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ABSTRACT
Petrophysical interpretation and optimal correlation extraction of different measure-
ments require accurate well log depth matching. We have developed a supervised
multimodal machine learning alternative for the task of simultaneously matching raw
logging while drilling and electrical wireline logging logs. Seven one-dimensional con-
volutional neural networks are trained using different log measurements: gamma-ray,
resistivity, P- and S-wave sonic, density, neutron and photoelectric factors, and their
depth shift estimates are aggregated using different multimodal late fusion strategies.
We test the late fusion average, late fusion weighted average, late fusion with linear
and nonlinear learners and model-level fusion. Depth matching results using the
different fusion strategies applied to two unseen wells are compared using visual
inspection and the mean Pearson correlation. All models perform well, increasing the
correlation after depth matching. Late fusion weighted average achieves the highest
scores for all log types. The late fusion weighted average results are compared to
a cross-correlation user-assisted workflow and manual depth matching for valida-
tion. In general, the convolutional neural network fused method exhibits a lower
performance than the traditional methods. For one of the wells, the cross-correlation
shows higher correlation values than the other methods but for the second well the
manual depth match performs best. However, the differences in Pearson correlation
values are small ranging from 0.01 to 0.1. The manual depth match performs very
well for the sonic logs, which tend to require slightly larger depth shifts than the
other measurements, thus a common depth shift might not always be suitable.
Although our convolutional neural network fused approach is limited to estimating
bulk shifts and uses constant fusion weights, its performance is similar to that of
more time-consuming methods. Our approach might be substantially improved by
including dynamic shifts (stretch/squeeze) and depth-dependent fusion weights via
long-short-term memory recurrent neural networks.

Key words: Logging, Petrophysics, Machine learning, Depth matching, one-
dimensional Convolutional neural networks.
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INTRODUCTION

Well log measurements are continuous records of indirectly
measured formation properties, fromwhich it may be possible
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to determine subsurface lithology, fluids and reservoir proper-
ties, for example, fluid saturation, porosity, permeability and
stress regime. These are the main inputs for building static
and dynamic reservoir models. Traditionally, mostly electrical
wireline logging (EWL) logs were used for this purpose due to
their superior accuracy.However, in recent years, with acceler-
ated logging technology development, the use of logging while
drilling (LWD) logs in petrophysical analysis has becomemore
and more popular. This is due to a significant increase in their
accuracy as well as the massive data acquisition and process-
ing of LWD logs in real-time for making drilling decisions.
It is well known that both LWD and EWL logs suffer from
environmental effects, instrumental noise, and depth errors.
The latter can be present between logs within the same run or
logging pass as well as between suites of logs from different
runs that measure properties over the same depth interval.
These depth discrepancies are an important source of error in
identifying correlations between different log measurements
that are a key part of several petrophysical and rock physics
interpretation workflows.Without proper correction of depth
errors, any interpretation of the data will be meaningless, as
shown by Zangwill (1982). He also presented the main causes
of depth shifts in EWL logs and developed software to address
these problems by combining computational algorithms like
cross-correlation with close interaction from the analyst to
provide additional information when needed.

Although all log measurements are recorded against
depth, we can find relatively large depth differences between
logging passes from LWD and EWL, which are recorded un-
der two different depth measurement systems as presented by
Pedersen et al. (2006). These systems are called drillers’ depth
and loggers’ depth, respectively. Both suffer from inaccuracy.
Drillers’ depth is considered less accurate and is measured
using tapes along the length or stands of the drill pipes as they
run into the hole and simply add up the lengths (Rider, 1986).
Corrections to the drillers’ depth were seldom applied in the
past, and the length measurements are highly prone to human
error. Loggers’ depth is more accurate and is, therefore, more
widely used as a depth reference. Loggers’ depth is measured
by performing direct measurement using an odometer, also
known as the measure wheel depth (Rider, 1986). Various
depth error correction procedures have been run to improve
accuracy. At earlier times, there was no correction for wheel
wear. In the past decade, all depth wheel systems have been
typically calibrated. Before 1980, a magnetic marker system
was used, which introduced much larger errors. Varying
borehole conditions and environments play a role in magni-
fying the depth misalignment during the logging process. For

example, some factors affect the drill string length in different
drilling rig states including changes in fluid composition,
temperature, mud pressure, flow rate, cutting volume, buoy-
ancy, along-hole friction factor, tortuosity induced friction
points, etc. (Bolt, 2019). In addition to the different sized
pipes used, another factor that introduces uncertainty in
depth measurements is the differences in formation hardness.
This leads to changes in the rate of penetration and weight
on the bit, which are both defined by the movement of the
travelling block (Bolt, 2019). The combination of all of these
factors can result in variable depth errors of up to about 10 m
in the LWD measurements (Theys, 1999; Wilson et al., 2004;
Chia et al., 2006; Bolt, 2016, 2019). The corresponding EWL
measurements are typically corrected only for cable stretch.
However, other causes of error that could be accounted for
include temperature, permanent deformation (plastic stretch),
buoyancy and radial pressure (Bolt, 2016). Note that the tem-
perature correction can have both positive or negative signs
and can have a significant impact on the depth measurements,
but this is not well understood, and little information about it
is publicly available (Sollie and Rodgers, 1994; Theys, 1999;
Bolt, 2016). EWL depth is also very prone to tool sticking
and slipping caused by variations in borehole rugosity (e.g.,
due to mud cake build-up or large changes in the borehole
dimensions). This may lead to depth errors of up to 12 m
(Theys, 1999) and significantly expanded or compressed data
sections (stretch/squeeze). Buoyancy, pressure and twisting
effects are considered minor effects and are usually neglected
(Sollie and Rodgers, 1994; Theys, 1999). Comprehensive
summaries of all these depth corrections for both EWL and
LWD depth measurements, as well as a new implementation
of depth corrections for each depth measurement system, are
presented by Bolt (2016, 2019). He proposed a waypoint
correction to improve the currently used depth determination.
This included an elastic-stretch correction for the logger’s
depth and the equivalent driller’s way-point depth correc-
tion. He shows that after applying his methods, the depth
differences between LWD and EWL are considerably reduced.

Despite logging companies’ multiple attempts to correct
for depth mismatching before delivery of log data, depth
matching remains an important step within any petrophys-
ical pre-processing flow. Therefore, since Zangwill (1982)
many authors have proposed various solutions. For example,
Kerzner (1984) developed an automatic depth matching
technique based on correlation coefficients to find all possible
depth shifts. This technique also uses mathematical opti-
mization to define a consistent set of shifts. Spalburg (1989)
presented a method that performs a deconvolution of logging
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Figure 1 Sketch of multimodal machine learning fusion strategies: (a) late fusion with a simple average and weighted average aggregation for
prediction from different modalities, (b) late fusion with an additional learner for aggregation of predictions from different modalities and (c)
model-level fusion as a concatenation of high-level features from different modalities.

Figure 2 Example of the additional data augmentation implemented
in the training and validation sets: (a) example of drift augmentation
on the reference gamma-ray log and (b) example of noise and gentle
drift augmentation on the shifted gamma-ray log.

data combined with blocking and depth matching. Unfor-
tunately, both of these methods require strong smoothing
and filtering of the data to yield good results. Additionally,
many techniques that were originally developed for well
log depth matching have been implemented for well-to-well
log correlation and vice versa. For example, Startzman and
Kuo (1986) were pioneers in developing an approach for
well-to-well correlation using artificial intelligence based on
a set of expert rules. Their approach showed good results in
field data, agreeing with the interpretations of several experts.
Lineman et al. (1987) presented a system for well-to-well
correlation based on dynamic depth warping techniques and
knowledge-based systems. This overcame some problems, for
example, by allowing correlations across missing sections or
discontinuous units.

Later advances in computer processor speed allowed (Le
Nir et al. 1998) to develop an automated well log correlation
algorithm based on dynamic programming using multiple
logs. This removed the need for pre-processing of the input
data as well as increasing the number of wells that could be
processed simultaneously. Following the same trend, Luthi
and Bryant (1997) applied artificial neural networks (ANNs)
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Figure 3 Sketch of the data-splitting set-up for the CNN models training and fusion workflow and final depth shift inference on the completely
unseen data.

for log pattern recognition to perform automatic well-to-well
correlation within the same field based on geological datums
and relevant markers. This provides the geologist with a tool
that allows them to speed up the correlation process interac-
tively. Zimmermann et al. (2018) and Le et al. (2019) imple-
mented an ANN that mimics manual procedures carried out
by expert petrophysicists to depth match well logs. Here two
depth series (reference and shifted) are synchronized based on
anchor points that are present in both signals and that should
match. Le et al. (2019) extended the work originally presented
by Zimmermann et al. (2018) by improving the robustness of
the algorithm and incorporating a continuously self-evolving
depth-matching framework. This is implemented as a cloud-
based depth matching service in which users review the
matches output from the algorithm and perform any neces-
sary adjustments. Users’ feedback is retrieved by the algorithm
and used to retrain and improve the matching algorithm over
time. An automatic quality control system evaluates the shifts
suggested by the algorithm before they are sent to the user,

using a combination of different metrics. They also modified
the anchor point selection by incorporating it into a filtering
pipeline. This makes this step generalize better for different log
types. Wang et al. (2020) deployed a deep neural network as
a one-dimensional convolutional neural network (1D CNN)
with a multitask set-up for fully automated well-to-well
correlation. They used the pattern recognition potential of the
CNNs to identify specific geological patterns from a reference
gamma-ray log and to find the corresponding patterns in a
sequence of logs from different wells in the same field. They
proved the power of CNN to recognize geological patterns
across different wells within a field and to overcome any
problems associated with large depth differences and missing
or discontinuous units due to lateral geological variations.

