
Keeping Connected in Internet-Isolated Locations

Kirsten Lunde Skaug, Elise Breivik Smebye, Besmir Tola, and Yuming Jiang
Department of Information Security and Communication Technology

NTNU, Norwegian University of Science and Technology

Trondheim, Norway

Abstract—In many scenarios, Internet connectivity may not
be available. In such situations, device-to-device (D2D) com-
munication may be utilized to establish a peer-to-peer (P2P)
network among mobile users in the vicinity. However, this raises a
fundamental question as is how to ensure secure communication
in such an infrastructure-less network. In this paper, we present
an approach that enables connectivity between mobile devices in
the vicinity and supports secure communication between users
in Internet-isolated locations. Specifically, the proposed solution
uses Wi-Fi Aware for establishing a P2P network and the mTLS
(mutual Transport Layer Security) protocol to provide mutually
authenticated and encrypted message transfer. Besides, a novel
decentralized peer authentication (DPA) scheme compatible with
Wi-Fi Aware and TLS is proposed, which enables peers to
verify other peers to join the network. A proof-of-concept
instant messaging application has been developed to test the
proposed DPA scheme and to evaluate the performance of the
proposed overall approach. Experimental results, which validate
the proposed solution, are presented with findings and limitations
discussed.

Index Terms—Device-to-Device Communication, Peer-to-Peer
Network, Wi-Fi Aware, mTLS, Mobile Social Network, Decen-
tralized Peer Authentication.

I. INTRODUCTION

Smartphones have become essential tools for everyday

tasks and are widely used for a multitude of communication

services. Urged also by social distancing due to the global

pandemic, mobile social applications such as instant messag-

ing or web-conferencing are becoming indispensable services

in our day-to-day life, and the vast majority of them are

also offered through mobile applications. However, in out-

of-coverage areas such as the remote locations or in areas

where the network infrastructure is damaged, mobile devices

are unable to establish a connection to a server and services

become unavailable. This can be critical during natural disas-

ters and rescue operations where user’s connectivity can make

a significant difference [1], [2].

Modern smartphones are equipped with different radio inter-

faces that can enable wireless communication among devices

in proximity even in the most remote out-of-coverage locations

or in cases where cellular outages are experienced. Common

supported technologies include Bluetooth and Wi-Fi but Wi-

Fi outperforms Bluetooth-based solutions for both high band-

width requirements and also range coverage. The latest version

of Bluetooth, i.e. 5.3, offers a maximum of 2 Mbit/s [3], which

is several orders of magnitude less than Wi-Fi. While most

of the Wi-Fi standards require the presence of a centralized

coordinator, e.g., Wi-Fi infrastructure mode or Direct, Wi-Fi

Aware, also known as Neighbor Awareness Network (NAN),

enables decentralized peer-to-peer (P2P) connectivity between

devices [4]. In the remainder, we use NAN and Wi-Fi Aware

interchangeably. It offers a power-efficient and quick way of

forming independent P2P networks that enable data transfer in

a publish-subscribe pattern over TCP/IP [4]. Native support for

Wi-Fi Aware has been already introduced in the Android 8.0,

and later, operating system. Today, more than 80% of Android

devices support Wi-Fi Aware [5].

While Wi-Fi Aware can use IEEE 802.11 Wi-Fi Protected

Access 2 (WPA2) frame encryption to provide data link layer

security [4], additional security levels need to be built on upper

layers to secure application layer communication among users,

because Wi-Fi Aware specifications consider such security as

application-specific and independent of IEEE 802.11 MAC

security [6].

Recently, Almon et al. [7] identified various exploitable

security vectors affecting Wi-Fi Aware networks. In particular,

they observed that unauthorized peers can easily assume the

master role, which in turn may lead to various kind of

attacks such as man-in-the-middle and node synchronization.

