Transition density for hybrid state
fz(·) Measurement density conditional on hybrid state
F Process model transition matrix
g[h] functional with test function
h Generic hybrid state probability density function
j Measurement index (superscript)
k Time step index (subscript)
∆t Interval between current and preceding time step
λ Poisson intensity for false alarms
n Number of tracks
o Visibility probabilities
PSc Constant survival probability
PD Detection probability
Pv Initial velocity covariance
π Mode transition probabilities
Q Process noise covariance matrix
r Existence probability
R Measurement noise covariance matrix
Rc Cartesian measurement noise covariance contribution
Rp Polar measurement noise covariance contribution
s Model index (superscript)
τ ID number (superscript)
t Track index (superscript)
u Poisson intensity of unknown targets
U Unknown target intensity strength
v Visibility state (superscript)
v Process noise
w Measurement noise
ω Visibility transition probabilities or turn rate
Ω Surveillance region
x Kinematic (continuous) state vector
y Hybrid state vector
z Measurement vector
A Target-rovided (AIS) specific entity
R Radar-specific entity
(·)k A (typically posterior) quantity at time step k
(·)k|k−1 A predicted quantity at time step k

(̂·) A Kalman filter estimate
(̃·) Latent variables that are marginalized away
(·)0 An initial quantity. Further meaning is context-dependent.
(·)u Unknown target intensity parameter after convergence

unknown target values are tuned directly and can be viewed
as initial values.

REMARK 1. This method of modeling the target IDs through
a Marked PPP implies that two targets can have the same
ID. The probability of two targets having the same ID in a
surveillance area with relatively few targets is minuscule, but
it is nevertheless a possibility [10]. We also note how the
modeling of actual, observable IDs here deviates from theoret-
ically assigned IDs. The labels in labeled Random finite sets
(RFSs), introduced in [32], are unobservable and analogous
to the identifying tags in [14], which ensure the uniqueness
of the elements of a RFS. The IDs described here, however,
serve no such purpose and can be assumed non-unique without
breaking the underlying mathematical assumptions of RFSs.

M2: We model the survival probability as a function of
time since the last update. A constant parameter PSc denotes
the probability of survival after one second. Thus, the survival
probability of an interval between times tk−1 and tk, denoted
as ∆t, becomes

PS(∆t) = P∆t
Sc

. (3)

M3: The ID numbers τ are assumed to be static, in line with
the physical reality of the AIS protocol. The IDs are manually
set at the installation of the AIS system. We assume that the
ID numbers of the unknown targets are distributed according
to

ξτu =

ξ0u if τ = 0
1− ξ0u
|V| − 1

if τ > 0
(4)

where ξ0u is some parameter denoting the belief that the target
has no ID, and |V| is the number of all possible ID numbers
in addition to 0. Not all targets have an ID, and we represent
this non-ID by the value τ = 0. If τ = 0, the target does not
transmit measurements.

M4: From time step k− 1 to k, the evolution of a target is
given by

fy(yk|yk−1) = fsτ
x (xk|xk−1)π

sk−1skwvk−1vk . (5)

The π-matrix contains the Markov chain probabilities of
changing between different kinematic models. The matrix w
contains the Markov chain probabilities of the target switching
between the visible state v = 1 and invisible state v = 0. The
ID numbers are assumed static and therefore do not change
during a prediction.

M5: For radar measurements, the detection probability
PD(yk) varies based on the visibility state v and we define it
as

PD(yk) =

{
PD if v = 1
0 if v = 0

(6)

where PD is a constant describing the probability of a target
being detected by the radar at a given time step.

For target-provided measurements, which are assumed to
give no missed detections, we have that

PD(yk) =

{
1 if a target-provided measurement is received
0 otherwise

(7)
independent of the visibility state. Thus, no conclusions about
a target are made from the absence of target-provided measure-
ments. Trying to keep track of when a vessel should transmit
measurements is a difficult problem, which, e.g., would be
subject to intentional randomness from the protocol [6].

M6: Radar clutter measurements are assumed to follow a
Poisson process with intensity λ. The target-provided mea-
surements do not contain clutter, the same as if it is following
a Poisson process with intensity 0.
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M7: The radar measurements are assumed to be synchro-
nized and to arrive simultaneously at a fixed frequency. The
synchronicity means that when radar measurements arrive at
time step k, the set of radar measurements contains measure-
ments from all detected targets at time step k, in addition
to clutter measurements. The radar measurement likelihood is
denoted as fR

z (zk|yk).
M8: The target-provided measurements can arrive whenever

and are not synchronized. Thus, a transmitted measurement
can be received at any time from any target. We do not assume
that targets transmit measurements simultaneously, contrary
to what we do for radar measurements. Whenever a target-
provided measurement arrives, however, the time of arrival is
assumed to be known. The measurement likelihood for the
target-provided measurements is

fA
z (zk|yk) = fp(pk|yk)fτ (τ

zk |τ) (8)

where zk is the whole measurement and pk only contains the
kinematic data of the measurement. Furthermore

fτ (τ
zk |τ) =


PC if τk = τzk

k
1− PC

|V| − 1
if τk ̸= τzk

k and τ > 0

0 if τ = 0

(9)

where PC is a fixed parameter describing the confidence in
the ID number not being corrupted, denoted as the confidence
probability. The reasoning behind the above equation comes
from the observation that the likelihood of a transmitted
measurement coming from a target without an ID is zero.
Furthermore, the chance of a transmitted ID being erroneous
makes it a possibility, albeit small, that any ID can be the
correct one.

IV. HYBRID STATES AND THE PMBM
As formulated in [2, p. 441], a hybrid state is a state where

the state space contains both discrete and continuous states or
uncertainties. This structure is useful as the kinematic state
will be continuous, while, e.g., the choice of kinematic model
for the target will be discrete.

A PMBM filter represents the posterior multi-target density
for discovered targets as a weighted sum of multi-Bernoulli
densities. These involve weights for each of the multi-
Bernoullis, and kinematic densities and existence probabilities
for each of the Bernoullis. The PMB filter, which essentially
is the same as a JIPDA, approximates the sum of multi-
Bernoullis by a single multi-Bernoulli at the end of each
estimation cycle.

Using the equations from [34], one can get general ex-
pressions for the weight, existence, and states irrespective of
the sensor type assuming the sensors generate measurements
adhering to the assumptions made in Assumption 2 in [34].
The assumptions hold for both target-provided and radar
measurements. The inclusion of IDs in the target-provided
measurements is contained in the measurement likelihood
function, and they do not breach any independence assump-
tions. The goal of this section is to extract expressions for the
probabilistic properties of the individual hybrid state elements.