This work is an extension of previous research by Torres
Caceres et al. (2022a) on the automation of well log depth
matching algorithms and procedures. They presented a depth
matching workflow that can synchronize several well log
measurements to a common reference simultaneously in a
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Figure 4 Sketch of the best CNN structure after the hyperparameter tuning for gamma-ray, resistivity, P- and S-wave sonic and PEF log depth
matching. The batch normalization layers after each convolution layer, fully connected layers and the drop-out layers applied after each fully
connected layer are not shown. This figure was generated by adapting the code from https://github.com/gwding/draw_convnet.

couple of minutes. This workflow speeds up depth matching
compared to manual depth matching by a petrophysicist.
However, their workflow is limited to bulk depth shifts,
and its performance is reduced whenever strongly depth-
dependent shifts are present in the data. It is thought to
be a good first step towards automation. Unfortunately,
their proposed workflow is not fully automated as it still
includes some steps in which user intervention is required.
For instance, a manual statistical analysis is used to determine
the weights for each log measurement type when computing
a weighted average depth shift to be applied to all the logs.
The selection of the weights is based on the user’s selection
criteria and knowledge. Motivated by the successful results
achieved by 1D CNNs in similar tasks (Brazell et al., 2019;

Wang et al., 2020), we propose replacing Torres Caceres et al.
(2022a)’s analytical depth matching workflow with a fully
data-driven procedure based on deep learning, also extending
the work by Torres Caceres et al. (2022b).

Torres Caceres et al. (2022b) showed that the 1D CNN
machine learning algorithm could be a good fully automated
alternative to tackle the well-log depth matching challenge.
They generated seven independent CNN models trained and
applied to each pair of logs, for example, gamma-ray and re-
sistivity pairs. In general, their results indicated that the CNN
solution has a similar performance as a traditional cross-
correlation method. Therefore, there is potential for improv-
ing this methodology by considering more complex scenarios.
These improvements will allow us to use this method, which
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Figure 5 Sketch of the best CNN structure after the hyperparameter tuning for density and neutron log depth matching. The batch normalization
layers after each convolution layer, fully connected layers and the drop-out layers applied after each fully connected layer are not shown. This
figure was generated by adapting the code from https://github.com/gwding/draw_convnet.

Figure 6 Comparison of model performance in terms of the MSE re-
duction for the individual models represented with the blue dots and
the simple averaging aggregated model represented by the orange line.

reduces user intervention and suppresses the necessity of com-
plex and demanding feature extraction methods for machine
learning applications. Based on these results, we extend the
work of Torres Caceres et al. (2022b) by proving an alterna-
tive to improve depth matching between the LWD and EWL
suite of logs automatically and in a large-scale settings.

In this paper, we focus on evaluating several ways to
combine 1D CNN models, aggregating depth shift pre-
dictions from different well log sensors or measurements
using multimodal deep learning techniques and replacing
the manual weighted average. The prediction task aims
to determine an adequate common depth shift for depth
matching/synchronizing of LWD and EWL suites of logs. Our
implementation is a proposal for a fully automated depth
matching workflow. We explore and adopt late fusion and
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intermediate fusion model concepts and strategies like those
widely used in multimodal machine learning. We train and
validate our models using semi-synthetic data from three wells
in the Norwegian North Sea. Finally, we test them on two
other wells using real logs that were not used in the training
and validation process. We assess the depth matching results
on the real data qualitatively via visual inspection of matched
log profiles and quantitatively using Pearson correlation.
This implementation is limited to evaluating bulk shifts, and
it assumes that all EWL logs and LWD logs from the same
run are in-depth among themselves. This assumption is valid
within some well-established ranges during depth control
procedures at the well site (Bateman, 1986; Theys, 1999).
Our results are also compared to results from other work-
flows such as the semi-automatic cross-correlation well log
depth matching of Torres Caceres et al. (2022a) and manual
procedures performed by an experienced petrophysicist.

First, we give a brief introduction to the classical method
of cross-correlation as well as its implementation within the
semi-automatic workflow of Torres Caceres et al. (2022a).
Second, a more extensive introduction to multimodal machine
learning is given focusing on fusion techniques. Third, we
present theoretical concepts of CNNs and how we deploy
them in our workflow as well as descriptions of datasets,
data preparation, data splitting, the training process and our
method of depth shift inference. Fourth, we present some
quantitative and qualitative results using our depth matching
workflow and comparisons to a cross-correlation-based
workflow and a traditional manual depth match. Fifth, the
Discussion section presents some analysis of the results high-
lighting the advantages and disadvantages of our proposed
fully automatic 1D CNN multimodal workflow before some
suggestions for improvements. Additionally, in this section,
we present and discuss the comparison between results ob-
tained using independent CNN methods applied for each pair
of logs by Torres Caceres et al. (2022b) and results obtained
using our 1D CNN multimodal workflow. Finally, we state
our conclusions and give suggestions for future research.

METHODS

Cross-correlation

Previously we developed a semi-automatic depth matching
workflow, reported in Torres Caceres et al. (2022a), based on
cross-correlation; so, we have already formulated the depth
matching problem as a signal-processing problem. We focus
our workflow on synchronizing log signals between logging

Figure 7 Sketch of the late fusion model with a non-linear meta-
learner (ANN). The inputs of the ANN are the outputs of each CNN
model generated for each log type, which correspond to the structures
shown in Figures 4 and 5.

while drilling (LWD) and electrical wireline logging (EWL)
based on the correlated depth concept. The EWL log signal
is assumed to be more correctly positioned in depth; hence, it
is assigned as the reference log, and the other signal, the LWD
log, is shifted appropriately to match that reference (Theys,
1999). For the set-up of depth matching as a signal-processing
problem, we assign the signals to the one-dimensional arrays
x and y. Here x = (x1, x2,…, xN) is a depth series, representing
the EWL reference log, and y = (y1, y2,…, yM) is a depth series
representing the depth-shifted LWD log. Both have the same
number of data points, for example,N=M= 256 data points.
The cross-correlation between the two depth series at a depth
lag k = 0,1, …, ||x|| + ||y|| − 2 is denoted as c. The maximum
value of c is an indication of the maximum similarity between
the two signals, and we use the k value (depth lag) at which
it occurs to determine the depth shift necessary to align and
synchronize the pair of logs. This is expressed mathematically
by equation (1):

c(k) = (x ∗ y)(k−N − 1) =
‖x‖−1∑
i=0

xiy∗
i−k+N−1

, (1)

where ||x|| is the length of x, N = max (||x||, ||y||) and y* is the
complex conjugate of y (Oliphant and contributors, 2021).

We implemented a procedure that takes the raw log
pairs of each log type, applies some preprocessing (local

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Table 1 Weights and regression coefficients for the late fusion models with weighted average and linear regression as fusion methods

Fused Models
Normalized Weights or Regression Coefficients

Gamma-Ray Resistivity P-Wave Velocity S-Wave Velocity Density Neutron Photoelectric Factor

Late fusion
weighted
average (DE)

0.09 0.00 0.09 0.05 0.42 0.31 0.03

Late fusion Linear
Regression
(Lasso)

1.22 −0.88 1.11 0.91 3.23 5.37 0.94

Late Fusion Linear
Regression
(Ridge)

1.31 −0.89 0.55 0.97 2.95 5.91 1.04

Table 2 Tuning parameter range for the meta-learner (ANN)

Layers Tuning Parameters Maximum / Option 1 Minimum / Option 2 Default Step

Dense layer Number of units 512 32 128 32
Activation function ReLU Tanh ReLU NA
Number of layers 1 2 NA NA

Dropout layer Dropout rate 0.5 0 0.25 0.05
Optimizer Learning rate 0.01 0.0001 NA 0.001

normalization-standardization, smoothing/filtering, and fill-
ing gaps that are no larger than 50 data points), estimates
depth shifts for each pair of logs of a given measurement type.
For example, gamma-ray – gamma-ray and aggregates the
results for each log type via a weighted average to shift each
of the LWD logs to a common depth reference established
by the EWL logs. The weighted average is parameterized by
the user who evaluates the depth shift variability across log
types, identifies outliers and assigns plausible weights to each
measurement type for each individual logged section. This
is done based on the user’s knowledge and experience and
data quality requirements to obtain a single depth shift and
its standard deviation or uncertainty (Torres Caceres et al.,
2022a). Once a single depth shift has been estimated for each

window across all log types, it is applied to the data. Further
steps would then have been performed in the originally
published workflow. However, for this paper, we stop at this
point and evaluate the single depth shift calculated for the
data compared to the depth shifts from alternative depth
matching procedures using multimodal machine learning and
a manual workflow.

Multimodal machine learning

Multimodal machine learning is a popular branch of research
for human activity recognition (HAR), natural language pro-
cessing, media description, affective computing, audio-visual
speech recognition and pedestrian recognition for the devel-
opment of self-driving cars, to mention some examples. This

Table 3 Tuning parameter ranges for the model-level fusion’s fully connected layers (dense layers)

Layers Tuning Parameters Maximum / Option 1 Minimum /Option 2 Default Step

Dense layer 1 Number of units 256 32 128 32
Activation function ReLU Tanh ReLU NA

Dropout layer 1 Dropout rate 0.5 0 0.25 0.05
Dense layer 2 Number of units 256 32 64 32

Activation function ReLU Tanh ReLU NA
Dropout layer 2 Dropout rate 0.5 0 0.25 0.05
Optimizer Learning rate 0.01 0.0001 NA 0.001

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Table 4 Means and standard deviations of the Pearson correlations for each fusion strategy and log type in well 16/1-9

Fusion
Strategies

Gamma-Ray Resistivity P-Wave Sonic S-Wave Sonic Density Neutron Photoelectric Factor

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Late fusion
Average

0.83 0.21 0.85 0.14 0.48 0.43* 0.30 0.42* 0.59 0.21 0.71 0.19 0.37 0.31*

Late fusion
Weighted
average

0.84 0.22 0.86 0.14 0.48 0.42* 0.28 0.44* 0.61 0.23 0.73 0.19 0.38 0.37*

Late Fusion
Linear
Ridge
Regression

0.84 0.25 0.85 0.14 0.47 0.42* 0.29 0.44* 0.60 0.22 0.73 0.19 0.38 0.31*

Late fusion
ANNs

0.83 0.24 0.86 0.14 0.48 0.42* 0.31 0.42* 0.58 0.22 0.71 0.20 0.37 0.32*

Model-level
fusion

0.83 0.21 0.84 0.14 0.49 0.43* 0.31 0.41* 0.60 0.21 0.71 0.19 0.38 0.31*

We use bold type and * to highlight the highest mean values for the PC for each log type and to draw attention to relatively high standard deviations, respectively.