This emphasizes the need to integrate strong authentication

mechanisms in the upper layers for Wi-Fi Aware-enabled

applications. [8] builds upon mutual Transport Layer Security

(mTLS) an authenticated and secure out-of-coverage instant

messaging solution using Wi-Fi Direct. Pre-signed up users

can exploited online authentication to establish offline P2P

networks and set up secure and integrity-protected commu-

nication. However, the solution is unfit for authentication of

new users in out-of-coverage situations, hence limiting the use

only to authenticated users before Internet connectivity loss.

To this end, the objective of this paper is to design,

implement and validate a solution for application layer security

when there is no Internet connection. The proposed solution

exploits Wi-Fi Aware, as the technology for offline commu-

nication, embeds mTLS to provide mutual authentication and

encrypted data exchange among peers, and also integrates a

decentralized authentication scheme, well aligned with the

decentralized nature of Wi-Fi Aware, which enables peer

authentication (PA) also for offline scenarios. In order to

validate the solution, a proof-of-concept instant messaging

application, publicly available [9], has been developed and

experimentally evaluated. An investigation that compares the

proposed solution with similar technologies such as Wi-Fi

Direct is also performed.

The remainder of the paper is structured as follows: Sec-



tion II presents a brief overview of Wi-Fi aware. Section III

illustrates the proposed system architecture for enabling se-

cure and trustworthy communication over Wi-Fi Aware. The

implementation on a real testbed of smart devices running

the Android OS is presented in Section IV. Successively,

the validation of the different security layers adopted in the

architecture and the experimental results analysis, in terms

of both computation and connection times, together with a

comparison to other related technologies, are presented in

Section V. Finally, Section VI concludes the paper.

II. WI-FI AWARE OVERVIEW

Wi-Fi Aware-enabled devices can autonomously form P2P

network clusters and advertise services to facilitate inter-peer

communication [4]. A Wi-Fi Aware cluster comprises a group

of devices listening on the same channel and synchronized

to the same clock. A Discovery Window (DW) specifies

the scheduling on which devices wake up to listen for or

advertise services. Synchronization allows the devices to wake

up simultaneously for a short interval for sending and receiving

data, thereby reducing battery consumption [4]. First, devices

discover nearby clusters by listening for discovery beacons

transmitted outside the DW by a device operating in a master

role (step 1 of Fig. 1(a)). If a cluster is not detected, the device

establishes a new cluster and starts transmitting discovery

beacons advertising its presence. If a cluster is detected, the

device receives synchronization information about time frames

and channels (step 2 of Fig. 1(a)). The device responsible

for the synchronization of the DW is called the Anchor

Master (AM) and it propagates discovery and synchronization

beacons, which can be a resource demanding task. Thus, to

achieve fairness, this role is periodically alternated among

peers. The last step is the service discovery process, where

devices can publish a service and/or subscribe to one that

matches their needs.
Before establishing a communication data path, the devices

must agree upon which devices use its publish session and

which use its subscribe session in order to avoid setting up

two data paths. The subscriber initiates a 4-way handshake by

requesting the data path set up. The data path is secured using

IEEE 802.11 Wi-Fi Protected Access 2 (WPA2) frame encryp-

tion to protect the data and action frames being exchanged [4].

III. ARCHITECTURE OF THE SOLUTION

This section presents the system components for facilitating

secure communication between users in a Wi-Fi Aware cluster.

A. The Authentication Server

The solution for the authentication server is in accordance

with the Public Key Infrastructure (PKI), as used in TLS [10].

The authentication server acts as a Certificate Authority (CA).

It is responsible for issuing, signing and revoking the digital

certificates of new users of the application. The CA is a single

Trusted Third Party (TTP) among the members of the social

application. This authentication component is only reachable

via the Internet and signs certificate signing requests (CSRs)

according to the X.509 standard [11].

(a) Cluster discovery, synchronization
and service discovery.

(b) Discovery window during which devices discover clusters,
synchronize and discover services.

