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Abstract 

Meeting the challenge of the growing biodiversity crisis requires high quality biodiversity 

knowledge integrated across scales from local to international. But despite rapid developments in 

the collection, integration, and mobilization of biodiversity data, the current extent of available 

species occurrence data is insufficient to develop conservation strategies for the majority of species 

worldwide. Participatory monitoring offers a way to increase the spatial, temporal, and taxonomic 

resolution of biodiversity data while integrating local knowledge into international conservation 

strategy. Recent decades have seen the rapid integration of participatory biodiversity monitoring 

into the mainstream of biodiversity science, though there remain challenges, including the analysis 

of unstructured data, integration of data across scales, and inclusion of underrepresented regions 

and communities. Research that seeks to characterize the current role of participatory biodiversity 

monitoring and the conditions that enable its contribution across varying contexts will be 

instrumental for guiding its continued development. The central aim of this thesis is to contribute 

to better understanding the current role of participatory biodiversity monitoring and to 

strengthening its future impact. 

The thesis contains four articles. The first two address the role of participatory monitoring in

protected areas. The first takes a global perspective, characterizing the contributions of 

participatory monitoring across a variety of protected area contexts worldwide. The second takes a 

local perspective, modeling participatory monitoring observations at a fine spatial scale within a 

small natural area with the aim of improving the utility of unstructured monitoring data in local 

applications. The third article directly applies participatory monitoring data in the context of 

conservation-relevant research, using multi-species occupancy modeling to investigate how 

competition may affect the range limits of willow ptarmigan and rock ptarmigan, two alpine bird 

species that are expected to face climate-driven habitat loss and range shifts throughout their 

ranges in Norway. The fourth article explores the relationship between participatory biodiversity 

monitoring and open data sharing, finding that participatory monitoring is paving the way in open 

sharing of biodiversity data but identifying several areas for potential improvement. 

The results of this thesis make it clear that participatory monitoring drives a growing proportion of 
the world’s biodiversity knowledge and highlight some of the developments that support its 

increasingly central role in biodiversity science and conservation. The thesis further contributes to 

these developments, advancing an improved understanding of the participatory monitoring 

observation process at a fine spatial scale and identifying opportunities to expand the sharing and 

integration of data from participatory monitoring. Finally, the thesis directly applies participatory 

monitoring data to further the understanding of climate threats faced by two Norwegian species 
widely considered to be sentinels of climate change. Overall, this thesis suggests great capacity for 

the contribution of participatory monitoring to continue to increase. With growing awareness that 
bending the curve of biodiversity loss will require integrated action across scales from local to 

international, participatory monitoring is poised to have a central role. 
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Preface 

“Building community is a requisite foundation for building a better world.” 

— DR. AYANA ELIZABETH JOHNSON
4 

Aldo Leopold famously wrote in 1949 that “one of the penalties of an ecological education is that 

one lives alone in a world of wounds5.” Threats to nature have not lessened in the seven decades 

since those words were written, but I think that we who take note of them are no longer—if we 

ever really were—alone. 
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curve of biodiversity loss and building a world that lives in greater harmony with nature. I am 

immensely grateful to the many individuals who contribute, often quietly and with little fanfare, to 

the coordination of participatory monitoring around the world. And most of all I am grateful to 

the innumerable individuals who volunteer their time, effort, and expertise to advancing our 

knowledge and informing our care for the natural world as participants in voluntary monitoring. 

Doing research with data that were gathered by the collective effort of quite literally millions of 

individuals is a joy, and makes me feel hopeful for the future of biodiversity. 

We may together witness a world of wounds, but it is equally true that the study of nature invites 

us ever deeper into a world of wonder, awe, and appreciation. The communities that we build 

through these shared experiences are no less wonderful. It has been my great pleasure to work and

learn alongside so many inspiring individuals during and beyond my PhD.

Caitlin Mandeville 

Trondheim, December 2022 





1 Introduction 

1.1   The growing biodiversity crisis 

We face a growing biodiversity crisis. Human-caused drivers of global change, including climate 

change, habitat loss and fragmentation, overexploitation of natural resources, the spread of 

invasive species, and environmental pollution, threaten the function and stability of the world’s

ecosystems6–8. As a result, an estimated one million species face extinction within 

decades6,9. Furthermore, the abundance and diversity of species are in decline worldwide; it is 

estimated that the populations of many monitored animal species have declined substantially since 

19709,10, with ripple effects including reduced diversity among ecological communities and 

alteration of biotic interactions6,11. 

This crisis threatens humanity along with the rest of nature. Biodiversity is foundational to 

nature’s contributions to people, from direct provisioning of food and other resources to 

regulation of natural processes and cycles to carbon sequestration and other nature-based forms of 

resilience to global change threats10,12–14. Further, biodiversity is inextricably linked to the profound 

cultural connections to nature that have been central to human society for millennia6,15,16. 

Despite these dire threats, it is still possible for humanity to ‘bend the curve’ of biodiversity loss 

and set a new course of sustainable conservation, management, and use of nature6,17. Reversing the 

current biodiversity crisis will require transformational change that cuts across all sectors of society 

at scales from international to local18. International targets and agreements establish shared 

priorities and align the world in pursuit of evidence-based conservation goals19. However, without 

specific, measurable, and science-based indicators, targets are unlikely to be met20. In the recently 

completed negotiations to define the post-2020 Global Biodiversity Framework, quantifiable 

indicators were a key component of discussions20–22. The completed Framework entrusts parties to 

the Convention on Biological Diversity with responsibility for monitoring and reporting progress 

on a large number of quantitative indicators measuring the conservation and sustainable use of 

biodiversity23. 

1.1.1   Challenges in biodiversity conservation: biodiversity data 

Strategies for achieving biodiversity conservation targets are planned and evaluated using
indicators that represent specific dimensions of biodiversity status and trends24,25. This requires

high-resolution, long-term, multidimensional biodiversity data25–27. In some ways, biodiversity 

science has access to data at a scale never seen before. Technological advances in areas ranging 

from remote sensing to genomic analysis have vastly expanded the types of data available to 

monitor biodiversity; digital infrastructure supports data storage, management, and sharing at large 

scales; and the collection and management of data is increasingly being incentivized, as seen in the 

growing publication of data papers and public datasets26,28,29. A recent call even proposed 

establishing UNESCO World Heritage status for long-term datasets that are particularly integral to 

documenting changes in the environment30. In short, the past decades have seen the 

transformation of biodiversity research into a big data science31. 
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Nevertheless, the current extent of available species occurrence data is insufficient to assess the 

conservation status of and develop conservation strategies for the majority of species 

worldwide25,32,33. For instance, fewer than five percent of named species have been assessed for the 

International Union for Conservation of Nature (IUCN) Red List of Threatened Species 

(hereafter, ‘Red List’), and of these, nearly 15% are classified as data deficient25,34. Differences in 

data availability between species are driven by steep taxonomic biases. A small number of taxa are 

heavily overrepresented while the majority are neglected25,35,36. The biodiversity evidence base is 

most limited in the Global South, where biodiversity is highest and conservation stakes often 

greatest32,36–38. In general, the collection of data to monitor species’ status and trends is limited by 

the cost-, time-, and labor-intensive nature of such monitoring26,32,39. Furthermore, there are direct 

trade-offs between resources expended on the monitoring of biodiversity and resources available 

to implement conservation actions40,41. Therefore, finding new ways to fill gaps in the biodiversity 

evidence base and leveraging existing data to the greatest extent possible are major priorities for 

making progress towards targets for the conservation and sustainable use of biodiversity42,43. 

1.1.2   Challenges in biodiversity conservation: integrating 

conservation across scales 

Progress towards biodiversity targets relies on integrated action across scales from international to 

local44,45. Because biodiversity threats are caused by multiple socio-ecological drivers that interact 

across spatial scales, engagement with the local context is critical for implementing effective 

science-based conservation strategies6,46–51. In light of this, there are growing calls for localization 

of conservation efforts, reliance on local leadership, and furtherance of community engagement in 

biodiversity conservation48,52,53. A core component of this is the growing awareness that the 

majority of lands with high conservation value have long been actively managed by Indigenous 

peoples and local communities54,55. Partnerships at a local level are therefore essential for 

successful implementation of international targets56,57. 

A further challenge lies in ensuring that conservation actions support the long-term needs of 

people around the world. Many parts of the world experiencing the most severe global change 

threats are home to Indigenous peoples and marginalized communities58–60. Past conservation 

actions initiated by the global community in regions facing severe global change threats have all 

too often been detrimental to the people living in these regions56,60,61. As the international 

community works together to enact the post-2020 Global Biodiversity Framework, there is a 

responsibility to ensure that the needs of marginalized communities are prioritized and that 

conservation strategies seek to advance and sustain positive relationships between people and 

nature. 

1.2   Participatory biodiversity monitoring 

Participatory monitoring of biodiversity is increasingly highlighted as a way to expand data 

collection while engaging the public in biodiversity science and conservation56,62–65. Here, 

participatory biodiversity monitoring refers to any form of voluntary participation of members of 

the public, acting outside of their typical professional capacity, in the collection of biodiversity 

data†. Participatory monitoring has a long history—in fact, prior to the professionalization of 
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science, nearly all research on the natural world was conducted by amateurs and could therefore be 

considered a form of participatory monitoring66. In the past few decades, however, it has entered 

an unprecedented era of popularity, relevance, and mainstream acceptance in scientific 

research62,67,68. 

One way to conceptualize the wide range of forms that participatory monitoring can take is by 

differentiating among types of participant engagement69. Bonney and colleagues69 defined a 

spectrum ranging from contributory (where the main role played by participants is that of data 

collectors) to collaborative (where participants are more deeply involved in formulating research 

questions or analyzing and interpreting data) to co-created (where participants hold significant or 

sole leadership over monitoring). Co-created biodiversity monitoring often focuses on local 

priorities or concerns, tends to be more deeply situated in a specific place, and often has more 

explicit links to local governance or decision-making70,71. In contrast, the aims of contributory 

monitoring programs are more often set from the top down by researchers or monitoring program 

coordinators70. Contributory monitoring programs, often administered digitally through apps or 

websites (Figure 1), can be immense and can reach a large, geographically dispersed participant 

base70,72. 

Participatory biodiversity monitoring programs also vary widely in the type of data that they 
collect; an assessment of all indicators proposed for the post-2020 Global Biodiversity Framework 
found that 45% could be monitored by citizens21. Participatory monitoring data can be highly 
structured, collected by participants following a strict sampling protocol. It can also be technically 
nuanced, requiring specialized training, expertise, or equipment; for instance, participatory 
monitoring has been used to monitor physiological traits, species interactions, and measures of 
ecosystem function56,65,71,73,74. On the other hand, participatory monitoring can also be 
opportunistic, spontaneous, and unstructured. Consider the example of iNaturalist (Figure 1), a 
contributory platform for gathering species occurrence data. Although iNaturalist can be used in a 
structured way, it is also possible (and common) for a participant to spontaneously upload any 
number of species observations with no training or protocol—or perhaps in some cases, without 
even being aware of having contributed data that could be used in research. A great deal of 
participatory monitoring data can be considered semi-structured, existing somewhere on a 
spectrum between structured and unstructured; commonly, semi-structured data do not follow a 
set sampling protocol but do include metadata about the observation process42,75. 

In this thesis, I focus on participatory biodiversity monitoring of species occurrence data, 

including both structured and unstructured data. 

† Participatory biodiversity monitoring is diverse. Here, I use it as an umbrella term for many distinct,
though related, concepts, including the collection of biodiversity data through both citizen science and

community-based monitoring. For discussion of differences between these approaches, I refer the reader 
to Danielsen et al. 202256, Shirk et al. 201270, and Conrad & Hilchey 201176. Participatory monitoring also

has much in common with community science, though the latter has a stronger emphasis on community

leadership and centering of community priorities77. In this thesis, I use ‘participatory monitoring’ as a 

general umbrella term to refer to all related forms of public inclusion in biodiversity monitoring. When it 

is relevant to refer to a specific form of participatory monitoring, I define the term in context. 
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FIGURE 1. An illustration of the reporting of a species observation with the iNaturalist app. Top 

left: A participant observes a species they’d like to report. Top right: The participant can report a 

taxonomic identification (if known) and any relevant metadata. If suitable settings are enabled, the 

date, time, and location can be recorded automatically. Bottom row: The app allows for community 

interaction that allows other participants to both share additional information and learn from each 

observation. Bottom left: Other participants have confirmed the identification suggested by the 

original observer. Bottom middle: The observation can be viewed on a map. Bottom right: The 

observation is viewed alongside other observations of the same species.  
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1.2.1   The promise of participatory biodiversity monitoring 

Participatory monitoring has grown tremendously in recent years. Much of this growth has been 

driven by technological developments that facilitate the collection, sharing, and accessibility of 

biodiversity data68,78,79. App- and website-based platforms have made it fun and easy for 

participants to contribute data with very little effort, and digital infrastructures for aggregating and 

sharing data provide a seamless pipeline from digital monitoring platforms to open databases79. At 

the same time, technological and community-based solutions for data standardization and quality 

control have made these data more useful than ever71,79,80. 

Co-created and community-based monitoring programs have also seen rapid growth. Increased 

awareness of global change threats has heightened the urgency of leveraging local biodiversity 

knowledge and cross-scale partnerships to inform science-based conservation strategies44,45,48,53. As 

a result, a growing number of professional societies, funding entities, and governing agencies have 

begun to formally recognize and call for greater engagement with the public through participatory 

monitoring81–85. And though technology does not play as central a role in co-created participatory 

monitoring as in digital contributory monitoring platforms, technological advances have also 

contributed to its growth and widespread accessibility78. 

The expansion of participatory monitoring has resulted in an incredible amount of biodiversity 

data. It has been estimated that over 60% of the biodiversity data shared on the world’s largest 

biodiversity data repository derive from citizen science86. One of the largest contributory 

monitoring programs, eBird, has, on its own, contributed over one billion of these species 

observations87. These data have the potential to fuel state-of-the-art analyses and visualizations of 

species’ status and trends at spatial and temporal resolutions that would be unimaginable without 

the contribution of participatory monitoring80,88–90. Beyond the sheer immensity of data from 

participatory monitoring, it can also expand the scope of biodiversity data collection to places, 

times, and topics that might not otherwise receive attention from non-participatory monitoring 

approaches68,91. 

The use of participatory monitoring data has become mainstream in biodiversity research and 

conservation67,92. The early years of its growth saw extensive discussions of the rigor and quality of 

participatory monitoring data, with many studies comparing data collected by volunteers with data 

collected by professional researchers80,93. For the most part, these debates have been laid to 

rest62,71,80,94. Well designed and fit-for-purpose participatory monitoring is widely accepted as an 

effective data collection approach, and it has been used as the basis of thousands of peer-reviewed 

articles as well as reports, assessments, and conservation decisions63,67,95,96. Its growing use is 

supported by recent advancements in analytical approaches for participatory monitoring data, 

including novel methods for analyzing unstructured data and for integrating it with structured 

data97–100. 

1.2.2   Beyond the data: the participants in participatory monitoring 

Of course, participatory monitoring would be nothing without its participants. The impact of the 

data collected by participatory biodiversity monitoring is equaled, if not surpassed, by its role in 

engaging the public in biodiversity research and conservation (Figure 2). This engagement has 
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effects both on individual participants and on society more broadly. Effects on individual 

participants include learning gains, enhanced science literacy, deeper connections with nature, 

heightened conservation attitudes and behaviors, and a sense of community with other 

participants15,101–104. In community-based monitoring, these outcomes are additionally rooted in a 

sense of place and situated in a local socio-ecological context105–107. 

At a societal level, participatory monitoring provides a forum for the public to engage with 

biodiversity research and conservation74. It can facilitate two-way communication and build 

partnerships between the public and research institutions, governing agencies, and conservation 

decision-makers. This can lead to increased research and management focus on public priorities as 

well as greater public support for science-based conservation strategies108–110. When monitoring is 

primarily led by communities, it can be part of a frontline response to local environmental 

challenges and injustices, serving as a mechanism for communities to leverage local knowledge and 

gather data in support of science-based advocacy and action56,111. 

Finally, participant and societal outcomes can strengthen the conservation impact of participatory 

monitoring data. Engagement with the priorities of local communities promotes a stronger fit 

between research and local decision-making contexts and can strengthen public support for 

science-based conservation actions95,106. As a result, inclusion of the public in biodiversity 

monitoring makes it more likely that monitoring data will be mobilized to inform conservation 

actions112,113. Additionally, participatory monitoring stimulates greater civic engagement around 

biodiversity conservation114. Participants report increased engagement in conservation behaviors 

like contribution to local decision-making boards and committees, political advocacy, and 

engagement with local policymakers106,115,116. 

FIGURE 2. Participatory monitoring impacts biodiversity science and conservation through the 

direct contribution of data as well as through public engagement in the conservation process. 

Figure is adapted from McKinley et al. 201774.  
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1.2.3   Challenges of participatory biodiversity monitoring 

Data from participatory monitoring are widely accepted as valid for research and conservation 

when paired with appropriate analyses62,80. Like all data, however, participatory monitoring data 

contain biases, error, and uncertainties that must be accounted for in data analysis and 

interpretation97,117. The highly heterogeneous and often unstructured nature of participatory 

monitoring data mean that quantifying and accounting for these analytical challenges can be 

substantially more difficult than for other types of data89,118. 

The major challenge in interpreting unstructured and semi-structured participatory monitoring 

data relates to observer behavior118. The same characteristic that enables unstructured participatory 

monitoring to amass immense datasets—the opportunistic, flexible nature of participation—also 

means that data analysts have minimal understanding of the observation process behind the data. 

This results in spatial biases that can be difficult to quantify (Figure 3). Species occurrence data do 

not strictly represent the locations where a species is found, but rather the locations where an 

observer has encountered, noticed, identified, and chosen to record an observation of that species. 

In a structured observation process, it is easier to account for the bias and uncertainty introduced 

by each of these hidden steps in the observation process. In unstructured sampling, however, they 

can result in unknown spatial biases that pose much greater challenges for inference. It is even 

more challenging, but critical for informing conservation strategies, to disentangle the effects of 

spatial bias when it may be correlated with spatial environmental drivers119. 

There is a rapidly expanding research focus on approaches for addressing the challenge of spatial 

bias in unstructured monitoring data. First, several novel analytical methods have been advanced 

that incorporate a model of the observation process into the analysis89,98,118. A second approach 

aims to shift the observation process during data collection rather than account for it during 

analysis, using nudges, incentives, and gamification to encourage sampling of high-value locations 

and taxa120. Both approaches are most effective when informed by the best available current 

understanding of the observation process. This is supported by a third line of inquiry, which 

investigates drivers of the participatory monitoring observation process in various contexts. This 

research has generally found that, at broad spatial scales, participatory monitoring oversamples 

areas with high population density and road accessibility, areas of perceived natural value, and 

areas facing perceived conservation threats121–124. However, variation in the observation process of 

participatory monitoring at finer spatial scales remains poorly understood.  
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FIGURE 3. A map of all iNaturalist observations reported in Norway illustrates some of 

the most easily detected spatial biases that are common in unstructured biodiversity data 

from participatory monitoring. At left, more densely populated areas in Southern and Central 

Norway have many more observations than more sparsely populated areas. The inset at right 

shows observations in the region around Trondheim, Norway. Observations are most dense 

near populated areas and can be seen to follow linear features such as roads and railways. Maps 

and data are from iNaturalist. 