Table 5 Means and standard deviations of the Pearson correlations for each fusion strategy and log type in well 16/1-21 s

Gamma-Ray Resistivity P-Wave Sonic Density Neutron Photoelectric Factor

Fusion Strategies Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Late fusion
Average

0.88 0.15 0.90 0.13 0.56 0.32* 0.83 0.15 0.73 0.24 0.34 0.37*

Late fusion
Weighted
average

0.89 0.15 0.93 0.05 0.57 0.32* 0.85 0.14 0.75 0.21 0.35 0.37*

Late Fusion
Linear Ridge
Regression

0.88 0.15 0.91 0.07 0.56 0.33* 0.83 0.15 0.74 0.22 0.34 0.37*

Late fusion
ANNs

0.89 0.15 0.92 0.08 0.57 0.33* 0.84 0.15 0.75 0.21 0.34 0.38*

Model-level
fusion

0.90 0.13 0.92 0.06 0.55 0.32* 0.85 0.12 0.74 0.22 0.37 0.36*

We use bold type and * to highlight the highest mean values for the PC for each log type and to draw attention to relatively high standard deviations, respectively.

emerging field is necessary for artificial intelligence to make
good progress in understanding the world. The concept of
modality can be defined as the way things happen and the
way things are experienced. For example, natural language is
manifested either as text or speech (Baltrušaitis et al., 2018).
In other words,we could associate modality with several types
of information and forms of how this information is transmit-
ted and stored.Modality can also refer to the sensor modality,
which is the form of a sensation such as vision, touch, taste,
smell or hearing.Multimodal machine learning has as its main
goal the generation of models that can process and relate in-
formation frommultiple modalities/sensors (Baltrušaitis et al.,
2018).

Many research studies have revealed the advantages
of using multimodal machine learning instead of tradi-
tional unimodal approaches. The popularity of multimodal
approaches has increased because of increasing access to
new large-scale multimodal datasets, faster computers and
graphics processing units and the need to solve problems
including high-level visual features (e.g., faces, objects and
bodies) and dimensional linguistic features such as syntaxis,
phonemes, lexemes, etc. (Baltrušaitis et al., 2018).Multimodal
machine learning exploits possible complementary features
and redundancy between modalities. This means that depend-
ing on how the multimodal machine learning is implemented,
it may be possible to use valuable information from the

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Table 6 Mean and standard deviation of the Pearson correlation for each depth matching method and log types in well 16/1-9

Depth
Matching
Methods

Gamma-Ray Resistivity P-Wave Sonic S-wave Sonic Density Neutron Photoelectric Factor

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Original data 0.76 0.28 0.76 0.21 0.42 0.39* 0.26 0.42* 0.48 0.26 0.61 0.25 0.30 0.37*
Late fusion

Weighted
average

0.84 0.22 0.86 0.14 0.48 0.42* 0.28 0.44* 0.61 0.23 0.73 0.19 0.38 0.37*

User assisted
cross-
correlation
(weighted
average)

0.86 0.22 0.87 0.14 0.47 0.42* 0.28 0.44* 0.63 0.23 0.71 0.20 0.39 0.32*

Manual depth
match

0.85 0.22 0.85 0.12 0.58 0.42* 0.34 0.47* 0.62 0.21 0.69 0.21 0.37 0.32*

We use bold type and * to highlight the highest mean values for the PC for each log type and to draw attention to relatively high standard deviations, respectively.

Table 7 Mean and standard deviation of the Pearson correlation for each depth matching method and log types in well 16/1-21 s

Depth Matching
Methods

Gamma-Ray Resistivity P-wave sonic Density Neutron Photoelectric Factor

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Original data 0.61 0.22 0.63 0.32 0.35 0.29* 0.50 0.30* 0.41 0.30* 0.20 0.32*
Late fusion

Weighted
average

0.89 0.15 0.93 0.05 0.57 0.32* 0.85 0.14 0.75 0.21 0.35 0.37*

User assisted
cross-
correlation
(weighted
average)

0.92 0.13 0.94 0.04 0.55 0.31* 0.87 0.11 0.76 0.22 0.39 0.37*

Manual depth
match

0.95 0.06 0.93 0.05 0.79 0.17 0.91 0.09 0.83 0.17 0.37 0.38*

We use bold type and * to highlight the highest mean values for the PC for each log type and to draw attention to relatively high standard deviations, respectively.

internal correlation and interaction between different modal-
ities to further improve the performance of several machine
learning algorithms in terms of their robustness and recog-
nition power, especially algorithms from the deep learning
category such as convolutional neural networks (CNNs)
(Chen and Jin, 2016).

One example of multimodality could be the identifica-
tion of a user’s gender and age in a social network, where
their profile’s pictures and posts can be used as visual and tex-
tual modalities, respectively. Therefore, one way to implement
multimodal algorithms is to aggregate signals from different
available modalities and to build learning models using aggre-
gated information. In this way, the deep learning algorithm is
responsible for determining the relative weights (importance)
to be assigned to different modalities for a specific task (Liu

et al., 2018). There is a range of multimodal techniques, in-
cluding early and late fusion, hybrid fusion, and joint train-
ing methods using neural networks. The main concept behind
these techniques is that features or intermediate features are
merged to make decisions during a specific task. Liu et al.
(2018) called this an additive approach. Liu et al. (2018) fo-
cused their multimodal approach on tackling the challenges of
weak modalities using a novel deep learning combination that
automatically discriminates between strong and weak modali-
ties per observed sample. They also developed a method to au-
tomatically select amixture ofmodalities that exploits the pos-
sible correlations betweenmodalities and identifies whether or
not they are complementary.

Similar to ensemble models, multimodal machine learn-
ing aims to combine different predictions since it has been

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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proven that an ensemble classifier or ensemble estimator is
generally more accurate than any of the individual classifiers
or estimators that build-up the ensemble (Opitz and Maclin,
1999). Gadzicki et al. (2020) investigated the potential for
multimodal fusion strategies using CNNs and compared them
to a traditional unimodal model in the context of HAR. They
showed that regardless of the type of fusion it always brings an
improvement in the performance. However, for their specific
case, the early fusion gives better results than the late fusion. In
contrast,Münzner et al. (2017) also implemented CNNmulti-
modal fusion for HAR, testing several fusion strategies (early,
late and hybrid fusions) combined with specific normalization
methods such as standard normalization, batch normalization
and pressure mean subtraction (PMS). They found that PMS
normalization increases the prediction accuracy of the CNNs
and that both late and hybrid fusion outperform early fusion.
However, further investigation is needed to determine the op-
timal fusion strategy for HAR (Münzner et al., 2017).

Multimodal machine learning has several challenges as-
sociated with its implementation and problem set-up. The five
fundamental challenges are representation, translation, align-
ment, fusion and co-learning (Baltrušaitis et al., 2018).

Fusion model strategies

Wewill focus on different fusion strategies that aim to increase
the overall performance of a system. Fusion strategies are mo-
tivated by the idea that different data sources can contribute
with different kinds of information to alleviate the effects of
low data quality and noise while exploiting correlations be-
tween modalities.

Early fusion, also called input-level fusion, creates a
joint representation of the input features consisting of dif-
ferent modalities. This type of fusion has a relatively low
computational cost because it only requires training on a sin-
gle model to learn the correlations and interactions between
low-level features (Liu et al., 2018). The single model can be
represented as follows:

P = h ([v1, v2, . . . , vm]) , (2)

where h is the single model, vm is the input modality/signal
vector, wherem = 1,2,…,M.M is the total number of modal-
ities available, in our caseM = 7, v1 is the gamma-ray pair of
logs, v2 is the pair of resistivity logs, v3 and v4 are the P- and
S-wave sonic logs, respectively, v5 is density, v6 is neutron, and
v7 is the pair of photoelectric factor (PEF) logs. P denotes the
final depth shift prediction.

Early fusion is simple to implement since only one model
needs to be trained.However, it requires highly engineered and
preprocessed features to ensure that the different modalities
are aligned or similar in semantics. This can be a disadvantage
(Liu et al., 2018). Also, the fusion is performed using low-
level features, which might be irrelevant to the task; hence,
the fusion capacity may decrease (Gadzicki et al., 2020).

Late fusion, also known as decision-level fusion, uses uni-
modal decision values or predictions and merges them using
fusion mechanisms (F) such as averaging, voting or a learned
model. When an additional learner model is used to aggregate
the predictions this is equivalent to implementing a stacking
generalization, which is a machine learning technique devel-
oped and explained in detail by Wolpert (1992). A simpler
mathematical representation of the final prediction for this
type of model is given in equation (3):

P = F
(
h1 (v1) , h2 (v2) , . . . ,hm (vm)

)
, (3)

where hi are the individual models trained independently on
each log type (modality) i (i = 1,2, …, m). These are also
known as level 0 learners or generalizers. The level 0 space
consists of a learning set for each log type (modality). These
learning sets are divided into subsets of data where the first
subset is used to train the learners. A second subset is used
to make predictions at level 0. The level 0 predictions, for
example, h1(v1), h2(v2), …, hm(vm) are the level 1 learning set.
If the fusion mechanism F is an additional machine learning
algorithm this algorithm will be the level 1 learner of the
stacking generalization (late fusion model), which needs to be
trained on the level 1 learning set. The prediction from this
final learner, P, is the result of testing the whole system on an
unseen third subset of data (Wolpert, 1992).

Late fusion provides flexibility as it allows the use of
different models on different modalities. This means that we
can use one algorithm to train on gamma-ray log pairs and
another one to train on resistivity log pairs, for example. This
is also the simplest and the most common fusion method
(Gadzicki et al., 2020). However, late fusion fails to model
signal-level interactions across modalities, thus it has a limited
potential for exploiting cross-correlations between different
unimodal data types because it works at the inference or
decision level instead of working with raw data or features
(Liu et al., 2018; Gadzicki et al., 2020). Representations of
this type of fusion are shown in Figure 1(a,b).