Fig. 1. Wi-Fi Aware Cluster formation.

1) Certificates: A certificate binds an identity to a public

key. Each certificate contains the subject’s public key, in

addition to the certificate subject, the issuer and the expiry

date. The public key is part of a public-private key pair

generated when the application is downloaded. The certificate

contains a signature signed by either the CA or the certificate

owner (self-signed), depending on whether the user signed up

for the application service before going offline.

2) Sign up Process: When a user connects to the au-

thentication server and signs up to the application service, a

Certificate Signing Request (CSR) is created using the key

pair generated during download. The key pair consists of a

private and a public key. The private key is only accessible

to the user who is signing up. The CSR contains information

such as country, email address, common name and public key.

If the authentication server considers the information pro-

vided in the CSR to be correct and trustworthy, the certificate

request is approved, and a certificate is generated. The certifi-

cate is then signed by the CA and returned to the user who

requested the certificate. In case users violate the terms and

conditions for using the service or if a public key has been

compromised, the certificate should also be revoked. To revoke

credentials after the fact, a Certificate Revocation List (CRL)

can be maintained [11].

B. Client-Server Components

All devices participating in a Wi-Fi Aware network con-

stantly have a server running, awaiting incoming requests from

clients. No device acts as an access point for forwarding

messages for other devices. Thus each device must have a

server running in order to be reachable. Consequently, each

device must be able to work as both a client and a server.

The device that first initiates a connection to another device

is assigned the client role, i.e., the service subscriber.

1) The Application Server: The server is responsible for

awaiting any incoming requests from clients at a specified

port and must handle multiple connections to clients simul-

taneously. Each device runs a server on a unique port, making



Fig. 2. Sequence diagram showing the steps necessary to set up a PA connection between two devices, B and C.

every device reachable for communication. Data exchange

between a server and a client is over TCP/IP using the Wi-Fi

Aware data path and the port advertised by the server. When

a server receives an incoming request from a client, mutual

authentication and the negotiation of cryptographic protocols

are performed using mTLS before setting up a connection.

When using mTLS, both server and client exchange certificates

to verify that both parties have signed up for the service.

The server will not accept communication sessions without

the client first providing a certificate signed by the CA.

2) The Application Client: The client is responsible for

requesting a session from a server and providing it with a

certificate. A network can comprise multiple devices. Thus,

a device must be capable of handling multiple server con-

nections. The user initiating the communication session with

another peer is automatically assigned the client role for

that specific session. The port used to contact the server is

exchanged during the establishment of the data path. The client

secures its communication to the server by only accepting

certificates signed by the CA. The cryptographic protocol

specifies the encryption schemes supported by the client,

which are provided to the server during connection setup.

C. Peer Authentication Components

This work proposes a decentralized peer authentication

(DPA) scheme inspired by the technique proposed in [12],

which enables users to be verified by another CA-authenticated

peer. The technique is incorporated into the solution by using

a server that does not rely on a certificate signed by the CA.

The scheme provides unauthenticated users with authentication

credentials, instead of a CA-signed certificate.

1) Peer Authentication Server: The peer authentication

(PA) server uses authentication credentials provided by the

client, instead of a certificate signed by the CA, to verify that

another peer has authenticated the client. The credentials are

provided to the application server before starting communica-

tion. If the client’s credentials are valid, the PA server is started

using a different port from the application server. The client

is then able to communicate with the application server over

a mutually authenticated and secure connection. If the client

authentication credentials provided to the server are invalid,

the PA server will not be started.

2) Peer Authentication Client: The peer-authenticated

client is responsible for providing the PA server with au-

thentication credentials, and requesting a PA connection. By

providing authentication credentials, the client proves that

another authenticated and trusted user has vouched for its

identity. A device that has not signed up to the service before

moving to an out-of-coverage area will become the client

in any client-server connection. A peer-authenticated client

operates in the same way as a regular client and a connection

requires a PA server to provide a valid certificate. The client

provides the server with its supported cryptographic protocols

for negotiation.

