
55

Solving Sparse Assignment Problems on FPGAs

ERLING JELLUM, MILICA ORLANDIĆ, EDMUND BREKKE, TOR JOHANSEN, and
TORLEIV BRYNE, Norwegian University of Science and Technology, Norway

The assignment problem is a fundamental optimization problem and a crucial part of many systems. For

example, in multiple object tracking, the assignment problem is used to associate object detections with

hypothetical target tracks and solving the assignment problem is one of the most compute-intensive tasks.

To enable low-latency real-time implementations, efficient solutions to the assignment problem is required.

In this work, we present Sparse and Speculative (SaS) Auction, a novel implementation of the popular Auction

algorithm for FPGAs. Two novel optimizations are proposed. First, the pipeline width and depth are reduced

by exploiting sparsity in the input problems. Second, dependency speculation is employed to enable a fully

pipelined design and increase the throughput. Speedups as high as 50× are achieved relative to the state-

of-the-art implementation for some input distributions. We evaluate the implementation both on randomly

generated datasets and realistic datasets from multiple object tracking.

CCS Concepts: • Computer systems organization→ Embedded systems;

Additional Key Words and Phrases: Assignment problem, Auction method, FPGA, object tracking

ACM Reference format:

Erling Jellum, Milica Orlandić, Edmund Brekke, Tor Johansen, and Torleiv Bryne. 2022. Solving Sparse As-

signment Problems on FPGAs. ACM Trans. Archit. Code Optim. 19, 4, Article 55 (December 2022), 20 pages.

https://doi.org/10.1145/3546072

1 INTRODUCTION

The assignment problem is a special type of a linear programming problem, where an optimal one-

to-one assignment between a set of objects and a set of agents is sought. The assignment problem

is widely used, for instance, to model network traffic and optimizing routes [10], alignment of

protein-protein interaction networks in bioinformatics [11], dynamic task allocation for robots

[9, 34, 35], and computer vision tasks [16, 25]. It is formulated as maximum weight matching for

bipartite graphs. The assignment problem is of particular importance in multiple object tracking

(MOT) [8], where, at the data association stage, each object detection is to be associated with a

single track. MOT is an NP-hard problem and the assignment problem is the main computational

bottleneck [3, 14]. MOT is one of the enabling capabilities for autonomous robotics systems [24, 27]

and efficient and scalable solutions are needed.

The Auction algorithm is an effective iterative solution to the assignment problem [5]. There

exist multiple optimized implementations of the Auction algorithm for CPUs, GPUs [32], and

Authors’ address: E. Jellum, M. Orlandić, E. Brekke, T. Johansen, and T. Bryne, Norwegian University of Science and

Technology, Trondheim, Norway, 7030; emails: {erling.r.jellum, milica.orlandic, edmund.brekke, tor.arne.johansen, torleiv.

h.bryne}@ntnu.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1544-3566/2022/12-ART55

https://doi.org/10.1145/3546072

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.

https://orcid.org/0000-0002-2396-6284
https://orcid.org/0000-0002-6304-1999
https://orcid.org/0000-0001-8735-1687
https://orcid.org/0000-0001-9440-5989
https://orcid.org/0000-0002-6385-5343
https://doi.org/10.1145/3546072
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546072
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546072&domain=pdf&date_stamp=2022-12-07


55:2 E. Jellum et al.

FPGAs [17, 18, 36]. In Reference [36], an FPGA implementation is proposed that claims 10× perfor-

mance increase relative to a baseline CPU implementation, whereas a 7× performance increase is

reported for the GPU implementation in Reference [32]. However, the proposed implementations

fail to address two critical properties of the assignment problems found in, e.g., MOT:

(1) The problems show a high degree of sparsity,

(2) The assumption of data dependencies between consecutive iterations is often false.

In this article, we propose Sparse and Speculative (SaS) Auction, an accelerator generator for

the auction algorithm targeting System-on-Chip (SoC) FPGAs. It takes advantage of the sparsity

often found in the problems, which both reduces the area and depth of the processing pipeline. We

also propose a data dependency speculation scheme that reduces the number of pipeline bubbles

and improves the throughput. The implementation is evaluated on a SoC FPGA, and the source

code is available on Github [20].

The rest of the article is organized as follows: In Section 2, a brief background into the assign-

ment problem, the Auction algorithm, and its application in MOT is given. In Section 3, related

work is reviewed. In Section 4, the proposed implementation of the SaS Auction is introduced. In

Section 5, the evaluation and results are discussed. The article is concluded in Section 6.

2 BACKGROUND

2.1 The Assignment Problem

The goal of the assignment problem is to find an assignment between a set of objects O and a

set of agents A that maximizes a reward function. The assignment problem is also referred to as

maximum weight matching of weighted bipartite graphs and is solvable in polynomial time. The

assignment problem is characterized by a reward matrix R of size n×m where ri j is the reward for

assigning object j to agent i . The solution to the assignment problem is then finding an optimal

assignment matrix B where matrix element bi j = 1 if the edge from object j to agent i is picked,

and zero otherwise, i.e., bi j is binary.

This optimization problem can be expressed as a linear program as follows:

max

m−1∑
i=0

n−1∑
j=0

ri j · bi j (1)

subject to

m−1∑
i=0

bi j ≤ 1,∀j = 0, 1, . . . ,n − 1 (2)

n−1∑
j=0

bi j = 1,∀i = 0, 1, . . . ,m − 1. (3)

Consider the simple assignment problem shown in Table 1. Here, the set of agents is A =
{Alice,Bob,Charlie} and the set of objects are O = {o1,o2,o3}. The value ri j represents the reward

associated with assigning agent ai to object oj .

2.2 Methods for the Assignment Problem

2.2.1 Simplex Methods. The assignment problem can be solved with well-studied algorithms

from linear programming like the simplex method [33]. The simplex method starts by observing

that the solution space of a linear programming problem is a polytope defined by the constraints

of the linear program. Since the cost function is linear it can be shown that the optimum must

lie on a vertex of this polytope. For the assignment problem, each possible mapping of agents to

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:3

Table 1. A Simple
Assignment Problem

Object

Agent o1 o2 o3

Alice 5 10 1

Bob 4 11 3

Charlie 5 14 8

objects make up a vertex in a (n+m)-dimensional polytope, where n is the number of agents andm
is the number of objects. The Simplex method starts by picking an initial vertex. It then traverses

the edges, from vertex to vertex, until the optimum is found. In the worst case, the algorithm

must visit all vertices, giving it a computational complexity equivalent of a brute force method

with O (2N ).
The assignment problem belongs to a special class of linear programming problems known as

transportation problems. Transportation problems can be represented as graphs where the deci-

sion variables are the weights of the edges. Each decision variable only occurs twice in the con-

straints, once for the source node and once for the destination node. This additional structure is

taken advantage in, e.g., the Streamlined Simplex [22].

In recent years, enterprise optimization software such as Gurobi [15] and CPLEX [6] have gained

popularity. Here, the assignment problem is solved as a linear integer programming problem using

Simplex-like algorithms.

2.2.2 The Hungarian Method. The Hungarian method was introduced by Khun as a more

efficient solution to the assignment problem than the traditional linear programming methods.