From [34], we have that the weight w, existence probability
r and distribution f(y) of a single Bernoulli in general can
be written as

w = g(y) + h[1] (10)

r =
h[1]

g(y) + h[1]
(11)

f(y) =
h(y)

h[1]
. (12)

for some functions g and h of the state y. The notation [·]
indicates a linear functional, defined as

g[h] =

∫
g(x)h(x)dx. (13)

These are useful tools for compactly writing normalization
constants and likelihoods. For later use, it is convenient to
find general expressions for the individual states in the hybrid
state y. Using the approximation from [7, Remark 6] that
the visibility is independent on the other states, we can write
h(y) = h(v)h(τ)h(s|τ)h(x|τ, s). We get the individual states
by using the rule of conditional probability. Starting with the
kinematic state x, it can be acquired by

f t(x|s, τ, v) = f(x, s, τ, v)∫
f(x̃, s, τ, v)dx̃

=

h(x, s, τ, v)

h[1]∫
h(x̃, s, τ, v)dx̃

h[1]

=
h(x, s, τ, v)∫
h(x, s, τ, v)dx

=
h(v)h(x, s, τ)

h(v)
∫
h(x̃, s, τ, v)dx̃

=
h(x, s, τ)

h(s, τ)
(14)

where we have omitted the time indices for brevity. The
(̃·) notation is used for latent variables which disappear by
marginalization. Furthermore, the absence of the visibility state
v in the final expression means that f t(x|s, τ, v) = f t(x|s, τ).
Similarly, the mode probabilities are

f t(s|τ) = µtτs =
h(s, τ)

h(τ)
, (15)

the ID probabilities are

f t(τ) = ξtτ =
h(τ)

h[1]
. (16)

and the visibility probabilities are

f t(v) = otv =
h(v)

h[1]
. (17)

Note that
∑

τ̃

∑
s̃

∫
h(x̃, s̃, τ̃)dx̃ = h[1], which essentially

acts as a normalization constant. Independencies between the
states will make it possible to reduce the needed amount of
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marginalization, as they will appear both in the numerator and
the denominator. The independencies will depend on the model
choices and are written here according to the assumptions in
Section III.

V. INCLUDING TARGET-PROVIDED MEASUREMENTS IN THE
VIMMJIPDA

In the VIMMJIPDA, the unknown target intensity u(y) is
assumed stationary and is left unchanged during the prediction
and updating of the estimates. We make the same assumption
here. This assumption means that only the Bernoulli com-
ponents have to be considered, and is further simplified by
following the JIPDA method of performing mixture reduc-
tion. I.e., we merge all Bernoullis originating in the same
measurement into a single Bernoulli after each update. Thus,
we can omit the weights of the association hypotheses of
previous time steps can due to marginalization. Table II shows
the expressions for updating and predicting the Bernoulli
components from [34]. These are adapted to simplify insertion
in (10)-(12) and (14)-(17). Furthermore, they are simplified
to reflect the stationary unknown target intensity and the
marginalization over the weights during mixture reduction.
As the measurement model assumptions made in [34] hold
with regards to both radar and target-provided measurements,
both fR

z (z|y) and fA
z (z|y) can be considered special cases

of the more general fz(z|y) in the table. The expressions for
predicting and updating the Bernoulli estimates based on the
potential information acquired by the sensor updates follow.

A. Prior

For a single track, which in the context of this paper is
analogous to a Bernoulli, we write the hybrid state prior
distribution as

f t
k−1(y) = f t

k−1(x|τ, s)ξtτk−1µ
tτs
k−1o

tv
k−1 (18)

while the prior existence probability is rtk−1. As mentioned
above, we merge all the hypotheses of the previous time
step, giving wt

k−1 = 1. The prior is a joint distribution
over the continuous kinematic state and the discrete potential
IDs, kinematic modes, and visibility states. In the following
propositions, only the probability of the target being in the
visible state is presented, i.e., ot1, which we denote as ηt.
The prior is decomposed into several states conditioned on the
different discrete states. An example of the structure of a prior
with two possible IDs and two possible kinematic modes is
shown in Figure 1. The expressions in the square boxes are not
calculated themselves but can be constructed from the other
expressions.

B. Prediction

All tracks are predicted from the previous time step k − 1
to the current time step k. The predicted probabilities and
densities are denoted by the subscript (·)k|k−1.

Proposition 1. The prediction for the existence probability
rt, the visibility probability ηt, the ID probabilities ξtτ , the

mode probabilities µtτs and the kinematic density f t(x|τ, s)
are done as

rtk|k−1 = rtk−1PS(∆t) (19)

ηtk|k−1 = (1− ηtk−1)w
01 + ηtk−1w

11 (20)

ξtτk|k−1 = ξtτk−1 (21)

µtτs
k|k−1 =

∑
s̃

µtτ s̃
k−1π

s̃s(∆t) (22)

f t
k|k−1(x|τ, s) =

∫
fy(x|τ, s, x̃)f t

k−1(x̃|τ, s)dx̃ (23)

where

f t
k−1(x̃|τ, s) =

∑
s̃

µtτ s̃
k−1π

s̃sf t
k−1(x̃|τ, s̃)∑

s̃ µ
tτ s̃
k−1π

s̃s(∆t)
(24)

.

Proof. The proof builds upon [7], but is modified to also ac-
count for the inclusion of the IDs in the state vector. It should
be noted that the survival probability is only dependent on
the times of the measurements’ arrival, which are independent
of the state. Because the IDs are assumed static the transition
model for the IDs becomes a Kronecker delta δττ̃ . It is defined
as

δττ̃ =

{
1 if τ = τ̃

0 if τ ̸= τ̃
. (25)

First we write out h(y) from Table II:

Fig. 1: The structure of the distribution of a hybrid state with
two kinematic modes and two possible IDs.
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g h[1] h(y)

New target λ u[PD(ỹ)fz(z|ỹ)] u(y)PD(y)fz(z|y)
Missed detection 1− rt

k|k−1
rt
k|k−1

f [1− PD(ỹ)] rt
k|k−1

fk|k−1(y)(1− PD(y))

Detection 0 rt
k|k−1

f [PD(ỹ)fz(z|ỹ)] rt
k|k−1

f t
k|k−1

(y)PD(y)fz(z|y)
Prediction 1− rtk−1f [PS(ỹ)] rtk−1f [PS(ỹ)] rtk−1

∫
f t
k|k−1

(y|ỹ)PS(ỹ)fk−1(ỹ))dỹ

TABLE II: Expressions for creating, updating, and predicting the Bernoulli components.

h(y) = rtk−1

∫
f t
k|k−1(y|ỹ)PS(ỹ)fk−1(ỹ)dỹ

= rtk−1PS(∆t)
(∑

ṽ

f(ṽ)f(v|ṽ)
)
×

×
∑
τ̃

fk−1(τ̃)δττ̃
∑
s̃

fk−1(s̃|τ̃)f t
k|k−1(s|s̃)×

×
∫

f t
k|k−1(x|s, τ, x̃)fk−1(x̃|s̃, τ̃)dx̃

= rtk−1PS(∆t)
(∑

ṽ

f(ṽ)f(v|ṽ)
)
fk−1(τ)×

×
∑
s̃

fk−1(s̃|τ)f t
k|k−1(s|s̃)