3) Peer Authentication Credentials: Different from [12],

our proposed solution uses only public keys to verify that an

authenticated user has provided a signature. Public keys are

shorter in size compared to certificates and can be sent using

Wi-Fi Aware messages. Unlike the scheme in [12], we limit

PA to one level, meaning that peer-authenticated users cannot

authenticate other users. This is to ensure easy tractability of

peer authentication and avoid abuse of it.

4) Peer Verification: A user without a CA certificate can

request authentication from another peer in the network.

Similarly, any device with a certificate signed by the CA can

verify another peer. When a CA-authenticated user receives

a request from a user who wants to be authenticated, it can

deny or accept the request. Such a decision depends on the

authenticator’s trust in the validity of the identity presented by

the peer requesting authentication. The definition of level of

trust for each authenticator is disregarded in this work and is

left for future work.

Fig. 2 illustrates how the proposed decentralized peer au-

thentication (DPA) scheme works, specifically how an au-

thenticated device, A, verifies an unauthenticated device, C,

thereby enabling B and C to set up a PA TLS connection. The

detailed idea and steps are as follows.

If a CA-unauthenticated peer (e.g., C) wants to commu-

nicate with an authenticated peer (e.g., B), it must first be

vouched for by a CA-authenticated peer (e.g, A), shown as

Step 2 in Fig. 2. If A accepts the request from C , it will release

authentication credentials to C, making it a new authenticated

peer. These credentials will enable C to prove that it has been

vouched for by A in future interactions and thus is allowed



to participate in authenticated and secure communication, e.g.

with B as shown in Step 3 in Fig. 2. If the request is denied,

C cannot participate in any connections for communication,

but it may try to request authentication from another peer in

the network.
For user B and the peer-authenticated user C to commu-

nicate (refer to Fig. 2), B must verify that user A is a CA-

authenticated user who is trusted to verify C. Thus, A, the

authenticator, and B must have had a secure and mutually

authenticated connection beforehand and saved each other’s

public key, i.e. Step 1 in Fig. 2.
An authenticator will only authenticate and sign the keys

of users who can prove ownership of the key presented. As

shown in Fig. 2, C provides A with its public key, a signature

on a random string and the random string. Device A uses

these values to verify the signature and ensure that C holds the

private key corresponding to the public key presented. Before

a PA connection can be established, the connection requester

must prove ownership of its authentication credentials, as

illustrated in Step 3 in Fig. 2. This is similar to how A

verifies C in Step 2 but, in addition, C must provide B with its

public key signed by A. Thus, B receives the authentication

credentials and can verify that the public key of C has been

signed by a valid authenticator. If the signed key decrypts to

C‘s public key using A’s public key, the process has verified

that C is the owner of the signed key and the PA connection

request is accepted.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

This section introduces an implementation of the proposed

solution presented in the previous section, which is embedded

in a proof-of-concept Instant Messaging (IM) application.

A. Authentication, Certificates and Cryptography

1) The Authentication Server: The authentication of de-

vices was done by manually signing Certificate Signing Re-

quest (CSR)s on an Ubuntu machine using the OpenSSL

toolkit1. The authentication component was created by gen-

erating a private-public Elliptic Curve key pair with a corre-

sponding root certificate. The component worked as a CA re-

sponsible for signing CSRs and issuing all of the client/server

certificates.
2) Generating Certificates: User credentials were created

using the Java Keytool 2 command. The Keytool command is

used to store, manipulate and access key pairs and certificates

in a Java Keystore. The generated private-public key pair of

the user was used to create a keystore and a CSR. Two types of

certificates were created: a validated certificate signed by the

CA and a self-signed certificate. A valid certificate is generated

by providing the CSR to the CA and then using OpenSSL

to sign the CSR using the CA’s private key. A self-signed

certificate is generated by using the client’s own private key

to sign the CSR. The root and the client certificate are loaded

into the client keystore. This process is the same for the CA-

signed certificate and the self-signed certificate. The keystore

is then manually loaded into the internal file system of each

device and used for setting up a TLS connection.