Model-level fusion is also known as multimodal deep
learning when it only uses neural networks as classifiers or es-
timators. This means that in the model no other algorithm is
used. In such cases, it deploys domain-specific neural networks
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Figure 8 Overall mean Pearson correlation as a measure of the performance of the different CNN fusion strategies for automatic depth matching.
The vertical axis shows the mean correlation values, the horizontal axis shows the labels for each log type, and the colour code represents the
CNN fusion strategies used: (a) overall results for well 16/1- 9 and (b) overall results for well 16/1-21 S. Note that well 16/1-21 S does not have
results for S-wave sonic due to poor data quality.

on the different modalities capturing their main high-level fea-
tures (more abstract representations) that are then merged or
aggregated. The final prediction is made on the aggregated
representation usually by another neural network, which cap-
tures the interaction between modalities while also learning
complex function mapping from the input to the output. Two

widely used aggregation methods are addition (average) and
concatenation. Their mathematical expressions are shown in
equations (4) and (5), respectively:

u =
M∑
m

fm (vm), (4)
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Depth matching multimodal deep learning 13

Figure 9 Overall mean Pearson correlation as a measure of performance between different depth matching methods before and after depth
matching for each log type. The vertical axis shows the mean correlation values, the horizontal axis shows the labels for each log type and the
colour code indicates values before depth matching (original data) and after depth, matching using the best performing CNN fusion strategy,
cross-correlation, and manual depth matching by a petrophysicist: (a) overall results for well 16/1- 9 and (b) overall results for well 16/1-21 S.
Note that well 16/1-21 S does not have results for S-wave sonic due to poor data quality.

u = [
f1 (v1) , f2 (v2) , . . . , fm (vm)

]
, (5)

where u is an aggregated representation that fulfils that u ∈
R
d (for equation (4)) or u ∈ R

∑
dm (for equation (5)). Given

that the domain-specific neural networks are denoted by f and

fm: Rdm → R
d (m = 1, 2, …,M), another network g computes

the final output prediction P as described by equation (6):

P = g(u), (6)
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Table 8 Training relative execution times in minutes for the different CNN fusion strategies

CNN Fusion Strategies
Execution Times (minute)

Individual CNN Models’
Training

Additional Learner/ Optimization Total

Late fusion average 153.7 NA 153.7
Late fusion weighted average 153.7 598.2 752.0
Late fusion linear Ridge

Regression
153.7 0.1 153.8

Late fusion ANNs 153.7 1.2 155.0
Model-level fusion NA NA 120.5

where g R
d → R

k and k = (1, 2, …, n) for multimodal clas-
sification or k = 1 for single prediction (Liu et al., 2018). An
example of this fusion strategy implementation is illustrated
in (Figure 1c).

Deep learning implementation

The models deployed in this paper are implemented in Ten-

sorFlow Keras banked (Chollet, 2015). We mainly focus on
one-dimensional convolutional neural network (1D CNN) ar-
chitecture due to their high success in tackling similar tasks
(Brazell et al., 2019; Imamverdiyev and Sukhostat, 2019, and
Wang et al., 2020; Deng et al., 2021), as well as in sev-
eral multi-sensor problems that use time-series data (e.g.,
Abdoli et al. (2019), Gadzicki et al. (2020), and Münzner
et al. (2017)). Additionally, CNN’s versatility and avoidance
of complex feature engineering and extensive preprocessing of
the input data is an important advantage that contributed to
this choice.

ACNN is amultilayer architecture that consists of several
sequences of convolutional layers and pooling layers. These
layers’ sequences are also known as the feature extractor term
within the CNN (convolutional block). The convolutional
block is followed by a stack of fully connected layers (FC)
with an output layer that can be chosen depending on whether
the network’s task is to be a classifier or a regression estima-
tor, similar to artificial neural networks (ANNs). During the
training process, the mapping of the inputs (raw well log data)
to the outputs (depth shift values for example, ± number of
regularly sampled data points) is learned through an optimiza-
tion process involving an update of the model parameters of
each layer by choosing parameters that minimize a loss func-
tion. The convolutional layers have units that are represented
as feature maps a(l+1)

j for layer l+1. These feature maps are
connected through local patches with weights called kernels
or filters Wl

jk to the feature maps of the previous layer l. The

output of this locally weighted sum is passed through a non-
linear function σ such as the rectified linear unit (ReLU). Note
that all units in a single feature map share the same weights. In
other words, each feature map has a unique kernel to compute
discrete convolutional filtering (LeCun et al., 2015). The rep-
resentation of a convolutional layer is given in equation (7):

a(l+1)
j = σ

⎛
⎜⎝blj +

nlf∑
k=1

Wl
jk ∗ alk

⎞
⎟⎠ , (7)

where a(l+1)
j is the feature map or unit j in layer l+1, σ =

max(x, 0), x is the output of the convolution operation and
nlf is the number of convolutional filters in layer l.Wl

jk and b
l
j

are the weights of the convolutional filter and the bias term.
The weights are defined as a two-dimensional matrix R

dx f ,

where d is the number of channels, equal to 2 in our case
(EWL reference and LWD shifted logs), and f represents the fil-
ter length. The convolution operator is denoted as * (Münzner
et al., 2017). The movement of the convolutional filters is de-
fined by the stride, which can be equal to 1 or 2. Our input
layer can be defined as a11 of size R

ncxndp, where nc is the num-
ber of channels = 2 and ndp is the number of data points in
each channel = 256. We divide the logs into segments of 256
data points each. Each segment represents a single sample in
the machine learning algorithm.

We now set up the depth matching problem as a pattern
recognition task using the 1D CNN algorithm, where we de-
fine an EWL log as a reference channel and its equivalent LWD
log as a shifted channel. First, we aim to extract distinctive
patterns in the reference log. Second, we seek to identify the
same patterns in the shifted log. Finally, we match the patterns
to synchronize the signals automatically. We define the same
search space for all CNN log-type models. This hyperparam-
eter space is based on a 1D CNNmodel used for environmen-
tal sound identification with limited data presented by Abdoli
et al. (2019). The hyper-parameterization is performed using
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Figure 10 Log profiles of window/sample number 17 for well 16/1-9: (a) Gamma-ray logs before (left) and after depth matching (right), (b)
P-wave sonic logs before (left) and after depth matching (right), (c) PEF logs before (left) and after depth matching (right), and (d) Pearson
correlation of the same window/sample number 17 before (original) and after depth matching using different methods. In panels (a) to (c), solid
blue lines represent the unmatched LWD curves, the black solid lines are the corresponding reference EWL logs, the orange solid line is the depth-
matched LWD using the CNN late fusion approach, the green dashed line is the depth-matched LWD using the cross-correlation workflow, and
the red solid line represents the depth-matched LWD using manual adjustments, which correspond to the colour code of the Pearson correlation
bar plots in (d).

hyperband as a search algorithm, which has shown better and
faster results than other methods (Li et al., 2017). The number
of convolutional layers and FC layers remains unchanged at
3 and 2, respectively. The learning rate varies from 0.0001 to
0.1. The number of filters ranges from 8 to 128, and the filter
length f varies depending on the convolutional layer. For ex-
ample, f in the first convolutional layer can be of length 8–64,
in the second convolutional layer its length ranges from 8 to
32, and in the third its length is between 2 and 16. This grad-
ual reduction in the filter length allows the extraction of global
features (long-wavelength content) by the first convolutional
layer and more local features (short-wavelength content) by
the deeper layers within the network. The stride can be one or
two, and the non-linear function σ for all the convolutional
layers is ReLU. The pooling layers are specifically max pool-

ing, which extracts patches from the output feature maps and
takes the maximum value ignoring the rest (Yamashita et al.,
2018). For the two FC layers, the number of neurons varies
from 32 to 256, the dropout ranges from 0 to 0.5, and the
non-linear functions can be either ReLU or hyperbolic tan-
gent (tanh). Between each convolutional layer and FC layer,
we introduce a batch normalization layer. This layer reduces
overfitting and speeds up the training process, allowing for
higher learning rates (Ioffe and Szegedy, 2015). We use the
identity function and one single unit for the output layer.

Semi-synthetic dataset

Here we use semi-synthetic data to facilitate the evaluation
of the machine learning models during the training and
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Figure 11 Log profiles of window/sample number 28 for well 16/1-21 S: (a) Gamma-ray logs before (left) and after depth matching (right),
(b) P-wave sonic logs before (left) and after depth matching (right), (c) PEF logs before (left) and after depth matching (right),and (d) Pearson
correlation of the same window/sample number 28 before (original) and after depth matching using different methods. In panels (a) to (c), solid
blue lines represent the unmatched LWD curves, the black solid lines are the corresponding reference EWL logs, the orange solid line is the depth-
matched LWD using the CNN late fusion approach, the green dashed line is the depth-matched LWD using the cross-correlation workflow, and
the red solid line represents the depth-matched LWD using manual adjustments, which correspond to the colour code of the Pearson correlation
bar plots in (d).

validation process. However, unseen logs are used to assess
the performance of the different aggregation methods. We
also compare the results from the best-aggregated model to
the cross-correlation and manual depth matching results.

We use three wells from the Ivar Aasen field in theNorwe-
gian North Sea that have full suites of logs (gamma-ray, resis-
tivity, P- and S-wave sonics, density, neutron and PEF). These
wells are limited to final petrophysical composite versions
formatted as LAS (Log ASCII Standard) files. The available
log curves are, therefore, already depth matched, spliced and
edited according to the Norwegian Petroleum Directorate’s
(NPD) regulatory requirements for log data delivery.We there-
fore only have a single log curve of each log type for example,
gamma-ray, deep resistivity, P- and S-wave sonic, density, neu-
tron and PEF. These log curves are the result of merging the

best data from the LWD and EWL runs. The merging of EWL
and LWD logs aims to provide log measurements that cover
the largest possible depth interval within a borehole (NPD,
2019). However, our goal is to use machine learning models
to automatically perform log alignment/synchronization be-
tween LWD and EWL suites of logs within the same depth in-
terval. To do this, we synthetically shift the log measurements
within an acceptable depth shift range based on depth con-
trols. These depth controls are performed by the logging com-
panies at the wellsite (Bateman, 1986). We use a depth shift
range that goes from −20 to 20 data points, including zero
shift. A shift of 20 data points is approximately equivalent to
±3 m (≈ 10 ft) as the sampling interval is 0.15 m (≈ 0.5 ft).
We chose this depth shift range because the shifts we have ob-
served in the data do not exceed 4.5 m (≈ 30 data points). This
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Figure 12 Comparison of the overall mean Pearson correlation to evaluate the performance of the CNN fusion model (late fusion weighted
average) and the individual CNN models trained separately for each log measurement (Torres Caceres et al., 2022b). The vertical axis shows
the mean values of the Pearson correlation, the horizontal axis shows the labels for each log type and the colour code indicates the CNN model
used: (a) overall results for well 16/1-9 and (b) overall results for well 16/1-21 S.

limitation of the depth shift range works as a soft constraint,
allowing us to test our approach faster without compromising
the results.