∫
f t
k|k−1(x|s, τ, x̃)×

× fk−1(x̃|s̃, τ)dx̃

= rtk−1PS(∆t)
(∑

ṽ

otṽk−1w
ṽv
)
ξtτk−1

∑
s̃

µτs
k−1π

s̃s(∆t)×

×
∫

f tτs
k|k−1(x|s, τ, x̃)fk−1(x̃|s̃, τ)dx̃ (26)

which uses the fact that only the conditioning on the most
recent variable is relevant. Marginalizing this, one gets

h(s, τ) = rtk−1

∫ ∑
v

h(x, s, τ, v)dx

= rtk−1PS(∆t)ξtτk−1

∑
s̃

µtτ s̃
k−1π

s̃s(∆t), (27)

h(τ) = rtk−1

∑
s

h(s, τ) = PS(∆t)ξtτk−1, (28)

h(v) = rtk−1

∫ ∑
τ

∑
s

h(x, s, τ, v)dx

= rtk−1PS(∆t)
(∑

ṽ

otṽk−1w
ṽv
)

(29)

h[1] = rtk−1

∑
τ

h(τ) = rtk−1PS(∆t). (30)

Inserting this in (14)-(17) provides the expressions for the
hybrid states. Note that the expression for the visibility prob-
ability ηtk|k−1 follows from the fact that ot0k−1 = 1 − ot1k−1 =

1− ηtk−1. The expression for the existence probability rtk|k−1

is found by inserting g(y) = rtk−1PS(∆t) from Table II and
h[1] into (11).

C. Posterior

The individual posterior distributions, conditioned on ei-
ther a detection or a missed detection, are calculated after
the prediction. The four possibilities for a track when new
measurements arrive are

• The previously unknown track is detected for the first
time.

• The previously detected track is detected again.
• The previously detected track is not detected.
• The previously unknown track is not detected.

Any tracks covered by the fourth alternative will be repre-
sented by the unknown target density, and do not need to be
considered specifically. The posterior distributions for the three
first possibilities are presented in the following propositions.

Proposition 2. Initialization of a new track on a measurement
indexed by j is done as

wtj
k =

{
λ+ cUPDη0 for radar
cU

∑
τ̃ ξ

τ̃
ufτ (τ

j |τ̃) for target-provided

(31)

rtjk =


UPDη0

λ+ UPDη0
for radar

1 for target-provided
(32)

ηtjk =

{
1 for radar
ηu for target-provided

(33)

ξtτjk =

{
ξτu for radar
fτ (τ

z|τ) for target-provided
(34)

µtτsj
k = µs

u (35)

f tj
k (x|s, τ) = fz(z|x, s, τ)fu(x)/c (36)

where c =
∫
fz(z|x, s, τ)fu(x)dx is a constant.

Proof. Firstly, for radar measurements, we have that

h(y) = UPD(v)ovuξ
τ
uµ

τs
u fu(x)fz(z|x, s, τ) (37)

which follows from (2) and Table II. Furthermore

h(s, τ, v) = cUPD(v)ovuξ
τ
uµ

τs
u (38)

h(τ, v) = cUPD(v)ovuξ
τ
u (39)

h(v) = cUPD(v)ovu (40)

h[1] = cUPDη0 (41)

where c is a constant resulting from the marginalization over
x.

For target-provided measurements we have that
fz(z|x, s, τ) = fp(p|x, s, τ)fτ (τz|τ). This means that

h(y) = Uovuξ
τ
uµ

τs
u fτ (τ

z|τ)fu(x)fz(p|x, s, τ). (42)



7

The probability of detection is omitted here, as it is defined as
1 whenever a target-provided measurement has been received.
Furthermore

h(s, τ, v) = cUovuξ
τ
uµ

τs
u fτ (τ

z|τ) (43)
h(τ) = cUξτufτ (τ

z|τ) (44)
h(v) = cUovu

∑
τ̃ ξ

τ̃
ufτ (τ

z|τ̃) (45)
h[1] = cU

∑
τ̃ ξ

τ̃
ufτ (τ

z|τ̃) (46)

where c again is a constant.

Inserting these expressions in (14)-(17) gives (33)-(36), i.e.
the distributions of the individual hybrid states of a new target.
Furthermore, we have from Table II that g is the clutter density,
which is λ for radar measurements, and 0 for target-provided
measurements. We insert g and h[1] in (10) and (11) to get (31)
and (32). The expression for the ID probability in the event
of initialization on a transmitted measurement requires some
further explanation. Keeping in mind the prior distribution for
the IDs (4), we have that

ξtτjk =
h(τ)

h[1]

=
ξτufτ (τ

z|τ)∑
τ̃ ξ

τ̃
ufτ (τ

z|τ̃)

=


fτ (τ

z|τ)(1− ξ0u)/|V − 1|∑
τ̃ fτ (τ

z|τ̃)(1− ξ0u)/|V − 1|
if τ > 0

0 if τ = 0

=


fτ (τ

z|τ)∑
τ̃ fτ (τ

z|τ̃)
if τ > 0

0 if τ = 0

=

{
fτ (τ

z|τ) if τ > 0

0 if τ = 0
= fτ (τ

z|τ) (47)

where we have used that
∑

τ̃ fτ (τ
z|τ̃) = 1. If a different

prior distribution than (4) is used for the IDs, it can be
accommodated by replacing the final expression with the one
in the second line of the above expression.

Proposition 3. Updating based on a missed detection is done
as

wt0
k =

{
1− rtk|k−1η

t
k|k−1PD for radar

1 for target-provided

(48)

rt0k =


rtk|k−1(1− ηtk|k−1PD)

1− rtk|k−1η
t
k|k−1PD

for radar

rtk|k−1 for target-provided
(49)

ηt0k =


(1− PD)ηtk|k−1

1− PDηtk|k−1

for radar

ηtk|k−1 for target-provided
(50)

ξtτ0k = f t
k|k−1(τ) (51)

µtτs0
k = f t

k|k−1(s|τ) (52)

f t0
k (x|τ, s) = f t

k|k−1(x|τ, s) (53)

REMARK 2. The inclusion of target-provided measurement
types in the case of a missed detection is somewhat artificial.
The expressions are the same as for the prediction, as the
absence of target-provided measurements gives no additional
information to the tracking algorithm. This follows from the
definition of the detection probability in Section III, i.e. that
PD = 0 for target-provided measurements when they have not
been received. For later use, the expressions are nevertheless
written out here.