In addition to spatial bias, observer behavior also introduces taxonomic bias into participatory 

monitoring data. Taxonomic bias is not unique to participatory monitoring; to the contrary, steep 

taxonomic biases are well known in global biodiversity data25,35. Still, participatory monitoring is 

expected to be characterized by greater biases towards charismatic species and those that are easily 

noticed and identified by casual observers125,126. Adjusting for this bias in analysis is complicated by 

the fact that the definitions of ‘charismatic’ and ‘easily noticed and identified’ are context 

dependent. In springtime in Central Norway, for instance, a birdwatcher will probably not report 

every observation of a fieldfare (Turdus pilaris), lest they spend all day recording bird sightings. But 

when a vagrant fieldfare was observed in Maine, USA, in April 2017, it drew birders from several 

states who collectively reported it to eBird dozens of times during its short stay in the area127,128. 

Observers’ general bias towards rare and noteworthy species can pose challenges for monitoring 

trends in species’ status across space and time. On the other hand, many monitoring programs 

leverage this bias very effectively to solicit data on specific species of interest, including rare, 

threatened, or invasive species96,129. 

Structured and community-based monitoring programs, especially those that directly target a 

specific research question or conservation issue, often face a very different set of challenges. Many 

such programs collect data for direct application in a specific decision or management context and 

do not publish the data externally65,96,130. Direct application of data can result in rapid conservation 

outcomes, and these programs often have a significant impact in their target area96. However, a 

lack of external publishing may mean that such programs can struggle to receive recognition from 

the scientific community, which may be necessary to sustain funding or to enable participation in 

in relevant professional communities96,130,131. Furthermore, data that are not shared more widely are 

likely to be excluded from high-level assessments and measurements of progress against 
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biodiversity indicators132. The contribution of these programs could be expanded by facilitating 

increased data sharing through continued infrastructure development, incentivization, awareness 

raising, and normalization of frameworks that consider data sharing in context of data rights and 

data justice57,78,95,132,133. 

A further challenge, particularly for top-down contributory monitoring, is to expand the reach and 

relevance of participatory monitoring to better reflect the full diversity of society. Participatory 

monitoring is rooted in ideals of democratizing science and enabling egalitarian participation in 

knowledge generation77. Yet marginalized communities are underrepresented in many participatory 

monitoring programs across scales77,134,135. Globally, the majority of large contributory monitoring 

programs are headquartered in the Global North, a fact which risks exacerbating existing 

geographical biases in the global biodiversity evidence base36,63,136. Conversely, community-based 

monitoring has long played a strong role in generating biodiversity knowledge on a local scale in 

otherwise underrepresented regions, but practices for integrating this knowledge across scales to 

support regional and national assessments are still developing78,113,132,137. Research that seeks to 

characterize the current contributions of and enabling conditions for participatory monitoring data 

across varying contexts will be instrumental for guiding its continued development. 
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2 Aims of thesis 

The overall aim of this thesis is to contribute to a better understanding of the contribution of 

participatory monitoring to biodiversity science and conservation, with an emphasis on generating 

knowledge that might illuminate pathways for strengthening the future impact of participatory 

monitoring data. A secondary aim is to apply participatory monitoring data, demonstrating its

contribution while directly contributing to conservation research. 

These aims are split into four objectives, each corresponding to one manuscript. 

The first two objectives relate to the current and potential contributions of citizen science and 

other forms of participatory monitoring in protected areas: 

I: Characterize the relative contribution of participatory monitoring in global terrestrial 

protected areas, focusing on the heterogeneity of participatory monitoring across protected 

area contexts. 

II: Characterize the spatial distribution of opportunistic participatory monitoring activity 

relative to other visitor activity in a small, recreationally popular natural area. 

The third objective demonstrates the potential of structured participatory monitoring data to 

address a data-hungry ecological question with conservation relevance: 

III: Apply structured participatory monitoring data to investigate whether interspecific 

competition plays a role in setting the range limits of two closely related alpine species in 

Norway, willow ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta). 

Finally, the fourth objective relates to the open data infrastructure that supports all of the 

biodiversity data used in my thesis:

IV: Examine the extent to which open data, including data from participatory monitoring, 

underlie the unstructured biodiversity data reported in the peer-reviewed literature, and 

the extent to which any new open biodiversity data are shared.  
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3 Methodological framing 

3.1   Open data 

All biodiversity data used in Articles I, II, and III have been accessed from open data 

repositories, primarily the Global Biodiversity Information Facility (GBIF; 

https://www.gbif.org/). Therefore, the scope of this thesis is largely restricted to species 

occurrence data that are openly shared, though Article IV looks beyond this scope to characterize 

openly shared monitoring data in comparison with data that are unshared. 

In many ways, the development of digital infrastructures that facilitate the sharing, standardization, 

and open access of biodiversity data has led to the participatory monitoring movement as we 

know it today68,79. An incredible number of monitoring data are ‘born digital’; that is, they are 

collected on digital platforms with an automated pipeline often including data standardization, 

quality control, and aggregation79. Other participatory monitoring data are added directly to online 

data repositories in a similar manner to the digitization of historical data, museum data, and non-

participatory monitoring datasets86. The gathering of data from diverse sources into open 

repositories is made possible through adherence to common standards, such as the FAIR 

(Findable, Accessible, Interoperable, Replicable) data principles, which further increases their 

usability138. 

The availability of open biodiversity data has been transformational for biodiversity science, 

enabling the aggregation of massive datasets to inform research that was previously 

unattainable86,139. The integration of large numbers of modern and historical datasets supports new 

applications, including evidence synthesis and high-resolution analysis of long-term trends86,140. 

This repurposing of data means that even small datasets can be used multiple times in various 

combinations141. Open data sharing further supports research reproducibility142 and reduces 

duplication of research effort143. 

There are many synergies between participatory biodiversity monitoring and open data sharing. 

Both are widely considered to be components of the broader open science movement, with 

parallel roles in making science more open to all2,144. Studies suggest that many monitoring 

participants want their data to be made available for research and conservation and are supportive 

of open sharing to an extent that facilitates this use145,146. Nevertheless, there are still diverse 

barriers and limitations to the sharing of participatory monitoring data, including lack of incentives 

or awareness, concerns about data privacy or data custody, and technical barriers78,147,148. As such, a 

large number of participatory monitoring data remain outside of the open data infrastructure. 

Continued efforts to integrate open science practices into participatory monitoring will further 

mobilize participatory monitoring data to have greater impact in biodiversity research and 

conservation and will support their integration into regional and international syntheses and 
assessments132,149,150,151.
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3.2   Protected areas 

Article I and Article II consider participatory monitoring in the context of terrestrial protected 

areas. Protected areas are central in international strategies to conserve biodiversity, but the 

specific aims and approaches of area-based conservation remain a focus of fierce debate152,153. The 

recently adopted post-2020 Global Biodiversity Framework formally established an international 

target to preserve 30% of the Earth’s terrestrial, inland freshwater, and marine habitat by the year 

2030154. Despite broad convergence on area-based conservation as a hallmark of international 

conservation strategy, there remain serious concerns about how to define and manage protected 

areas to meet the needs of the billions of people living near and relying on conservation lands58,60. 

There is also debate about the most effective indicators for evaluating the biodiversity outcomes 

of protected area management strategies155–158. Indicators will rely on high-quality biodiversity 

monitoring data, though such data are sparse throughout much of the world158. 

Participatory monitoring has strong potential to contribute to filling gaps in biodiversity 

monitoring in protected areas. Protected areas are known to be hotspots for participatory 

monitoring159,160. Drawn by both natural interest and accessibility for recreation, monitoring 

participants often opportunistically collect data in protected areas that support visitor access123,159. 

In other cases, strong pre-existing relationships between communities and nearby protected areas 

motivate participants to contribute to relevant community-based monitoring programs105. It is 

increasingly recognized that area management can only succeed if management strategies involve 

local knowledge and local community members56,161,162. Importantly, participatory monitoring 

provides a forum that conservation practitioners or decision-makers can use to build relationships 

and partner with local communities. 

Although participatory monitoring is common in protected areas, it is underrepresented in the 

literature on protected area resilience131. This may be partly attributed to the heterogeneous, place-

based nature of much community-based participatory monitoring; the local focus and direct 

applications of data mean that it can be hard to summarize general characteristics about these 

programs62,96,130. Further examination of participatory monitoring in different protected area 

contexts will help identify areas of high impact and possible transferability between contexts. 

Therefore, I use protected areas as a framework for a portion of this thesis both because they are 

sites where participatory monitoring offers strong potential for conservation impact and because 

there remain many unknowns about its current role in this area. 

3.3   Interdisciplinarity 

As a growing phenomenon that is situated in complex and varied socio-ecological contexts, a 

study of participatory monitoring benefits from the integration of diverse approaches drawn from 

across academic disciplines. My thesis research was envisioned from the beginning as situated in 

an interdisciplinary research group, and I have strived to maintain that standard through both my 

thesis research and additional collaborative efforts. I aim in this thesis to apply a variety of 

approaches to examine a broad central question from multiple angles and perspectives. In the 

following summary of the manuscripts that comprise this thesis, I aim to synthesize my results so 

that these distinct lines of inquiry converge into a broader understanding that sheds new light on 

the current contribution and future potential of participatory biodiversity monitoring. 
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Finally, I wish to highlight one additional contribution of participatory monitoring as it relates to 

interdisciplinarity. Beyond its own inherent value and contributions to biodiversity science and 

conservation, participatory monitoring is poised to play a key role as a boundary object—in other 

words, it brings together researchers, practitioners, and community members from varied 

backgrounds and disciplines who each relate to the concept through the lens of their own 

experience and expertise. This process of engaging with a shared concept through multiple 

intertwined perspectives refines and deepens communication across disciplinary boundaries. I have 

observed this to be true in my own research, as my own understanding of participatory monitoring 

has repeatedly been challenged (in the most positive sense of the term) through conversations and 

collaborations with colleagues. I believe that I emerged with a richer and more nuanced 

understanding of the many roles played by participatory monitoring and the many contexts in 

which it is situated.  

Collaboration across academic disciplines and beyond academia, grounded in effective 

interdisciplinary practices163, will be critical to address the biodiversity crisis, climate change, and 

other challenges facing society. Participatory monitoring sits squarely at the intersection of 

academic disciplines and real-world challenges. As a result, researchers, practitioners, and 

participants of participatory monitoring are poised to pave the way forward in strengthening 

partnerships between disciplines and between science and society. I hope to rise to this challenge 

in my own work going forward.
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4 Summary of articles 

4.1   Article I 

Objective I: Characterize the relative contribution of participatory monitoring in global terrestrial protected areas, 

focusing on the heterogeneity of participatory monitoring across protected area contexts. 

Participatory monitoring, including citizen science and community-based monitoring, is 

increasingly highlighted as a way to increase the data available to inform conservation strategies 

and evaluate conservation outcomes in protected areas while engaging local communities56,105,161. 

However, it risks replicating the taxonomic and spatial biases that are currently associated with 

biodiversity data, or introducing new ones27,35. Participatory monitoring varies greatly across 

ecological and social contexts, so effective monitoring program design cannot be defined in a one-

size-fits-all approach. It is therefore critical to understand which practices in participatory 

monitoring are transferable across protected area contexts in order to guide its improvement, 

expansion, and increased application in science-based conservation strategies. 

In Article I, we assessed the varying contribution of participatory monitoring to the biodiversity 

data available on the Global Biodiversity Information Facility (GBIF) for global protected areas 

(Figure 4), focusing on the extent to which patterns in participatory monitoring data differ from 

or replicate spatial and taxonomic patterns associated with non-participatory monitoring. We 

further examined a small number of characteristics of both protected areas and monitoring 

programs to identify protected area contexts associated with high relative contribution from 

participatory monitoring. 

FIGURE 4. A bivariate scale illustrates the total quantity of biodiversity data available on GBIF 

and the ratio of this data that derives from participatory monitoring summarized at a national 

level. The inset map illustrates variation in these metrics among protected areas within 

Scandinavia. 

Our findings indicate a rapidly changing landscape of biodiversity monitoring (Figure 5). 

Participatory monitoring contributed the majority of all data, and it was the sole data source for 

25% of all terrestrial protected areas. Patterns in geographic, taxonomic, and threatened species 
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coverage by participatory monitoring differed from non-participatory monitoring, suggesting its 

strong potential to complement other monitoring approaches. The taxonomic distribution of 

participatory monitoring data is commonly expected to emphasize charismatic and easily identified 

species125,126,164, resulting in highly skewed coverage of species within broad taxonomic groups, but 

we showed that participatory monitoring in protected areas achieves a similar or less skewed 

distribution of observations per species than non-participatory monitoring for birds, reptiles, and 

amphibians. Participatory monitoring was generally less likely to record data on threatened species 

than non-participatory monitoring. Nevertheless, its contribution to threatened species monitoring 

is noteworthy: 44% of the IUCN Red List species reported through participatory monitoring were 

not reported through any other means. 

 

 

 

 
 

FIGURE 5. a) The amount of data contributed to GBIF annually from (yellow) participatory 

monitoring and (blue) other monitoring approaches for global protected areas; (b) the annual 

ratio of data derived from participatory monitoring across global regions; (c) the annual ratio 

of data derived from participatory monitoring across broad taxonomic groups. 
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Large areas, and those with the strictest protection criteria, were associated with the largest 

participatory monitoring datasets. However, small and less strictly protected areas were associated 

with a high reliance on participatory monitoring, which often served as the primary or only data 

source available for these areas on GBIF. We showed that the growing reliance on participatory 

monitoring may be exacerbated by a parallel decline in sharing of biodiversity data from other 

sources, which could indicate either a true decline in data collection or a decline or time lag in data 

sharing. Finally, we showed that small and taxonomically focused monitoring programs made the 

greatest contribution to threatened and data deficient species, and that these were most associated 

with large and more strictly protected areas. 

Our results suggest opportunities to advance the contribution of participatory monitoring by 

sharing best practices at multiple scales. We showed that there are many protected areas with no 

data on GBIF, even among areas that share characteristics and proximity to areas with robust 

participatory monitoring; this underscores the heterogeneity of participatory monitoring. At the 

same time, this suggests that areas with robust monitoring could be used as models to extend 

participatory monitoring into nearby areas. Further, our results reveal substantial variation across 

national boundaries. Nations with low contribution from participatory monitoring can follow 

national-level guidance to create an enabling policy environment for participatory monitoring3. 

Finally, our results also suggest the need to continue expanding the practice of open data sharing. 

Among other reasons, the decline in contribution of non-participatory monitoring sources to 

GBIF is of concern because unstructured biodiversity data are often most useful when integrated 

with structured data from non-participatory sampling42,98,100. Like participatory monitoring, open 

data sharing practices can be normalized and incentivized through both local networks of 

protected areas and monitoring programs as well as through national-level support and 

infrastructure3,78,132. 

4.2   Article II 

Objective II: Characterize the spatial distribution of opportunistic participatory monitoring activity relative to other 

visitor activity in a small, recreationally popular natural area. 

Article II builds upon findings from Article I about the unique relationship between participatory 

monitoring and small protected areas. Article I revealed that participatory monitoring provides an 

exceptionally high proportion of the biodiversity data available on GBIF for small areas, providing 

empirical support for previous research that indicated a strong relationship between participatory 

monitoring and protected areas105,131,159,165. Protected areas and other natural areas are known to be 

hotspots for participatory monitoring, driven by participants’ personal relationships with local 

natural areas and conservation motivations159,166. However, openly available data from 

opportunistic monitoring is not commonly used to inform local-scale conservation and 

management in small natural areas86,130,131,167,168. This may be partially due to a mismatch in scale 

between studies that investigate spatial bias in participatory monitoring data and the scale at which 

local conservation actions are implemented. Most studies that have modeled the participatory 

monitoring observation process in order to characterize spatial bias have been conducted at a 

regional or national scale. Analyses at this scale generally recognize small natural areas as hotspots 

of participatory monitoring but do not have sufficient spatial resolution to characterize the 

distribution of monitoring activity within these hotspots. 
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In Article II, we responded to this gap by investigating spatial bias in the distribution of 

participatory monitoring activity within a small natural area. We explored this question in the 

context of Bymarka, a popular natural area that is adjacent to the city of Trondheim and is a 

regional hotspot for participatory monitoring169. Our analysis adapted methods that have been 

used to investigate the distribution of participatory monitoring activity at broader spatial scales. 

Participatory monitoring is generally associated with two categories of landscape variables: 

accessibility (e.g., population density, road density, trail density) and natural interest (e.g., area 

protection status, conservation threats, species richness)121–123,126,159,170,171. Therefore, we derived ten 

spatial variables that we expected to represent accessibility and natural interest at a fine spatial 

resolution in our study area. We fit negative binomial generalized linear models in a multi-model 

inference approach to explore associations between these variables and participatory monitoring 

activity. This approach revealed that variables related to accessibility were more important in 

explaining the distribution of participatory monitoring activity than variables related to the 

perceived ‘naturalness’ of the area. In fact, citizen science was positively associated with developed 

land cover and negatively associated with land cover types that may be perceived as more ‘natural’, 

including forest and wetlands. These results differ somewhat from the many studies that have 

identified a strong relationship between participatory monitoring and natural interest at broader 

scales. 

Trails have generally been found to be positively associated with citizen science, and our findings 

in Article II corroborate this. However, some studies have indicated that the relationship between 

trail access and citizen science activity may be more nuanced170. Therefore, we repeated our 

modeling process using general recreational trail activity, represented by activity tracking data from 

Strava Metro, as a response variable in place of participatory monitoring activity. This allowed us 

to compare patterns of trail use between monitoring participants and users of the Strava activity 

tracking app (Figure 6). We found that the two forms of trail use were not correlated (Pearson 

correlation test, r = −0.01, p = 0.414). Strava activity was much more strongly associated with 

well-established trails, while participatory monitoring activity spread more evenly over a wider 

range of trail conditions. Additionally, Strava activity had a positive association with ‘natural’ land 

cover types (forest and wetland land cover) and a negative relationship with developed land cover, 

while citizen science activity was characterized by the opposite associations. 

These results suggest potential for expanded application of opportunistic participatory monitoring 

to the management of small natural areas. The predominant importance of a small number of 

variables for explaining monitoring activity indicates that it may be possible to coarsely model the 

observation process at a local scale, as has been done previously at broader scales. This could allow 

for improved use of opportunistic participatory monitoring data for local-scale inference. Small 

protected areas, green spaces and other multiple-use areas that contribute to other effective area-

based conservation measures (OECMs) are increasingly recognized as crucial for meeting 

biodiversity conservation targets172–174. However, they often struggle with limited resources for 

biodiversity management and monitoring153,175, a fact that is illustrated by the large number of small 

protected areas revealed by Article I to have no available open biodiversity data. Therefore, in lieu 

of structured monitoring programs, making effective use of the available data from opportunistic 

monitoring is essential. 