In the Hungarian method, the assignment problem is modeled as a graphG = (V ,E) and a reward

matrix R, where V = A ∪ O is the set of vertices, E = {(ai ,oj )}ai ∈A,oj ∈O is the set of edges, and

ri j is the weight of edge (ai ,oj ). A matching M is a subset of E such that no edges in M share a

common vertex. We call M a perfect matching if it matches all the vertices of V . Given a graph G
and a matching M , an augmenting path is a path inG that starts and ends at an unmatched vertex

and contains alternating edges from M and E − M . Augmenting paths can be used to iteratively

find perfect matchings.

The assignment problem can thus be reformulated as finding the perfect matching with the max-

imum weight. Compared to the general class of transportation problems, the assignment problem

has two additional features. First, the weights are binary, i.e., either 1 or 0. Second, if a particular

edge between agent ai and object oj has the weight 1, then all other edges connected to both ai

and oj has the weight 0. This information is not utilized by the linear programming methods and

makes them comparatively slow [5]. The Hungarian method solves the assignment problem in

polynomial with a computational complexity of O (N 3). The Hungarian method is a primal-dual

algorithm where the starting point is a feasible solution. It works by maintaining and iteratively

updating two data structures. The first is a labeling l ofG. A labeling is a function mapping the set

of vertices to the real numbers. A valid labeling is defined as one where the the sum of the labels

for two vertices is less than or equal to the weight of the edge connecting them. The second is a

matching M . It can be shown that given a labeling l and the equality subgraph Gl , then a perfect

matching M of Gl is also the maximum weight matching ofG. The Hungarian method starts with

a matching M and a valid labeling l . It then augments the matching until either it finds a perfect

matching or no augmenting path exists. In the latter case, it improves the labeling function l before

going back to looking for an augmenting path.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:4 E. Jellum et al.

The Hungarian method is not suitable for parallelization as both the labeling improvement and

finding an augmenting path are inherently sequential operations.

2.2.3 LAPJV. The LAPJV algorithm was introduced by Jonker and Volgenant [21] as an im-

provement of the Hungarian method. While the Hungarian method works by finding any feasible

augmenting path, LAPJV looks for the shortest augmenting path. This is found using Dijkstra’s

shortest path algorithm.

2.2.4 The Auction Algorithm. The Auction algorithm was proposed by Bertsekas [4] as a general

solution to the assignment problem. The assignment problem is modeled as an auction and the

reward ri j is interpreted as how much agent ai is willing to pay for the object oj .

The Auction method is not a primal-dual algorithm like the Hungarian method, and each iter-

ation is not guaranteed to reduce the total cost. Optimality can be guaranteed if ϵ , the minimum

raise, is less than a threshold. The algorithm is guaranteed to terminate if there exists a feasible so-

lution. The relaxed constraint on monotonically improving solutions enables the Auction method

to reach the optimum in fewer steps. Its computational complexity is O (N 2loд(N )) [29].

The Auction algorithm works by updating a price vector P , which contains the current price

for each object, and an assignment vector that stores information about which agents are assigned

to which objects. The price vector is initialized to 0 and is increased as agents bid for objects.

Each iteration consists of two phases: the bidding phase and the assignment phase. In the bidding

phase, a subset of the agents Abid ⊆ A calculate bids for a subset of the objects Obid ⊆ O . In

the assignment phase, the highest bid is picked and the bidding agent is assigned to the object.

There are two commonly used approaches to the bidding phase. The first alternative is referred to

as the Jacobi variant. Here, all unassigned agents bid for a single unassigned object; i.e., Abid =

Aunassiдned and Obid = ok , where Aunassiдned is the set of unassigned agents and ok is a single

unassigned object. Referring to the example in Table 1, the first iteration of the Jacobi method

would consist of Alice, Bob, and Charlie bidding of object o1. The second alternative is referred to

as the Gauss-Seidel variant. Here, a single unassigned agent bids for all the unassigned objects. This

means thatAbid = ak andObid = O . Here, ak is a single unassigned agent. The first iteration of the

Gauss-Seidel variant would consist of Alice bidding for objects o1,o2,o3. The Jacobi variant can be

implemented by assigning a processing element to each agent to compute the bids in parallel. The

disadvantage of this approach is that as more agents are assigned, fewer of the processing elements

are used. The Gauss-Seidel variant can be implemented by assigning a processing element to each

object. It does not suffer from the same disadvantage as the Jacobi method, as the number of objects

being bid on remains constant as the algorithm proceeds. For the rest of this work, the Gauss-Seidel

variant is used.

The winning bid each round is the bid for the object that has the highest benefit to the agent.

The benefit of object j for agent i is the difference between the agents’ reward R (i, j ) for the object

oj and the current price P (j ), computed as:

b (i, j ) = R (i, j ) − P (j ). (4)

When the object with the highest benefit is found, the agent decides its bid for that object. The

bid is made such that the object still has the highest benefit to the agent. This is achieved by

raising the bid for the object with an amount equal to the difference between the highest and the

second-highest benefit, expressed as:

raise = bmax − bmax−1. (5)

The pseudo-code for the Auction algorithm is presented in Figure 1. Lines 1–3 initialize the

arrays containing object prices and assignments and the queue containing the unassigned agents.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:5

Fig. 1. Auction algorithm, Gauss-Seidel variant. Fig. 2. Architecture of the accelerator of Zhu et al.
adapted from Reference [36].

Inside the loop, an unassigned agent is dequeued and agents’ benefits for each object are computed.

Line 7 extracts the index of the object with the highest benefit, while Line 8 gets the highest and

second-highest benefit. Line 9 calculates the raise according to Equation (5). Lines 14–17 unassign

any previously assigned agent. This proceeds until agents are either assigned or disregarded due

to not being able to create a positive raise (lines 10–13). An optimized C++ implementation is

published in Reference [19].

2.2.5 Execution of the Auction Algorithm. Figure 3 shows the execution of the four iterations

needed to solve the assignment problem in Table 1 using the Auction algorithm.

(1) In the first iteration, Alice is bidding. Since the prices are all zero, the object benefits are

equal to the object rewards. The most beneficial is o2, marked with blue, and the second

most beneficial object is o1, marked with green. The raise is the difference between the most

and the second-most beneficial object, which is 5. After iteration 1 Alice is assigned to o2

and the price is set to 5.

(2) In the second iteration, Bob is bidding. His benefits are calculated using his rewards and the

updated prices. His most beneficial object is o2 and his raise is 2. Alice is thus unassigned

from o2 and replaced by Bob. The price is raised to 7.

(3) In the third iteration, Charlie is bidding. His most beneficial object is o3, which has 1 unit

more benefit than o2. He thus bids 1 for o3 and is assigned to it.

(4) In the fourth and last iteration, Alice is bidding again. With the updated prices, o1 is now the

most beneficial object, 2 units more beneficial than o2. She bids 2 for o1 and is assigned to it.

After iteration 4 there are no more unassigned agents and the algorithm terminates.

2.3 The Assignment Problem in MOT

In MOT, the goal is to estimate the position and velocity of multiple targets, or objects, based on

sensor measurements from a single or multiple sensors. Probabilistic models are used to account

for clutter (false positives) and misdetections (false negatives) in the sensor measurements. A type

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:6 E. Jellum et al.

Fig. 3. Execution of the Gauss-Seidel auction algorithm.

of Bayesian filter is usually used to predict a priori state estimates and combine them with sensor

data into a posteriori state estimates [13].