(a) The Main Activity interface. (b) Two users chatting using the chat
activity, as seen by user1.

Fig. 3. The Instant Messaging application interfaces.

3) Cryptography: ChaCha20 with Poly1305 and Advanced

Encryption Standard-128 (AES) in Galois/Counter Mode

(GCM) are the cipher suites used for symmetric encryption

in the proposed solution. Using ChaCha20 with Poly1305 is

fast and battery friendly and is therefore suitable for running in

mobile phones. However, AES is still the standard encryption

algorithm used and is faster than ChaCha when implemented

in a device that includes specialized AES hardware [13]. Both

cipher suites used in the proposed solution are Authenticated

Encryption with Associated Data (AEAD) ciphers and they

have been hard-coded into the application.

B. The IM Application

The application comprises of two graphical user interfaces

as shown in Fig. 3: the Main Activity and the Chat Activity.

The Main Activity lets the user see nearby peers, and the Chat

Activity lets the user chat with peers in the formed cluster.

1) The Main Activity: The Main Activity is the first in-

terface presented to the user and is responsible for handling

the Wi-Fi Aware functionality and setting up the application

server. The Wi-Fi Aware functionality includes turning on the

radio hardware, joining or forming a cluster, establishing a

subscribe and publish session, and establishing a data path.

Fig. 3(a) displays the interface showing the peers available

for communication in the cluster. The authentication status is

displayed in the top left corner in Main Activity. Selecting a

MAC address from the list will launch the Chat Activity and a

TLS connection to that user will be initiated. The owner of the

MAC address will receive a notification stating that another

user wishes to communicate. Also, the Main Activity handles

PA functionality and enables users to request authentication

before starting to chat with a peer.

2) The Chat Activity: A TLS connection between two peers

is initiated when the chat activity is launched. The device that

first launches the activity becomes the client in the connection.

If a mutually authenticated connection takes place, messages

are exchanged and will appear in chat bubbles, as shown in

Fig. 3(b).

3) Peer Authentication: Fig. 4 shows a user with a self-

signed certificate that has not yet been verified by a peer.

This user can request authentication credentials from a peer



Fig. 4. Status of an unauthenticated user before (left) and after (right) PA.

Fig. 5. Option box including the MAC address of the user requesting
authentication, presented to the verifier.

Fig. 6. Wi-Fi Aware handshake showing the data path establishment and the
installation of keys.

in the list by clicking on an address. This enables devices to

exchange public keys and signed messages in order to receive

PA. When an authenticated user receives an authentication

request, it is presented with an option box that enables them to

decline or accept the request, as shown in Fig. 5. The approaval

of the request triggers a PA process and the TLS server is

started. As a result, the PA display is changed and the user is

notified about the authentication, see Fig. 4.

V. SOLUTION VALIDATION AND EVALUATION

The proposed solution has been experimentally validated

and evaluated in several aspects including discovery and

connectivity times, message transmission times for both cryp-

tographic schemes, and peer authentication times.

On the link layer, a WPA2 protected data path with pairwise

security association is established during the Wi-Fi Aware 4-

way handshake, as specified in [4] and shown in Fig. 6. During

the setup, a symmetric key was established from a pre-shared

key (PSK) specified during implementation and installed on

the devices. After the handshake, the established symmetric

key was used in encryption to protect the Data frames and

this was verified by evidencing the Data is Protected flag in

QoS data frames.

(a) The signature was valid so that the PA server could start and accept the
connection.

(b) The PA server did not start because the credentials provided were not
signed by a known authenticator.

Fig. 7. Android Studio log showing peer authentication requirement.