Additionally, our results may suggest a way for area managers to leverage the infrastructure of 

opportunistic monitoring platforms to increase the structure of participatory monitoring data 
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collected within areas of interest. Many participatory monitoring platforms offer options for 

customization, such as the ‘Projects’ feature of iNaturalist. These can be used to communicate 

with participants and guide the observation process to address topics of local relevance120,168,176. 

Currently, area managers may be hampered from using these tools by a lack of awareness about 

the current participatory monitoring activity within the areas they manage. Our results may 

contribute to addressing this need and informing guidance of future participatory monitoring 

activity. For example, managers could post signage promoting specific sampling requests in areas 

known to be frequented by monitoring participants, could identify areas of low monitoring activity 

for recruiting new participants, or could use knowledge of highly active monitoring areas to 

prioritize other areas for non-participatory monitoring. In these ways, area managers could use 

information about local opportunistic monitoring to replicate some of the benefits of structured 

monitoring programs. 

FIGURE 6. Model-averaged effect of all covariates on the response variable of (left) participatory 
monitoring and professional data collection, modeled in 150 x 150 m2 grid cells, and (right) 

participatory monitoring activity and Strava activity, modeled along trail segments standardized by 

segment length. Decreasing color intensity indicates decreasing variable importance. All 

continuous variables have been centered and scaled. Photos indicate some of the varied 

conditions present in the natural area used as a study system in Article II. Inset map indicates the 

boundaries of the natural area and its position in Norway. 

4.3   Article III 

Objective III: Apply structured participatory monitoring data to investigate whether interspecific competition plays a 

role in setting the range limits of two closely related alpine species in Norway, willow ptarmigan and rock ptarmigan. 
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Participatory monitoring produces datasets at a size and spatial extent that would be impossible 

with conventional monitoring approaches, as illustrated by Article I. These data have opened new 

opportunities for analyses that require large amounts of data, including studies in macroecology, 

biogeography, and community dynamics86. Increasingly sophisticated inference is possible with 

even unstructured monitoring data, thanks to improvements in data quality control, statistical 

methods, and a growing understanding of the observation process associated with opportunistic 

monitoring data89,98,118. However, participatory monitoring programs that collect structured, 

complex data offer even greater potential for inference42. 

In Article III, we leveraged data from a structured participatory monitoring program to address a 

data-hungry ecological question with strong conservation implications. We applied survey data 

from the long-running Norwegian breeding bird monitoring program (https://tov-e.nina.no/) to 

model the conditional occupancy probability of two congeneric alpine bird species, willow 

ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta). The Norwegian breeding bird 

monitoring surveys are coordinated annually by the Norwegian Institute for Nature Research, 

BirdLife Norway, and the Norwegian Environmental Agency177. Surveys are conducted by 

volunteer birdwatchers and ornithologists who are members of BirdLife Norway. Survey 

participants conduct annual point counts at fixed sites distributed in a grid across Norway. Each 

site consists of between 12 and 20 observation points that trace the outline of a 1.5 x 1.5 km2 

square. We extracted detection and non-detection data for willow ptarmigan and rock ptarmigan at 

all sampling sites within the species’ potential range, using the spatial replicates within each site to 

establish a sampling history for each combination of site and year (hereafter, ‘site’; n = 2560). At 

each site, we also derived data on two spatial variables: distance above or below the treeline178 and 

elevation of the nearest treeline. 

This dataset allowed us to address a little-considered aspect of ptarmigan ecology: Does 

interspecific competition between ptarmigan species affect their range limits along the elevation 

gradient? The question is of urgent conservation importance because ptarmigan, as high-latitude 

alpine species, are expected to shift their ranges upslope in response to changing climate 

conditions179,180. However, competition between the two species may interfere with their ability to 

adapt in this way181,182. Currently, the species share overlapping ranges during breeding season that 

are loosely differentiated by the treeline ecotone, with willow ptarmigan primarily occupying lower 

elevation sites with dense thicket or treeline vegetation and rock ptarmigan primarily occupying 

higher elevation habitat above treeline183–186. Long-standing theory suggests that asymmetric 

competition will favor the lower elevation species within a pair of species that share habitat along 

an elevation gradient, which will restrict the lower range limit of the higher elevation 

species181,182,187,188. Under this theory, upward range expansion of willow ptarmigan would be 

expected to reduce the space available for rock ptarmigan in what has been termed an ‘escalator to 

extinction’182,189,190. However, recent studies have revealed a variety of alternative outcomes for 

competition along elevation gradients181,182,191,192. We drew upon this literature to formulate four 

competing hypotheses (below) for how competition might affect the range limits of willow 

ptarmigan and rock ptarmigan, and we used a model selection approach to test these hypotheses. 

H1: Asymmetric competition favors willow ptarmigan, restricting the lower range limit of rock

ptarmigan. 

H2: Asymmetric competition favors rock ptarmigan, restricting the upper range limit of willow

ptarmigan. 
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H3:  Condition-dependent competition, where species’ competitive dominance depends upon

the environmental conditions, drives range limits such that the lower range limit of rock 

 ptarmigan and the upper range limit of willow ptarmigan are both restricted. 

H4:  Competition does not affect the occupancy probability or range limits of either species.

We found that the best fitting models offered partial support for both hypothesis H2 (asymmetric 

competition that favors rock ptarmigan) and hypothesis H3 (condition-dependent competition) 

(Figure 7). Across most of the elevation gradient, occupancy probabilities of the two species were 

negatively associated. This negative association showed signs of condition-dependency: the strong 

positive relationship between rock ptarmigan occupancy and distance above the treeline meant 

that rock ptarmigan had a greater negative impact on willow ptarmigan at higher distances from 

the treeline, while willow ptarmigan had a greater negative impact on rock ptarmigan closer to the 

treeline. 

FIGURE 7. Conditional occupancy probability of (a) rock ptarmigan and (b) willow ptarmigan 

under three distinct modeled conditions. For both species, the solid line indicates occupancy 

probability given the absence of the other species; the dotted line indicates occupancy 

probability given the modeled occupancy of the other species; and the dashed line indicates 

occupancy probability given the absence of the other species. Ribbons indicate 95% 

confidence intervals. 

However, these competitive interactions were predicted to occur entirely in the above-treeline 

habitat known to be preferred by rock ptarmigan and avoided by willow ptarmigan. As a result, the 

overall negative impact on willow ptarmigan is expected to be much greater than the negative 

impact on rock ptarmigan. This results in a highly asymmetric impact, where the upper range limit 

of willow ptarmigan is restricted but rock ptarmigan occur fairly independently of willow 

ptarmigan (Figure 7). This outcome is opposite to the traditional expectation that lower elevation 

species will be dominant competitors, and it casts doubt upon the relevance of the ‘escalator to 

extinction’ scenario for ptarmigan species in Norway. Rather, the competitive dominance of rock 

ptarmigan above the treeline may under some conditions prevent upslope range expansion of 

willow ptarmigan, a scenario that has been termed ‘kings of the mountain’182. 
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Thus, our results demonstrate that interspecific competition introduces new complexity into the 

question of predicting ptarmigan species’ responses to climate change. This further reinforces the 

general importance of considering biotic interactions at both the upper and lower range limits of 

species’ elevational distributions. The general role of biotic interactions in setting species’ range 

limits along gradients has been debated since Darwin and is still an open question, with growing 

urgency as climate change reshuffles species distributions181,182,188. Exploration of this question has, 

to some extent, been limited in the past by the size of datasets required to identify signals of 

interspecific interactions from observational data181. The rise of participatory monitoring opens 

promising new opportunities to collect large datasets that can offer insights in this area.  

4.4   Article IV 

Objective IV: Examine the extent to which open data, including data from participatory monitoring, underlie the 

unstructured biodiversity data reported in the peer-reviewed literature, and the extent to which any new open 

biodiversity data are shared. 

Articles I, II, and III illustrated the strong potential of participatory monitoring to contribute to 

biodiversity science and conservation. In all articles in this thesis, these contributions were made 

possible through the open sharing of participatory monitoring data. Although open sharing of 

biodiversity data has quickly become normalized in recent years, it is nevertheless expected that 

many biodiversity data remain unshared193. In Article IV, we aimed to investigate the extent to 

which the open data infrastructure relied upon for this thesis might be further leveraged to share 

additional data. We narrowed this aim into two related questions. First: Are open databases the 

primary sources of unstructured biodiversity data analyzed in the peer-reviewed literature, or are 

new unstructured biodiversity data being introduced from other sources? And second: If new 

unstructured biodiversity data are introduced in the literature, are they subsequently shared in an 

openly accessible format for further reuse? 

We used a systematic approach to review a broad subset of the biodiversity literature, filtered from 

articles accessed using Web of Science. The criterion for inclusion in our review was simply that an 

article present or analyze unstructured biodiversity data; this included articles that collected 

structured data but reduced it to unstructured presence-only occurrence data for analysis. 

Question 1: Are open databases the primary sources of unstructured biodiversity data analyzed in the peer-reviewed 

literature, or are new unstructured biodiversity data being introduced from other sources? 

Because unstructured biodiversity data have many well-known shortcomings that create challenges 

for inference, we expected that most uses of unstructured data would consist of analyses that make 

use of openly available unstructured datasets rather than analyses of novel unstructured data. 

However, we found that only 19% of the articles that we reviewed relied upon exclusively open 

data (Figure 8). Others collected existing data from other sources. A large number, however, 

reported novel data gathered by researchers, governance agencies, and private organizations. Our 

results indicated that the number of articles relying on unstructured biodiversity data from all 

sources continues to increase annually. This suggests that the rapid innovations in analysis 

approaches for unstructured data, commonly associated with participatory monitoring, may also 

facilitate the analysis of data from a much wider range of sources. In fact, only 33% of the articles 
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that we reviewed indicated that any of their data derived from participatory monitoring. These 

articles obtained participatory monitoring data from diverse direct sources, including open 

databases, government and independent organizations, participatory monitoring programs 

coordinated by the study authors. 

Question 2: If new unstructured biodiversity data are introduced in the literature, are they subsequently shared in an 

openly accessible format for further reuse? 

Having established that the peer-reviewed literature contains extensive unstructured biodiversity 

data from sources other than open data repositories, we next investigated whether these data go 

on to be shared openly after being reported in the literature. In other words: Is the literature a 

source or sink for potential open biodiversity data? 

We found surprisingly low rates of data sharing for unstructured biodiversity data reported in the 

peer-reviewed literature (Figure 8). This was true even for articles whose authors demonstrated 

familiarity with open data by integrating it with data from other sources. Researchers refrain from 

sharing data for many reasons, including lack of time and incentives, concerns about data custody 

or privacy, lack of familiarity with open data infrastructure, technological challenges, and 

uncertainty about data ownership133,194–196. Our results indicate that the peer-reviewed literature is 

not yet a main pathway by which new open biodiversity data are generated. This suggests that the 

literature represents a significant new opportunity to target for further incentivization and support 

for open data sharing. 

FIGURE 8. The left panel indicates the percentage of articles reviewed in this study that 

obtained data from each type of data source, shown according to the original structure of 

the data accessed from each source. The right panel indicates the percentage of articles, 

again shown by original data source, that subsequently shared the novel data in an open 

format. The bar widths indicate the number of articles within each category. The gray 

portions of the bars represent articles that integrated data from the indicated source with 

data from other sources; because of the confounding effect of data integration, trends are not 

reported for these articles. 
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Finally, it is noteworthy that the sharing rate of original data collected through participatory 

monitoring was somewhat higher than average, though still lower than 50%. This result 

corroborates the observation, mentioned in the discussion of Articles I and II, that many 

participatory monitoring programs apply data directly to research or management but do not share 

the data openly. Continuing to reduce barriers to open data sharing will make it possible to expand 

the already-substantial impact of such monitoring programs through opening data for reuse in new 

contexts, such as regional and international assessments and syntheses. 
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5 Discussion 

In this thesis, I aimed to contribute to a better understanding of the role played by participatory 

monitoring in biodiversity science and conservation and to use these findings to illuminate 

possible pathways for strengthening the future impact of participatory monitoring data. A 

secondary aim was to directly apply participatory monitoring data in conservation research. 

First, this thesis makes it clear that participatory monitoring drives our current knowledge of 

biodiversity in global protected areas. In 2021 it was estimated that participatory monitoring 

contributes 65% of the data on the Global Biodiversity Information Facility (GBIF)86, but Article 

I revealed that for the past twenty years, within protected areas, its contribution has been even 

higher. Article I also revealed for the first time that participatory monitoring is the sole source of 

open biodiversity data for tens of thousands of protected areas. These results empirically support 

recent research indicating that monitoring participants are motivated by personal attachment to 

protected areas105 and that monitoring activity is positively associated with protected and natural 

areas159. The results further reveal that participatory monitoring achieves more even coverage of 

species within some taxonomic groups than it is generally expected to164. 

Article I demonstrates the heterogeneous nature of participatory monitoring, identifying nearly 

one thousand distinct participatory monitoring programs that have collected data in protected 

areas around the world. The datasets collected by these programs range in size from less than one 

hundred to over one billion. The true number of active programs is surely higher, as the scope of 

this research excluded any programs that do not share data to GBIF, a group that includes many 

community-based and thematically focused monitoring programs95,96,118. Nevertheless, Article I 

identified a greater number of participatory monitoring programs on GBIF than similar efforts to 

do so in 201763 and 2018197, suggesting that the number of participatory monitoring programs may 

either be growing or may have been historically underestimated. 

One of the values of global mapping analyses is to identify priorities for further research to fill 

knowledge gaps198.  Article I newly revealed that small and less strictly protected areas are most 

likely to rely on participatory monitoring as the primary source of open biodiversity data; however 

the literature suggests that open biodiversity data are not commonly applied in local-scale analyses, 

which may limit the usability of these data for area management86,130. Article II aimed to address 

this gap by modeling the observation process of participatory monitoring in a small natural area. 

Such modeling has greatly increased the usability of unstructured participatory monitoring data at 

broader spatial scales, so in Article II I adapted this approach to a finer spatial scale. This revealed 

that, within a small natural area that is a participatory monitoring hotspot, monitoring activity was 

mainly driven by accessibility and less influenced by differences in perceived ‘naturalness’ 

throughout the area. This is among the first times that these potential drivers, which both tend to 

be important at broader scales122,123,159, have been evaluated within a natural area at a local scale. 

Small, fragmented, and multi-use areas are expected to play an important role in meeting area 

protection targets for the post-2020 Global Biodiversity Framework153,199, yet Article I revealed 

that these areas tend to be deficient in conventional monitoring data. Participatory monitoring is 

therefore poised to fill a key gap, so efforts to make it more usable at a local scale will be critical.  

Structured biodiversity data, which are often collected through locally led participatory monitoring 

programs, can open more opportunities for analysis. Article III demonstrated one such data 
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application with a structured participatory monitoring dataset from Norway. Data from the 

Norwegian breeding bird monitoring program were used to address a data-hungry research 

question with both ecological and conservation relevance. The results from this analysis are among 

the first to indicate that interspecific competition may play a role in setting the elevation range 

limits between two ptarmigan species. This result has strong conservation implications; the range 

limits of ptarmigan species are expected to shift upslope in response to the projected loss of over 

half of their current habitat in coming decades, and such shifts can be complicated by competitive 

interactions179,180. Article III revealed that competition may reinforce the upper range limits of 

willow ptarmigan, suggesting that the species may face greater challenges in adapting to climate 

threats than previously expected. These results further contribute to a growing literature evaluating 

the general role of biotic interactions in setting range limits along gradients181. The analyses in 

Article III required a substantial amount of structured biodiversity data that may not have been 

feasible to collect without the contribution of participatory monitoring.  

None of the results in this thesis would have been possible without access to open biodiversity 

data. Article IV therefore aimed to better understand the contribution of unstructured 

participatory monitoring data to open data repositories. The results indicate that participatory 

monitoring is paving the way for biodiversity data sharing, echoing the finding from Article I that 

revealed a high proportion of participatory data on GBIF. Article IV further revealed that data 

collected through participatory monitoring and reported in the peer-reviewed literature were made 

openly available more often than data from any other source. Nevertheless, there is room for 

improvement; over 50% of articles based on participatory monitoring data still did not share the 

data openly. Barriers keeping many participatory monitoring programs, especially those that are 

community-based, from sharing data are well known, and there are ongoing efforts to improve the 

sharing and integration of these data118,132. The results of Article IV suggest a specific category of 

participatory monitoring programs that may be relevant to address for increased data sharing: 

those that make data available for publication but not yet for open data sharing. 

Article IV also showed that new unstructured biodiversity data are generated from diverse sources 

beyond participatory monitoring and that, in general, sharing rates for these data are low. This 

aligns with the finding from Article I that the rate at which non-participatory monitoring data are 

added to GBIF is declining, and suggests that ongoing efforts to normalize the open sharing of 

biodiversity data remain important for strengthening the impact of participatory and non-

participatory data alike141. 

Despite some continued barriers, the open sharing of biodiversity data has become normalized to 

such an extent that it can be easy to forget that this is a relatively new development. Given the 

central role of GBIF in this thesis, it seems fitting to briefly take a look back and see how the 

central themes of this thesis have developed since GBIF was first established in 2001200. Its 

initiation was closely followed in 2002 by the launch of eBird, today the world’s largest digital 

platform for participatory monitoring. The two grew in parallel. At first, growth was slow—ten 

years after its establishment, GBIF held around 300 million data points, a far cry from today’s 2.3 

billion201. By 2009, eBird had accumulated a total of 1.6 million participant checklists202; in contrast, 

more than 1 million checklists were submitted each month of the year in 2021203. The pace of 

growth for both organizations increased in the 2010s, which also saw the establishment of several 

new professional societies related to participatory monitoring85. In parallel, a new strand of 

literature illuminating the contributions of community-based monitoring began to gain speed113,204. 
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The following decade saw a meteoric increase in both participatory monitoring and open data 

sharing that continues to this day. The degree to which participatory monitoring drives available 

knowledge about biodiversity is especially remarkable when viewed in light of its rapid growth. Its 

swift integration into the mainstream of biodiversity science has been facilitated by immense 

efforts to refine approaches at every stage of the participatory monitoring process, from data 

analysis to platform development to program coordination. Diverse challenges still remain, 

including analysis of unstructured data, integration of data across scales, and inclusion of 

underrepresented regions and communities. However, the rapid advancements that have brought

participatory monitoring to its current central position in biodiversity research suggest great 

capacity for the field to continue growing in response to these challenges. 

Approaches for conserving biodiversity, too, have changed since the early 2000s. In 2005, around 

12% of the Earth’s land was protected205. By 2020, this number had grown to 17%206. Meeting the 

post-2020 Global Biodiversity Framework target for 30% protection, then, will require a 

heightened pace of area protection154 . Rising to this challenge in a way that is effective for 

conservation and meets the needs of people around the world will require a large amount of high-

quality data to inform conservation actions. Participatory monitoring has already changed the 

landscape of biodiversity monitoring, and it is likely to have an even greater role moving forward. 