Targets that are sufficiently close to each other are clustered together. In this manner, the com-

plexity is lowered, as the algorithm can be run independently on each cluster. A possible associa-

tion between a measurement and a target is called a single-target hypothesis. The measurements

within the range of a cluster will result in data association hypotheses for all the targets in the

cluster. Finding the optimal data association hypothesis is modeled as an assignment problem. The

number of hypotheses in a cluster can reach hundreds or even thousands. However, it is common

that relatively few hypotheses contains the majority of the probability density mass. Validation

gating is a common technique where hypotheses with probability below a certain threshold are

set to zero. This can yield large and highly sparse assignment problems. In the Multiple Hypoth-

esis Tracker (MHT) [8], a set of hypotheses are maintained over consecutive iterations. For each

new set of measurements, the hypotheses give birth to child hypotheses that inherit the probability

properties from their parents. To avoid an explosion of hypotheses, pruning is applied to remove

the most unlikely candidates.

In recent years, a generalization of MHT known as the Poisson Multi-Bernoulli Mixture

(PMBM) filter [12] has been proposed as a state-of-the-art approach to MOT. We evaluate SaS

Auction on a set of assignment problems generated by a PMBM tracker. It is referred to as the

MOT dataset.

3 RELATED WORK

In Reference [32], Vascencelos et al. propose accelerating the Auction algorithm on a GPU claim-

ing a 7× speedup relative to a baseline CPU implementation. The algorithm is divided into a bid-

ding phase and an assignment phase. In the bidding phase, all agents bid on an object in parallel,

whereas all objects find a valid bid and update their price in the assignment phase. While achiev-

ing good performance for the big dense problems, the GPU is characterized by having high energy

consumption, making it unfit for many embedded applications.

In References [17, 18] Hung et al. propose an FPGA accelerator for solving the assignment prob-

lem. The architecture is based on a recurrent neural network, but the performance scales poorly

to big problems, which can take multiple seconds to solve.

In Reference [36], Zhu et al. propose a hardware architecture for Auction algorithm accelerators

on FPGAs. They claim a 10× speedup relative to a baseline CPU implementation. A simplified

overview of the architecture is shown in Figure 2. It consists of a pipeline with a configurable

number of processing elements (PEs). In each iteration, object-rewards for a single object are

read from memory or the host PC through the I/O FIFO. The rewards are distributed among the PEs

in the PE Array. Each PE contains a small LUTRAM where the object prices related to that PE are

stored. For an architecture with N PEs capable of solving problems with up to M objects PE-k will

store prices Pk+i ·N for k = 1 . . .M/N . The resulting benefits are passed to the SearchTask module,

which finds the highest and second-highest benefit. The SearchTask is implemented as a tree of

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:7

comparators and its depth scales with log2 (N). The two highest benefits are further passed to the

AssignmentEngine, which computes the raise. The AssignmentEngine contains the assignment

array and unassigns the previous agent holding the highest bid for the object in question. The raise

is then forwarded from AssignmentEngine to the ControlUnit, which updates the price within the

right PE. The I/O FIFO receives information of unassigned agents such that it can request its object

rewards from memory. In the rest of this article, we refer to the FPGA implementation by Zhu et al.

as state-of-the-art (SoA) Auction.

4 SPARSE AND SPECULATIVE (SAS) AUCTION

SaS Auction is a flexible FPGA accelerator that efficiently solves the assignment problem. There

are multiple reasons for using an FPGA rather than a CPU or GPU for solving the assignment

problem. Due to its ability to implement arbitrary datapaths, it has greater potential for taking

advantage of sparsity. This can yield designs with lower latency and lower energy consumption.

In robotic applications embedding target tracking the Auction algorithm will typically be on the

critical path. Reducing the latency of the algorithm can thus allow the robot to navigate faster, Also,

for mobile battery-driven autonomous robots, energy efficiency is paramount. FPGAs can achieve

much higher energy efficiency than CPUs and GPUs [26]. Last, for some autonomous robots, like

drones, the weight of the computational platform is an important parameter. In some cases, the

weight can be the limiting factor for performance [23]. Due to reduced power consumption, using

an FPGA could remove the need for a heavy heatsink.

In the following, the term agent is used to refer to the row of object-rewards associated with

the agent. We use agent-index to refer to the index, or ID, of the agent.

4.1 Sparse Problems

An assignment problem is sparse if the majority of the elements in the reward matrix R are zero. If

ri j = 0, then object-j is never assigned to agent-i . We also refer to these as non-valid object rewards.

Figure 4 shows the level of sparsity found in the assignment problems in the MOT dataset. The

x-axis shows the density, which is the inverse of the sparsity. Clearly, these are highly sparse

assignment problems. The vast majority of problems have less than 5% density.

Figure 5 shows how the depth of the SearchTask scales with the number of PEs. Each level of

the search tree is implemented in a separate pipeline stage. Over-dimensioning the accelerator by

using too many PEs has a negative performance impact. The throughput is affected by the depth

of the SearchTask, as pipeline stalling takes place at the PE stage until the preceding agent has

finished executing in the SearchTask. The number of PEs also impacts the area and the obtainable

clock rate of the accelerator.

However, under-dimensioning the accelerator with too few PEs is also costly and reduces the

throughput, since it makes each agent span multiple pipeline stages.

Generally, the optimal number of PEs for a particular problem is the number of object rewards

per agent. By taking advantage of sparsity, the optimal number of PEs can be greatly reduced and

thus improving throughput and latency.

4.1.1 Representing Sparsity. There are multiple ways of representing sparse matrices [30]. A

simple tuple representation [28] was chosen, where the element and the column index are stored as

a tuple. The original reward matrix R resides in the off-chip DRAM and each element of the reward

matrix is represented by a 64-bit data word. The transformed vectorC is the sparse representation

of R and resides in the on-chip BRAM. For architecture with n PEs, each BRAM data word in C
contains n tuples of object reward and column index as given:

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:8 E. Jellum et al.

Fig. 4. Sparsity in MOT simulations. Fig. 5. SearchTask depth for 4 and 8 PEs.

ci = (e1, e2, . . . , en ),

ej = (column, value).

The number of bits used to represent a single object reward is configurable. The words of the

transformed BRAM vector C are padded such that the first non-zero element of each row of the

original DRAM matrix R always occupies the first element e1 of a BRAM word c . This means that

each BRAM word only contains rewards from the same row of the original matrix. A row of the

original matrix may span several words of the transformed vector C . A separate array is used to

map the row indices of the original matrix to indices of the transformed matrix.

In Figure 6, an example of a transformation between a problem matrix R and its sparse repre-

sentation C is given.

Fig. 6. (a) Original reward matrix. (b) Transformed reward vector.

An architecture with 4 PEs is assumed for simplicity. This means that each BRAM word stores up

to four valid, non-zero object rewards and their column indices. The reward matrixR is sparse with

the majority of the rewards being zero. The bottom right corner has indices (0,0). Each element

ci in the transformed vectorC consists of four tuples e1 . . . e4. The individual tuples consist of the

element value and its column index in the original matrix R. The transformed vectorC is not fully

dense, because the first element of each row in R is aligned to the beginning of a data word in C .

This is done to efficiently read out an entire row of the original input matrix by reading a single

BRAM data word. In the example, elements 1 and 2 of C (zero-indexed starting from the bottom)

both belong to row 1 of R. When the number of valid elements in a row in R exceeds the number

of PEs in our architecture the elements are spread out over multiple words. The row index of each

element in C is stored in an array that maps each row of R to an element in C .