A. Transport Layer Security

The link layer alone is not sufficient to provide verification

of users’ identities because of the lack of authentication mech-

anisms in Wi-Fi Aware. Authentication of users is provided

using the mTLS protocol for CA-authenticated peers and TLS

for PA authenticated peers. A high level of security is achieved

by forcing every device to use the cipher suites recommended

in TLSv1.3 [14] and most recent best practices [15].

We observed that the handshake would fail in case a client

uses a TLS version different to the one required by the server.

A client or server without a valid certificate in an mTLS

connection will also result in the handshake failing. It can

therefore be concluded that unauthorized peers are prevented

from communicating with users at the transport layer, and that

the data being exchanged is both confidential and integrity

protected due to the implementation of TLS.

B. Application Layer Security

A client requesting PA credentials or a PA connection is ver-

ified in the application layer. Instead of mutual authentication

being performed in the transport layer, as in mTLS, the client

is authenticated using the cryptographic schemes implemented

in the proof-of-concept application. An authenticated peer

will only start the PA server if the authentication credentials

provided are valid and signed by a known authenticator, as

shown in Fig. 7(a). On the contrary, the server is started when

incoming connections are requested from the peers that are

not verified, as illustrated in Fig. 7(b).

The additional security level implemented in the application

behavior ensures that only trusted non-signed up peers can use

the network for data exchange.



Mean Median SD

Starting the application 2.46 2.46 0.01
Attach to cluster 0.08 0.09 0.02
Service discovery 0.64 0.62 0.14
Connectivity 2.63 2.53 0.93
Total time 5.81 5.69 0.95

TABLE I
STATISTICAL MEASURES OF WI-FI AWARE SETUP TIMES (SECONDS).

C. Connectivity Time

Two Samsung Galaxy A71 smartphones have been used for

the experimental trials. We performed 500 runs in total and the

sample application was restarted for each run on both devices.

Table I presents statistical measures of each event. Starting

the application includes the time used to set up the SSLCon-

text 1 for each run. The SSLContext handles device keys and

the certificate necessary for establishing an mTLS connection.

The attach to cluster event includes the time it takes for a

device to discover and synchronize to a NAN cluster. The

service discovery time is the time used to discover a published

service and the connectivity time consists of the time it takes

to set up a secure data path between devices from the moment

the service is discovered.

Connectivity is the most time-consuming event with a mean

of 2.63 seconds. The mean value exceeded the median, indi-

cating a right skewness in the distribution of connectivity times

which include the 4-way handshake process. Observations

showed that it could take between 0.22 and 4.75 seconds to

perform a handshake. The second most time-consuming event

was starting the application, which includes also setting up

an SSLContext, with the latter taking around 1.17 seconds.

Interestingly, the times to discover a cluster and a published

service are close to negligible showing that NAN can be a

good solution for dynamic scenarios with high user mobility.

The Cumulative Distribution Function (CDF) in Fig. 8(a)

shows that discovery time was almost constant, with the

exception of a few large outliers. In addition, there was a low

autocorrelation of 0.018 between two subsequent runs, indi-

cating that there is no evident pattern of correlation between

runs.

The variation in connectivity times is higher than for dis-

covery times, see Fig. 8(a). This process can take up to 8

seconds and the plot has a few plateaus, which correspond to

an aggregate of connection times of around 2 seconds and 2.6

seconds, respectively. Fig. 8(b) confirms this. To investigate

whether there is a dependency between the discovery and

connectivity times within a run, the correlation between the

two data sets was found to be 0.025, which indicates that

there is no significant dependency between the events.

A performance comparison between our previous work,

utilizing Wi-Fi Direct, and the present is summarized in

Table II. Wi-Fi Direct discovery is the time used by a device

to discover broadcasts sent by a group, and connectivity is the

time used by the same device to join the group. To compare

the performance on an equal basis, the Wi-Fi Aware discovery

1https://developer.android.com/reference/javax/net/ssl/SSLContext

(a) CDF plot of service discovery and connectivity times.