Recent years have seen new emergence of formal calls for the inclusion of participatory 

monitoring in conservation strategies, including an emphasis on local knowledge in the 2019 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services global 

assessment6, the identification of ‘open engagement of societal actors’ as a core pillar in the 2021 

UNESCO Recommendation on Open Science2, and a growing focus on participatory monitoring 

in government policy3. With growing awareness that bending the curve of biodiversity loss will 

require integrated action across scales from local to international, participatory monitoring is 

poised to have a central role. 
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knowledge in global protected areas 
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Abstract 

Protected areas are central in international strategies to conserve biodiversity. However, the 

biodiversity data available to monitor protected areas are insufficient and limited by geographic 

and taxonomic biases. Participatory biodiversity monitoring vastly increases data collection while 

engaging the public, but it risks replicating existing biases or introducing new ones. Better 

understanding of participatory monitoring in protected areas will help guide its ongoing 

expansion. We explored the contribution of participatory monitoring, across various protected 

area contexts, to the world’s largest biodiversity data repository. Participatory monitoring 

contributed the majority of all data and was the sole data source for 25% of global protected 

areas. Patterns in geographic, taxonomic, and threatened species coverage by participatory 

monitoring differed from non-participatory monitoring, suggesting strong potential to 

complement other monitoring approaches. Our findings indicate a changing landscape of 

biodiversity monitoring and suggest directions for the ongoing growth of participatory 

monitoring across protected area contexts. 
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Abstract

1. Opportunistic citizen science produces large amounts of primary biodiversity data

but is underutilized in the conservation andmanagementof protected areasdespite

these areas’ status as citizen science hotspots. Application of these data may

be limited by the challenge of understanding sampling patterns associated with

opportunistic data at a scale relevant to local area management. An improved

understanding of citizen science activity patterns within protected areas could

strengthen both data analysis and the local promotion and guidance of citizen

science activity.

2. We investigated local-scale patterns of citizen science activity, using a case study

approach to examine citizen science activity in a recreationally popular natural

area that serves as a regional citizen science hotspot.Wemodelled the relationship

between local citizen science activity and 10 spatial covariates broadly related to

ease of access and natural interest, factors which have been shown to drive citizen

science activity at regional scales. We further compared the distribution of citizen

science activity with that of professional data collection and recreational visitor

activity in the study area.

3. We found that citizen science data largely complement rather than replicate openly

available professional data. Citizen science participation was primarily driven by

ease of access, especially the presence of trails. However, citizen science use of the

trail network differed from other types of recreational trail use, including a weaker

preference for well-established trails and a stronger association with developed

areas.

4. This improved understanding of patterns in citizen science participation may be

used to better account for spatial biases in citizen science data and to manage

natural areas in a way that supports and guides future citizen science activity.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 INTRODUCTION

Public participation in biodiversity research, often termed biodiver-

sity citizen science, producesmassive amounts of data and contributes

extensively to research in biodiversity, conservation and related fields

(Bonney, 2021; Cooper et al., 2014; Callaghan et al., 2021; Kays et al.,

2020). Much of this contribution comes from mass participation cit-

izen science, in which participants opportunistically upload species

observations to digital platforms that are often national to interna-

tional in scope, due largely to the accessibility of these data in open

digital repositories (Ball-Damerow et al., 2019; Callaghan et al., 2021;

Mandeville et al., 2021). But despite the mainstream recognition and

application of mass participation citizen science in biodiversity science

at broader spatial scales, it is generally underutilized in the conserva-

tion and management of protected areas and other natural areas on a

local scale (Binley et al., 2021; Callaghan&Gawlik, 2015; Cheung et al.,

2022; Mandeville & Finstad, 2021; Rapacciuolo et al., 2021; Salmon

et al., 2021).

Biodiversity data frommass participation citizen science could play

a greater role in filling a critical data gap for small protected areas,

green spaces and other multiple-use areas that contribute to other

effective area-based conservation measures (OECMS [IUCN WCPA

Task Force on OECMs, 2019]) (Adams et al., 2021; Maxwell et al.,

2020; Schmeller et al., 2017), which are increasingly recognized as cru-

cial for meeting biodiversity conservation targets (Baldwin & Fouch,

2018; Bonnet et al., 2020; Häkkilä et al., 2021; Kendal et al., 2017;

Rodríguez-Rodríguez et al., 2021). Such areas enhance connectivity,

support ecosystem services and play a key role in addressing environ-

mental threats that manifest at a local scale (Dreiss & Malcom, 2022;

Gaget et al., 2022; Hlásny et al., 2021; Oldekop et al., 2016; Volenec &

Dobson, 2020;Wintle et al., 2019). Still, small natural areas often have

limited resources for biodiversity conservation,management andmon-

itoring, despite their high conservation value (Armsworth et al., 2011;

Jansujwicz et al., 2021;Maxwell et al., 2020).

Mass participation citizen science data are already regularly col-

lected in protected areas and other natural areas and green spaces,

which tend to be hotspots for citizen science activity (Tulloch et al.,

2013). At broad spatial resolutions, citizen science activity is largely

associatedwith twomain types of predictors: accessibility (e.g. popula-

tion density, road access, regional trail availability) and natural interest

(e.g. aesthetic and recreational value, high biodiversity and threat-

ened ecosystems) (Boakes et al., 2016; Geldmann et al., 2016; Mair

& Ruete, 2016; Millar et al., 2019; Petersen et al., 2021; Tiago et al.,

2017; Tulloch et al., 2013). As accessible areas of local natural inter-

est, small natural areas within or near population centres are popular

destinations for citizen science participants.

An improved understanding of spatial sampling patterns within

these citizen science hotspots may enhance the utility of opportunis-

tic citizen science data for informing local areamanagement (Callaghan

& Gawlik, 2015; Dobson et al., 2020). First, an understanding of sam-

pling patterns might open the door for a wider range of analysis

approaches and allow for greater statistical inference (Johnston et al.,

2022; Mandeville et al., 2021). At broader spatial scales, information

about sampling has been used to overcome analysis challenges related

to the spatial and temporal biases and lack of non-detection data that

are typical of citizen science data (Cretois et al., 2021; Di Cecco et al.,

2021; Johnston et al., 2020; Mueller et al., 2019; Sicacha-Parada et al.,

2021; Zulian et al., 2021). But covariates commonly used to model the

citizen science sampling process at broader spatial scales are often not

well suited to characterize the sampling process at scales relevant to

local management. As such, little is known about how the fine-scale

distribution of citizen science activity varies within regional citizen

science hotspots (Callaghan &Gawlik, 2015; Dobson et al., 2020).

Second, a better understandingof citizen science activitywithin nat-

ural areas can help managers utilize citizen science more effectively

(Feldman et al., 2021). Accessible natural areas are commonly man-

aged for both conservation and recreation objectives, both of which

can be furthered by citizen science (Buta et al., 2014; Gurney et al.,

2021; Halliwell et al., 2022; Newman et al., 2017; Vimal et al., 2021).

Citizen science is increasingly recognized by protected area managers

as a desirable activity for many area visitors (Weaver & Lawton, 2017),

and a better understanding of spatial patterns in their activity would

allow managers to actively promote and direct citizen science to meet

local objectives. Suchdirection (e.g. interpretive signage, theuseof cus-

tomized settings on citizen science platforms and promotional events

such as bioblitzes) can effectively guide mass participation citizen sci-

ence data collection (Callaghan et al., 2019; Kays et al., 2020; Knape

et al., 2022; Koen & Newton, 2021; Salmon et al., 2021). For these

reasons, researchers and managers of protected areas have called for

greater research into trends in citizen science participationwithin pro-

tected areas (Binley et al., 2021; Gosal et al., 2021; Leung et al., 2018;

Weaver & Lawton, 2017).

We aimed to respond to this call by investigating the spatial dis-

tribution of citizen science participation at a scale relevant to local

area management. We took a case study approach, characterizing

citizen science activity within a small, recreationally popular natural

area in Central Norway. The site was selected because it is a regional

citizen science hotspot. Our objectives were to (1) test the hypoth-

esis that the main predictors of citizen science activity at a broad

spatial resolution—accessibility and natural interest—also drive citi-

zen science at a local scale; (2) compare the distribution of citizen

science activity throughout the study area with that of professional
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(a)

(b) 

(c) (d) 

F IGURE 1 Map of study area in Trondheim, Central Norway. Panel (a) indicates the position of the study area in relation to the population
centre of Trondheim. Panel (b) indicates the density of reported Strava activities per trail segment and panels (c) and (d) indicate the density of
citizen science data and professional biodiversity data available on Global Biodiversity Information Facility (GBIF) per grid cell, respectively.

biodiversity data collection; (3) test the hypothesis that citizen sci-

ence activity would primarily occur within a short distance of trails

and roads and (4) compare the distribution of citizen science activity

along the area’s trail network with that of other recreational trail use,

represented by activity tracking data from StravaMetro.

2 MATERIALS AND METHODS

2.1 Study site

Our study site is an 86-km2 natural area located on the periphery of

Trondheim, Central Norway, a regionally dominant city with a popula-

tion of around 190,000 (Figure 1; https://www.trondheim.kommune.

no/). The area consists of a diverse range of southern-boreal habitat

types, including mires, mixed forest, lakes and coastline (Moen, 1998).

Land management objectives vary within the study area; the entire

area is designated as a natural space for public use, while three smaller

subsets of the area comprising a total of 12 km2 are designated as

nature reserves with greater conservation protections. The area con-

tains an extensive trail network that is used throughout the year for a

range of activities including hiking, running, cycling and skiing, as well

as a small number of access roads. There are also a small number of

private homes within the area, primarily concentrated near the access

roads. The area is recognized as highly important for recreation, but

visitor activity patterns are not well studied (Hagen et al., 2019).

2.2 Data

2.2.1 Citizen science and professional biodiversity
data

All biodiversity data available on the Global Biodiversity Information

Facility (GBIF) for the study area were downloaded on 3 August 2021

(GBIF, 2021). The descriptions on GBIF of contributing data providers
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were used to classify all data as either opportunistic citizen science,

structured citizen science or professionally collected data (Table S1.1).

If a dataset was attributed to a professional research or manage-

ment institution with no mention of volunteer participation in the

dataset description, the dataset was classified as professional. The sin-

gle dataset classified as structured citizen science, whichwas collected

by a school-based program, was excluded from analysis because its

data derive from a different sampling process than opportunistic cit-

izen science data. Data from before 2000 were excluded, as digital

platforms for opportunistic citizen science largely grew in popularity

after that year (Figure S1.2). Bacteria and freshwater-obligate species,

including fish and aquatic invertebrates, were excluded because the

citizen science observation process for these species is expected to dif-

fer fundamentally from that of terrestrial species. Finally, data points

with a recorded coordinate uncertainty of greater than 150 m were

excluded.

2.2.2 Recreational visitor data

Data on recreational trail use were accessed from Strava Metro

(https://metro.strava.com). Strava Metro publishes public data from

users of Strava, a mobile app used by recreationists to log running,

cycling, skiing and other recreational activities. Data were summa-

rized as the number of recorded trips per Open Street Map (https://

www.openstreetmap.org) segment, defined as sections of trail or road

between intersections. Strava Metro data were available from 2016

through2020. The study area contained7153 segments,with amedian

segment length of 51m (interquartile range: 91m).

2.2.3 Environmental data

We identified 10 environmental variables, broadly related to ease of

area access and natural interest, that we expected to relate to citizen

science activity in our study area (Table 1).

2.3 Analysis

2.3.1 Environmental covariates of citizen science
activity and professional data collection: Grid-based
analysis

To examine the relationship between the environmental variables and

the distribution of citizen science activity, we established a grid of

150 × 150 m2 cells in the study area, resulting in 4130 cells. We

used the number of citizen science observations in each grid cell as a

response variable and the 10 environmental variables asmodel covari-

ates (Table 1). This approach follows other studies that have examined

covariates of citizen science activity at a broader spatial scale (e.g.

Romoet al., 2006; Tulloch et al., 2013; Tiagoet al., 2017). All continuous

covariates were centred and scaled.

There were a small number of outlier cells (n= 7) with very high cit-

izen science activity (between 10 and 40 standard deviations greater

than the mean number of citizen science observations, which is twice

the deviation of the next most active cells). Citizen science participa-

tion in these highly active cells was most likely driven by processes

that fundamentally differ from typical drivers of citizen science partic-

ipation; for instance, three such cells were located in the vicinity of a

birdwatching tower and two were adjacent to a school and a residen-

tial neighbourhood at the edge of the study area. The citizen science

activity in these outlier cells is likely not representative of the oppor-

tunistic process focused on in this study, so they were excluded from

the analysis.

We used a multi-model inference approach to explore potential

associations between environmental variables and citizen science

activity (Tredennick et al., 2021). We fit a negative binomial general-

ized linear model including the linear effects of the 10 covariates and

no interactions. We tested for spatial autocorrelation using Moran’s

I and included a distance-weighted autocovariate in the model, which

reduced autocorrelation (Bardos et al., 2015). We used Akaike’s infor-

mation criterion for small sample sizes (AICc) to rank all possible

models consisting of combinations of our covariates, and we used

the evidence weights of each model to calculate a weighted aver-

age of each parameter estimate and standard error across all models

(Burnham & Anderson, 2002). The ranked models were used to

determine the relative importance of each covariate.

To compare the distribution of citizen science activity with compa-

rable data collection processes for the professionally collected data

accessed from GBIF, we first used a Pearson rank correlation analysis

to compare the distribution of the two activity types and then repeated

the modelling analyses using the number of professional biodiversity

data observations per grid cell as the response variable.

2.3.2 Relationship between citizen science and
trail network

Because regional trail density has been shown to predict citizen sci-

ence activity at broad spatial scales (Tiago et al., 2017),wemore closely

examined the relationship between citizen science activity and trails

within our study area.Wehypothesized that the locations of citizen sci-

ence observations would tend to be closer to trails than the locations

of professional data collection, as well as closer than a random distri-

bution of points (obtained using the sf::st_sample() function in R), and

used a Kruskal–Wallis test to test this hypothesis.

Next,we conducted a small exploratory analysis intended to provide

insight into whether citizen science participants tend to make obser-

vations from the trail or to leave the trail before making observations.

We expected that if participants tend to make observations from the

trail, then the distance between the recorded observation coordinates

and the nearest trail would be greatest for taxonomic groups that are

moreoften visible and identifiable fromadistance (e.g.mammals, birds,

plants). If participants tend to leave the trail tomakeobservations, then

we would not expect this relationship. We used a Kruskal–Wallis test
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TABLE 1 Environmental variables included in analyses, their expected direction of correlation with citizen science activity and their structure
as covariates for the grid-based and trail-based negative binomial generalized linear models

Environmental variables

Expected correlation

with citizen science

Covariate structure in grid-based

analysis Covariate structure in trail-based analysis

Access variables

Proximity to nearest access

pointa,b
Positive Negative distance (m) from grid

centroid to nearest access point.

Negative distance (m) from trail segment

centroid to nearest access point.

Proximity to recreational

facilities (e.g. public tourist

cabins, playgrounds,

swimming beaches)b

Positive Binary variable expressing whether

grid cell contains a facility.

Negative distance (m) from trail segment

centroid to nearest facility.

Elevationc Negative Maximum elevation (m) of grid cell. Maximum elevation (m) of trail segment.

Longitude (eastness)d Positive Longitude (m) of grid centroid. Longitude (m) of trail segment centroid.

Presence of recreational trails

and access roadsb
Positive Total length (m) of trail within grid

cell.

Function of segment as amain travel route,

defined by the percentage of the trail

segment characterized by the

‘transportation’ land cover category.

Natural interest variables

Cultivated land covere Negative Area within grid cell covered by the

land cover type.

Percentage of area in the trail segment

corridor covered by the land cover type.

Developed land covere Negative Area within grid cell covered by the

land cover type.

Percentage of area in the trail segment

corridor covered by the land cover type.

Forest land covere Positive Area within grid cell covered by the

land cover type.

Percentage of area in the trail segment

corridor covered by the land cover type.

Wetland land covere Positive Area within grid cell covered by the

land cover type.

Percentage of area in the trail segment

corridor covered by the land cover type.

Proximity to a freshwater lake

or streame

Positive Binary variable expressing whether

each grid cell contains a

freshwater body.

Negative distance (m) from trail segment

centroid to nearest freshwater body.

aAccess points were defined by intersections between a road or trail and the boundary of the natural area as well as public parking areas and public transit

stops within or adjacent to the area.
bTrondheimMunicipality (https://kart.trondheim.kommune.no).
cNorwegian Digital ElevationModel (https://www.kartverket.no).
dLongitude was used to represent distance from the nearest population centre; the study area lies to the west of Trondheim’s population centre, so it was

expected that eastern longitudes would be accessedmore often.
eNorwegian Institute for Bioeconomics AR5 1:5000 land cover data (Ahlstrøm et al., 2014).

to examine the relationship between distance to trail and the observed

taxonomic group (grouped in the following categories: birds, fungi,

invertebrates, mammals, plants and reptiles/amphibians) and a Dunn’s

post hoc test for pairwise comparisons between taxonomic groups.

This analysis was repeatedwith the professional dataset.

2.3.3 Environmental covariates of citizen science
and other recreational trail use: Trail-based analysis

Trails have generally been found tobepositively associatedwith citizen

science, but some studies have indicated that the relationship between

trail access and citizen science activity may be more nuanced (Mair

& Ruete, 2016). For this reason, we repeated our modelling process

using trail segments as a study unit rather than grid cells. This approach

allowed us to compare the trail use of citizen science participants with

that of other recreational trail users. We hypothesized that the spatial

distribution and drivers of citizen science activity along trail corridors,

defined as the zone within 150 m on either side of each trail segment,

would be positively correlated with that of other trail users.

Tomodel the relationship between citizen science observations and

covariates along trail segments in the study area, we fit a new nega-

tive binomial generalized linear model. The response variable was the

numberof citizen scienceobservations per trail segment corridor, stan-

dardized by segment length, and the model covariates were derived

from the same 10 environmental variables as in the grid-based analy-

sis (Table1). Themodel structure, correction for spatial autocorrelation

and model averaging followed the same methods as in the grid-based

analysis described in Section 2.3.1.

To test the hypothesis that citizen science activity would correlate

with other trail activity, we first used a Pearson rank correlation to

compare the number of citizen science observations, standardized by

segment length, with the total number of Strava activities reported on

the segment. We then used the number of Strava activities reported
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along each trail segment as a response variable to fit a second model

with the same structure and covariates.

All analyses were conducted in R version 4.1.2 (R Core Team, 2021),

and analysis scripts are available (Mandeville et al., 2022). Key R pack-

ages included tidyverse for data management (Wickham et al., 2019),

sf for spatial analyses (Pebesma, 2018) and glmulti for multi-model

inference (Calcagno & deMazancourt, 2010).