Proof. We have that

h(y) = rtk|k−1(1− PD(v))otvk|k−1ξ
tτ
k|k−1µ

tτs
k|k−1fk|k−1(x|s, τ)

(54)
where the corresponding expression from Table II has been
written out. Similarly as to what was done previously, we find
through marginalization that:

h(s, τ, v) = rtk|k−1(1− PD(v))otvk|k−1ξ
tτ
k|k−1µ

tτs
k|k−1

h(τ, v) = rtk|k−1(1− PD(v))otvk|k−1ξ
tτ
k|k−1

h(v) = rtk|k−1(1− PD(v))otvk|k−1

(55)

Again, the different detection probabilities have to be taken
into account when summing over the visibility states, giving

h[1] = rtk|k−1((1− PD)ηtk|k−1 + (1− ηtk|k−1))

= rtk|k−1(1− PDηtk|k−1) (56)

for radar updates, and h[1] = 1 for AIS updates. Inserting
this in (14)-(17) gives the wanted expressions for the hybrid
states. Furthermore, we get from Table II that g is given by
1 − rtk|k−1, which together with h[1] gives us (48) and (49)
by using (10) and (11).

Proposition 4. Updating based on a detection is done as
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wtj
k =


PDηtk|k−1r

t
k|k−1

∑
τ̃ ξ

tτ̃
k|k−1

∑
s̃ µ

tτ̃ s̃
k|k−1l

tτ̃ s̃j

for radar
rtk|k−1

∑
τ̃ ξ

tτ̃
k|k−1

∑
s̃ µ

tτ̃ s̃
k|k−1l

tτ̃ s̃j

for target-provided

(57)

rtjk = 1 (58)

ηtjk =

{
1 for radar
ηtk|k−1 for target-provided

(59)

ξtτjk =
ξtτk|k−1

∑
s̃ l

tτ s̃j∑
τ̃ ξ

t̃τ
k|k−1

∑
s̃ l

tτ̃ s̃j
(60)

µtτsj
k =

µtτs
k|k−1l

tτsj∑
s̃ µ

tτ s̃
k|k−1l

tτ s̃j
(61)

f tj
k (x|τ, s) =

fz(z|x, τ, s)f t
k|k−1(x|τ, s)

ltτsj
(62)

where

ltτsj = fτ (τ
j |τ)

∫
fz(z

j
k|x̃)f

tτs
k|k−1(x̃)dx̃. (63)

for target-provided measurements, and

ltτsj =

∫
fz(z

j
k|x̃)f

tτs
k|k−1(x̃)dx̃. (64)

for radar measurements.

Proof. Writing out the expression for a detection in Table II,
we have that

h(y) = rtk|k−1PD(v)otvk|k−1ξ
tτ
k|k−1µ

tτs
k|k−1×

× f tτs
k|k−1(x)fz(z|x, s, τ) (65)

which we marginalize to obtain

h(s, τ, v) = rtk|k−1PD(v)otvk|k−1ξ
tτ
k|k−1µ

tτs
k|k−1l

tτsj

h(τ, v) = rtk|k−1PD(v)otvk|k−1ξ
tτ
k|k−1

∑
s

µtτs
k|k−1l

tτsj

h(v) = rtk|k−1PD(v)otvk|k−1

∑
τ

ξtτk|k−1

∑
s

µtτs
k|k−1l

tτsj .

(66)

For radar, we have that PD(v = 1) = PD and 0 otherwise,
and for AIS PD(v) = PD = 1 if a measurement has been
received. Using this we get

h[1] = PDηtk|k−1r
t
k|k−1

∑
τ

ξtτk|k−1

∑
s

µtτs
k|k−1l

tτsj (67)

for radar updates, and

h[1] = rtk|k−1

∑
τ

ξtτk|k−1

∑
s

µtτs
k|k−1l

tτsj (68)

for AIS updates. The expressions for the hybrid states result
from inserting this in (14)-(17). We see from Table II that

g = 0, and using this, together with h[1] we get (57) and (58)
from (10) and (11).

D. Mixture reduction

The mixture reduction is done similarly to what is done in
the JIPDA. That is, all the association hypotheses for each
track are merged. An association hypothesis ak from the set
of all possible association hypotheses Ak contains individual
track-to-measurement associations at. The probabilities for the
individual association hypotheses are

Pr(ak) ∝
∏

t s.t at=0

wtat

k

∏
t s.t at>0

wtat

k /λ (69)

where λ is the Poisson intensity for the false alarms, and
the fact that

∑
ak∈Ak

Pr(ak) = 1 is used to normalize the
probabilities. This in turn provides the marginal probabilities
for the associations as

ptjk =
∑

ak s.t. at=j

Pr(ak). (70)

The mixture reduction remains the same irrespective of the
type of measurement, as all differences are handled during
the calculation of the individual posterior distributions.

Proposition 5. We have that

rtk =

mk∑
j=0

rtjk ptj (71)

ηtk =

mk∑
j=0

1

rtk
rtjk ptjk︸ ︷︷ ︸
βtj
k

ηtjk (72)

ξtτk =

mk∑
j=0

1

rtk
rtjk ptjk︸ ︷︷ ︸
βtj
k

ξtτjk (73)

µtτs
k =

mk∑
j=0

1

ξtτk rtk
ξtτjk rtjk ptjk︸ ︷︷ ︸
βtτj
k

µtτsj
k (74)

f tτs
k (x) =

m∑
j=0

µtτsj
k ξtτjk rtjk ptjk
µtτs
k ξtτk rtk︸ ︷︷ ︸
βtτsj

f tτsj
ki

(x) (75)

where

βtj
k =

rtjk ptjk
rtk

=


ptjk
rtk

, j > 0

r0kp
t0
k

rtk
, j = 0

(76)

βtτj
k =

ξtτjk rtjk ptjk
ξtτk rtk

= βtj
k

ξtτjk

ξtτk
(77)

βtτsj
k =

µtτsj
k ξtτjk rtjk ptjk
µtτs
k ξtτk rtk

= βtτj
k

µtτsj
k

µtτs
k

(78)
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Using the individual f tτsj
k (x), the combined state f tτs

k (x) can
be approximated by use of moment matching techniques.

Proof. The Multi-Bernoulli Mixture (MBM) containing the
posterior track estimates, weights, and existence probabilities
can be approximated as a Multi-Bernoulli. A thorough proof
of this, and more context regarding the MBM, can be found in
[34]. Drawing from the aforementioned proof, in combination
with the proof in [7, Appendix D], we have that the posterior
distribution over y can be approximated as

f t
k(y) ≈

mk∑
j=1

βtj
k f tj

k (y) (79)

(80)

where

βtj
k =

rtjk ptjk
rtk

(81)

and

f tj
k (y) = otvjk ξtτjk µtτsj

k f tsτj
k (x). (82)