(b) Histogram of connectivity time.

Fig. 8. Statistical analysis of discovery and connectivity times.

Wi-Fi Aware Wi-Fi Direct
Mean Median SD Mean Median SD

Discovery 3.18 3.16 0.14 3.42 3.07 1.17

Connection 2.63 2.53 0.93 2.03 1.90 0.46

Total time total 5.81 5.69 0.95 5.45 5.00 1.54

TABLE II
COMPARISON OF WI-FI AWARE (LEFT) AND WI-FI DIRECT (RIGHT)

DISCOVERY AND CONNECTIVITY DELAY (SECONDS).

time is a summation of three events: starting the application,

attaching to cluster and service discovery.

On average, the Wi-Fi Aware solution used 0.24 seconds

less to discover a service than the Wi-Fi Direct solution. How-

ever, Wi-Fi Aware had a longer connectivity delay, making the

average total time to set up a connection 0.36 seconds less

for Wi-Fi Direct. This difference is probably unnoticeable in

terms of user experience and the average total time of the two

connectivity technologies compared well.

Sigholt et al. [8] noted that the total time used to discover

and connect to a group could take up to 10 seconds in the

edge cases. Considerable variation in connectivity times is also

present in the Wi-Fi Aware solution, making the total time to

establish a network unpredictable.

The devices used in the Wi-Fi Direct solution experienced

some difficulties discovering group broadcasts, causing the

device to set up a separate group. This issue was not present in

the experiment conducted with the Wi-Fi Aware application.

D. Messaging

The time it takes to send messages between the two devices

using both AES in GCM and ChaCha20 Poly1305 as cipher

suites are also compared. The measuring was carried out

using the same devices and the experiment included sending

both 3-byte and 32,680-byte long messages. A prerequisite



for the experiment was that an mTLS connection had been

established.

32,680 byte Message Mean Median SD

Total time ChaCha20 Poly1305 0.185 0.179 0.021

Total time AES in GCM 0.192 0.180 0.095

3 byte Message Mean Median SD

Total time ChaCha20 Poly1305 0.083 0.072 0.027

Total time AES in GCM 0.097 0.094 0.017

TABLE III
STATISTICS OF THE TIME (SECONDS) IT TAKES TO SEND TWO DIFFERENT

MESSAGES WITH AN MTLS CONNECTION.

The time it takes to send long messages using ChaCha20 as

an encryption scheme, was slightly less than the time it takes

with AES, see Table III. However, a two-sided t-test gives a

p-value of 0.45, making the findings statistically insignificant.

The average time it takes to send short messages between two

devices was also slightly less for ChaCha than for AES. In

this case, the two-sided t-test gave a p-value of 7.37 · 10
−6,

which is statistically significant given that the mean of ChaCha

was 0.083 seconds and of AES was 0.097 seconds. Hence,

this confirms the hypotheses that messages sent using ChaCha

perform better.

E. Peer Authentication Connectivity

The performance of the DPA scheme was evaluated based

on the time it took to receive PA and the time it took to

request and start the PA server. Three Samsung Galaxy A71

devices were used in the experiment. The prerequisites for the

experiment was that a data path had been established between

the communicating devices. For testing purposes, all requests

and responses were automated, and no user input was required.

All times were recorded on the peer-authenticated device.

Table IV shows statistical summaries calculated from the

data collected during the experiment. The verify peer event

was measured from the time of the authentication request until

the user received the authentication credentials. The average

time used, a mean of 1.78 seconds, is significant.

The request connection event is the time it took to request

and receive a response that the PA server had started and

was ready for communication, as shown in Table IV. The

average time used, a mean of 2.32 seconds, is considerable.

The event is required every time a peer-authenticated user

wants to communicate with another peer and is therefore added

to the total connectivity time.

VI. CONCLUSION

This work presented a solution that provides Wi-Fi Aware-

enabled secure communication in out-of-coverage scenarios.