RowIndex =
[
0 1 3 4 5 6

]
.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:9

4.1.2 Cost of Sparsity-aware Processing. There are three major costs associated with using a

sparse representation. First, the translation from dense to sparse representation must be performed.

In the SaS Auction architecture, the translation is done in hardware, and this incurs an area cost

as opposed to the time cost associated with a software implementation. Second, a sparse represen-

tation removes the static relationship between PE and object price. In SoA Auction, PE0 always

calculates the benefit of object 0 for the various agents. This means that each PE can store the

prices locally and thus can all the prices be accessed in parallel at low cost. To achieve parallel

lookup of all PEs, SaS Auction duplicates the BRAM with object prices for each PE. Last, sparse

representation adds overhead, because two values are needed for each element: the column index

and the element value. The memory needed to store a sparse matrix is given by:

Memsparse = wr eward · loд2 (nmax ) · rsparse , (6)

where wr eward is the bits needed to represent a reward, nmax is the maximum problem size, and

rsparse is the rate of non-zero elements. The memory requirements for a dense representation is

as follows:

Memdense = wr eward · n2
max . (7)

For an FPGA implementation, both Memsparse , nmax andwr eward are fixed at compile-time. For

a given combination of these parameters, there is an upper bound on the size and density of a

problem matrix that can be stored.

4.2 Dependency Speculation

Each iteration of the Auction algorithm consists of reading the object rewards for a specific agent

and comparing them to the current object prices. An iteration may result in a bid and thus change

the state of the object prices. This means that unless the processing pipeline is stalled until the

current agent is done, the next agent might use stale prices when calculating its bid. We define

an unresolved agent as an agent that is currently computing a bid but has yet to commit it by

updating the prices. There is a data dependency between agents a1 and a2 if the output of pro-

cessing a1 is dependent on whether it executes before or after a2. Dependencies are dynamic, i.e.,

two agents might be dependent at some point during the processing and independent at another.

Dependencies can be divided into two categories. A strong dependency occurs if both a1 and a2

have the same most-beneficial object. In this case, a1 calculates an illegal bid if it does not wait for

a2 to commit its bid first. A weak dependency occurs when a2 bids for the second-most beneficial

object to a1. In this case, the order does not change which object a1 bids for, but it affects the size

of the bid. It makes a1 bid more conservative, which is equivalent to making a smaller step toward

the global optimum. In Reference [36], the dependencies are handled by stalling all agents in the

PE stage until one agent computes its bid introducing expensive pipeline bubbles.

The processing stages for agent ai through the pipeline of SoA Auction with 8 PEs are shown in

Figure 7(a). The components will be described in more detail in Section 4.3. The pipeline is stalled

such that only one agent traverses the loop consisting of PEs, SearchTask, and AssignmentEngine

stages at the time. In the proposed SaS Auction, a basic static dependency speculation scheme

is employed. It is always speculated that there are no strong dependencies between the agent

currently at the PE stage and the unresolved agents that have not committed their bids yet. In the

cases where there actually is a strong dependency, the agents bid is disregarded and it is added

back in the unassigned queue. This is detected by comparing the bid to the current price. If it is

lower, then a misspeculation has occurred.

Figure 7(b) shows a timing diagram for SaS Auction, an implementation supporting dependency

speculation, characterized by no pipeline bubbles, which provides 9× increase in throughput com-

pared to SoA auction implementation in Reference [36]. The actual speedup is limited by the rate

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:10 E. Jellum et al.

Fig. 7. Pipeline timing diagrams. AE is short for AssignmentEngine.

Fig. 8. High-level architecture of SaS auction. Fig. 9. Flowchart of SaS auction.

of misspeculations and pipeline bubbles naturally occurring, because there are few unassigned

agents left.

4.3 Hardware Architecture

The proposed SaS Auction is an optimized accelerator generator for efficiently solving the assign-

ment problem. It is specifically optimized for the sparse problems found in, e.g., MOT.

Figure 8 shows an overview over the SaS Auction hardware architecture, and Figure 9 shows

the speculative Auction algorithm represented as a flow-chart. A streaming dataflow architecture

optimized for throughput is proposed. It is inspired by SoA Auction by Zhu et al. The accelerator

is characterized by nP E , its number of PEs. This decides the width of the pipeline and BRAM inter-

faces. The accelerator reads the problem matrix from the off-chip DRAM into the on-chip BRAM.

It also initializes the queue of unassigned agents. Then, it proceeds to perform the steps in the

algorithm in Figure 1. The accelerator reads one row of the problem matrix, finds the most benefi-

cial object, and calculates the bid. Then, it updates the price and assignment vector. This continues

until there are no unassigned agents left. In the following, each component is described briefly.

(1) Register File provides the user interface of the accelerator. It is conventional AXI4-Lite-

based memory mapped control and status register file. The user software writes the memory

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:11

address of the input problem matrix along with its dimensions into registers residing at prede-

fined addresses. Starting and stopping the accelerator is also achieved through the register file.

(2) Dram2Bram functions as a DMA that reads problem data from the off-chip DRAM, com-

presses it to the proposed sparse representation, and writes it to the on-chip BRAM. The parsing

and compressing is pipelined in two stages.

(1) Non-valid, i.e., rewards that are zero, are filtered out. The valid rewards are entered into an

register-based array, ValidR, corresponding to a single BRAM word.

(2) When either the array is full or a complete row of the input problem has been read, the

array is written to the on-chip BRAM, and the address at which it is stored is written to the

AgentRowStore

The length of ValidR, and consequently the width of the on-chip BRAM interface, is equal to

nPE. This allows the rewards for all the PEs to be read out in a single cycle and.

(3) qUnassignedAgents and qRequestedAgents are first-in-first-out (FIFO) queues

between the AssignmentEngine and the BramController. They hold the unassigned agents and

the currently executing agents, respectively. BramContoller dequeues agent-indices from the

qUnassignedAgents and enqueues them back on the qRequestedAgents after their rewards have

been requested from the BRAM. When a bid arrives from the SearchTask, the AssignmentEngine

dequeues from the qRequestedAgents and will potentially enqueue a new agent-index on the

qUnassignedQueue.

(4) AgentRowStore is a BRAM storing the mapping of the row index of the original input ma-

trix to index of the on-chip BRAM data word containing the transformed version of that row. The

Dram2Bram module writes to the AgentRowStore as it is parsing and compressing the input matrix.

The AgentRowStore is read by the BramController before fetching rewards in the on-chip BRAM.

(5) BramController controls the requesting and the parsing of the rewards from the BRAM. It

is pipelined over multiple stages.

(1) Dequeue index of unassigned agent from qUnassigned

(2–3) Read the BRAM address of the agent from AgentRowStore

(4–5) REad rewards from BRAM and forward to DataMux

(6) PEs perform the actual computation as expressed in Equation (4). The PE stage is pipelined

with the following stages:

(1) Read current price of object from PriceStore

(2) Calculate benefit of object

(3) Forward benefit to SearchTask.

The PE performs static dependency speculation and always assumes that there are no dependen-

cies between current agent and any unresolved agent. Any violation, which is caused by a strong

dependency, will be caught in the AssignmentEngine.