Using this, together with the approximation that the visibility
is independent of the other states, we can write

mk∑
j=1

βtj
k f tj

k (y) ≈
mk∑
j=1

βtj
k ξtτjk µtτsj

k f tsτj
k (x)

mk∑
j=1

βtj
k otvjk

=

∑mk

j=1 β
tj
k ξtτjk µtτsj

k f tsτj
k (x)∑mk

j=1 β
tj
k ξtτjk µtτsj

k

∑mk

j=1 β
tj
k ξtτjk µtτsj

k∑mk

j=1 β
tj
k ξtτjk

×

×
mk∑
j=1

βtj
k ξtτjk

mk∑
j=1

βtj
k otvjk

=

mk∑
j=1

βtj
k ξtτjk µtτsj

k∑mk

j=1 β
tj
k ξtτjk µtτsj

k

f tsτj
k (x)

mk∑
j=1

βtj
k ξtτjk∑mk

j=1 β
tj
k ξtτjk

µtτsj
k ×

×
mk∑
j=1

βtj
k ξtτjk

mk∑
j=1

βtj
k otvjk

=

mk∑
j=1

βtτsj
k f tsτj

k (x)︸ ︷︷ ︸
ftsτ
k (x)

mk∑
j=1

βtτj
k µtτsj

k︸ ︷︷ ︸
µtτs
k

mk∑
j=1

βtj
k ξtτjk︸ ︷︷ ︸

ξtτk

mk∑
j=1

βtj
k otvjk︸ ︷︷ ︸

otvk

(83)

Keeping in mind that rtjk = 1 ∀ j > 0 and that ot1jk = ηtjk =
1 ∀ j > 0 we get the wanted expressions. Lastly, we get the
expression for the existence probability rtk directly from [7].

VI. TARGET-PROVIDED MEASUREMENT HANDLING

The method shown in the previous section does not specify
how the target-provided measurements are grouped before
being sent to the tracker. In this section, we present three dif-
ferent ways of considering the target-provided measurements.

A. Method A: Sequential measurement processing

The first method for handling the incoming target-provided
measurements is to process them, and perform the data asso-
ciation, as they arrive. This would mean that the predicting
and updating of tracks is performed for each target-provided
measurement, which can arrive at any time between radar
measurement batches. This approach demands no further ex-
tensions to what is described above. The method is shown in
Algorithm 1.

Algorithm 1 Method A: Sequential measurement processing

Require: target-provided measurements ZA = {z1A, . . . , zmA },
radar measurements ZR = {z1R, . . . , zmR }, tracks from
previous time step X = {x1, . . . ,xn}
for target-provided measurement zjA ∈ ZA do

X ← PREDICT(X, tjA) ▷ predict tracks to time of zjA
X ← UPDATE(X, zjA)

end for
X ← PREDICT(X, tR) ▷ predict tracks to time of ZR

X ← UPDATE(X, ZR)

B. Method B: Precise batch measurement processing

The second method performs the data association for the
target-provided measurements at the times when radar mea-
surements arrive. The method considers all the target-provided
measurements that have arrived between the previous and
current time steps as a batch of measurements. This method
is conceptually similar to what is done in [13] and [17].
The method is shown in Algorithm 2. The target-provided
measurements with the same ID are clustered together, and
the data association is performed based on these clusters. The
clustering means that the measurement likelihood has to be
calculated for each cluster rather than for each measurement.
The measurement likelihood for Im measurements with the
same ID is

fz(z|x) = fz(z
1, . . . , zIm |x) =

Im∏
i=1

fz(z
i|zi−1, . . . , z1,x)

(84)
where

fz(z
i|zi−1, . . . , z1,x)

=

∫
fz(z

i|xi)fx(x
i|zi−1, . . . , z1,x)dxi. (85)

This has to be calculated for each measurement that has
arrived between the radar updates. The measurements are
sorted according to their time stamp, with zIm being the most
recent measurement. This expression effectively replaces the
integral in (63). The individual kinematic states are calculated
as
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f tτsj
k (x|zi, zi−1, . . . , z1,x)

=
fz(z

i|xi)fx(x
i|zi−1, . . . , z1,x)∫

fz(zi|xi)fx(xi|zi−1, . . . , z1,x)dxi
(86)

This expression can be calculated using, e.g., a Kalman filter.
A thorough explanation of this recursive measurement likeli-
hood calculation can be found in the supplementary material of
[13]. With these expressions established, the other calculations
and expressions are identical to Method A.

Algorithm 2 Method B: Precise batch measurement process-
ing

Require: target-provided measurement clusters ZA =
{z1A, . . . , zmA }, radar measurements ZR = {z1R, . . . , zmR },
tracks from previous time step X = {x1, . . . ,xn}
for track xt ∈ X do

for target-provided measurement cluster zjA ∈ ZA do
xt,j ← COPY(xt)
for target-provided measurement zi ∈ zjA do

xt,j ← PREDICT(xt, tj,iA )
xt,j ← UPDATE(xj , tj,iA )

end for
lt,j ← MEASUREMENTLIKELIHOOD(xt,j , zjA)
xt,j ← PREDICT(xt,j , tR)

end for
Xt,j

new ← xt,j

end for
X ← MIXTUREREDUCTION(Xnew, l)
X ← UPDATE(X, ZR)

C. Method C: Batch measurement processing with added
noise

In Section III it is assumed that the radar measurements
of a single measurement batch are synchronized, i.e., they all
arrive at the same time. We do not make the same assumption
for the target-provided measurements. However, making this
assumption would allow us to simplify the handling of the
measurements and remove some of the computational com-
plexity of the above methods. Such an approach would be
well suited when the radar frequency is high, as the timing
errors would be small. Algorithm 3 describes the approach.
Furthermore, only the most recent measurement is considered
when a target has transmitted more than one measurement
between radar updates. In addition, this method should be
used with a higher measurement noise level to account for
the synchronization errors.

REMARK 3. When grouping the same-ID target-provided
measurements, one has to keep in mind the assumption of
only one measurement arising from each target. If a target
transmits two target-provided measurements between radar
updates, and one of the measurements has a corrupted ID
number, this would breach the assumption. The most obvious
way to amend this is to discard target-provided measurements
whenever there are more measurements than tracks present.

Algorithm 3 Method C: Batch measurement processing with
added noise
Require: target-provided measurements ZA = {z1A, . . . , zmA },

radar measurements ZR = {z1R, . . . , zmR }, tracks from
previous time step X = {x1, . . . ,xn}
X ← PREDICT(X, tR) ▷ predict tracks to time of ZR, ZA

X ← UPDATE(X, ZA)
X ← UPDATE(X, ZR)

This will, however, interfere with initializing new tracks on
the target-provided measurements. It should also be noted
that if the radar frequency is higher than the target-provided
measurement transmission frequency, a cluster will always
only contain a single measurement. This would avoid the
aforementioned problem, and simplify calculations.

REMARK 4. When using (84), the discrete hybrid states will
take their most likely value as a mean over the information
from the measurements in the cluster. This is as opposed to
obtaining the most likely value at the most recent target-
provided measurement. This could theoretically impact the
estimation of the discrete states. E.g. if two measurements in
a cluster indicate two different kinematic models this disparity
will not be captured when using the batch processing methods.