3 RESULTS

3.1 Biodiversity data

The filtered citizen science data consisted of 44,206 observations from

seven citizen science platforms. The vast majority (91%) were con-

tributed through the Norwegian Species Observation Service (https://

www.biodiversity.no/), which is Norway’s main biodiversity citizen

science platform. Citizen science data were contributed by 560 par-

ticipants. As is typical of digital citizen science datasets (Boakes et al.,

2016; Rowley et al., 2019;Wood et al., 2011), a small number of highly

activeparticipants contributed themajorityof thedata; themost active

5% of participants contributed 79% of the total data, while the median

participant contributed just six observations. The filtered profession-

ally collected data available on GBIF consisted of 2059 observations

from 31 data providers.

The citizen science data contained reports of 1524 species and the

professional data contained reports of 991 species (Figure 2). Both

types of data collection took place year-round with a peak in intensity

in the summer months, but annual variation in sampling intensity was

more extreme in the professional data, with sampling intensity peaking

later in the summer and falling to a lower rate in the winter than in the

citizen science data (Figure 2). Observations occurred in all available

land cover types (Figure 2).

3.2 Environmental covariates of citizen science
activity and professional data collection: Grid-based
analysis

As expected, ease of area access was positively correlated with citizen

science activity among grid cells (Figures 3, 4, and S2.1; Table S2.2).

The total trail length per grid cell was the most important covariate

and had a large positive effect on citizen science activity. Grid cells

nearer to an area access point and to the closest population centre

were also positively associated with citizen science activity, though

the effect of these covariates was smaller. Neither elevation nor the

presence of recreational facilities had an important relationship with

citizen science activity. Contrary to expectations, the developed and

cultivated land cover types had a positive association with citizen sci-

ence, while the wetland and forest land cover types were unimportant.

The presence of freshwater had an important positive relationship to

citizen science activity. Parameter estimates were consistent among

the highly weighted models; they varied little between the six mod-

els that had a substantial level of support (ΔAICc < 2), which in total

account for 66.3% of the weight of evidence (Table S2.3; Figure S2.4).

Citizen science activity was not correlated with professional data

collection among grid cells (Figure 1; Pearson correlation r = 0.035,

p = 0.023). Two access covariates—proximity to access points and to

the population centre at the area’s eastern edge—were important in

the professional data model (Figures 3, 5, and S2.1; Table S2.2). The

effect of proximity to the population centre was opposite to its effect

on citizen science. As with citizen science, the presence of water and

cultivated land had a positive relationship to professional data collec-

tion and forest had a small negative effect. Unlike with citizen science,

the presence of wetland land cover had a small negative relationship

to professional data collection and the developed land cover type did

not have an important effect. There was little variation in parameter

estimates among the nine models with a substantial level of support

(ΔAICc < 2), which in total account for 46.7% of the weight of evidence

(Table S2.3; Figure S2.4).

3.3 Relationship between citizen science and trail
network

The locations of citizen science observations were a median of 11 m

from the nearest trail, which was closer than sites of professional data

collection (median: 29 m). Both were closer than a random distribu-

tion of sites, which would be expected to have a median distance from

the nearest trail of 45 m (Kruskal–Wallis χ2(2) = 1167, p < 0.0001)

(Figure 6).

There was high variability in the distance between observation

points and the nearest trail within taxonomic groups. Still, taxonomic

groups that may be difficult to see from a distance (fungi, reptiles and

amphibians) were associated with the smallest mean distance from

the trail, while taxonomic groups that tend to be relatively easy to

spot from a distance (birds) were associated with the greatest dis-

tance (Kruskal–Wallis χ2(5) = 3083, p < 0.0001). Invertebrates were

an exception to this trend. These results are partially consistent with

the trend expected if observations tended to be made from a trail,

though theremay be alternative potential explanations for the pattern.

Though differences between groupswere observed in the professional

dataset as well, there was greater variability and less evidence for the

hypothesized trend (Kruskal–Wallis χ2(4)= 74, p< 0.0001) (Figure 6).

3.4 Environmental covariates of citizen science
and other recreational trail use: Trail-based analysis

The tested covariates had limited ability to explain variation in citizen

science activity among trail segments; four models had a substantial

level of support, totalling 24.2% of the weight of evidence (Table S3.3;

Figure S3.4). All effect sizes were relatively small compared to the

grid-based models (Figures 3, 7, and S3.1; Table S3.2). Notably, most

covariates that were important at the grid scale were not important

to describe variation between trail segments; proximity to the nearest
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F IGURE 2 (a) Number of observations from each taxonomic group for citizen science and professional data; (b) number of species from each
taxonomic group for citizen science and professional data; (c) month of observation for citizen science and professional data; (d) land cover type for
citizen science and professional observations, shown relative to the availability of land cover types within the area.

access point, the eastern area edge and freshwater were important at

the grid level but had only a small and uncertain relationship to citizen

science activity along trail segments. The most important variable was

forest cover, which had a small negative relationship to citizen science

activity.

The number of citizen science observations per trail segment cor-

ridor had no relationship to the number of reported Strava activities

(Figure 1; Pearson correlation test, r=−0.01, p= 0.414). The relation-

ship between the covariates and Strava activity differed substantially

from their relationship to citizen science activity. The degree towhich a

trail segment functioned as amain travel routewas themost important

covariate,with a largepositive relationship toStravaactivity (Figures3,

8, and S3.1; Table S3.2). In contrast, this covariate had only a small

positive effect on citizen science activity (Figures 3 and 7). Elevation

had a positive association with Strava activity but a small negative

association with citizen science activity.Wetland land cover had a pos-

itive association, while the relationship with forest and developed land

cover was small and uncertain. There was little variation in parame-

ter estimates among the 12 models with a substantial level of support

(ΔAICc < 2), together accounting for 42.7% of the weight of evidence

(Table S3.3; Figure S3.4).

4 DISCUSSION

We responded to calls for research on citizen science within protected

and other natural areas by examining citizen science activity in a small

natural area that serves as a regional citizen science hotspot. Our

results illustrate that citizen science participation is spatially heteroge-

neous on a local scale. Ease of area access was the dominant landscape
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F IGURE 3 Effect of all covariates on the response variable of (a)
the grid-basedmodels of citizen science and professional data
collection and (b) the trail-basedmodels of citizen science and Strava
activity. Decreasing colour intensity indicates decreasing variable
importance. All continuous variables have been centred and scaled.

characteristic driving the distribution of citizen science in our study

area, and a key component of accessibility is the use of a trail network

to access observation sites. However, the distribution of citizen science

activity along the trail network differed from that of other trail users. In

general, citizen scienceactivitywasmoreevenlydispersedover awider

range of trail characteristics than other trail use; for example, citizen

science participants were more likely than other trail users to spend

time both in more developed parts of the natural area and also on less

well-established paths that do not function asmain travel routes.

The importance of area access is a notable result of our study. It is

known that accessibility and natural interest are major regional deter-

minants of citizen science activity, but our results are among the first

to show that, within a small natural area, accessibility has a stronger

relationship to citizen science than particular landscapes perceived as

the most natural. To the contrary, citizen science activity was posi-

tively associated with cultivated and developed land within the area.

This may be partially explained by the increased accessibility afforded

by infrastructure in these areas, or by interest in the biodiversity of

these land cover types. But it may also stem from an affinity for culti-

vated and developed land cover, as suggested by recent findings that

the integration of biodiversity with cultural and agricultural heritage

plays an important role in communities’ relationship to natural areas

(Cusens et al., 2022). Proximity to water was positively associated

with citizen science activity in our study area, as has previously been

shown at regional scales and within urban areas (Boakes et al., 2016;

Tiago et al., 2017). This could be explained by trends in either partici-

pantbehaviour (e.g. participantsmightprefer spending timenearwater

or observing species found near water) or in species availability (e.g.

landscapes containing freshwater may be more species rich or afford

greater detectability for species that are present).

The strong association between accessibility and citizen science

participation offers some possibilities for improving the analysis of cit-

izen science data. First, it may be possible to coarsely model citizen

science sampling bias in local-scale analyses by accounting for access

opportunities, as has been done previously at broader scales (Cretois

et al., 2021; Johnston et al., 2020; Sicacha-Parada et al., 2021). Fur-

ther, it may be possible to incorporate local-scale sampling bias within

citizen science hotspots into regional models. A better understanding

of sampling process can support a diverse range of applications that

are relevant to local area management, including biodiversity assess-

ments, monitoring of trends, assessment of interventions, invasive

species detection, and species distributions analyses (Dobson et al.,

2020; Foster et al., 2021; Johnston et al., 2022; Kühl et al., 2020).

At the same time, our results emphasize that mass participation

citizen science can be a valuable supplement or, where needed, surro-

gate for biodiversity data from other data sources. Though the analysis

of opportunistic citizen science data is characterized by a range of

challenges in addition to spatial and temporal unevenness, including

taxonomic bias and accuracy, geographic accuracy and typical lack of

non-detection data, they are widely recognized as a critical source of

biodiversity data (Callaghan et al., 2021; Cooper et al., 2014; Johnston

et al., 2020). The citizen science data onGBIF include a greater number

of species from all taxonomic groups than the equivalent professional

datasets within our study area, covering a similarly diverse range of

land cover types. In some ways, citizen science expands the reach of

professional data collection; for instance, citizen science outpaced the

professional data available on GBIF in the winter months in our study

area. Winter ecology is recognized as understudied yet critical to con-

servation in the face of climate change (Studd et al., 2021; Sutton et al.,

2021), so the contribution to this research area by citizen science is

noteworthy.

When comparing citizen science andprofessionally collecteddata, it

is important to note that the professional data available on GBIF for a

natural area are almost certainly not a complete record of professional

biodiversity data that have been collected in the area; while the value

of openly sharing data is increasingly recognized, barriers still prevent

much biodiversity data from being shared (Mandeville et al., 2021).

Many small natural areas also support locallymanaged, place-basedcit-

izen science programs that are typically structured to address specific
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F IGURE 4 Predicted effect of each covariate on the number of citizen science observations per grid cell, modelled with a negative binomial
generalized linear model structure. For predictions, other covariates are held at their mean value. All six models with substantial support
(ΔAICc < 2) are shown, with decreasing colour intensity indicating decreasingmodel rank. Relative variable importance, calculated with a
weighted average of all models, is indicated above each covariate plot.

F IGURE 5 Predicted effect of each covariate on the number of professional biodiversity observations per grid cell, modelled with a negative
binomial generalized linear model structure. For predictions, other covariates are held at their mean value. All ninemodels with substantial
support (ΔAICc < 2) are shown, with decreasing colour intensity indicating decreasingmodel rank. Relative variable importance, calculated with a
weighted average of all models, is indicated above each covariate plot.

research and monitoring questions (Mandeville & Finstad, 2021;

Rosemartin et al., 2021). Such programs are highly valuable but are

often resource intensive to coordinate at a local level and therefore

may not be feasible to implement in all settings (Alfonso et al., 2022;

Rosemartin et al., 2021; Tancoigne, 2019). Further, they often produce

data that are not openly shared on GBIF (Mandeville et al., 2021). For

this reason, the open biodiversity data collected through opportunis-

tic citizen science platforms are particularly valuable for their relative

ease of access, allowing them to fill gaps both when other data do

not exist and when other data cannot be accessed. In parallel with

increasing the utility of citizen science data for area management, it is

critical to continue increasing area managers’ access to other existing

data sources; among other reasons, this is because opportunistic citi-

zen science data are often most valuable when integrated with other

data types (Dobson et al., 2020; Kühl et al., 2020; Mandeville et al.,

2021).
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F IGURE 6 (a) Distance between reported observation coordinates and the nearest trail for the locations of citizen science data collection,
professional data collection and a random sample of locations in the study area. (b) Distance between reported observation coordinates and the
nearest trail for observations within each taxonomic group, for citizen science and professional data. The area under the curve indicates the
proportion of the total data with each value along the x-axis, and dashes indicatemedian values. Letters indicate significantly different groups as
indicated by a Dunn’s post hoc test (α= 0.05).

F IGURE 7 Predicted effect of each covariate on the number of citizen science observations per 300-m-wide trail segment corridor,
standardized by segment length, modelled with a negative binomial generalized linear model structure. For predictions, other covariates are held
at their mean value. All four models with substantial support (ΔAICc < 2) are shown, with decreasing colour intensity indicating decreasingmodel
rank. Relative variable importance, calculated with a weighted average of all models, is indicated above each covariate plot.

In addition to informing more effective analysis of existing citizen

science data, knowledge of citizen science activity patterns can beused

by area managers to promote and guide future data collection. First,

managers could use knowledge about citizen science trends to reach

out to current participants to prompt collection of data to meet spe-

cific monitoring needs, for example by posting signs in areas regularly

frequented by citizen science participants or communicating through

customization features offered by citizen science platforms (Callaghan

et al., 2021; Gosal et al., 2021; Koen & Newton, 2021). Second, man-

agers could identify areas of low citizen science activity to target for

recruiting new participants (Weaver & Lawton, 2017). For instance,

recreational facilities were not closely associated with citizen science
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F IGURE 8 Predicted effect of each covariate on the number of reported Strava activities per trail segment corridor, modelled with a negative
binomial generalized linear model structure. For predictions, other covariates are held at their mean value. All 12models with substantial support
(ΔAICc < 2) are shown, with decreasing colour intensity indicating decreasingmodel rank. Relative variable importance, calculated with a
weighted average of all models, is indicated above each covariate plot.

participation inour studyarea; collaborationwith relevant recreational

organizations and facilities to promote citizen science could more

firmly ground local citizen science participation in a sense of place and

engage recreational visitors who do not yet participate in citizen sci-

ence (Allf et al., 2022; Newman et al., 2017). Finally, managers may be

able to prioritize professional data collection to complement citizen

science by emphasizing areas of low citizen science activity.

Knowledge of spatial trends in citizen science activity can further

inform overall management strategies for natural areas and green

spaces. The needs and preferences of area visitors are regularly used

to make management decisions about natural areas and even to jus-

tify ongoing area protection, but because different subsets of visitors

prioritize different types of area management, it can be challenging

to identify the diverse needs of area visitors (Hornigold et al., 2016;

Komossa et al., 2021; Mancini et al., 2019; Muñoz et al., 2020). Our

results show that citizen science participants in our study area tend

to use the area’s trail network differently than other visitors, so their

needs may be overlooked if not explicitly considered. Citizen science

participants may even serve as a useful proxy to represent a broader

group of nature-oriented visitorswhose area usemight differ in similar

ways from the more activity-oriented visitors captured in the Strava

Metro data (Cambria et al., 2021; Havinga et al., 2020). The Strava

Metro dataset is itself biased toward visitors with a focus on athletic

recreation, though a recent study elsewhere in Norway found a high

correlation between Strava activities and absolute counts of segment

users, suggesting that Strava is relatively representative of the domi-

nant trends in segment use, particularly in areas of high activity (Venter

et al., 2021).

Moving forward, there is much left to learn about citizen science

participation at a local scale. The knowledge gained from modelling

spatial patterns in citizen science participation is especially meaning-

ful when considered alongside studies that directly investigate citizen

science participants’ motivations, goals and outcomes. Our results

demonstrate that trends in citizen science participants’ behaviour can

manifest in spatial patterns, and also suggest new directions that could

be followed up with social science research: for instance, it would be

useful to survey citizen science participants about their selection of

trail routes or their on- and off-trail activity. Importantly, our goal of

understanding the distribution of citizen science activity at a local scale

responds to a commonly documented motivation for citizen science

participation: participants regularly indicate that they want their data

to be used for the conservation and management of places that they

value (Bowler et al., 2022; Ganzevoort et al., 2017; Larson et al., 2020;

Maund et al., 2020). Through facilitation of improved data analysis

and citizen science program implementation, a stronger understand-

ing of citizen science activity can be a step toward increasing the local

conservation impact of participants’ contributions.
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K., Soultan, A., Božič, L., Clausen, P., Devos, K., Domsa, C., Encarnação,

V., Faragó, S., Fitzgerald, N., Frost, T., Gaudard, C., Gosztonyi, L., Haas,

F., Hornman, M., Langendoen, T., . . . Brommer, J. E. (2022). Protected

area characteristics that help waterbirds respond to climate warming.

Conservation Biology, 36, e13877.
Ganzevoort, W., van den Born, R. J. G., Halffman, W., & Turnhout, S. (2017).

Sharing biodiversity data: Citizen scientists’ concerns and motivations.

Biodiversity and Conservation, 26, 2821–2837.
Geldmann, J., Heilmann-Clausen, J., Holm, T. E., Levinsky, I., Markussen, B.,

Olsen, K., Rahbek, C., & Tøttrup, A. P. (2016). What determines spatial

bias in citizen science? Exploring four recording schemes with different

proficiency requirements.Diversity and Distributions, 22, 1139–1149.
Global Biodiversity Information Facility (GBIF). (2021). GBIF Occurrence

Download. https://doi.org/10.15468/dl.pd3tce
Gosal, A. S., McMahon, J. A., Bowgen, K. M., Hoppe, C. H., & Ziv, G.

(2021). Identifying and mapping groups of protected area visitors by

environmental awareness. Land, 10, 560.
Gurney, G. G., Darling, E. S., Ahmadia, G. N., Agostini, V. N., Ban, N. C., Blythe,

J., Claudet, J., Epstein, G., Estradivari, H.-C. A., Jonas, H. D., Armitage, D.,

Campbell, S. J., Cox, C., Friedman, W. R., Gill, D., Lestari, P., Mangubhai,

S., McLeod, E., Muthiga, N. A., . . . Jupiter, S. D. (2021). Biodiversity needs

every tool in the box: UseOECMs.Nature, 595, 646–649.
Hagen,D., Vistad,O. I., &Rød-Eriksen, L. (2019). Sårbarhetsvurdering avutval-

gte ferdselslokaliteter I bymarka naturreservat. Kvistingstien, Gråkallen rundt,
St. Olavsspranget. NINARapport 1680. Norsk Institutt forNaturforskning.

Häkkilä, M., Johansson, A., Sandren, T., Uusitalo, A., Mönkkönen, M.,

Puttonen, P., & Savilaakso, S. (2021). Are small protected habitat patches

within boreal production forests effective in conserving species rich-

ness, abundance and community composition? A systematic review.

Environmental Evidence, 10, 2.
Halliwell, P., Whipple, S., & Bowser, G. (2022). Learning to love protected

areas: Citizen science projects inspire place attachment for diverse stu-

dents inUnited StatesNational Parks. Journal ofGeoscience Education,70,
412–420.

Havinga, I., Bogaart, P. W., Hein, L., & Tuia, D. (2020). Defining and spa-

tially modelling cultural ecosystem services using crowdsourced data.

Ecosystem Services, 43, 101091.
Hlásny, T., Mokroš, M., Dobor, L., Merganičová, K., & Lukac, M. (2021). Fine-
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TABLE SI 3.2. Importance and model-averaged estimates and standard error for each covariate in 

the (a) citizen science and (b) Strava model among trail segment corridors in the study area.  