(7) PriceStore is the BRAM-based centralized storage for the object prices. Each PE has a ded-

icated BRAM where all the prices are stored, i.e., the prices are duplicated for each PE. The write

ports of all the duplicate BRAMs are connected to the AssignmentEngine, which updates all the

price copies after a bid. Each duplicate BRAM has a single read port that is connected to its PE. The

AssignmentEngine also has a duplicate BRAM, which is used resolve the dependency speculation.

(8) SearchTask is illustrated in Figure 5 and is a tree of comparators that finds the highest

and second-highest benefits, among the benefits outputted by the PE stage. Each level of the tree

is implemented as a pipeline stage. The SearchTask can perform multiple iterations to support

solving problems where the agents span multiple pipeline stages. When the highest and second-

highest benefits are found, the SearchTask computes the bid as expressed in Equation (5).

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:12 E. Jellum et al.

(9) AssignmentEngine is in charge of maintaining the prices, assignments, and detecting and

handling misspeculations. The AssignmentEngine is pipelined with the following stages:

(1) Receive bid b for object oj from the SearchTask and the corresponding agent-idx ai from

qRequestedAgents. Also read current price of the object P (oj ) from the PriceStore. And the

currently assigned agent objectAssiдnments (oj ).
(2) Resolve speculation by comparing P (oj ) with b

(3a) If b <= P (oj ), then there has been a misspeculation caused by a strong dependency between

aj and a previous agent. In that case, ai is enqueued back to qUnassignedAgents.

(3b) If b > P (oj ), then both the PriceStore and ObjectAssignments are updated. The previously

assigned agent, which was requested in the first stage, is enqueued to qUnassignedAgents.

Weak dependencies are not detected or handled by the AssignmentEngine.

(10) Controller performs control tasks. It fills up the qUnassignedAgents FIFO when the accel-

erator is started, detects the end of accelerator’s operation, and initiates writing the result back to

DRAM.

Figure 9 shows a flowchart model of the pipeline. It is focused on the core processing pipeline,

which starts and ends with the qUnassigned. The interaction with off-chip DRAM, host soft-

ware, and transformation of input problems to sparse representations are abstracted away in the

Init/Setup process.

4.4 Comparison to SoA Auction

The key differences between the SaS and the SoA Auction are as follows:

4.4.1 Sparsity. SoA Auction contains a simple memory interface that either can read the re-

wards from an off-chip main memory or an on chip BRAM. The latter necessitates that the SW has

transferred the data to BRAM first. SaS Auction implements a DMA in Dram2Bram, which moves

the data from off-chip DRAM to on-chip BRAM and compresses the data on the fly.

4.4.2 Price Storage. With sparsity-aware processing, the static mapping of object price to PE

no longer exists. A object price might be needed by any PE. To enable single-cycle price-lookup

for all PEs, SaS Auction stores a copy of the prices for each PE.

4.4.3 Speculation. SaS Auction implements speculative processing. While SoA Auction stalls

execution in the PE stage, SaS Auction continues with possibly stale prices. The AssignmentEngine

will detect a strong data dependency and reschedule the agent that used stale prices.

4.5 Performance Model for Speculation

In the following, a performance model for speculative execution in SaS Auction is derived.

4.5.1 Stalling Cost. First, a cost model for the state-of-the-art implementation is derived. The

cost of stalling execution at the PE stage depends on the number of clock cycles needed by the

preceding agent to calculate and commit its bid. It can be expressed as:

Cstall = dPE + dSearchTask + dAssignmentEngine

Cstall = 4 + loд2 (nPE),
(8)

where dPE, dSearchTask and dAssignmentEngine refer to the latency (or depth) of the respective modules,

given in Table 2. Note that these values are based on our implementation inspired by Zhu et al.

[36], where no data regarding the latencies of the original implementation is available.

Clearly, the stalling cost is independent of the input problem dimension and only depends on

the number of PEs. However, the total processing latency of one agent also depends on the size of

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:13

Table 2. Pipeline Latencies

Module

PE Search Assignment Bram

Task Engine Controller

3 2+log2 (nPE) 1 5

input problem dimension relative to the number of PEs. Thus, the relative cost of stalling decreases

the more underdimensioned the accelerator is.

4.5.2 Speculation Cost. The speculation cost is defined as the additional number of clock cy-

cles needed to process an agent if it is not stalled at the PE stage, but rather being speculatively

processed. This cost is a stochastic variable, as it depends on whether there is a data dependency

between the agent and any unresolved agents. The goal is thus to find the expected value of the

speculative cost. The misspeculation cost is first derived. It is the penalty of dispatching an agent

from the PE stage if there is an unresolved strong dependency and is defined as:

Cmiss = 1 + nbubbles +Cstall. (9)

The constant cost of Cstall is the worst-case expected cost of redoing the loop consisting of

PE, SearchTask, and AssignmentEngine stages once the agent is ready in the PE-stage again. The

variable nbubbles is the number of pipeline bubbles occurring between the misspeculation and the

next instant the agent is ready in the PE-stage. It is estimated as:

nbubbles = max(0,dPE − nunassigned). (10)

If nunassigned is larger than the number of clock cycles from the AssignmentEngine to the PE

stage, then there are no bubbles. The expected costs of stalling and speculating are expressed as:

E (stall) = Cstall

E (speculate) = pmiss ·Cmiss,
(11)

where pmiss is the probability of a misspeculation, i.e., the probability that the agent at the PE stage

has a strong dependency on an unresolved agent.

4.5.3 Probability of Misspeculation. To estimate the probability of a strong data dependencies,

pmiss , some simplifications must be made. It is assumed that the most beneficial object opick for

an agent ak is an independent random variable drawn from a uniform distribution. This can be

expressed as follows:

p (opick = oi ) =
1

m
, (12)

wherem is the number of objects.

The probability of a strong dependency can thus be expressed as the probability of an agent

picking the same object as any of the unresolved agents.

pmiss (n) = 1 −
(m − 1

m

)n
, (13)

where n is the number of unresolved agents andm is the number of objects. The actual number of

unresolved agents n depends several factors.

First, it has an upper bound defined by the number of PEs in the accelerator. The number of PEs

decides the number of pipeline stages between reading the prices in the PE stage and committing

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:14 E. Jellum et al.

Fig. 10. Expected cost of speculating and stalling
for different problem sizes.

Fig. 11. Auction algorithm iterations for random
sparse 50 × 50 problems.

a bid in the AssignmentEngine. In an architecture with 8 PEs, there are 7 pipeline stages between

PE and the commit operation.

Second, it also depends on how many pipeline stages each agent spans. In a scenario with 8

PEs and agents with 64 valid object rewards, the agent will span 8 pipeline stages. This means

that when a new agent arrives at the PE stage, there will be at most one unresolved agent that

would span all the 7 pipeline stages between the PE stage and the commit stage. Consider another

scenario, also with 8 PEs, but this time with agents with at most 8 valid object rewards. This implies

that each agent only spans a single pipeline stage. In this scenario, when a new agent arrives at

the PE stage, there might be as many as 7 unresolved agents.

Last, it also depends on how many unassigned agents are left. When the agent of the previous

scenario arrives at the PE stage. The number of unresolved agents could be anywhere from 0–7.

The actual number depends on how full the pipeline is, which depends on how many unassigned

agents are left.