Before proceeding with the semi-synthetic data genera-
tion and preparation for training on a well, we impose the
following requirements:
• All log types are available.
• The data selection depends on the depth range in which

all the log measurements are acquired. In other words, if
we have all the log measurements acquired only around
the reservoir zone, even though there are other logs like
gamma-ray, resistivity or sonic logs acquired in a larger
depth range, we limit the data to the reservoir zone. We do
this so that the number of samples for all the measurement
types is the same.

• The selected data must honour the assumption made in Tor-
res Caceres et al. (2022a) that no depth shifts exist among
logs acquired within the same logging run, and if they exist
they are limited to a range of 0.15 m (≈ 0.5 ft) to 0.60 m
(≈ 2 ft) for vertical wells and of 0.6 m (≈ 2 ft) to 1.22 m
(≈ 4 ft) for deviated wells (Bateman, 1986).

Data preparation for training

First,we apply a gentle smoothing filter to the logs. Second,we
generate multiple copies of the logs and shift them either up
or down (positive or negative depth shift value) by a specific
integer number of data points within our chosen depth shift
range (−20 to 20 data points). The total number of copies is
equivalent to the number of simulated depth shifts, which is

41 per logmeasurement.Having all possible depth shifts along
the entire depth range allows us to have a balance among the
different labels (signed integer number of shifts) in the dataset,
ensuring that all the shifts are possible along the borehole. The
original log represents the reference EWL log, and the shifted
copy corresponds to the shifted LWD log in our problem set-
up. Third, we divide the logs into segments or windows of
256 data points (≈ 39 m) with an overlap of 50%. This divi-
sion acts as an augmentation of the data, doubling the dataset
size. Fourth, some preprocessing such as local standardization
and normalization is performed over each window. Finally, we
generate a depth shift vector containing the signed values of
the simulated depth shifts and store them as ground truth la-
bels to feed the supervised learning algorithm.

In addition, other augmentation techniques are imple-
mented via the Python library tsaug (time series augmentation)
that offers several time-series augmentation methods that
can be combined and implemented within a simple pipeline
(Arundo Analytics, Inc., 2020). We use tsaug and design a
small pipeline function that randomly applies two augmen-
tation techniques that do not alter or influence the depth
shifts, avoiding inconsistencies within the generated labels.
We, therefore, only use augmenters that inject variability in
the log’s measurements. For example, we add random noise to
log measurement using theAddNoise option with a scale from
2% to 4% and with a probability of occurrence of 50%. This
augmentation can be applied to both the reference (EWL) and
the shifted log (LWD/Mesure While Drilling) to either one of
them or neither of them.Whether the augmentation is applied
or not is controlled by the probability of occurrence. Another
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Figure 13 Log profiles of window/sample number 21 for well 16/1-9 and window/sample number 27 for well 16/1-21 S: (a) P-wave sonic logs
before (left) and after depth matching (right) well 16/1-9, (b) P-wave sonic logs before (left) and after depth matching (right) well 16/1-21 S,
(c) Pearson correlation of the same window/sample number 21 and 27 before (original) and after depth matching using a CNN model trained
on P-wave sonic logs and the CNN fusion model (late fusion weighted average). In panels (a) and (b), solid blue lines represent the unmatched
LWD curves, the black solid lines are the corresponding reference EWL logs, the magenta solid line is the depth-matched LWD using a single
CNN model trained on P-wave sonic logs, and the orange solid line is the depth-matched LWD using the CNN late fusion approach, which
corresponds to the colour code of the Pearson correlation bar plot in (c)
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example of an augmentation method is drift, which adds noise
to the values of the original signal randomly and smoothly.
The effect of the drift is controlled by the maximum drift al-
lowed and the number of drift nodes. The maximum drift de-
termines how much the signal values can deviate from their
original values, and the number of drift nodes is the maximum
number of data points in the signal that can be drifted. We in-
troduce drift into our augmentation pipeline with a maximum
drift value ranging between 10% and 25%, three drift nodes
and a probability of occurrence of 50%. Similar to the addi-
tive noise augmentation, drift can be applied to both signals
either to one of them or to neither of them. Figure 2 shows
an example of the data augmentation process. This additional
augmentation introduces more variation and realism into the
training and validation datasets. It also increases their size.

Real dataset

We use misaligned suites of logs to evaluate the depth match-
ing results for the different fusion models. We also assess the
best fusion model compared to common current approaches
(cross-correlation and manual depth matching by a petro-
physicist). This dataset (unseen real data) is kept out from
training, validation and preliminary testing. It is used only
for depth shift inference. The unseen real dataset consists of
two wells from the Ivar Aasen field. They have separate suites
of LWD and EWL logs contained in DLIS (Digital Log Inter-
changeable Standard) files. The LWD and EWL logs are com-
pared by estimating the necessary shift needed to obtain the
best possible alignment between them. For these two wells,
we also have a depth shift solution provided by an experi-
enced petrophysicist, that is, LWD logs shifted to match the
EWL reference log following the petrophysical best practices,
standards and regulations set by the NPD).

Training models

We train different models for each fusion strategy tested. For
late fusion,we train seven CNNmodels corresponding to each
log measurement type. When we use another learner as a fu-
sion mechanism an additional algorithm is trained. In con-
trast, for the model-level fusion, we train a single large multi-
input CNN model. The different fusion strategies are trained,
validated and tested using the same semi-synthetic data. In
both cases, final depth shift inference is carried out using the
unseen real data.

We split the whole semi-synthetic dataset into a training
set (80%), a validation set (15%) and a test set (5%). The

validation set is used to monitor the model selection process
during the training of the individual CNNmodels correspond-
ing to each log type. The validation set is also used to make
predictions using level 0 models and then to train the level
1 model for final predictions (late fusion with an additional
learner as a fusion mechanism). We also keep 5% of the data
as the test set to evaluate the final model against ground truth
labels (signed depth shifts) before using them for depth shift
predictions on the real data, which lack ground truth labels.
The size of the dataset is the same across log types and consists
of 8405 samples. Figure 3 illustrates the general data-splitting
set-up.

The training and tuning of the CNNs and ANNs are car-
ried out using the Keras tuner library (O’Malley et al., 2019).
We use the hyperband algorithm to search for the best com-
binations of hyperparameters and model architectures. The
optimizer used is the Adam optimizer with the default pa-
rameters from Tensorflow Keras banked, which are a con-
stant learning rate of 0.001, batch size of 128 samples and the
number of epochs of 100. The Adam optimizer is a stochas-
tic gradient descent method based on adaptive estimates of
first- and second-order moments (Kingma and Ba, 2015). The
best model is selected based on its performance measured by
the mean squared error on the validation set (MSE) after each
trial. The best models for each log type are then used to test
the different fusion strategies. Similarly, the model fusion level
and the ANNs for one of the late fusion models are tuned
using hyperband with Keras tuner. Note that the CNN mod-
els for each log type are generated only once and stored for
later use in each fusion model. The two best architectures are
shown in Figures 4 and 5. Five out of seven log measurement
models (gamma-ray, resistivity, P- and S-wave sonic and PEF)
share the structure shown in Figure 4. The density and neutron
models also share a structure, which is illustrated in Figure 5.

Late fusion models

Late fusion average or voting ensemble

Once we obtain the individual models/learners per log mea-
surement type, we proceed with the preliminary assessment
of the fusion models using either the validation set or the test
set. Either the validation set or the test set of the individual
log measurements are the inputs for each model depending on
which stage we are in the fusion workflow (see Fig. 3). Their
outputs are aggregated to obtain a reasonable depth shift for
all log types simultaneously. This is equivalent to assigning
equal weights to all of the learners/models. They, therefore, all
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have the same contribution to the final estimation as shown
in equation (8), presented as an aggregation function for the
basic ensemble model by Perrone and Cooper (1992):

P = 1
M

M∑
i=1

hi (vi), (8)

where hi denotes each model/learner per log type, vi is the in-
put data corresponding to each logmeasurement type,M is the
total number of models/learners, and P is the final prediction
of the fusion model.

Figure 6 shows how the mean squared error (MSE) is re-
duced when more than one model/learner is aggregated. This
is a preliminary assessment using the synthetically shifted test
set that demonstrates the potential of this technique to com-
bine outputs from different models/learners to estimate a sin-
gle output. However, we can see that the individual models
3, 4, 5 and 6 corresponding to P-wave and S-wave velocities,
density and neutron, respectively, have a similar performance
to the ensemble models that include them. On the other hand,
models 2 and 7 (resistivity and PEF, respectively) show a much
higher prediction error than the final ensemble model. This be-
haviour might be an indication that both velocity models and
the density seem to be good enough to make predictions with
a low error rate, and the opposite is seen for the resistivity,
neutron and PEF.

Late fusion weighted average

A slightly different procedure is performed when we merge
the learners using a weighted average approach. We use val-
idation data to run an optimization process to find the best
set of weights within a pre-defined search space. Afterwards,
the test set is used to assess the ensemble model by compar-
ing its results with the ground truth depth shifts. We use dif-
ferential evolution (DE) as an optimization algorithm. This
algorithm is characterized as being a stochastic population-
based approach that is useful for global optimization prob-
lems. DE fulfils four different requirements: (i) DE can handle
several cost functions regardless of their complexity including
non-differentiable, non-linear and multimodal cost functions,
which is an advantage over gradient-based methods. DE is a
stochastic direct search. (ii) DE can solve complex computa-
tionally intensive cost functions in a reasonable time because
it uses a vector population in which stochastic perturbations
of each vector in the population are done independently. In
other words, it is possible to parallelize the optimization pro-
cess. (iii) DE has a self-organizing scheme that makes it easy
to use as few parameters as possible to steer the minimization

process. For example,DE uses the difference between two ran-
domly chosen population vectors to perturb a third existing
vector. This perturbation is done for every vector within the
population by comparing the perturbed result to the best. (iv)
DE has a consistent convergence property obtained in differ-
ent trials (Storn and Price, 1997). Details of the mathematical
derivations of DE are presented in the Appendix.