VII. IMPLEMENTATION

A. Utilization of Gaussian-linearity

To make the implementation tractable, we model the indi-
vidual kinematic states and the measurement likelihoods as
Gaussian distributions. This allows us to use an Extended
Kalman Filter when predicting and updating the kinematic
estimates. The measurement likelihoods are defined as

fR
z (zk|yk) = N (zk|HRx,RR) (87)

for radar measurements, and as

fp(pk|yk) = N (pk|HAx,RA), (88)

for the positional part of the AIS measurements. Furthermore,
the kinematic transition density fsτ

x (xk|xk−1) is assumed to
be in the form of a Gaussian

fsτ
x (xk|xk−1) = N (xk|f (s)(xk−1),Q

(s)). (89)

The transition model is linearized when needed to enable
EKF prediction and Gaussian moment matching for mixture
reduction.

The kinematic unknown target density from (2) is defined
as

fu(x) = 1Ω(H
(s)x)N (H∗(s)x;0,Pv). (90)

where 1Ω(·) is an indicator function which is 1 when the
unknown target is within the surveillance area, and H∗(s) is the
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permutation matrix corresponding to the non-positional states
of the state vector x. Using this we have that

fz(z|x, s, τ)fu(x)
= 1Ω(H

(s)x)N (za
t

k |H(s)x,Rs)N (H∗(s)x|0,P(s)
v ) (91)

In the case of a large enough surveillance area Ω, and under
the assumption of Gaussian-linearity, this can be approximated
as N (x|x̂s

0,P
s
0). Furthermore, this means that the constant c

in Proposition 2 becomes

c =

∫
fz(z|x, s, τ)fu(x)dx ≈

∫
N (x|x̂s

0,P
s
0)dx = 1.

(92)
A more thorough proof regarding the unknown target density
can be found in Appendix C of [7].

B. Gating

Because the target-provided measurements can arrive at
any time, the number of times we have to perform gating
increases considerably. The main computational cost of this
is the number of predictions. Thus, we should consider this
when creating the gating procedure.

Several different gating methods are presented in [33]. The
first method relies on gating for each kinematic model, and
it uses all measurements that have been gated by any of the
models. A different method is a centralized gating procedure
which makes an approximation across all models using a
single gate. We use a somewhat more refined method, the Two-
step Model Probability Weighted Gating (TS-MPWG) method.
TS-MPWG was also presented in [33]. The first step in the
method is a centralized gating procedure

f t
k|k−1(x) =

∑
τ̃

ξtτ̃k|k−1

∑
s̃

µtτ̃ s̃
k|k−1f

tτ̃ s̃
k|k−1(x) (93)

where f t
k|k−1(x) = N (x|x̂k|k−1, P̂k|k−1) provides the gate

center x̂k|k−1 and the predicted covariance P̂k|k−1. Further-
more, the innovation covariance becomes

S = HP̂k|k−1H
⊤ +Rk. (94)

If no measurements are gated during the first step, the next
step is initiated. Here, the gate is determined by the largest
possible model error and should encompass any measurements
generated by the target even if the chosen kinematic model is
wrong. Thus, the TS-MPWG method can exploit the more
computationally effective nature of the central gating method
while compensating for eventual model errors. Adapting the
expressions in [33] to this model, the gate in the second step
is determined in by the maximal difference between x̂k|k−1

and the individual x̂tτs
k|k−1. This error is

Kmax = argmax
τ,s

∥Hx̂k|k−1 −Hx̂tτs
k|k−1∥

2. (95)

Using this, we calculate the gate volume as

Sd = S+Kmax (96)

where

Kmax = diag[

n︷ ︸︸ ︷
Kmax, . . . ,Kmax] (97)

for a measurement space of dimension n.
Furthermore, it would be beneficial to have the possibility of

gating target-provided measurements between two radar time
steps without having to predict the state of all tracks. We
can achieve this by utilizing one of the methods described in
[36]. The method involves expanding the gate size according
to a fixed presumed maximum velocity. That is, rather than
predicting the track from time tk−1 to tk, the gate accounts
for movement in all directions at a very high speed. This
method gives very large validation gates, and we only use
it as a preliminary step before using the TS-MPWG method.
Here, the radius of the gate is decided by

rk = 2rk0
+ (tk − tk−1)vmax (98)

where vmax is a parameter representing the largest possible
speed for a target, and

rk0 =
√

γGeig(R)max. (99)

Here, γ is the gate size, and eig(R)max is the largest eigen-
value of the measurement covariance matrix.

C. Initialization and termination

Due to target-provided measurements never being clutter
measurements, care should be taken when choosing the initial-
ization scheme. In JIPDA tracking algorithms, new tracks are
usually only initialized on so-called free measurements, i.e.,
measurements that have not been gated by any tracks at the
current time step. When using this scheme, a target-provided
measurement belonging to an uninitialized target, which falls
within the validation gate of a previously initialized target,
would most likely assign the measurement to the previously
initialized target. However, a scheme that initiates tracks on
all measurements will avoid this problem.

Initializing a new track on every measurement is computa-
tionally expensive and requires measures to mitigate compu-
tational complexity. For this purpose, we classify the tracks as
newborn, adolescent, and ordinary. Newborn tracks are tracks
that have been initialized at the current time step, adolescent
tracks are tracks that were initialized at the previous time
step, and ordinary tracks are all other tracks. The adolescent
tracks are not allowed to compete for measurements in the
same way as the ordinary tracks. The restriction comes into
play when an adolescent track i and an ordinary track t
have gated measurement j at the current time step, and they
have both gated the same measurement at the previous time
step. Then, the adolescent track j is only allowed to compete
for the measurement if it has a larger weight relative to the
measurement than the other track

max
t,j

wtj
k < TBw

ij
k . (100)
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where TB is a threshold parameter. Otherwise, the adolescent
track is not allowed to compete for measurement j, which is
enforced by setting wij

k = 0.
Termination is done as described in [37]. First, any tracks

with an existence probability under a predetermined threshold
Td are removed. Furthermore, any two tracks deemed to be
identical are identified by the use of the hypothesis test in
[1, p. 447]. The most recently initialized of these are then
terminated. Lastly, any tracks that have not been associated
with a measurement for NT radar intervals are terminated.

D. Kinematic models

The implementation uses two different kinematic models:
the Constant Velocity (CV) model and the Coordinated Turn
(CT) model. Due to the varying prediction intervals, we use
the discretized continuous formulation of the models. The CV
model has the kinematic state x = [x, y, vx, vy]

T where v
denotes the velocity, and the state evolves according to xk =
F(s)(∆t)xk−1 + vk, vk ∼ N (0,Q(s)) where

F(s) =

[
I2 ∆tI2
0 I2

]
, Q(s) =

[
(∆t)3/3I2 (∆t)2/2I2
(∆t)2/2I2 ∆tI2

]
q.