Finally, using the derived probability of misspeculation pmiss , Equation (11) is plotted in

Figure 10 for an accelerator with 8 PEs with different input problem sizes. The grey horizontal line

represents the cost of stalling, which is constant and independent of the number of unresolved

agents and the number of potential pipeline bubbles. The expected cost of speculating depends on

both nunresolved and the potential number of bubbles nbubbles. Thus, Figure 10 shows the range of

expected cost of speculating. The maximum expected cost occurs in the case of an empty pipeline

behind the agent in the PE stage. The minimum cost arises when the pipeline is full and there are

enough unassigned agents such that nbubbles = 0.

Clearly, for bigger problems the probability of misspeculation is very small and thus also the ex-

pected cost of speculation. Intuitively, increasing number of unresolved agents leads to increased

chance of misspeculation and thus increased expected cost. Given the assumption of uniform prob-

ability distribution, a static speculation scheme is sufficient. In static speculation, as opposed to

dynamic speculation, the pipeline always proceeds in the PE stage, regardless of the number of

unresolved agents or the number of expected pipeline bubbles. Such a static speculation scheme

is implemented by SaS Auction.

5 EVALUATION

The accelerator is implemented as a parameterizable hardware generator in the hardware descrip-

tion language Chisel [2]. The Zedboard [1] with a Xilinx Zynq XC7020 and off-chip DRAM is used

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:15

as a target platform for evaluation. The Zynq is a SoC FPGA, which comprises a dual core ARM

Cortex A9 and a Xilinx Virtex FPGA. The open source FPGA-tidbits project [31] is used to generate

host and DRAM interfaces for the accelerator. The SW baselines execute on a dedicated i9-10900X

CPU running at 1.2 GHz. To filter out the non-determinism introduced by the operating system,

each problem is run five times and the median execution time is used.

We evaluate three different SaS Auction designs and one SoA Auction against a C++ implemen-

tation and a version using the popular Gurobi framework.

We use two datasets for the evaluation. The first dataset consists of randomly generated sparse

assignment problems. The practice of using random number generators to create assignment prob-

lems is discussed in Reference [7]. This dataset consists of assignment problems ranging from small

10 × 10 problems up to 600 × 600 problems. For each size the sparsity is varied from only a few

valid object rewards per agent up to fully dense.

The second dataset is from a simulation of the state-of-the-art MOT algorithm introduced by

Garcia et al. in Reference [12]. We have used different levels of validation gating to create problems

with a greater range of sparsity. The algorithm maintains 100 tracks over 50 iterations, generating

over 100,000 assignment problems.

The following implementations are evaluated:

• C++ (SW) is a single threaded C++ implementation of the Auction algorithm available at

Reference [19]. It was allocated a dedicated i9-10900X core.

• Gurobi (SW) is using the industrial Gurobi Optimizer [15]. It was also allocated a single

dedicated i9-10900X core. Gurobi solves the assignment problem as an integer linear pro-

gramming problem using the simplex method.

• SoA xPE is our implementation of the state-of-the-art where x is the number of PEs. It is

based on the work of Zhu et al. [36].

• SaS xPE is the Sparse and Speculative Auction implementation where x is the number of

PEs.

5.1 Performance

5.1.1 Random Sparse Dataset. Figure 12 shows the results of evaluating SaS and SoA Auction on

the random sparse dataset. Each plot is divided into six subplots. Each subplot shows problems with

the same input dimensions, which are given in the subplot title. The y-axes denote the processing

time in nanoseconds, while the x-axes show the number of valid object-rewards per agent, i.e., the

sparsity level. There are five sparsity levels in each subplot; e.g., in the 600 × 600 subplot there are

results for problems with 6, 12, 60, 120, and 180 valid object rewards per agent. For each sparsity

level, the reported value is the average processing time for that particular sparsity level.

In Figure 12(a) the core processing times of SaS and SoA Auction with different number of PEs is

shown. The core processing time is the time spent doing actual computation, neglecting the time

spent transferring the problem matrices from DRAM to the on-chip memory. The core processing

time is measured by the accelerator itself, which counts the cycles spent computing the solution.

There are several things to note.

As expected, the potential speedup when taking advantage of speculation and sparsity-aware

processing is big, as high as 50× for big sparse problems. It is also clear that the optimal number

of PEs is related to the sparsity of the problem. The 50 × 50 subplot shows that SaS 8PE performs

best while there are less than 8 valid objects per agent. Then SaS 16PE performs better until we

have more than 16 valid objects per agent when SaS 32PE is best.

It is also clear that the speedup of SaS relative SoA is generally higher for sparse than for dense

problems. For large and sparse input problems the potentially speedup is enormous. This is mostly

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:16 E. Jellum et al.

Fig. 12. Evaluation of SaS Auction on the random sparse dataset.

due to the sparsity-aware processing; e.g., for a 600 × 600 problem each agent in SoA 8PE will span

75 pipeline stages, regardless of the sparsity. When the problem is fully dense, the only remaining

speedup is due to the dependency speculation.

Figure 12(b) depicts the total processing times of SaS and SoA Auction. The total processing time

includes the time spent transferring the rewards from DRAM to the on-chip-memory and the time

spent writing the final results back. Clearly, the relative speedup of the SaS accelerators is limited

by the fact that a major portion of the runtime is spent moving data from the DRAM to the on-chip

BRAM. This effect is most visible for highly sparse problems. Consider the 600× 600 problems with

only 6 valid object rewards per agent. The core processing time of SoA 8PE is 50× higher than that

of SaS 8PE. However, the total processing time is only 1.8× higher. The reason is that these highly

sparse problems require fewer iterations to solve than dense problems. This results in a situation

where the core processing time only accounts for 2% of the total processing time.

Another interesting observation is that neither the core, nor the total, processing time is mono-

tonically increasing as the problems get denser. Rather, the processing time peaks at a relatively

low density. Figure 11 shows the number of iterations needed by the C++ (SW) implementation to

solve a dataset of random sparse 50 × 50 problems. The x-axis shows the level of density and the

y-axis shows the number of iterations. Surprisingly, the processing time peaks at 22% density with

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:17

Fig. 13. Core processing time for the MOT dataset.

an average core processing time of 7,173 ns before monotonically decreasing as density increases.

At 100% density the core processing time has decreased to an average of 4,964 ns. The mechanism

behind this is not clear to the authors.

Figure 12(c) compares the total processing time of SaS and SoA Auction with SW implemen-

tations. The y-axis now uses a logarithmic scale. As described in prior work, there is enormous

potential for speedup: from 100× speedup for the small 10 × 10 problems to 1,000× speedup for

the sparse 600 × 600 problems. It is also clear that a vanilla C++ auction algorithm implementation

outperforms industrial optimization software based on linear programming. However, for larger

problems the speedup is less significant.

5.1.2 MOT Dataset. Figure 13 shows the results of evaluating SaS and SoA Auction on the MOT

dataset. There are a few subtleties that make this plot different than the previous ones. Each subplot

now shows problems with the same number of rows (i.e., agents). The subplots have titles like 16xY,

which means that the problems have 16 agents, however, the number of objects vary from 1 to

over 300. The x-axes show the number of valid object-rewards per agent; this is no longer directly

tied to the sparsity level, since the number of non-valid object-rewards varies. The values on the

x-axes now indicate limits; e.g., for the 16xY subplot, the first bar-group is the average processing

time for problems with 1–8 valid object-rewards, the second is for 8–20 valid object-rewards, and

so on.