Wi-Fi Aware enables devices to be aware of published services

by other peers and to establish a data path for communication

among them. Measures to enable secure and authenticated

communication are additionally provided using the mTLS pro-

tocol. The solution also provides a decentralized authentication

scheme for users who have not signed up for the service

before moving into an internet-isolated location. The solution

Mean Median SD

Verify Peer 1.78 1.77 0.10

Request Connection 2.32 2.24 0.42

TABLE IV
STATISTICAL SUMMARIES OF THE TIME (SECONDS) USED TO VERIFY A

PEER AND REQUEST A PA CONNECTION.

is validated through an instant messaging application which

integrates additional security features to offer secure commu-

nication with end-to-end encryption between communicating

peers, in addition to authentication of users in both online and

offline scenarios. The performance and security features have

been tested and analyzed. It is observed that Wi-Fi Aware

can be a good alternative to many scenarios with high user

mobility but ad-hoc designed security mechanisms, such as

those proposed in this work, are needed to ensure that critical

services adhere to security expectations.

REFERENCES

[1] A. Al-Akkad, C. Raffelsberger, A. Boden, L. Ramirez, A. Zimmermann,
and S. Augustin, “Tweeting’when online is off’? opportunistically cre-
ating mobile ad-hoc networks in response to disrupted infrastructure.”
in ISCRAM, 2014.

[2] A. Al-Akkad, L. Ramirez, A. Boden, D. Randall, and A. Zimmermann,
“Help beacons: Design and evaluation of an ad-hoc lightweight sos
system for smartphones,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 2014, pp. 1485–1494.
[3] Bluetooth SIG, “Core Specifications 5.3,” accessed February 1,

2022. [Online]. Available: https://www.bluetooth.com/specifications/
specs/core-specification/

[4] Wi-Fi Alliance, “Wi-Fi Aware Specification version 3.2,” Tech. Rep.,
2020.

[5] Global Stats-StatsCounter, “Android Version Market Share World-
wide,” https://gs.statcounter.com/os-version-market-share/android, ac-
cessed: 2021-12-06.

[6] D. Camps-Mur et al., “Enabling always on service discovery: Wifi neigh-
bor awareness networking,” IEEE Wireless Communications, vol. 22,
no. 2, pp. 118–125, 4 2015.

[7] L. Almon et al., “Desynchronization and MitM Attacks Against Neigh-
bor Awareness Networking Using OpenNAN,” in Proceedings of the

19th ACM International Symposium on Mobility Management and
Wireless Access, 2021, pp. 97–105.

[8] Ø. Sigholt, B. Tola, and Y. Jiang, “Keeping connected when the
mobile social network goes offline,” in 2019 International conference

on wireless and mobile computing, networking and communications
(WiMob). IEEE, 2019, pp. 59–64.

[9] Elise Smebye and Kirsten Skaug. Source Code. [Online]. Available:
https://github.com/elisebsm/AwareAuth

[10] J. Huang and D. Nicol, “An anatomy of trust in public key infrastruc-
ture,” International Journal of Critical Infrastructures, vol. 13, p. 238,
2017.

[11] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5280.txt

[12] I. Santos-González et al., “Decentralized Authentication for Opportunis-
tic Communications in Disaster Situations,” in Ubiquitous Computing

and Ambient Intelligence, ser. Lecture Notes in Computer Science, vol.
10586. Cham: Springer International Publishing, 2017, pp. 558–569.

[13] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF Protocols,”
RFC 8439, Jun. 2018. [Online]. Available: https://rfc-editor.org/rfc/
rfc8439.txt

[14] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://rfc-editor.org/
rfc/rfc8446.txt

[15] Y. Sheffer, R. Holz, and P. Saint-Andre, “Recommendations for secure
use of transport layer security (tls) and datagram transport layer security
(dtls),” IETF, RFC 7525, 2015.