(101)

Here, I is the identity matrix, ∆t is the prediction interval, and
q is the process noise intensity [2, p. 270] of the process noise.
The CT model has an additional state ω, which is the turn rate.
It evolves as xk = F(s)(xk−1)xk−1 + vk, vk ∼ N (0,Q(s))
where

F(s)(x) =



1 0
sin∆tω

ω

−1 + cos∆tω

ω
0

0 1
1− cos∆tω

ω

sin∆tω

ω
0

0 0 cos∆tω − sin∆tω 0
0 0 sin∆tω cos∆tω 0
0 0 0 0 1


(102)

and

Q(s) =

[
Q(1) 0
0 ∆tqω

]
(103)

where Q(1) is a CV model covariance matrix, and qω is the
intensity of the turn rate process noise. In the implementation,
the CT model is linearized as in [2, §11.7.2].
REMARK 5. In most IMM applications, the transition matrix
is constant. Thus, an aspect that has to be considered when
the measurements do not arrive at a fixed frequency, is how to
design the time-varying transition matrix Π(∆t). A solution
is to use the theory of Continuous Markov Chains to get an
approximation for Π(∆t) from the time-independent transition
matrix Π. As described in [16], this can be done by use of a
generator matrix G. The generator matrix is closely related to
the time-independent transition matrix Π and is formulated as

a) no transition takes place in the time interval ∆t with
probability 1 + gii∆t + o(∆t)

b) a transition takes place in the time interval ∆t with
probability gij∆t + o(∆t).

where gij are the individual elements of G, and o(∆t)
indicates some small additional term which is ignored. This
approximation is reasonable for relatively small ∆t. Thus, the
generator matrix G for M number of states can be written as

G =

π
11 − 1 . . . π1M

...
. . .

...
πM1 . . . πMM − 1

 (104)

where πij are the individual elements of Π. Furthermore we
have from [16] that

πij(∆t) ≈ gij∆t if i ̸= j and πii(∆t) ≈ 1+ gii∆t. (105)

Using this we get

Π(∆t) ≈

1 + (π11 − 1)∆t . . . π1M∆t
...

. . .
...

πM1∆t . . . 1 + (πMM − 1)∆t


(106)

.

E. Measurement models

Radar measurements

The radar measurements only contain positional data, and
the measurements can be written as

zk = Hxk +wk, wk ∼ N (0,RR) (107)

The noise matrix has both a Cartesian and polar element, to
account both for errors in range and bearing, and clustering
errors. The measurement noise matrix for the radar measure-
ment becomes

RR = Rc +Rp (108)

Here Rc is the Cartesian noise component, while Rp is the
polar noise component converted to Cartesian coordinates. The
conversion is done by using the unbiased conversion equations
from [21].

Target-provided measurements

The target-provided measurements can contain both posi-
tional and velocity data. The kinematic part of the measure-
ments can be written as

pk = Hposxk +Hvelxk +wk, wk ∼ N (0,RA) (109)

where Hpos and Hvel are the position and velocity measure-
ment matrices, respectively. The position is usually derived
from GPS information, while the velocity is derived either
from a combination of speed and heading data [6]. Due to
the nature of the data, we approximate the positional errors
as Cartesian noise, while we approximate the velocity errors
as polar noise. The measurement noise matrix for the AIS
measurement becomes
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TABLE III: Tracking system parameters

Quantity Symbol Unit Value

Radar sample interval T [s] 2.5
Model 1 process noise intensity qa,1 [m2 s−3] 0.12

Model 2 process noise intensity qa,2 [m2 s−3] 1.52

Turn rate process noise intensity qω [rad2 s−3] 0.022

Cartesian noise std. radar σcR [m] 6.6
Cartesian noise std. AIS σcA [m] 3.0
Polar range std. σr [m] 8.0
Polar bearing std. σθ [◦] 1.0
Detection probability PD [%] 92
Survival probability PS [%] 99.9
Non-corrupted ID probability PC [%] 99
Initial visibility probability ηu [%] 90
Visibility Markov probability ω11 [−] 0.90
Visibility Markov probability ω10 [−] 0.10
Visibility Markov probability ω01 [−] 0.52
Visibility Markov probability ω00 [−] 0.48
Gate size γ [−] 3.5
Clutter intensity λ [m−2] 5× 10−7

Unknown target rate U [m−2] 5× 10−8

Initial velocity std. σv [ms−1] 10
Initial model probability µs

u [%] [ 80 10 10 ]
Unknown target no ID probability ξ0u [−] 0.5
Existence confirmation threshold Tc [%] 99.9
Existence termination threshold Td [%] 1

IMM transition probability πs̃s [%]
[
99 .5 .5
.5 99 .5
.5 .5 99

]

RA = HposRc,A +HvelRp,A (110)

where Rc,A is the Cartesian noise component, while Rp,A is
the polar noise component converted to Cartesian coordinates,
again by using [21].

VIII. RESULTS

A. Simulation environment

We created the simulated data in line with the assumptions
in Section III. The ownship is situated at the origin and is
stationary. The surveillance area is circular with a radius of
500m. We track five targets, all appearing at the edge of the
area. Three of the targets appear at time t = 0s, while the last
two appear at time t = 10s. The data consists of true target
positions, radar, and AIS measurements. The movement of
the targets follows a CV model with process noise intensity
q = 0.12m2 s−3, with occasional maneuvers according to a
CT model. Furthermore, all targets are guided towards the
center of the surveillance area until they are within 50m of it.
The measurements are created according to the measurement
models in Section VII-E.

The tracking parameters were tuned to achieve good per-
formance on experimental data and are similar to the ones
in [7]. We list the parameters in Table III. These are also
the parameters used for creating the simulated data. The
AIS measurement noise was also chosen according to the
experimental data and would correspond to the measurements
providing high location accuracy. Furthermore, in practical
applications, the precision of the AIS location data can be
dynamically adjusted according to a position accuracy flag in
the AIS protocol [26].

To evaluate the results we used five different performance
measures : the Optimal subpattern assignment (OSPA) metric

[28], the track localization error (TLE), track fragmentation
rate (TFR), track false alarm rate (TFAR) and track probability
of detection (TPD). The last four evaluation methods are
described in [25]. The OSPA metric provides an overall
performance assessment, while the other measures provide
information about specific aspects of the methods.

We tested five different methods: the three methods de-
scribed in Section VI, a method using only the radar mea-
surements, and the method described by Gaglione et al. in
[13]. The method from [13] uses a particle filter and loopy
belief propagation and is thus very different from the one
described in this paper. We denote the method from [13] as the
Belief propagation, particle filter method (BP-PF method). The
implementation uses a single CV model with process noise
intensity q = 0.72 m2 s−3, and the same parameters as in
Table III where applicable. As proposed in [22], of which the
method in [13] is an extension, we use 3000 particles for each
potential target. We set the number of potential targets to 30,
as is done in [13].

The code implementing Method A from Section VI is
available at [18] .