As expected, the processing time of SaS Auction increases as the number of valid object-rewards

increases. This is in line with the results from the randomly sparse dataset. Interestingly, this is

not the case for SoA Auction, where the processing time does not seem to strongly correlate with

the number of valid object-rewards. The reason is that the processing time of SoA Auction mostly

only depend on the input dimensions of the problem. The input distribution of the MOT problems

are such that the agents seldom bid for the same objects. Thus, the sparsity level is not an indicator

of how many iterations are needed and thus to overall processing time. The SaS Auction, however,

can take advantage of the sparsity and drastically reduce the core processing time.

5.2 Performance Model Evaluation

Figure 14(a) shows the number of misspeculations for the SaS Auction accelerator when evaluating

the random sparse dataset. As expected, SaS 8PE consistently has fewer misspeculations due to

the fact that it has a lower bound on the maximum number of unresolved agents. In general, the

number of misspeculations increase with the number of valid object-rewards until the number

exceeds the number of PEs.

Figure 14(b) compares the expected rate of misspeculations, derived in the performance model

section, with the measured rate of misspeculation rate for the SaS 8PE accelerator. The y-axis

shows the misspeculation rate and the x-axis show the number of unresolved agents. The number

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



55:18 E. Jellum et al.

Fig. 14. Performance model evaluation on the randomly generated sparse dataset.

of unresolved agents are based on the sparsity level of the input problem according to

aspan =
nnonzero

nP E
(14)

unresolved =
maxunresolved

aspan
, (15)

where aspan is the agent span, i.e., how many pipeline stages each agent spans. The nnonzero is the

number of non-zero object rewards per agent, i.e., the sparsity level. Finally, maxunresolved is the

maximum number of unresolved agents possible; i.e., the latency from PE stage to commit. For SaS

8PE, maxunresolved = 7.

Clearly, the performance model is inaccurate and overestimates the misspeculation rate. The

major reason for this is that the predicted misspeculation rate is based on the assumption that the

pipeline is always full; i.e., for a 20× 20 problem with 8 non-zero rewards per agent, we assume that

there always will be 7 unresolved agents in the pipeline. In reality, the pipeline is only full in the

first part of the execution. As there are fewer and fewer unassigned agents left, the pipeline will be

less and less full until there is only one unassigned agent left. The execution can proceed for many

iterations with only a single unassigned agent. During those last iterations, a misspeculation is

impossible. We thus conclude that the performance model gives overly conservative upper bound

of the misspeculation rate.

5.3 Area

Table 3 shows the resource utilization for the different implementations. SoA 8PE is our implemen-

tation of the accelerator based on the work of Zhu et al., while Zhu 16PE are the numbers reported

in Reference [36]. The difference in BRAM usage stems from the fact that SoA 8PE stores the re-

wards on-chip while Zhu 16PE accesses the rewards from an off-chip memory. SoA 8PE needs 130

BRAMs to be able to solve 600 × 600 problems efficiently. A solution reading rewards from off-chip

DRAM would be a lot slower and not be fair comparison to SaS, which stores the rewards, with

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.



Solving Sparse Assignment Problems on FPGAs 55:19

Table 3. Resource Utilization

Accelerator

SoA 8PE Zhu 16PE SaS 8PE SaS 16PE SaS 32PE

Flip-flops 2,966 1,647 3,177 4,586 7,414

LUT 2,346 2,265 2,235 2,927 4,315

LUTRAM 57 540 121 229 432

BRAMs 134.5 6 79 83 91

sparse representation, on-chip. The difference in LUT and flip-flop usage likely stems from the

fact that the SoA 8PE is based on SaS 8PE. The sparsity-aware and speculative optimizations were

removed, but some overhead still remains.

We note that SaS 16PE uses 2.8×more flip-flops and 1.3×more LUTs than Zhu 16PE. This over-

head is high, but expected. The Dram2Bram, PriceStore, and on-chip storage of the rewards make

up over a third of the flip-flop overhead. Moreover, the pipeline of SaS 16PE is considerably longer

and more information must be passed through the pipeline to support sparsity-aware processing

and speculation.

6 CONCLUSIONS

In this article, Sparse and Speculative Auction, a novel implementation of the popular Auction

algorithm for FPGAs, has been presented. It takes advantage of the high level of sparsity found

in the assignment problems formulated by many algorithms. It employs both sparsity-aware pro-

cessing and speculation and achieves up to 50× speedup over the state-of-the-art for highly sparse

problems. It is evaluated on randomly generated sparse problems and realistic problems from a

MOT simulator.

REFERENCES

[1] Avnet. 2021. ZedBoard HW Users Guide. Retrieved from https://digilent.com/reference/_media/reference/

programmable-logic/zedboard/zedboard_ug.pdf.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and K. Asanović. 2012. Chisel:

Constructing hardware in a Scala embedded language. In Proceedings of the Design Automation Conference. 1212–1221.

DOI:https://doi.org/10.1145/2228360.2228584

[3] Michael Beard, Ba Tuong Vo, and Ba-Ngu Vo. 2020. A solution for large-scale multi-object tracking. IEEE Trans. Sig.

Process. 68 (2020), 2754–2769. DOI:https://doi.org/10.1109/TSP.2020.2986136

[4] D. P. Bertsekas. 1988. The auction algorithm: A distributed relaxation method for the assignment problem. Ann. Oper.

Res. 14, 1–4 (June 1988), 105–123. DOI:https://doi.org/10.1007/BF02186476

[5] Dimitri P. Bertsekas. 1990. The auction algorithm for assignment and other network flow problems: A tutorial.

INFORMS J. Appl. Analyt. 20, 4 (1990), 133–149. DOI:https://doi.org/10.1287/inte.20.4.133 arXiv:https://doi.org/10.1287/

inte.20.4.133

[6] Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. 2014. Solving mixed-integer quadratic programming problems

with IBM-CPLEX: A progress report. In Proceedings of the 26th RAMP Symposium. 16–17.

[7] David F. Crouse. 2016. On implementing 2D rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 52,

4 (2016), 1679–1696. DOI:https://doi.org/10.1109/TAES.2016.140952

[8] R. Danchick and G. E. Newnam. 2006. Reformulating Reid’s MHT method with generalised Murty K-best ranked

linear assignment algorithm. IEE Proc. - Radar, Sonar Navig. 153 (Feb. 2006), 13–22. DOI:https://doi.org/10.1049/ip-rsn:

20050041

[9] Xiaojun Duan, Huiying Liu, Hong Tang, Qing Cai, Fan Zhang, and Xiaotian Han. 2020. A novel hybrid auction al-

gorithm for multi-UAVs dynamic task assignment. IEEE Access 8 (2020), 86207–86222. DOI:https://doi.org/10.1109/

ACCESS.2019.2959327

[10] Abbas Ehsanfar and Paul Grogan. 2020. Auction-based algorithms for routing and task scheduling in federated net-

works. J. Netw. Syst. Manag. 28 (04 2020), 1–27. DOI:https://doi.org/10.1007/s10922-019-09506-y

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.

https://digilent.com/reference/_media/reference/programmable-logic/zedboard/zedboard_ug.pdf
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/TSP.2020.2986136
https://doi.org/10.1007/BF02186476
https://doi.org/10.1287/inte.20.4.133
https://doi.org/10.1287/inte.20.4.133
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1049/ip-rsn:20050041
https://doi.org/10.1109/ACCESS.2019.2959327
https://doi.org/10.1007/s10922-019-09506-y


55:20 E. Jellum et al.