We use the DE algorithm implemented in the function dif-
ferential_evolution from the SciPy Python library (The Scipy
community, 2021). This function requires both a cost function
and a set of weights to be evaluated as inputs, and it returns
a score to be minimized. We specify the cost function as the
MSE of the fused models, and we also specify the bounds of
the optimization process. The bounds are a seven-dimensional
hypercube specified using seven weights for the seven CNN
models or learners with values ranging from 0.0 to 1.0. We
set a maximum of 1000 iterations and a tolerance of 10−7

to ensure convergence of the algorithm. The final weights are
normalized and used for the depth shift inference.

Late fusion with a linear learner (stacking model)

We deploy a stacking model by testing different meta-learner
algorithms. We use the term meta-learner to refer to the ma-
chine learning algorithm used to merge several outputs from
the initial models. In our case, the initial models are the best
1D CNNmodels/learners corresponding to each log measure-
ment type.We first test linear algorithms such as linear regres-
sion with Lasso and Ridge regularization. The regularization
term is added to the cost function, working as a stabilizer of
the least-squares algorithm, by penalizing the estimated pa-
rameter coefficients that best fit the data to a straight line. This
penalization term could be either the L1 or L2-norm (Gareth
et al., 2013). In the context of stacking models, we set the lin-
ear model as follows. First, our level 0 consists of the seven
models/learners (1D CNN) already defined. Second, our level
1 consists of the predictions made by our level 0 learners on
a validation set. These predictions are the training set for our
level 1 learner or meta-learner. Third, we assess the trained
meta-learner model by inputting our semi-synthetic test set
into the entire system. We do the same with real unseen data
to predict the single depth shift for all the log measurements.

The training of the linear meta-learner is set as given pairs
of n samples {xij ∈ R

M and yi ∈ R} 1 ≤ j ≤ M (prediction on
the validation set)M = 7 and 1 ≤ i ≤ n. The linear regression
fits a linear model for an ith sample given as

yi =W0 +W1xi1 +W2xi2 + · · · +W7xi7, (9)
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where W0 is the bias term and (W1, W2, …, Wm) are the co-
efficients learned during the minimization of the residual sum
of squares (RSS) or cost function. We use the outputs of the
level 0 learners as the variables or features xij, while the co-
efficients are equivalent to the weights used in the late fusion
with a weighted average. Equations (10) and (11) show the
two different regularization terms for Lasso and Ridge regres-
sions (second term in the equations), respectively, added to the
RSS (first term in the equations).

n∑
i=1

⎛
⎝yi −W0 −

M∑
j=1

Wjxi j

⎞
⎠ + λ

M∑
j=1

∣∣Wj

∣∣, (10)

n∑
i=1

⎛
⎝yi −W0 −

M∑
j=1

Wjxi j

⎞
⎠ + λ

M∑
j=1

W2
j , (11)

where λ ≥ 0 is a tuning parameter that controls the constraint
or shrinkage of the coefficients towards zero. The main advan-
tage of shrinking the coefficients is the variance reduction of
the model, which could lead to making it simpler, more inter-
pretable in the case of a large number of variables, and reduc-
ing overfitting when a feature selection is performed (Gareth
et al., 2013).When λ = 0. the shrinkage term has no effect, and
the result will be equivalent to a standard linear regression. In
contrast, when λ → ∞ the value of the penalty terms grows,
the coefficients of the linear regression will approach zero, and
for the Lasso regression some of the estimated coefficients will
be forced to be equal to zero. This is the main difference be-
tween the Ridge and Lasso regressions; the former does not
perform any variable or feature selection since it uses all the
estimated coefficients in the final model despite large values
of λ. On the other hand, when Lasso regression sets some co-
efficients to zero, we automatically remove the variables asso-
ciated with those coefficients from the model, performing an
automatic feature selection (Gareth et al., 2013).

We tune the λ parameters via 10-fold cross-validation.
The values of λ we test range from 0.0001 to 10 and increase
with a step of 0.01.After tuning, the optimal λ values for Lasso
and Ridge regression are both equal to 0.0001. Table 1 shows
the regression coefficients obtained for Lasso and Ridge re-
gression for well 16/1-9 and their equivalent values for the
DE optimization. Similar values of the regression coefficients
are obtained for well 16/1-21 S. Note that the output weights
from DE are normalized, that is, their values range between
0 and 1 and their sum is equal to 1. The regression coeffi-
cient values and the optimized weights show roughly similar
trends. No weights or negative coefficients are assigned to the
resistivity model, little contribution is made to the final pre-

dictions by the PEF, gamma-ray and P- and S-wave sonic logs,
and a large contribution is made by the density and neutron
log models.

Late fusion with a non-linear learner (stacking model)

We test a multi-layer perceptron algorithm as a meta-learner.
This algorithm is also known as a type of ANN. We use the
outputs of the level 0-learners as training datasets for the level
1 learner (ANN). The ANN needs tuning of many parame-
ters, as well as the proper selection of the network topology.
We, therefore, perform an extra step to produce a small vali-
dation set that can be evaluated during the tuning process of
the extra ANN. The original 5% of the data providing the test
set is halved, and now 2.5% of the halved dataset is used for
validation of the ANNs’ tuning parameters. The tuning of the
ANNs is performed using Keras banked in TensorFlow and a
hyperband search strategy. Table 2 shows the search range of
the tuned parameters. The number of hidden layers was con-
strained to be either 1 or 2 since more complex networks are
not needed for this problem. Note that in Tables 2 and 3, we
provide the maximum and minimum values that could be se-
lected from the parameter search space, and for no numerical
values like the type of activation function, we call them option
1 and option 2. The final ANN topology is presented along
with the whole staked model structure in Figure 7. Note that
the seven learners of level 0 are merged with the ANN (learner
of level 1); however, their weights and topologies are frozen,
meaning that these CNNs are not updated or affected during
the meta-learner (ANN)’s training.

Model-level fusion

This fusion method aims to combine the different log types
into a single model to reproduce a unique depth shift per sam-
ple that can correct misalignments for all the log types simul-
taneously without computing additional averages manually.
To perform this test, we use the seven different types of logs
as simultaneous head inputs into the network, each of which
passes through convolutional blocks, whose architectures
are the same as the individual models already defined in the
previous test. In other words, the best model architecture
for each log type is implemented without further changes
to build this new integrated model. The fusion of the mod-
els is performed after flattening (transformation into a
one-dimensional array) of each convolutional block output
followed by their concatenation as described by equation (5).
The hyperparameter tuning process affects only the topology
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of the fully connected layers and the optimizer (e.g., the learn-
ing rate) since we keep the convolutional block structures
fixed. However, the weights for the entire structure will be
updated during the training process. The search space for the
dense layer tuning is summarized in Table 3.

Depth shift estimations

At this stage, all the fusion models are ready to make esti-
mations of the depth shift in a real dataset. We use our un-
seen samples from well 16/1-9 (total number of samples =
28) and 16/1-21 S (total number of samples = 32) as inputs
for all the fusion models and compare their performance. The
lack of ground truth labels on the real dataset made neces-
sary the use of some qualitative and quantitative measure-
ments for evaluation. First, we use the Pearson correlation, de-
noted as PC, between the reference EWL log, and the shifted
LWD log before and after depth, matching using the results
from the different fusion CNN strategies. Second, we com-
pute their mean values over the total number of samples per
log measurement type. For example, we obtain average values
of the Pearson correlation for gamma-ray, resistivity, P- and
S-wave sonic, density, neutron and PEF log types. Third, we
compare the performance of each fusion strategy for the in-
dividual log types based on the mean values of the Pearson
correlation, and we select the best strategy model for that log
type. Fourth, the Pearson correlation achieved by the best fu-
sion method is compared to that from the cross-correlation
workflow with a user-assisted weighted average and from the
manual depth matching performed by an experienced petro-
physicist. We also carry out a qualitative assessment of the
different depth matching approaches, using well log profiles
to evaluate the results of depth matching by visual compari-
son of the logs before and after depth matching. We refer the
interested reader to the Appendix for further details about the
Pearson correlation, which we use to assess and rank the ma-
chine learning and other matching methods and results.

RESULTS

We present the results of the different model fusion strategies
for well log depth matching for wells 16/1-9 and 16/1-21 S.
We compare the mean of Pearson correlations (PCs) computed
for each of all the samples per log type per log to obtain an
overview of each fusion method performance. We compare
five different fusion strategies. They are late fusion average,
late fusion weighted average, late fusion linear Ridge regres-
sion, late fusion artificial neural networks (ANNs) and model-

level fusion. We do not show the late fusion linear Lasso re-
gression results since its performance is the same as that of
the Ridge regression. Therefore, it does not add any value to
the final comparisons. Tables 4 and 5 summarize the PC val-
ues and their standard deviations. We use bold type and * to
highlight the highest mean values for the PC for each log type
and to draw attention to relatively high standard deviations,
respectively. These notations also apply to Tables 6 and 7.

The tabulated results are displayed in Figure 8. This helps
us to see that there is not a significant difference in perfor-
mance between the fusion strategies. The same trend is visi-
ble for the fusion strategies’ performance at the log type level.
For example, we see that all the fusion strategies achieve a
high overall PC for gamma-ray, resistivity, and neutron logs,
whose values range are 0.83–0.84, 0.84–0.86 and 0.71–0.73,
respectively, for well 16/1-9 (Fig. 8a). The density log shows
moderate PC values of 0.59–0.61, and poorer results are seen
for the P- and S-wave sonic logs, and the photoelectric factor
(PEF) where the PC values range from 0.28 to 0.49, indicat-
ing a low correlation between the logging while drilling (LWD)
and electrical wireline logging (EWL) logs after depth match-
ing. Table 4 also shows the standard deviation of the PC val-
ues. The highest standard deviations are associated with the
log types that yield lower correlation values. In most cases,
the standard deviation has the same order of magnitude as
the mean or is even higher than the mean as it is for the S-
wave sonic with values ranging from 0.41 to 0.44. These high
standard deviations indicate poor matching in some samples
of these log types and large uncertainty in the results.