TABLE SI 3.3. All negative binomial generalized linear models of (a) citizen science observations, 
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TABLE SI 1.1. Data contributors to the biodiversity data accessed from GBIF, after filtering for 

inclusion in this study. n indicates the number of included data points contributed by the 

indicated data source. Data sources where n = 0 were present in the study area on GBIF but all 

data from these sources were excluded through the filtering described in the Methods section. 

 

Data source Type of source n 
(included) 

Norwegian Species Observation Service Citizen science - opportunistic 40376 
eBird Observation Dataset Citizen science - opportunistic 3450 
iNaturalist Research-grade Observations Citizen science - opportunistic 299 
Pl@ntNet Citizen science - opportunistic 50 
Skandobs Citizen science - opportunistic 11 
Naturgucker Citizen science - opportunistic 11 
Observation.org Citizen science - opportunistic 6 
Vascular plant herbarium TRH, NTNU 
University Museum 

Professional 492 

Lichen herbarium TRH, NTNU University 
Museum 

Professional 291 

Terrestrial and limnic invertebrates 
systematic collection, NTNU University 
Museum 

Professional 246 

Mycology herbarium TRH, NTNU 
University Museum 

Professional 218 

Fungi field notes, Oslo (O) Professional 170 
NINA insect database Professional 120 
International Barcode of Life project 
(iBOL) 

Professional 100 

BioFokus Professional 99 
Geographically tagged INSDC sequences Professional 67 
Bryophyte herbarium TRH, NTNU 
University Museum 

Professional 53 

Lichen field notes, Oslo (O) Professional 29 
Royal Botanic Garden Edinburgh Living 
Plant Collections (E) 

Professional 28 

Bird collection NTNU University Museum Professional 27 
Lichen herbarium, Oslo (O) UiO Professional 25 
Mycology herbarium, Oslo (O) UiO Professional 23 
NHMO DNA Bank Vascular plants 
collection 

Professional 19 

Vascular Plant Herbarium, Oslo (O) UiO Professional 15 
NHMO DNA Bank Fungi and Lichens 
collection 

Professional 7 

Danish Mycological Society, fungal records 
database 

Professional 6 

Artsprosjekt: hypogeous_macrofungi Professional 4 
Bryophyte Herbarium, Oslo (O) UiO Professional 4 
Herpetile collection NTNU University 
Museum 

Professional 4 

Entomological collections, UiB Professional 3 
Lichen herbarium, UiB Professional 2 
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Algae herbarium TRH, NTNU University 
Museum 

Professional 1 

Mycology collection, Norwegian Forest and 
Landscape Institute 

Professional 1 

Reptilia notes, NTNU University Museum Professional 1 
Seabirds in Norway - Estimated population 
sizes 

Professional 1 

The cryptogamy collection (PC) at the 
Herbarium of the Muséum national 
d'Histoire Naturelle (MNHN - Paris) 

Professional 1 

Tropicos Specimen Data Professional 1 
Vascular plant herbarium (KMN) UiA Professional 1 
Norwegian Biodiversity Information Centre 
- Other datasets 

Citizen science - structured  0 

Algae collection, Oslo (O) UiO Professional 0 
Algae, Norwegian College of Fishery 
Science 

Professional 0 

Birds ringed with Norwegian rings 1914-
1960 

Professional 0 

Birds ringed with Norwegian rings 1961-
1990 

Professional 0 

Bryophyte herbarium, UiT Tromsø 
Museum 

Professional 0 

Collembola collection of Arne Fjellberg, 
Norway 

Professional 0 

Entomology collection, UiT Tromsø 
Museum 

Professional 0 

Entomology Division, Yale Peabody 
Museum 

Professional 0 

Entomology, Natural History Museum, 
University of Oslo 

Professional 0 

Fish collection NTNU University Museum Professional 0 
Herbarium GB, University of Gothenburg Professional 0 
Huitfeldt Kaas: Freswhater fish distribution 
in Norway 1918 

Professional 0 

Ims fish tag database Professional 0 
Lichen herbarium, UiT Tromsø Museum Professional 0 
Limnic freshwater benthic invertebrates 
biogeographical mapping/inventory NTNU 
University Museum 

Professional 0 

Limnic freshwater pelagic invertebrates 
biogeographical mapping/inventory NTNU 
University Museum 

Professional 0 

Lund Botanical Museum (LD Professional 0 
Mammal collection NTNU University 
Museum 

Professional 0 

Marine invertebrate collection NTNU 
University Museum 

Professional 0 

Mycology herbarium, UiT Tromsø Museum Professional 0 
fNational fish tag database Professional 0 
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NHMO DNA Bank Fish and Herptile 
collection 

Professional 0 

NINA Vanndata fisk Professional 0 
NINA Vanndata øvrige arter Professional 0 
NMNH Extant Specimen Records Professional 0 
Notes from the Mycology Herbarium, Oslo 
(O) 

Professional 0 

NSW AVH data Professional 0 
Provincial Museum of Alberta, Edmonton, 
AB, Canada. Birds (Aves) 

Professional 0 

SEAPOP - Last observation per locality in 
breeding season 

Professional 0 

Thrips (Thysanoptera) in Norway Professional 0 
Vascular plant field notes, NTNU 
University Museum 

Professional 0 

Vascular plant herbarium, UiT Tromsø 
Museum 

Professional 0 

Vascular Plants, Field notes, Oslo (O) Professional 0 
Vascular Plants, Museum of Archaeology, 
University of Stavanger 

Professional 0 
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FIGURE SI 1.2. Map indicates the year in which citizen science biodiversity data used in the study 

were collected. The 2016-2020 time period, which contains 41% of the citizen science data, 

corresponds with the dates of available Strava Metro data. 

We chose to use citizen science data from 2000-2021 because we do not expect the distribution 

of citizen science or recreational trail use to have changed substantially from 2000 onwards; the 

trail network, access points, and other relevant environmental variables have remained largely 

unchanged during that time and there is no reason to believe user behavior would have changed 

in a systematic way. Given this expectation, we preferred to use the wider range of citizen 

science data because it allows for a larger sample size. We briefly tested this expectation by 

comparing the distribution of the citizen science data collected in the 2016-2020 time period 

with the rest of the citizen science data. Data from the two time periods were positively 

correlated (Pearson correlation r = 0.45, p = < 0.0001). 
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FIGURE SI 2.1. Model-averaged relative variable importance of each covariate for the models of 

(a) citizen science and (b) professional biodiversity data observations among grid cells in the 

study area. 

 

 

 

  

86



TABLE SI 2.2. Importance and model-averaged estimates and standard error for each covariate in 

the (a) citizen science and (b) professional model of biodiversity observations among grid cells in 

the study area. 

 

 (a) Citizen science (b) Professional 

 Importance Estimate 

Std. 

error 

Importance Estimate Std. 

error 

Intercept 1.00 0.21 0.06 1.00 -1.34 0.01 

Total trail length 1.00 0.50 0.06 0.67 0.09 0.09 

Presence of water 1.00 0.61 0.13 1.00 0.88 0.17 

Proximity to access 1.00 0.28 0.07 1.00 0.75 0.09 

Developed land cover 1.00 0.22 0.05 0.30 0.01 0.03 

Cultivated land cover 1.00 0.19 0.05 0.98 0.20 0.07 

Proximity to eastern edge 0.92 0.18 0.08 0.93 -0.29 0.10 

Forest land cover 0.79 -0.10 0.08 0.90 -0.20 0.09 

Wetlands land cover 0.54 0.05 0.06 1.00 -0.41 0.08 

Elevation 0.45 -0.03 0.05 0.59 -0.06 0.08 

Presence of facilities 0.27 -0.03 0.14 0.38 0.19 0.35 
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TABLE SI 2.3. All negative binomial generalized linear models of (a) citizen science and (b) 

professional biodiversity observations within grid cells with a substantial level of support (ΔAICc 

< 2). 

 

(a) Citizen science 

Model AICc ΔAICc k Evidence 

weight 

water + access + trails + longitude + developed + 

cultivated + forest + ac 

10764.62 0.00 9 0.15 

water + access + trails + longitude + elevation + 

developed + cultivated + forest + ac 

10764.93 0.14 10 0.14 

water + access + trails + longitude + developed + 

cultivated + forest + wetlands + ac 

10765.07 0.45 10 0.13 

water + access + trails + longitude + elevation + 

developed + cultivated + forest + wetlands + ac 

10765.44 0.68 11 0.10 

water + access + trails + longitude + developed + 

cultivated + wetlands + ac 

10765.95 1.33 9 0.08 

facilities + water + access + trails + longitude + 

developed + cultivated + forest + ac 

10766.58 1.96 10 0.06 

(b) Professional 

water + access + trails + longitude + elevation + 

cultivated + forest + wetlands 

4914.83 0.00 9 0.09 

water + access + trails + longitude + elevation + 

cultivated + forest + wetlands + ac 

4915.29 0.46 10 0.07 

water + access + trails + longitude + cultivated + 

forest + wetlands + ac 

4915.44 0.61 9 0.07 

facilities + water + access + trails + longitude + 

elevation + cultivated + forest + wetlands 

4915.91 1.08 10 0.05 

facilities + water + access + trails + longitude + 

elevation + cultivated + forest + wetlands + ac 

4916.33 1.50 11 0.04 

facilities + water + access + trails + longitude + 

cultivated + forest + wetlands + ac 

4916.51 1.68 10 0.04 

water + access + longitude + elevation + 

cultivated + forest + wetlands 

4916.67 1.84 8 0.04 

water + access + trails + longitude + cultivated + 

forest + wetlands 

4916.79 1.96 8 0.03 

water + access + trails + longitude + elevation + 

developed + cultivated + forest + wetlands 

4916.80 1.97 10 0.03 

 

88



FIGURE SI 2.4. AICc weights of the 2000 highest rated negative binomial generalized linear 

models for the number of (a) citizen science and (b) professional observations per grid cell, out 

of a set consisting of all possible combinations of the ten covariates with no interactions. Models 

below the red line have substantial support (ΔAICc < 2). 
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FIGURE SI 3.1. Model-averaged relative variable importance of each covariate for the models of 

(a) citizen science observations, standardized by trail length, and (b) reported Strava activities

among trail segment corridors in the study area.
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TABLE SI 3.2. Importance and model-averaged estimates and standard error for each covariate in 

the (a) citizen science and (b) Strava model among trail segment corridors in the study area.  

(a) Citizen science (b) Strava

Importance Estimate 

Std. 

error 

Importance Estimate Std. 

error 

Intercept 1.00 0.71 0.07 1.00 6.60 0.04 

Forest land cover 1.00 -0.35 0.07 0.66 0.04 0.04 

Wetland land cover 0.98 -0.17 0.06 1.00 0.27 0.03 

Function as main route 0.92 0.15 0.07 1.00 0.64 0.03 

Developed land cover 0.84 0.12 0.08 1.00 -0.13 0.03 

Elevation 0.77 -0.10 0.07 1.00 0.19 0.03 

Proximity to facilities 0.71 -0.11 0.09 0.66 0.04 0.04 

Cultivated land cover 0.53 -0.06 0.07 0.53 0.02 0.03 

Proximity to water 0.32 0.01 0.03 0.60 0.03 0.03 

Proximity to eastern edge 0.29 0.00 0.03 0.41 0.02 0.03 

Proximity to access 0.27 0.00 0.02 0.60 -0.03 0.03 
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TABLE SI 3.3. All negative binomial generalized linear models of (a) citizen science observations, 

standardized by trail length, and (b) reported Strava activities within trail segment corridors with 

a substantial level of support (ΔAICc < 2). 

(a) Citizen science

Model AICc ΔAICc k Evidence 

weight 

mainPath + facilities + elevation + wetlands + forest 

+ developed. + cultivated + ac

14490.37 0.00 9 0.10 

mainPath + facilities + elevation + wetlands + forest 

+ developed + ac

14491.27 0.90 8 0.06 

mainPath + facilities + elevation + wetlands + forest 

+ developed + cultivated + water + ac

14491.84 1.47 10 0.05 

access + mainPath + facilities + elevation + wetlands 

+ forest + developed + cultivated + ac

14492.35 1.98 10 0.04 

(b) Strava

access + mainPath + facilities + elevation + wetlands 

+ forest + developed + cultivated + water + ac

105746.8 0.7 11 0.06 

access + mainPath + facilities + elevation + wetlands 

+ forest + developed + cultivated + ac

105747.5 1.0 10 0.05 

access + mainPath + longitude + elevation + 

wetlands + forest + developed + cultivated + water + 

ac 

105747.8 1.1 11 0.04 

mainPath + facilities + elevation + wetlands + forest 

+ developed + cultivated + water + ac

105747.9 1.1 10 0.04 

access + mainPath + longitude + facilities + elevation 

+ wetlands + forest + developed + cultivated + water

+ ac

105747.9 1.1 12 0.04 

access + mainPath + facilities + elevation + wetlands 

+ forest + developed + water + ac

105748.0 1.2 10 0.04 

mainPath + facilities + elevation + wetlands + forest 

+ developed + cultivated + ac

105748.1 1.3 9 0.03 

access + mainPath + facilities + elevation + wetlands 

+ forest + developed + ac

105748.5 1.7 9 0.03 

access + mainPath + elevation + wetlands + forest + 

developed + cultivated + water + ac 

105748.6 1.8 10 0.03 
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access + mainPath + longitude + elevation + 

wetlands + forest + developed + water + ac 

105748.7 1.9 10 0.03 

mainPath + facilities + elevation + wetlands + forest 

+ developed + water + ac 

105748.8 2.0 9 0.02 

access + mainPath + facilities + elevation + wetlands 

+ developed + ac 

105748.8 2.0 8 0.02 
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FIGURE SI 3.4. AICc weights of the 2000 highest rated negative binomial generalized linear 

models for the number of (a) citizen science observations, standardized by trail length, and (b) 

recorded Strava activities per trail segment, out of a set consisting of all possible combinations of 

the ten covariates with no interactions. Models below the red line have substantial support 

(ΔAICc < 2). 
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Abstract 

Many alpine species are expected to respond to climate change through upslope shifts of their 

range limits, but competition may restrict or alter this response. Under traditional range-limit 

theory, it is expected that lower-elevation species are better competitors than closely related 

higher-elevation species. However, recent work finds that this prediction is often unmet. We 

investigated evidence for the impact of competition during breeding season on the elevational 

range limits of a pair of closely related alpine bird species, willow ptarmigan (Lagopus lagopus) and 

rock ptarmigan (L. muta), in mainland Norway. The species share overlapping ranges loosely 

divided by the treeline ecotone, with willow ptarmigan generally occupying lower sites and rock 

ptarmigan occupying higher sites. We used multi-species occupancy models to test four 

competing hypotheses for how competition may affect the range limit between willow ptarmigan 

and rock ptarmigan: (1) asymmetric competition that restricts the lower range limit of rock 

ptarmigan; (2) asymmetric competition that restricts the upper range limit of willow ptarmigan; 

(3) condition-dependent competition that restricts both species’ range limits; (4) range limits

unaffected by competition. We found evidence for a negative pairwise interaction between the

two species. Changes in interaction strength along the elevation gradient suggested evidence for

condition-specific competition. However, a strong positive correlation between rock ptarmigan

and higher-elevation habitat resulted in a highly asymmetric outcome, where the upper range

limit of willow ptarmigan was restricted but rock ptarmigan occupancy was fairly independent of

willow ptarmigan. This outcome is opposite to the prediction of traditional range-limit theory

and may suggest a greater climate threat to willow ptarmigan than has been previously projected.

Thus, our results demonstrate the importance of considering biotic interactions at both the

higher and lower ends of species’ range limits along elevation gradients.
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Open Data Practices among Users 
of Primary Biodiversity Data

CAITLIN P. MANDEVILLE , WOUTER KOCH, ERLEND B. NILSEN, AND ANDERS G. FINSTAD

Presence-only biodiversity data are increasingly relied on in biodiversity, ecology, and conservation research, driven by growing digital 
infrastructures that support open data sharing and reuse. Recent reviews of open biodiversity data have clearly documented the value of data 
sharing, but the extent to which the biodiversity research community has adopted open data practices remains unclear. We address this question 
by reviewing applications of presence-only primary biodiversity data, drawn from a variety of sources beyond open databases, in the indexed 
literature. We characterize how frequently researchers access open data relative to data from other sources, how often they share newly generated 
or collated data, and trends in metadata documentation and data citation. Our results indicate that biodiversity research commonly relies on 
presence-only data that are not openly available and neglects to make such data available. Improved data sharing and documentation will 
increase the value, reusability, and reproducibility of biodiversity research.

Keywords: applied ecology, biodiversity, informatics, monitoring and mapping, publication practices

Biodiversity data are increasingly made openly  
available, facilitated by extensive digital infrastructures 

that support data standardization and publication (Farley 
et al. 2018, Anderson et al. 2020, Kays et al. 2020). There is 
growing recognition that this open sharing of biodiversity 
data is critical for advancing biodiversity research (Farley 
et al. 2018). Some of the primary benefits of open biodiversity 
data include enhanced reproducibility of research (Alston 
and Rick 2021); making data available for reuse in new 
research applications (Chawinga and Zinn 2019); enabling 
researchers to receive credit, in the form of citations, for their 
efforts producing and sharing data sets (Costello et al. 2013, 
Brown 2021); and minimizing the duplication of research 
effort, enabling researchers to prioritize new data collection 
that fills research gaps (Troudet et al. 2017). As data sharing 
continues to become normalized, best practices have devel-
oped for the sharing of biodiversity data (Kühl et al. 2020). 
The FAIR data principles, for instance, outline four key attri-
butes of effectively shared data: findable, accessible, interop-
erable, and reusable (Wilkinson et al. 2016). Specific practices 
have been developed to implement biodiversity data sharing 
in accordance with FAIR data principles. For example, global 
data aggregators such as the Global Biodiversity Information 
Facility (GBIF) provide a central location for aggregated 
data sets, ensuring that they will be findable and acces-
sible (Robertson et  al. 2014), and standardization schemes 
such as Darwin Core provide a mechanism for researchers 
to improve interoperability (Wieczorek et  al. 2012). Such 

innovations support extensive data reuse; for example, the 
GBIF currently enables integrated data searches of nearly 1.7 
billion species records from diverse sources around the world 
and has facilitated data reuse in thousands of publications 
(Heberling et al. 2021).

Although any type of data can be openly shared, the bio-
diversity data type most readily associated with open data 
sharing is presence-only occurrence data (König et al. 2019, 
Anderson et al. 2020, Wüest et al. 2020, Gadelha et al. 2021). 
Presence-only data consist of the taxonomic identification 
and location of an organism, often with the time of observa-
tion but without further information about species abun-
dance, sampling design, or sites at which the species was not 
observed. The quantity of presence-only data aggregated in 
open biodiversity data repositories is immense and continu-
ing to grow rapidly (Peterson et  al. 2018, Ball-Damerow 
et  al. 2019). This growth has been driven in large part by 
two simultaneous trends: the increasing popularity of citizen 
science platforms through which the public submit opportu-
nistic observations to centralized databases (Theobald et al. 
2015, Amano et al. 2016, Sullivan et al. 2017) and the digi-
tization and aggregation of historical records and museum 
specimens (Speed et al. 2018, Nelson and Ellis 2019, Hedrick 
et al. 2020, Miller et al. 2020). The growing volume of openly 
shared presence-only data is also driven by characteristics 
of the data type itself: It is relatively simple and is easily 
standardized within existing best practices for data sharing 
(Anderson et al. 2020). Presence-only occurrence data now 
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offer greater spatial, temporal, and taxonomic coverage on a 
global scale than other biodiversity data types and are often 
less costly and time intensive to collect (Tulloch et al. 2013, 
Bayraktarov et al. 2019).