[11] Ahed Elmsallati, Connor Clark, and Jugal Kalita. 2016. Global alignment of protein-protein interaction networks:

A survey. IEEE/ACM Trans. Comput. Biol. Bioinf. 13, 4 (July 2016), 689–705. DOI:https://doi.org/10.1109/TCBB.2015.

2474391

[12] A. F. Garcia-Fernandez, J. L. Williams, K. Granström, and L. Svensson. 2018. Poisson multi-Bernoulli mixture filter:

Direct derivation and implementation. IEEE Trans. Aerosp. Electron. Syst. (2018). DOI:https://doi.org/10.1109/TAES.

2018.2805153

[13] Karl Granstrom, Marcus Baum, and Stephan Reuter. 2017. Extended Object Tracking: Introduction, Overview and

Applications. arXiv:cs.CV/1604.00970.

[14] Peng Gu, Zhongliang Jing, and Liangbin Wu. 2022. Robust adaptive multi-target tracking with unknown measurement

and process noise covariance matrices. IET Radar, Sonar & Navigation 16, 4 (2022), 735–747. https://doi.org/10.104/rsn2.

12216 arXiv:https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rsn2.12216.

[15] Gurobi. 2022. Gurobi optimizer reference manual, 2022. Retrieved from http://www.gurobi.com.

[16] Nina S. T. Hirata and Frank D. Julca-Aguilar. 2015. Matching based ground-truth annotation for online handwritten

mathematical expressions. Pattern Recog. 48, 3 (Mar. 2015), 837–848. DOI:https://doi.org/10.1016/j.patcog.2014.09.015

[17] Donald Hung and Jun Wang. 2003. Digital hardware realization of a recurrent neural network for solving the assign-

ment problem. Neurocomputing 51 (04 2003), 447–461. DOI:https://doi.org/10.1016/S0925-2312(02)00627-6

[18] D. L. Hung and Jun Wang. 1998. A FPGA-based custom computing system for solving the assignment problem. In

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines. 298–299. DOI:https://doi.org/10.1109/

FPGA.1998.707924

[19] Erling Rennemo Jellum. 2012. Auction algorithm C++. Retrieved from https://github.com/erlingrj/auction-cpp.

[20] Erling Rennemo Jellum. 2021. Auction Accelerator. Retrieved from https://github.com/erlingrj/auction-accelerator.

[21] Roy Jonker and A. Volgenant. 2005. A shortest augmenting path algorithm for dense and sparse linear assignment

problems. Computing 38 (2005), 325–340.

[22] D. Klingman and R. Russell. 1978. A streamlined simplex approach to the singly constrained transportation problem.

Nav. Res. Logist. Quart. 25, 4 (1978), 681–695.

[23] Srivatsan Krishnan, Zishen Wan, Kshitij Bharadwaj, Paul Whatmough, Aleksandra Faust, Gu-Yeon Wei, David Brooks,

and Vijay Janapa Reddi. 2020. The Sky Is Not the Limit: A Visual Performance Model for Cyber-Physical Co-Design

in Autonomous Machines. IEEE Computer Architecture Letters 19, 1 (2020), 38–42. https://doi.org/10.1109/LCA.2020.

2981022.

[24] Kang Li, Xiaoguang Zhao, Zengpeng Sun, and Min Tan. 2017. Robust target detection, tracking and following for an

indoor mobile robot. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO). 593–598.

DOI:https://doi.org/10.1109/ROBIO.2017.8324481

[25] Wei Lian and Lei Zhang. 2020. A concave optimization algorithm for matching partially overlapping point sets. Pattern

Recog. 103 (2020), 107322.

[26] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and Phillip H. Jones. 2019. Comparing

energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In Proceedings of the IEEE International

Conference on Embedded Software and Systems (ICESS’19). 1–8. DOI:https://doi.org/10.1109/ICESS.2019.8782524

[27] Cyril Robin and Simon Lacroix. 2015. Multi-robot Target Detection and Tracking: Taxonomy and Survey. Autonomous

Robots 40 (2015). https://doi.org/10.1007/s10514-015-9491-7

[28] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems (2nd ed.). Society for Industrial and Applied Mathematics.

DOI:https://doi.org/10.1137/1.9780898718003

[29] B. L. Schwartz. 1994. A computational analysis of the auction algorithm. Eur. J. Oper. Res. 74, 1 (1994), 161–169.

DOI:https://doi.org/10.1016/0377-2217(94)90214-3

[30] Fethulah Smailbegovic, Georgi Gaydadjiev, and Stamatis Vassiliadis. 2005. Sparse matrix storage format.

[31] Yaman Umuroglu. 2020. FPGA Tidbits. Retrieved from https://github.com/maltanar/fpga-tidbits.

[32] Cristina Vasconcelos and Bodo Rosenhahn. 2009. Bipartite graph matching computation on GPU. 42–55. DOI:https://

doi.org/10.1007/978-3-642-03641-5_4

[33] Philip Wolfe. 1959. The simplex method for quadratic programming. Econometrica 27 (1959), 170.

[34] Kai Xue, Zhiqin Huang, Ping Wang, and Zeyu Xu. 2021. An exact algorithm for task allocation of multiple unmanned

surface vehicles with minimum task time. J. Marine Sci. Eng. 9, 8 (2021). DOI:https://doi.org/10.3390/jmse9080907

[35] Ziying Zhang, Jie Wang, Dong Xu, and Yulong Meng. 2017. Task allocation of multi-AUVs based on innovative auction

algorithm. In Proceedings of the 10th International Symposium on Computational Intelligence and Design (ISCID’17). 83–

88. DOI:https://doi.org/10.1109/ISCID.2017.231

[36] Pengfei Zhu, Chun Zhang, Hua Li, Ray C. C. Cheung, and Bryan Hu. 2012. An FPGA-based acceleration platform for

auction algorithm. In Proceedings of the IEEE International Symposium on Circuits and Systems. DOI:https://doi.org/10.

1109/ISCAS.2012.6271395

Received 1 December 2021; revised 26 May 2022; accepted 13 June 2022

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 55. Publication date: December 2022.

https://doi.org/10.1109/TCBB.2015.2474391
https://doi.org/10.1109/TAES.2018.2805153
http://arxiv.org/abs/cs.CV/1604.00970.
 https://doi.org/10.104/rsn2.12216
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rsn2.12216
http://www.gurobi.com
https://doi.org/10.1016/j.patcog.2014.09.015
https://doi.org/10.1016/S0925-2312(02)00627-6
https://doi.org/10.1109/FPGA.1998.707924
https://github.com/erlingrj/auction-cpp
https://github.com/erlingrj/auction-accelerator
https://doi.org/10.1109/LCA.2020.2981022
https://doi.org/10.1109/ROBIO.2017.8324481
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1007/s10514-015-9491-7
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1016/0377-2217(94)90214-3
https://github.com/maltanar/fpga-tidbits
https://doi.org/10.1007/978-3-642-03641-5_4
https://doi.org/10.3390/jmse9080907
https://doi.org/10.1109/ISCID.2017.231
https://doi.org/10.1109/ISCAS.2012.6271395