Well 16/1-21 S shows similar results to those from well
16/1-9.However, the PC values for all the log types except PEF
are slightly higher. For instance, gamma-ray, resistivity, den-
sity and neutron mean PC values show the following ranges
0.88–0.9, 0.9–0.93, 0.83–0.85, and 0.73–0.75, respectively.
The PC value for the P-wave sonic shows an increase between
0.08 and 0.1 compared to well 16/1-9. On the other hand, the
PEF PC values remain the lowest and have actually decreased
slightly compared to well 16/1-9, ranging from 0.34 to 0.37
(Fig. 8b).

Table 5 presents the mean PC values and their standard
deviations from well 16/1-21 S. We see that the average stan-
dard deviations for the P-wave sonic and the PEF are 0.33 and
0.37, respectively. In contrast, the standard deviations for the
resistivity, gamma-ray and density are slightly lower than for
well 16/1-9 with average values of 0.15, 0.08, and 0.14, re-
spectively. The corresponding standard deviations of the same
log types for well 16/1-9 are 0.23, 0.14, and 0.22, respectively.
The values for the neutron log are similar in both wells.
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Based on these results, we select the fusion strategy that
has the highest PC values for most log types in both wells.
The late fusion weighted average fulfils this requirement. It
presents the highest PC value in five out of seven log types
for well 16/1-9 and four out of six for well 16/1-21 S. We
also make a direct comparison of the mean PC between LWD
and EWL logs before depth matching (original data) and af-
ter depth matching using this fusion strategy, cross-correlation
weighted average workflow and manual depth matching. The
results are presented in Tables 6 and 7 for wells 16/1-9 and
16/1-21 S, respectively. Figure 9 shows the results for both
wells. We can see a clear improvement in the correlation be-
tween the logs after any depth matching methodology is ap-
plied to the data.

For well 16/1-9, the highest PC values are achieved by the
cross-correlation weighted average method for gamma-ray,
resistivity, density and PEF, which are equal to 0.86, 0.87,
0.63, and 0.39, respectively (see Fig. 9a). The late fusion
weighted average (convolutional neural network [CNN]
fusion strategy) has a slightly higher PC value than other
methods for the neutron logs. This value is 0.73 compared to
0.71 and 0.69 from the cross-correlation and manual depth
matching, respectively. Manual depth matching shows the
highest values for the P- and S-wave sonic logs of 0.58 and
0.34, respectively. However, in general, the sonic logs and
the PEF logs are poorly correlated after depth matching.
They also show relatively high standard deviations for all the
matching methods used (see Table 6).

(Figure 9b) shows the results for well 16/1-21 S from
which we see improvements after depth matching for most
of the log types. Additionally, the manual depth matching
method seems to outperform the cross-correlation and the
CNN fusion strategy for gamma-ray, P-wave sonic, density
and neutron logs with PC values of 0.95, 0.79, 0.91, and 0.83,
respectively. Cross-correlation shows higher PC values for re-
sistivity and PEF logs of 0.94 and 0.39, respectively. However,
the differences between these correlation values and their cor-
responding values for the manual depth matching are only
0.01 and 0.02, respectively. Small differences are also seen
between the cross-correlation and the CNN fusion strategy
PC values, suggesting a possible similar performance. Table 7
shows the standard deviations of the PC for well 16/1-21 S,
high standard deviation values of 0.32 and 0.31 persist for the
P-wave sonic match using cross-correlation and the CNN fu-
sion strategy, respectively while the standard deviation for the
manual method is only 0.17. PEF logs always show the same
large standard deviation values of between 0.37 and 0.38 in
this well, regardless of the method used. The reason for this

could be associated with the physics of the borehole. The mud
systems used to condition boreholes have a high barite con-
tent in the North Sea. Barite has a high capture cross section
for gamma rays and has a significant impact on the PEF mea-
surements. The PEF might display considerable differences be-
tween LWD and EWL logs because the barite concentration
could slightly change with time, affecting the rock properties
(regardless of whether the rock is permeable or not).

DISCUSS ION

As we have seen, the different model fusion strategies ap-
plied to the individual log type convolutional neural network
(CNN) models achieve apparently similar results under the as-
sumption that a single common depth shift is sufficient to ade-
quately synchronize all the log types simultaneously.However,
there exist some differences between strategies in regard to
model complexity and, therefore, execution times. Examples
of relative execution times are summarized in Table 8, where
we can see late fusion average, linear Ridge regression, and
artificial neural networks (ANNs) that take the same time to
train via the hyperband tuning search strategy using the struc-
tures that we proposed in this work. These three models need
at least 2 hours and a half to train. For the model-level fusion,
which is a single multi-input head CNN model the training
time is shorter and equal to around 2 hours. Note that the
seven convolutional blocks do not change their architecture
only experience updates in their weights. In contrast, we have
the late fusion weighted average that takes almost six times
more time than the others, requiring 12 and a half hours to
find the best weights to aggregate the individual models. We
also see that the additional time to perform Ridge regression
or define an optimal ANN shallow structure to carry out the
aggregation of the models is negligible. Considering the exe-
cution times and that all models perform equally well, it might
be better to select the model that takes the shortest time to be
trained as the best model instead. In addition, it would be pos-
sible to reduce the execution times for the late fusion weighted
average model by using parallelization techniques during the
optimization process, making it more competitive compared
to the other models in terms of execution time.

From Figures 9(a,b), as well as Tables 6 and 7, we see
that for well 16/1-9 the highest Pearson correlation (PC) val-
ues are given by the cross-correlation user-assisted workflow
and for well 16/1-21 S this is accomplished by the manual
depth matching. However, the difference across the methods
does not exceed 0.1 in PC for most of the log types, which is
not significant. We only see a slight difference in PC of 0.24
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between the manual depthmatching and the cross-correlation,
and a difference of 0.22 between the manual depth matching
and the CNN fusion strategy for the P-wave sonic log in well
16/1-21 S. Small differences and higher correlation between
logging while drilling (LWD) and electrical wireline logging
(EWL) log pairs after depth matching regardless of the match-
ing method used, are indications of CNNs’ potential to pro-
vide acceptable depth matching results for a massive amounts
of data simultaneously without user intervention.

The disadvantages of using a CNN fusion approach in-
stead of a cross-correlation user-assisted workflow or a man-
ual depth matching can be summarized as follows. First, the
selection of the weights for the cross-correlation workflow
is based on the user’s knowledge, and hence the quality of
the weights’ values relies on the quality of the user’s criteria.
This selection of the weights is carried out for each drilled
well section individually, which means that for each drilled
section we have a different and independent set of weights
assigned by the user. These weights are tailored to the bore-
hole conditions at each specific section when the logs were
acquired. In contrast, our CNN fusion strategy implementa-
tion estimates and uses a single set of weights/regression co-
efficients for the whole depth range. It does not try to ac-
count individually for local changes due to variations in the
drilling and logging process between sections. In other words,
our CNN fusion approach could be improved by using depth-
dependent weights/regression coefficients to correct for differ-
ences between well sections and significant changes in bore-
hole conditions. This could be accomplished by using another
type of neural network that can capture the long depth de-
pendencies. For example, Chen and Jin (2016) developed a
multi-modal fusion strategy called conditional attention that
can handle different modalities at each time step using a long-
short term memory recurrent neural network. In this way,
they could extract the long time dependencies and obtain
different weights for each modality at each time step based
on current input features and history information (Chen and
Jin, 2016). Furthermore, we have shown in previous work
(Torres Caceres et al., 2022b) that changes in the borehole
conditions have an impact on the distortion of the log pat-
terns, thus discrepancies between LWD and EWL logs arise
affecting the depth matching results. For example, in the case
of the photoelectric factor (PEF) log which has a shallow
depth of investigation, measurements are highly sensitive to
the mud type, especially when the mud contains barite. Fig-
ure 10 shows an example of this type of problem where the
P-wave sonic and the PEF logs (panels b and c) experience sub-
stantial changes in the log patterns while the gamma-ray does

not (panel a). We also see that the three depth matching meth-
ods converge to a similar solution, giving a good matching for
the gamma-ray but poor matching for the P-wave sonic and
PEF.

Second, the manual depth matching has an advan-
tage over the cross-correlation user-assisted workflow and
the CNN fusion approach since it can handle any depth-
dependent shifts that could be present in the data. The manual
depth matching is also performed individually for each log.
This means that in the presence of substantial stretch/squeeze
effects due to the stick-slip of the logging cable, for exam-
ple, it is still possible to achieve a good depth match using
manual adjustments. In such cases, the cross-correlation fails
to provide a high correlation result because it is limited to a
single constant bulk shift. Similarly, our CNN fusion model
will face the same problem since depth-dependent effects are
not included in the training. This problem can be alleviated
by simulating and introducing stretch/squeeze effects into the
training set and adding additional input information like ca-
ble head tension and surface tension logs, which are used
to identify stick-slip zones. These modifications should help
the algorithm recognize these events and find better solutions
that align/synchronize the corresponding log patterns while
remaining a fully automatic depth matching workflow. We
also compare the mean PC after depth matching using the
individual CNN models that were described for use on each
log type (Torres Caceres et al., 2022b) to the results using the
CNN fusion approach and evaluate the difference between
using a single depth shift across all measurements and using
individual depth shifts per measurement (see Fig. 12). These
comparisons help to investigate the reasons for the higher PC
values of the manual depth match over the other methods, par-
ticularly for the P-wave sonic logs since the sonic logs seem to
have larger relative depth shifts compared to other measure-
ments, as shown in Fig. 13. Therefore, the single depth shift
might underestimate the sonic log shifts (see Figs. 11b and 13).