As presence-only biodiversity data have grown in volume 
and accessibility, they have become increasingly common 
in biodiversity research (Peterson et  al. 2018, Heberling 
et  al. 2021). The open availability of massive modern and 
historical biodiversity data sets has contributed to a wide 
range of research areas, including ecology, biogeography, 
global change, and conservation (James et  al. 2018, Ball-
Damerow et al. 2019, Heberling et al. 2021). But the analysis 
of presence-only data is not without challenges; both his-
torical and modern presence-only data are associated with 
limitations and biases that are distinct from other data types, 
both because of the lack of absence data and also because of 
the opportunistic collection process frequently associated 
with presence-only data (James et al. 2018, Støa et al. 2018, 
Gelfand and Shirota 2019, Grimmett et  al. 2020, Sicacha-
Parada et al. 2020, Johnston et al. 2021, Petersen et al. 2021). 
Further biases, errors, and limitations can be introduced in 
the processes of data preparation, publishing, and long-term 
maintenance (Tessarolo et al. 2017, Mesibov 2018), includ-
ing the issues of data leakage (Peterson et  al. 2018) and 
data obsolescence (Escribano et  al. 2016). In response to 
these challenges, the growing application of presence-only 
data has been paralleled by an explosion of innovation in 
approaches to assess and improve both data accessibility and 
quality (Ball-Damerow et al. 2019) and also analysis meth-
ods that account for the specific limitations associated with 
this data type (Araújo et al. 2019, Kelling et al. 2019). As the 
development of analysis approaches for presence-only data 
continues, there is broad consensus that the documentation 
of metadata that details the study protocol, including infor-
mation about sampling design or effort, allows for greater 
inference and also greater data reuse and reproducibility of 
analyses (Huettmann 2009, Kelling et al. 2019, Dobson et al. 
2020, Foster et al. 2021). Open biodiversity data repositories 
commonly encourage the publishing of metadata (Poisot 
et al. 2019), but in practice the quality and amount of docu-
mented metadata varies widely (Peterson et al. 2018, Bishop 
et al. 2019, Anderson et al. 2020).

Although presence-only biodiversity data are reported 
and analyzed extensively in the traditional peer-reviewed 
literature, they are not restricted to it. In particular, authors 
who publish or access openly accessible biodiversity data 
may be more likely to seek out alternative outlets for research 
publication, such as preprint servers and journals with novel 
publishing models, because of their emphasis on free shar-
ing of scientific information. Furthermore, biodiversity data 
are likely reported and analyzed often in gray literature and 
conference proceedings. Still, because a great deal of bio-
diversity data are reported and analyzed in the traditional 
peer-reviewed literature, it is important to understand the 
role that this literature plays in either facilitating or hinder-
ing the open sharing of biodiversity data. In this review we 

consider the extent of and barriers to the adoption of open 
data sharing practices within the traditional peer-reviewed 
literature, represented by the set of journals indexed by the 
Web of Science Core Collection.

Many aspects of the sharing and reuse of openly accessible 
biodiversity data in the peer-reviewed literature have been 
characterized, including common research applications of 
open data, taxonomic and spatial trends in open data, persis-
tence of data stored in open databases, and current citation 
practices for open data (Troudet et al. 2017, Escribano et al. 
2018, Ball-Damerow et al. 2019, Heberling et al. 2021, Luo 
et al. 2021). These studies make it clear that openly shared 
presence-only biodiversity data are foundational to a large 
body of biodiversity research. Still, many data go unshared. 
Earlier in the open data movement, it was widely recognized 
that open data formed just a small portion of the total biodi-
versity data known to exist (Ariño 2010, Amano et al. 2016, 
Peterson et  al. 2018). But the current volume of presence-
only data that are not openly shared, despite being presented 
and analyzed in the literature, is unknown. The concept of 
data sources and sinks can be helpful to conceptualize this 
issue; publication approaches that generate or perpetuate 
openly shared data can act as sources for continued data 
reuse, whereas publication approaches that entail a single 
use of data with no means for open access or reuse can be 
thought of as data sinks.

In the present article, we examine a broad cross section of 
the traditional peer-reviewed literature to assess the degree 
to which it serves as a source or sink for open presence-only 
biodiversity data. Our goal is to provide insight into the cur-
rent adoption of open data practices among users of pres-
ence-only biodiversity data in journals indexed by the Web 
of Science Core Collection. To our knowledge, this is the 
first review of open data practices to be broadly defined by 
the presence-only data type, rather than by a particular type 
of data source, such as open databases. We focus on the fol-
lowing questions: How commonly does research published 
in articles indexed by the Web of Science Core Collection 
rely on presence-only data from open sources, and how 
commonly does it rely on data that are newly generated or 
compiled from other sources? To what extent do articles 
indexed by the Web of Science Core Collection serve as a 
data source for open presence-only biodiversity data; that is, 
are newly generated or compiled data made openly available, 
and are open data analyzed, documented, and cited in a way 
that supports continued reuse?

We identify both successes and challenges in the open 
sharing of presence-only biodiversity data, finding that 
the sharing of presence-only biodiversity data is overall 
increasing but that there is ample room for improvement in 
adherence to many data sharing best practices. We compare 
these findings with those of other recent reviews of the bio-
diversity literature, discussing trends that may be distinct to 
the presence-only data type, as well as new patterns that may 
be emerging within open data sharing practices. Because 
presence-only data are the biodiversity data type most 
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commonly associated with open data sharing, they can serve 
as an early indicator to illustrate the developing state of data 
sharing more broadly in the related fields of biodiversity, 
ecology, and conservation. Therefore, our characterization 
of current practices in presence-only data sharing can illu-
minate successes, challenges, and barriers to the adoption of 
data sharing practices that may be of growing relevance to 
the greater biodiversity research community.

Review of the presence-only biodiversity data 
literature
We searched the Web of Science Core Collection to target all 
scholarly articles that report on the application of presence-
only biodiversity occurrence data. Our search targeted 
articles whose titles, abstracts, or keywords contained any of 
31 terms commonly used in the literature to indicate pres-
ence-only data as well as any of 5 terms used to indicate bio-
diversity (box 1). We screened the abstracts of all returned 
articles and retained those that demonstrated the analysis or 
reporting of presence-only occurrence data. After screen-
ing, a total of 2151 articles were included in the review (see 
the extended methods description in supplemental file S1). 
Data management and bibliometric summary statistics were 
conducted in part with the bibliometrix package in R (Aria 
and Cuccurullo 2017).

To identify broad trends in applications of presence-only 
data, we classified all included articles into three topic clus-
ters using latent dirichlet allocation (LDA) topic modeling. 
LDA topic modeling uses word associations within a corpus 
to identify topic clusters and assigns documents to the topic 
clusters on the basis of word frequency within each docu-
ment (Westgate 2019). We classified each document on the 
basis of the words in the abstract and title. LDA topic mod-
eling requires the desired number of clusters to be defined, 
so to select a number of topic clusters we conducted LDA 
analysis six times, each time producing a different number of 
clusters ranging from three to eight. We used two criteria to 
select the number of clusters in our final topic model: First, 
we assessed the clusters for lack of redundancy in an ordina-
tion of all articles by their highest rated topic classification, 

and, second, we assessed the redundancy and interpret-
ability of the sets of most highly weighted words in each set 
of clusters (see supplemental file S2; Asmussen and Møller 
2019, Westgate 2019). The modeling iteration that produced 
three topic clusters was least redundant and most interpre-
table. The topic clusters were assigned descriptive names on 
the basis of the words most characteristic of each cluster: 
methodological articles were characterized by terms related 
to the application and assessment of analysis methods; 
applied articles were characterized by terms related to top-
ics in biodiversity science, conservation, and related fields; 
and records articles were characterized by terms related to 
the collection and reporting of occurrence data (figure 1). 
Topic modeling was conducted with the revtools package in 
R (Westgate 2019).

A subset of 300 articles randomly selected from the 
included articles was read in full and coded according to a 
standardized data sheet (see supplemental files S3 and S4). 
The 300-article subset was representative of the full data 
set in terms of publication year and topic area (figure 2). 
For each article read in full, we recorded information on 10 
fields: taxa, study system, study and author region, sample 
size, study scale, sampling design, analysis approach, data 
source, and data publication (see supplemental file S3). For 
all data fields except for study region and author region, the 
classifications were not mutually exclusive; each article was 
tagged with all applicable responses. Such classification is 
a common approach in descriptive literature reviews (e.g., 
Ball-Damerow et  al. 2019, Hao et  al. 2019). All data man-
agement and analyses were conducted with R version 4.0.2 
(R Core Team 2020), and data and R scripts are available 
online (Mandeville 2021).

Broad trends in the presence-only biodiversity 
literature
The literature relying on presence-only biodiversity occur-
rence data has grown steadily since the mid-2000s, main-
taining an average annual growth rate that exceeds that 
of the biodiversity literature as a whole (Stork and Astrin 
2014). This literature has seen a shift in recent years from 

Box 1. The search string used to query the Web of Science Core Collection to obtain literature.

(((TS = (“presence-only” OR “presence only” OR “opportunistic observation*” OR “opportunistic species observation*” OR “opportu-
nistic occurrence*” OR “opportunistic distribution*” OR “opportunistic species occurrence*” OR “opportunistic species distribution*” 
OR “pseudo-absence*” OR “pseudoabsence*” OR “inferred absence*” OR “presence-background” OR “presence background” OR 
“citizen science” OR “community science” OR “participatory science” or “ad hoc data” OR “ad hoc collection” OR “ad hoc method*” 
OR “incidental data” OR “incidental sighting*” OR “incidentally collected” OR “geographic one-class data” OR “incidental detection*” 
OR “opportunistic detection*” OR “primary biodiversity data*” OR “occurrence record*” OR “atlas data” OR “unstructured occurrence 
data” OR “unstructured species observation” OR “unstructured biodiversity data”))
AND (TS = (“distribution” OR “species” OR “biodiversity” OR “habitat*” OR “niche*”)))
AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan = All years
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a focus on methodological research to data sharing and 
applied analyses, as is evidenced by both the number of 
articles published and the citations obtained by articles in 
each topic area (figure 2). The methodological topic area 
was most common from the mid-2000s through 2015. From 
2015 to 2020, the frequency of articles within the method-
ological topic area remained relatively constant, whereas the 
frequency of applied and records articles increased rapidly. 
Methodological articles are overall the most highly cited, but 
the relative citation rate has declined since 2015 (figure 2). 
The shifting distribution of topic areas suggests that there 
are two distinct eras in the presence-only data literature: an 
era focused on methodological developments, which lasted 
from approximately 2005–2015 and an era with a greater 
focus on applications that began in 2015 and continues 

today. A similar trend has been reported among articles that 
rely on GBIF-mediated data (Heberling et al. 2021).

The increase in articles focused on simple reports of 
occurrence is likely due to an increase in infrastructure and 
incentivization for data papers in recent years (Chavan and 
Penev 2011, Ball-Damerow et al. 2019, Li et al. 2020), and 
the parallel increase in applied research may indicate that 
presence-only approaches are being used more frequently 
to address issues of relevance to conservation and manage-
ment (Guisan et  al. 2013, Tulloch et  al. 2018, Bayraktarov 
et  al. 2019). The decline of methodological articles in 
terms of relative frequency and citation rate might sug-
gest that applied researchers are using more established 
analysis methods more often than they are adopting newer 
approaches.
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Figure 1. The articles were classified into three topic areas using latent dirichlet allocation (LDA) topic modeling, which 
uses word frequencies to cluster articles by topic. The 30 most heavily weighted words in (a) the methodological topic 
(n = 641), (b) the applied topic (n = 753), and (c) the records topic (n = 757) are shown in the present figure. Word size 
indicates relative weight within each topic.
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Figure 2. The number of articles published per year in each topic area within (a) the full set of 2151 articles and (b) the 
300-article subset; the total citations per year since publication in each topic area within (c) the full set of 2151 articles
and (d) the 300-article subset. 2020 is indicated with dashed lines because the results for 2020 may be less complete than
those for other years; although the set of articles was obtained with a search on 4 January 2021, some articles with a 2020
publication date may not yet have been indexed by journals or the Web of Science.
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As a whole, the literature relying on presence-only biodi-
versity data is relatively decentralized and young. Its influ-
ence, as was measured by citations, is still growing; just a 
small number of the reviewed articles were highly cited, 
with a median of six citations per article. Unsurprisingly, 
methodological articles made up the majority of the 89 
articles cited more than 100 times (figure 2; see supple-
mental file S5). The average author contributed to just 1.3 
of the reviewed articles, which aligns with trends reported 
in the biodiversity literature (Stork and Astrin 2014) but is 
substantially lower than authorship rates in the biological 
sciences overall (Fanelli and Larivière 2016). Articles were 
published in a wide range of outlets, with 482 distinct jour-
nals represented in our review. The relative lack of common 
references is a further indicator of the varied scope of the 
presence-only biodiversity literature (see supplemental file 
S5). This is likely due to specialization among biodiversity 
researchers within many distinct research areas, defined for 
example by taxon of interest, geographic region, or scientific 
subdiscipline. Nevertheless, it may indicate a challenge to 
the efficient sharing of information regarding best practices 
for biodiversity data sharing.

Using complementary reviews to build a more 
complete picture of the biodiversity literature
All efforts to systematically review literature contain trade-
offs and biases introduced by the strategy used to search 
the literature, including search terms, search platform, 
and screening protocol. Therefore, efforts to characterize a 
body of literature are most informative when complemen-
tary reviews are considered alongside one another to form 
a more complete picture of the literature as a whole. We 
expect that this is particularly true for rapidly expanding 
research areas, including the presence-only biodiversity data 
literature; reviews of presence-only biodiversity data are 
complicated by the broad and rapidly developing variety of 
ways that this data type is accessed, analyzed, and referred 
to in the literature. To this end, we conducted a small test of 
the similarity of our search results to those of two recently 
published complementary reviews: Ball-Damerow and col-
leagues (2019) and the 2019 GBIF Science Review (GBIF 
Secretariat 2019). Each of these reviews used a search strat-
egy and platform that complements our own, targeting a dis-
tinct subset of the literature on applications of presence-only 
biodiversity data (figure 3).

For this test, we identified the articles from our review 
that met the inclusion criteria defined for each of the other 
two reviews, screened the abstracts of 50 articles randomly 
selected from each of the other reviews according to our 
own inclusion criteria, and identified the percentage of 
articles that were common to our review and each of the 
complementary reviews. There was relatively little overlap 
between the articles in our review and the other two reviews 
(figure 3). The lack of overlap illustrates the importance of 
considering complementary reviews alongside one another. 
Although other recent reviews, including the two considered 

in the present article, have focused largely on applications of 
presence-only biodiversity data known to be accessed from 
open sources, our review fills a key knowledge gap by char-
acterizing a broad set of the traditional literature with an as 
yet unknown reliance on open databases.

Comparison of basic study characteristics with trends in biodiversity 
research.  Our review joins several recent studies in iden-
tifying trends in basic characteristics of the biodiversity 
literature, including taxonomic focus, study domain, and 
study region (Tydecks et  al. 2018, Ball-Damerow et  al. 
2019, Heberling et  al. 2021). We found that the articles in 
our review align some general trends in the biodiversity 
literature, including an emphasis on terrestrial settings 
(figures 4 and 5; Tydecks et  al. 2018, Ball-Damerow et  al. 
2019, Heberling et  al. 2021). Still, there are some distinct 
trends associated with the articles in our review: verte-
brates—and, to a lesser extent, invertebrates—are better 
represented among our reviewed articles than in other 
reviews of the biodiversity literature, whereas plants and the 
freshwater domain are underrepresented (figure 4; Tydecks 
et al. 2018, Ball-Damerow et al. 2019, Heberling et al. 2021). 
The overrepresentation of vertebrates in our review is pri-
marily due to their prevalence in reviewed articles that did 
not use data from open databases, suggesting that the range 
of vertebrate data available from open databases may not be 
as aligned with research needs as data from other taxonomic 
groups. On the other hand, the relative underrepresentation 
of freshwater and marine studies in our review was consis-
tent between articles that did and did not rely on open data. 
This suggests that the presence-only data type as a whole 
may be less common in freshwater and marine domains, 
likely because many freshwater and marine species are not 
as easily detected via opportunistic observation.

The global distribution of studies in our review aligns 
closely with trends in the biodiversity literature (Tydecks 
et al. 2018, Heberling et al. 2021). The largest number of 
articles were authored by researchers based in Europe, fol-
lowed by North America (figure 4). Alignment between 
study region and author region was uneven; articles that 
addressed Europe and North America were written by 
first authors based at institutions in the same region in 
respectively 98% and 95% of cases, whereas articles that 
addressed study regions in other parts of the world were 
less likely to have been written by first authors based in 
the focus region (figure 6). The uneven global distribution 
of biodiversity research reflects the greater coverage of 
biodiversity data in North America, Europe, and Australia 
relative to much of the rest of the world (Serra-Diaz et al. 
2017, Pelayo-Villamil et  al. 2018, Wüest et  al. 2020) and 
is also partially explained by the less frequent publication 
of ecological research conducted in the Global South in 
journals that are indexed by major databases (Nuñez et al. 
2019). It is critical that the field of biodiversity advances to 
better represent and support researchers based in under-
represented global regions in the international academic 
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literature (Ramirez et al. 2018, Nuñez et al. 2019, Pettorelli 
et al. 2021). It has been shown that international collabo-
rations are often inequitable, with European and North 
American researchers gaining more benefits in terms 

of publications and reputation than collaborators in the 
Global South (Boshoff 2009, Habel et al. 2014, Di Marco 
et al. 2017, Tydecks et al. 2018, Heberling et al. 2021). This 
trend should prompt caution in the growing open data 
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501 articles
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2151 articles
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• Published in 2018
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   ¹ Draws from Google Scholar, Scopus, Wiley Online Library, SpringerLink, NCBI Pubmed, and bioRxiv

   ² Circle size refers to the 2151 articles used in a portion of analyses; 300 of these were screened in greater detail for further analyses.