B. Simulated data

We tested the methods on 100 simulated data sets over a
range of different detection probabilities. The results are seen
in Figure 2 and Figure 3. Not surprisingly, the pure radar
tracking method performs worse than the AIS-aided tracking
methods from Section VI when the PD is low. The difference
becomes smaller as PD approaches 1, but is still significant.
Furthermore, we see that the method from [13] generally
performs worse than all the methods in Section VI, and in
some aspects worse than the pure radar tracking method. The
right sub-figure in Figure 2 shows that the largest difference in
performance is in the initial stage of the scenarios. That is, the
method from [13] struggles with initialization relative to the
other methods. This struggle to initialize tracks also results in
significantly worse TPD, whereas the other methods perform
similarly to each other.

Furthermore, the TLE of the method from [13] is better
than for the pure radar method, but it is still worse than the
other methods. We see that the three methods from Section VI
perform similarly. As expected, the batch processing method
using added noise gives slightly less precise estimates. While
we see some differences between the methods for TFR and
TFAR, the errors are of an overall small magnitude. However,
the pure radar tracker is more prone to track fragmentation
than the other methods.

The computational complexity of the methods also warrants
a comparison. The pure radar tracker is the least computa-
tionally demanding, as all the other methods add function-
ality in addition to performing the calculations of the pure
radar tracker. The precise batch processing method is the
most demanding of the target-provided measurement handling
methods. This is because it requires predictions and updates
of each track for each measurement. The least demanding of
the three is the batch processing method with added noise,
as it does not need to perform more predictions than the pure
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Fig. 2: Comparison of the different methods, using the OSPA metric. The left figure shows the average OSPA values of each
method for different detection probabilities. The right figure shows the average OSPA value for each time step, with PD = 0.9.
Here, we only consider the BP-PF method and the sequential measurement processing method. Both figures contain results
from the same 100 scenarios. The OSPA values are calculated using p = 2 and c = 200. The purpose of the two parameters
is described in [28].
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radar methods. The three methods generally do not introduce a
prohibiting amount of complexity and can all be implemented
using a Kalman filter. Furthermore, they are all significantly
less demanding than the BP-PF method, as it uses a particle
filter.

C. Experimental data

In addition to the simulated data, the sequential measure-
ment handling method, the pure radar tracker, and the method
from [13] were tested on experimental data collected as part
of the Autosea project at NTNU [8]. The data set is the same
set used in [7]. We consider two scenarios, which include
three different ships using AIS, of which two provide frequent
measurements. The transmission frequency for the two ships
is higher than what is mandated by IMO [26], but the data
set is nevertheless helpful for demonstrating the functionality
and usefulness of the tracking method. Due to the AIS data
previously being used as ground truth for the AIS-equipped
vessels, the AIS data has been interpolated to increase the
number of measurements. This interpolation was undone prior
to using the data, i.e., we removed any artificially added
measurements.

Figure 4 shows the results from the first scenario. The
scenario contains three fast-moving and maneuvering targets
and a single slow-moving target. The slow-moving target is
a large vessel with an AIS transmitter, while the three fast-
moving targets are small, rigid inflatable boats (RIBs). Only
one of the RIBs has an AIS transmitter, and it only transmits a
single AIS measurement. The large vessel, however, provides
high-quality AIS measurements. As can be seen, both the
sequential measurement handling method and the pure radar
method can track the scenario well, while the BP-PF method
struggles. The BP-PF method likely struggles due to the
kinematic modeling, i.e., because it has to use a single model
to cover the kinematic behavior of both the RIBs and the large
vessel. The two other methods have more flexibility in their
use of IMM, and they can thus use different kinematic models
for the RIBs and the large ship. When combining target-
provided measurements with IMM the tracker is also better
able to select the correct kinematic model for each target.
Furthermore, the sequential measurement handling method can
use the AIS measurements when tracking the large vessel,
improving upon the track from the pure radar method. It also
correctly associates the single AIS measurement transmitted
by the RIB.

The second scenario can be seen in Figure 5. The plots
show the two vessels with frequent AIS transmissions and the
ownship. Figure 6 displays a close-up of the northernmost turn,
with and without AIS measurements. The second scenario
highlights some advantages of utilizing the AIS measurements
when available. The main event occurs during the turn depicted
in Figure 6, where the radar measurements are poor due to
the large vessel making a maneuver and generating numerous
clutter measurements. A similar effect also occurs on the
straight leading up to the turn. Both these effects cause the
purely radar-guided tracking method to veer off track, while
the sequential measurement handling method can utilize the

AIS measurements to avoid this. The BP-PF method loses
track on the straight due to a shift in the radar measurements,
combined with a temporary absence of AIS measurements, but
is better able to handle the northernmost turn than the pure
radar tracker. This improvement comes at the expense of a
falsely initialized track on the unused radar measurements. The
false track is avoided when using the sequential measurement
handling method, given the correct tuning. Figure 7 shows
the estimated course of the target during the turn, in addition
to the standard deviation of the estimates. The poor radar
measurements make the course estimates unreliable when
not also utilizing the AIS measurements. When using the
AIS measurements standard deviation of the course estimates
during the turn is significant, but they are still considerably
smaller than when the tracker uses only radar measurements.
Furthermore, the track avoids sudden course changes. In
this scenario, the inclusion of AIS measurements causes no
unwanted consequences, opening the possibility of utilizing all
the potential enhancements information given by the messages
can bring.

IX. CONCLUSION

We present a framework for including target-provided mea-
surements in a JIPDA-based tracking algorithm. We use AIS
measurements as an example of such measurements. It is seen
that the inclusion of such measurements can help a pure radar
tracking method and improve performance greatly when the
radar measurements are of low quality. In addition to the pure
performance improvements, target-provided measurements can
facilitate the identification of targets, which can be useful for,
e.g., a collision avoidance system. Furthermore, we present
and compare three different methods of handling the target-
provided measurements: One method where the tracker pro-
cesses the target-provided measurements when they arrive and
two methods where the tracker processes them at the time of
the radar update. All three methods outperform similar state-
of-the-art methods.

A. Future work

The main focus of this work is how to incorporate target-
provided measurements in a tracking method, and we have
avoided a more thorough analysis of how to exploit the
information provided by different protocols. Thus, how to
use more of the data provided by such measurements should
be investigated. There is also the possibility of using the
expressions presented in Section V in a PMBM, which could
improve performance. Another option is to use target-provided
measurements to assist in clustering radar measurements.
Lastly, there are safety concerns when using target-provided
information. I.e., the inclusion of easily manipulated input in
a safety-critical system should be investigated.
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Fig. 5: A scenario showing two large vessels with AIS transmitters (with tracks shown as blue and orange lines), in addition to
an ownship (gray line). We depict the measurements and tracks as in Figure 4. Initially, the orange target moves north, while
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Fig. 6: A closer look at the northernmost turn for the orange
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clockwise turn, resulting in significant amounts of radar clutter.
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