For well 16/1-9, if we compare the mean PC for the P-
wave sonic log using the CNNmodel trained only with P-wave
sonic logs (0.57) and the manual shift depth matching (0.58),
we see that the difference in PC is only of 0.01. However, the
difference between the CNN fusion approach and the manual
depth matching is 0.1. For well 16/1-21 S, we have an overall
mean PC value of 0.72 using a CNN training only with P-wave
logs and an overall mean PC value of 0.79 using the manual
depth matching with a difference of 0.05. Therefore, the dif-
ference between the CNN fusion approach and the manual
matching is 0.22. Note that for gamma-ray, resistivity and the
sonic logs (P and S wave) there is a general drop in the PC
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values using the CNN fusion approach compared to the CNN
models trained on each log type in well 16/1-9. In contrast, the
density, neutron and PEF experience a slight increase in cor-
relation when using the CNN fusion approach instead of the
individual CNN models (see Fig. 12a).

A similar pattern is seen in well 16/1-21 S (see Fig. 12b)
with the difference that only the neutron has an increase in cor-
relation with the use CNN fusion approach. However, the dif-
ferences between the CNN fusion approach and the individual
CNNs are small and have a minimum value of 0.01 (gamma
ray) and a maximum value of 0.07 (P-wave sonic). Having a
single depth shift for all log measurements implies a trade-off
between poorer quality logs (density, neutron and PEF) and
better quality logs (gamma ray, resistivity and sonics). It seems
that in a well with data quality problems the CNN fusion
approach could provide a reasonable depth matching result,
whereas in a well with higher data quality logs the individual
CNN models seem to provide slightly better results.

Figure 13(a,b) shows the log profiles for P-wave sonic
logs before and after depth matching, using a CNN model
trained on P-wave sonic logs and the CNN late fusion ap-
proach for both wells, respectively. Their corresponding PC
values are depicted in a bar plot (Fig. 13c). In both cases, the
independent CNN approach achieves better alignments and
higher PC values than the CNN late fusion approach. These
findings emphasize our observations from Figures 11 and 12,
which suggest that the sonic logs in some sections of the wells
seem to present larger depth shifts than the other measure-
ments.

Pattern differences due to significant changes in the bore-
hole conditions or any tool failures during logging could affect
our results (Torres Caceres et al., 2022b). For example, well
16/1-9 is reported to have had several operational problems
during log acquisition. Therefore, we see that the three depth
matching methods tested have similar performances while in
well 16/1-21 S,where the logs are of better quality, the manual
depth matching has higher PC values than both the CNN fu-
sion approach and the cross-correlation workflow. Also, we
should remember that the manual depth matching will be
highly dependent on the analyst’s experience and more prone
to subjectivity.

We believe that our CNN fusion workflow can be con-
siderably improved. Also, our workflow can be implemented
as a fast first alignment of the log measurements, aiming to
build a fully automated depth matching tool. We also envis-
age that our workflow could be implemented in a cloud-based
system while integrated into a database. For example, thou-
sands of LWD logs can be quickly depth matched with their

corresponding thousands of EWL logs effortless and without
any user intervention. This auto depth matching function will
open possibilities to use all data in a database instead of just
using the 10 most essential logs.

CONCLUSION

We implemented and compared several multimodal machine
learning fusion strategies. These combined one-dimensional
convolutional neural networks (1D CNNs) for depth match-
ing of logging while drilling (LWD) and electrical wireline log-
ging (EWL) well log pairs. Fusion combined models described
for different log measurement types to estimate a single com-
mon depth shift to be applied to all LWD logs. Our implemen-
tation aimed to reduce user intervention and fully automate
the depth matching workflow based on cross-correlation. For
all the models, we used the same semi-synthetic training, val-
idation and test datasets. All models were compared using
the same unseen real data from two wells located in the Ivar
Aasen field in the Norwegian North Sea. The individual 1D
CNN models corresponding to each log measurement such as
gamma-ray or resistivity are the same for all the fusion tests.
We focused on evaluating late fusion models and model-level
fusion by comparing their mean values of the Pearson cor-
relation (PC) between samples from pairs of logs before and
after depth matching.We showed that there are no substantial
differences in the PC values between the fusion strategies im-
plemented in this work. However, differences were seen when
we compared their training execution times. For example, the
fastest model to train was the model-level fusion, which took
about 2 hours, followed by the late fusion average, late fusion
linear Ridge regression, and the late fusion artificial neural
networks (ANNs), which all took 2 and 1

2 hours. The slowest
model was the late fusion weighted average which took about
12 and 1

2 hours.
Additionally, we compared the fusion strategy with the

highest PC values (late fusion weighted average) with a cross-
correlation user-assisted workflow and manual depth match-
ing results. We showed that all the methods increase the mean
PCs of the log samples compared to the data before depth
matching. Also, all the methods converge to a similar result
with some exceptions. For example, the manual matching al-
ways outperforms the other methods for the P-wave sonic logs
in both wells. This is likely associated with the slightly larger
relative depth shifts affecting the sonics logs compared to the
other measurements. Therefore, the single solution from the
models’ aggregation will have large residuals for the sonic
logs that are well addressed using manual adjustments or
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CNNmodels trained only on P-wave sonic logs. The CNN fu-
sion approach’s results show a trade-off between poor qual-
ity logs and better quality logs. This trade-off suggests that
in wells with data quality problems this strategy might pro-
vide reasonable depth matching. In wells with higher qual-
ity logs, the single CNN models might show slightly better
depth matches. The cross-correlation user-assisted workflow
shows slightly higher PC values than the other methods for
well 16/1-9. The manual depth matching also shows slightly
higher PC values than the other methods for well 16/1-21 S.
Although our fusion approach is not superior in performance
relative to other depth shift estimation methods, it is fully au-
tomatic, competitive, unbiased to human perception (relevant
in unitization questions), and we also have identified poten-
tial improvements. Our future research will include tests of
depth-dependent weights/regression coefficients to correct the
difference between well sections and local changes in bore-
hole conditions, by using long-short term memory recurrent
neural networks capturing long depth dependencies. This ap-
proach will update the weights for the models’ aggregation
at each depth step whenever needed. In addition, we would
like to investigate the introduction of depth-dependent shifts
into the training data to overcome the limitations of the cross-
correlation method, obtaining some of the benefits of manual
depth matching in an automated context.

Finally, we recommend using our CNN fusion approach
as a fast depth shift screening that can be combined with the
second pass of depth shift adjustments using the CNN indi-
vidual models to reduce the residuals. We foresee the imple-
mentation of our workflow on a cloud-based database where
we can depth match a massive number of logs simultaneously,
opening new opportunities to use all data instead of being lim-
ited to the essential well logs.
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APPENDIX

Di f f e r en t i a l evo lu t i on a l go r i t hm

The differential evolution (DE) algorithm can be described by
three stages called mutation, crossover and selection (Storn
and Price, 1997). First, the DE utilizes NP (where NP is the
size of the population that does not change during the mini-
mization process) and D-dimensional parameter vectors such
as

xi,G, i = 1, 2, . . . ,NP, (A.1)

where each D-dimensional parameter vector represents the
population of each generationG. The initial vector population
is chosen randomly, and it should cover the whole parameter
space. A uniform random distribution is used to make all ran-
dom decisions required by the algorithm. Given a preliminary
solution (target vector), the initial population is generated by
adding normally distributed random deviations to the nomi-
nal solution (xnom,0). DE generates new parameter vectors by
using groups of three existing population vectors. For exam-
ple, the new parameter vector will be the result of adding to the
first vector (target vector) the weighted difference between the
second and third population vectors, all of them chosen ran-
domly. This operation is called mutation, and its mathematical
expression is given by equation (A.2). For each target vector
within a generation xi,G, i = 1, 2,3, . . . ,NP, a mutated vector
is generated by three randomly selected parameter vectors as
follows:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) , (A.2)

where r1, r2, r3 ∈{1,2, …,NP} are the random integer indices,
which are mutually different. They are constrained to be dif-
ferent from the running index i. Hence, NP must be greater
than or equal to four. F is a real and constant factor ∈ [ 0,2]
and F > 0, which controls the amplification of the differential
variation (xr2, G - xr3, G).

Each resulting new parameter vector or mutated param-
eter vector is mixed with the parameters of the target vector.
The result of this process yields a new vector called the trial
vector. This parameter mixing process is known as crossover.
This step is introduced to increase the diversity of the per-
turbed parameter vectors. The trial vector is defined by equa-
tion (A.3):

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1) , (A.3)
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where

uji,G+1 =
{
vji,G+1if

(
randb ( j) ≤ CR

)
or j = rnbr (i)

xji,G+1if
(
randb ( j) > CR

)
and j 
= rnbr (i)

,

j = 1, 2, · · · ,D,

(A.4)

where randb(j) is the jth evaluation of a uniform random num-
ber generation with an outcome ∈ [0,1]. CR is the crossover
constant that must be given by the user and ∈ [0,1]. Generally,
the crossover is generated by a binomial random distribution.
Additionally, rnbr(i) is a randomly chosen index ∈ 1, 2, …,
D that ensures that ui, G+1 gets at least one parameter from
vi, G+1.

The selection is the step in which the trial vector ui, G+1
is evaluated, and the decision of whether or not it should be
part of the next generation G+1 is made. To do this, ui, G+1
is compared with the target vector xi, G using a greedy crite-
rion. If ui, G+1 achieves a lower cost function than xi, G, then
the target vector for the next generation xi, G+1 will be ui, G+1,
otherwise the old value xi, G is retained.

The whole process is repeated until each population vec-
tor has served once as a target vector, meaning that NP com-
petitions take place in one generation (Storn and Price, 1997).

Met r i c fo r dep th ma t ch ing a s s e s smen t

Pearson correlation coefficient

The Pearson correlation coefficient (PC) is defined as the co-
variance of two variables or distributions divided by the prod-
uct of their standard deviations. PC is used as a metric, which
indicates the degree of relationship between two variables. For
example, if x and y are independent the covariance and PC
will be both equal to zero. In the case in which one variable
accurately determines the other, such that all the points (xi, yi)
lie perfectly on a straight line with either a positive or neg-
ative slope PC will be equal to 1 or −1, respectively. These
statements are valid, assuming that there is a linear relation
between them (Bulmer, 1979). The Pearson correlation coeffi-
cient is described by the following equation:

PC =
∑n

i=1 (xi − x̄) (yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

, (A.5)

where n is the sample size, xi and yi are the individual sample
points of the depth series, and x and ȳ are the corresponding
mean values of x and y.
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