Figure 3. The Venn diagram indicates the overlap between articles included in this review and two complementary 
reviews. The circle size corresponds to review sample size; it should be noted that only a portion of the analyses reported 
in Mandeville (2021) were conducted on the full article set, whereas the remaining analyses were conducted on a subset of 
300 samples chosen randomly from the full set. The overlap between the circles indicates the overlap in articles included 
in each review, and the dotted lines indicate the estimated overlap in targeted articles according to the reviews’ described 
inclusion criteria. The inset table indicates the inclusion criteria and search strategy of each review.
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movement; it will be essential to ensure that open sharing 
of data is supportive rather than exploitative of Global 
South researchers (Serwadda et  al. 2018, Eichhorn et  al. 
2020, Pettorelli et al. 2021, Trisos et al. 2021). One example 
of an approach to this issue from within the biodiver-
sity data community is the ongoing effort to repatriate 

biodiversity data that have been collected within a histori-
cally exploited region but stored and managed elsewhere, 
in order to transfer primary data custody and decision-
making power back to the communities from which the 
data were collected (Dias et al. 2017, Eichhorn et al. 2020, 
Heberling et al. 2021).
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Tydecks et al. 2018
Summary: A review of 134,321
publications related to biodiversity.

Heberling et al. 2021
Summary: A review of 4153 articles 
that use biodiversity occurrence data
published by GBIF.

Ball-Damerow et al. 2019
Summary: A review of 501 articles
that use primary biodiversity data
from open databases.

Mandeville et al. 2021
Summary: A review of 2151 articles
that use presence-only biodiversity
data².

² Results for Mandeville et al. 2021 are based on a subset of 300 articles
randomly selected from the full set of 2151 articles.

Figure 4. A comparison of trends in taxonomic focus, study system, and geographic region of the biodiversity literature 
identified by this review and three complementary reviews covering different aspects of the biodiversity literature. See each 
cited paper for specific methods and results, because the methods of defining and measuring each trend may differ slightly 
between articles.
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Figure 5. The frequency of characteristics among the subset of 300 randomly selected articles: (a) study taxa, (b) 
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Presence-only data: A lens into current trends in the access, analy-
sis, and publishing of openly accessible biodiversity data.  As the 
biodiversity research literature continues to grow, the open 
sharing of biodiversity data is increasingly recognized as 
necessary and is quickly becoming normalized (Peterson 
et al. 2018, Ball-Damerow et al. 2019, Heberling et al. 2021). 
Presence-only biodiversity data are relatively representative 
of broad taxonomic and geographic trends associated with 
the field of biodiversity as a whole, but they differ in the ease 
with which they can be shared in accordance with currently 
recognized best practices (König et al. 2019, Anderson et al. 
2020, Wüest et al. 2020, Gadelha et al. 2021). Therefore, as 
practices continue to be developed to facilitate the sharing of 
a wide range of data types (Anderson et al. 2020), presence-
only data can serve as an early indicator to illustrate the 
progress, challenges, and limitations to the adoption of bio-
diversity data sharing practices. The work of recent reviews 
focused on presence-only data from open databases (e.g., 
Ball-Damerow et  al. 2019 and the GBIF Science Review 
series) makes it clear that open data infrastructure actively 
supports a large body of research. But to understand the 
extent to which biodiversity research in the traditional peer-
reviewed literature serves to facilitate or slow the progress 
toward open data, it is necessary to consider presence-only 
data from a wider range of sources.

In the sections that follow, we focus on three aspects of 
the presence-only biodiversity data literature indexed in the 
Web of Science Core Collection, with an emphasis on open 

data practices. We first consider the sources of presence-
only data in this body of literature. Next, we consider how 
presence-only data are analyzed and whether these analyses 
are supported by well-documented metadata. Finally, we 
characterize the data publication practices associated with 
the presence-only biodiversity data in this set of literature. 
Our objective is to delineate the current state of data sharing 
practices and to identify areas for growth, many of which 
will apply to both presence-only data and also more gener-
ally to a range of biodiversity data types.

Sources of presence-only biodiversity data
Openly accessible databases—that is, searchable online 
repositories in which biodiversity data from many original 
sources are aggregated—make billions of biodiversity data 
points freely available for anyone to access and use (Peterson 
et  al. 2018, Ball-Damerow et  al. 2019). Researchers may 
choose to access data from openly accessible databases for 
many reasons: to avoid duplicating research effort that has 
been undertaken in the past, to access data on a larger tem-
poral and spatial scale than could be collected through origi-
nal field work, to synthesize data from disparate sources, or 
to replicate or build on a previous study. So it is unsurprising 
that openly accessible databases were the most common 
direct data source in our review, accessed by 42% of the 
reviewed articles. However, only 19% of the reviewed articles 
used data exclusively from open databases; the vast major-
ity accessed some or all of their data from sources other 
than open databases. Other common data sources include 
original fieldwork, the literature, and museums and herbaria 
(figure 5). Ball-Damerow and colleagues (2019) identified 
these same three sources of occurrence data as the most 
commonly integrated with occurrence data accessed from 
open databases.

In many cases, it is likely that researchers choose to collect 
new data or compile data from a variety of original sources 
because the data they need are not available in an openly 
accessible database (Troudet et al. 2017, Ball-Damerow et al. 
2019). For instance, articles in our review were substantially 
more likely to address vertebrate species than in reviews 
in which all articles rely at least partially on open data 
(figure 4). In particular, a large percentage of the articles in 
our review addressed mammals (figure 5). Although mam-
mals are considered overrepresented in open databases on 
a per-species basis, they make up a relatively small portion 
of the total volume of data available from open databases, 
likely because of many mammal species’ lower detection 
probability, wider-ranging distributions, and relatively lower 
dedicated citizen science interest than some other taxa 
(Troudet et al. 2017, Parsons et al. 2018). This may explain 
why articles that addressed mammal species were relatively 
unlikely to obtain data from an open database and more 
likely to obtain data from government agencies, private 
organizations, and through original data collection. Overall, 
the relatively small percentage of articles based on open 
presence-only data corroborates a growing sentiment from 
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the literature: Although the volume of openly accessible 
biodiversity data continues to grow, there are substantial 
taxonomic and spatial gaps for which there is minimal 
open data (Pino-Del-Carpio et  al. 2014, Chambers et  al. 
2017, Troudet et  al. 2017, Ondei et  al. 2018, Wetzel et  al. 
2018, Ball-Damerow et al. 2019, Hochkirch et al. 2020). Our 
results corroborate the many studies that have identified 
gaps in biodiversity data, making it clear that the majority of 
researchers who conduct presence-only analyses do not find 
the data they need in open databases. This highlights the 
need for the biodiversity research community to continue 
ongoing efforts to identify and fill critical taxonomic and 
spatial knowledge gaps in open databases.

Data gaps can be filled through both novel data collection 
and mobilization of existing data that are not yet openly acces-
sible. Many large pools of data exist outside the open data 
infrastructure—for example, in government agencies and pri-
vate organizations (Stephenson et al. 2017, Wetzel et al. 2018, 
Cretois et al. 2020). Identifying these sources of data, support-
ing policies and infrastructure that facilitate their access and 
reuse, and incentivizing data sharing at an institutional level 
is needed to facilitate more open access to these data (Voříšek 
et  al. 2018). This is critical for establishing the long-term 
records that are essential for studying trends across space and 
time and informing conservation interventions in the face of 
global change (Wetzel et al. 2018). Opening existing data for 
reuse is also necessary to avoid duplication of data collection 
effort and research waste, freeing research resources to target 
true data gaps (Grainger et al. 2020). Consider, for example, 
that 13% of the articles in our review accessed data from 
10 or more nonopen sources, some accessing well over one 
thousand distinct sources. The collation of data from mul-
tiple sources represents an extensive research effort that will 
likely need to be repeated by future researchers if the data are 
not made more openly accessible. Reducing inefficiencies by 
supporting the access and reuse of data will allow researchers 
to prioritize generation of data that will fill gaps in the avail-
able knowledge. To achieve this, efforts to build relationships 
between data aggregators and the research community will 
continue to be essential.

In other cases, openly accessible data may be available to 
replace or supplement data from other sources but authors 
may neglect to use it, either because they are not aware of 
it or because they do not trust its quality (Faith et al. 2013). 
Even when data are aggregated in an open database, some 
researchers may choose to access the data from their original 
sources rather than from the open database (Singer et  al. 
2020). In some cases, researchers may be aware of open data 
but believe they lack the skills to access and use it effectively 
(Poisot et  al. 2019). Indeed, a broad survey of researchers 
found that the perceived value and efficiency of reusing 
open data were major factors in whether researchers chose 
to access open data (Curty et  al. 2017). Finally, it is also 
important to note that inequities in technological infrastruc-
ture, competence, and training mean that access to digital 
platforms is also inequitable (Johnson et al. 2021). Finding 

solutions to the barriers that keep researchers from accessing 
open biodiversity data should be a goal of the biodiversity 
research community.

Practices for accessing and citing open data vary widely.  Among 
open databases, data sources varied widely. We identified 
117 open databases that were used to access presence-only 
occurrence data (see supplemental file S6). We classified 
nine of these as large open databases, defined as relatively 
well known, established databases that contain data cover-
ing a very large geographic range, a wide range of taxa, or 
both. The most commonly accessed was the GBIF, which 
was accessed by 37 articles, followed by eBird (9 articles). 
The remaining 108 open databases, classified as small 
databases, had a narrower geographic or disciplinary scope 
and were each accessed by an average of 1.2 articles. Of the 
articles that accessed open data from at least one source, 55% 
accessed a large database and 65% accessed a small database. 
Two thirds directly accessed just one database, whereas 
the remaining third accessed between two and 10 distinct 
open databases. Of course, because many open data sources 
serve to aggregate many smaller databases, data users that 
accessed just one database may still have obtained data from 
a wide range of original sources. These results are similar to 
the findings of Ball-Damerow and colleagues (2019), who 
also found that a small number of open data sources were 
cited by many articles, whereas a large number of open data 
sources were cited very few times.

The frequent reliance on small open databases is prob-
ably due in large part to the prevalence of small databases 
within specific research areas (Costello and Wieczorek 2014, 
Ball-Damerow et al. 2019, Singer et al. 2020) and may also 
be partially explained by a lack of familiarity with or trust 
in large databases (Faith et  al. 2013). We recognize many 
values of small databases, including responsiveness to spe-
cific disciplinary requirements (Franz and Sterner 2018) 
and the cultivation of strong relationships between data 
curators and communities of data users (Blair et  al. 2020, 
Monfils et  al. 2020). However, small open databases may 
lack the standardization and interoperability that are built 
into larger data aggregators (Poisot et  al. 2019), they may 
lack consistent leadership to maintain growing content and 
keep up with developing best practices (Costello et al. 2013), 
and they are more likely to become technologically obsolete, 
rendering the data inaccessible (Vines et al. 2014, Tessarolo 
et al. 2017, Ball-Damerow et al. 2019, Blair et al. 2020).

We attempted to access all of the databases referred to 
in our reviewed articles and found that we could not locate 
or access 9% of the small databases from which articles 
in our review had obtained data. In a few other cases, the 
database website could be accessed, but it was not clear 
that the data were still accessible; for example, data could 
be visualized but the link to download data was broken, or 
it was requested that visitors contact the database manag-
ers to request access. Although still concerning, it is per-
haps a cause for cautious optimism that the proportion of 
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inaccessible databases in our review is considerably lower 
than the 26% of databases found to be inaccessible by Ball-
Damerow and colleagues (2019), who reviewed articles pub-
lished through April 2017. An additional 15% of the small 
databases had been consolidated into a different database 
but were still accessible. All nine large databases remained 
accessible. Because of the important role played by small 
databases, we do not intend to suggest that authors avoid 
them; rather, we caution the biodiversity data community 
to be cognizant that these small databases are strongly 
relied on and to be proactive about supporting them over 
time (Costello and Wieczorek 2014). The true reliance on 
small databases is likely to be even higher than identified 
in our study because small regional databases may be cited 
more frequently by articles published in regional journals 
and gray literature, which may not be indexed by the Web 
of Science and so may have been underrepresented in our 
search (Calver et al. 2017).

The proliferation of open data aggregators, along with 
the rapidly evolving best practices for their use, has resulted 
in an uneven landscape of how such data are cited in the 
literature (Escribano et  al. 2018, Ball-Damerow et  al. 2019, 
Luo et al. 2021). Citation of a digital object identifier (DOI) 
that is uniquely connected to the full data set analyzed in an 
article has emerged as the best practice in this area (Brown 
2021, Heberling et al. 2021); this practice enables the data set 
to be clearly replicated and all original sources to be credited 
(Escribano et al. 2018, Luo et al. 2021). But not all researchers 
are yet aware of this best practice, because it is relatively new. 
Furthermore, not all open databases have a clear mechanism 
for producing a citable DOI (Altman and Crosas 2014, Penev 
et al. 2017). We found a great deal of variation in how open 
databases were cited among the articles in our review. The vast 
majority of articles simply listed the names of the databases 
from which they obtained data, sometimes accompanied by 
a brief description of the type of original sources from which 
the data were aggregated. Only 4% of the data sets accessed 
from an open database were cited with a DOI, and another 
3% were not cited but, instead, were described in the text 
of the article with a direct link to the full data set or other 
thorough directions that would enable a reader to replicate 
the data retrieval process. Interestingly, the proportion of 
articles in our review that included a database citation with a 
URL or DOI was much lower than the 34% observed by Ball-
Damerow and colleagues (2019). This may reflect a difference 
in search strategy; the search terms used by Ball-Damerow 
and colleagues (2019) ensured that all reviewed articles at 
least mentioned the type of database accessed, whereas our 
search terms required only that articles mentioned the type 
of data. The differing results obtained by these two searches 
suggest that the use of appropriate citation practices may be 
correlated with authors’ use of specific terminology to refer 
to open databases, perhaps signaling their perception of their 
work as related to the open data movement.

A small number of authors in our review found alternative 
ways to recognize original providers of data even when there 

was no mechanism to do so through the open database—for 
example, by listing all original data sources in the supple-
mental material. Giving credit to the original providers of 
open data is critical for incentivizing data sharing to research-
ers, institutions, and funders (Escribano et  al. 2018, Ball-
Damerow et al. 2019, Groom et al. 2020) and for recognizing 
and supporting the diverse landscape of organizations and 
institutions that engage in biodiversity monitoring (Kühl et al. 
2020). This may be especially true when data were collected 
through public involvement in citizen science. Thirty-four 
percent of the articles in our review identified citizen science 
as the original source of some or all of their data, although 
the true percentage of articles that derived data from citizen 
science is likely higher because citizen science data are fre-
quently reused without their source being clearly described 
(Cooper et al. 2014). Citizen science plays an important role 
in biodiversity data collection but long-term funding and 
support for many citizen science programs may be dependent 
on the demonstrated impact, so appropriate citation is critical 
(Chandler et  al. 2017, Pearce-Higgins et  al. 2018, MacPhail 
and Colla 2020, Mandeville and Finstad 2021).

Analysis and reporting of presence-only biodiversity 
data and associated metadata
The growth of interest in presence-only data in the mid-
2000s was paralleled by innovation in species distribution 
modeling approaches tailored to this data type (Vaz et  al. 
2015, Araújo et  al. 2019, Ball-Damerow et  al. 2019), so it 
is unsurprising that species distribution modeling was the 
dominant analysis approach in our review (figure 5). These 
methods have become increasingly sophisticated and widely 
popular (Hao et  al. 2019, Norberg et  al. 2019, Zurell et  al. 
2020). A large review of articles that use GBIF data found 
a similar prevalence of species distribution modeling and 
identified a recent transition in focus from methodologi-
cal developments to widespread application similar to that 
seen in our overall set of reviewed articles (Heberling et al. 
2021). Although the initial development of species distribu-
tion modeling approaches for presence-only data was at 
least partially a response to the increased availability of the 
data type, we suggest that their subsequent wide adoption 
has created a positive feedback effect whereby researchers, 
driven by the growing ease of analyzing presence-only data, 
have increasingly begun to seek out presence-only data from 
a wider range of sources.

Despite its prevalence, however, species distribution mod-
eling is far from the only analysis method applicable to 
presence-only data. Our results illustrate a wide range of 
analysis approaches, including both inferential statistics and 
a variety of descriptive statistics. Presence-only data are also 
occasionally used indirectly—for example, to validate the 
results of another analysis or to inform a sampling design. 
Methodological innovation in inferential approaches is 
ongoing, and since 2012, a number of articles have applied 
a variety of less common inferential approaches, includ-
ing phenology analyses, demography analyses, list length 
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analysis, occupancy modeling, and multivariate statistics 
(figure 5). In particular, the integration of presence-only 
data with other types of biodiversity data is of growing inter-
est in the literature (Pacifici et al. 2017, Fletcher et al. 2019, 
Miller et  al. 2019, Isaac et  al. 2020, Simmonds et  al. 2020, 
Zipkin et  al. 2021). In our review, articles that integrated 
presence-only data with other types of biodiversity data were 
nearly three times as likely to employ an uncommon inferen-
tial analysis approach as the articles that used only presence-
only data, indicating that data integration can open a wider 
range of analysis options for presence-only data.

Clearly documented metadata, particularly an explicit 
description of the data structure and original sampling 
design, also enable a wider range of analytical approaches, 
including data integration (Isaac et  al. 2014, Araújo et  al. 
2019, Dobson et  al. 2020). This trend is reflected in our 
results, with articles that employed more complex analysis 
approaches being correspondingly more likely to describe 
the underlying data structure (figure 7). Articles that employ 
species distribution modeling are the major exception to 
this trend; despite the relative statistical complexity of spe-
cies distribution modeling, articles that modeled species 
distributions were the least likely to document data struc-
ture (figure 7). This likely reflects the growing accessibility 
of species distribution modeling approaches, which have 
become increasingly straightforward to implement through 

user-friendly platforms that can be implemented as a black 
box by researchers without a clear understanding of the 
method (Joppa et  al. 2013, Merow et  al. 2013, Kass et  al. 
2018). Although the growing accessibility of species distri-
bution modeling offers great potential for research and con-
servation (Rapacciuolo 2019, Sofaer et al. 2019), we caution 
that it is still essential to share metadata whenever possible 
to aid in interpretation and evaluation of results (Soranno 
et al. 2020, Zurell et al. 2020, Muscatello et al. 2021, Sillero 
and Barbosa 2021, Foster et al. 2021). Relatedly, it is impor-
tant to check for and correct data quality errors in data and 
metadata, particularly when data are obtained from open 
databases or collated from several sources (Ball-Damerow 
et  al. 2019). In addition to supporting data interpretation 
and analysis, the reporting of high quality metadata facili-
tates a wide range of potential future data uses.

Reporting of metadata is inconsistent.  Despite the value of clear 
metadata, around half of the articles that we reviewed did 
not explicitly describe the structure or sampling design of 
all of their data, corroborating previously reported trends 
(figure 5; Kervin et al. 2013, Roche et al. 2015). Of course, 
researchers can only report metadata if they have access to 
this information, and researchers reusing data may sim-
ply not have information on the original data structure. 
For instance, 118 articles obtained data from museums, 
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Figure 7. The percentage of the 300-article subset that is associated with each type of data structure, as a function of (a) 
analysis approach and (b) direct data source accessed by study authors. In panel (a), the y-axis categories represent all 
articles for which the indicated analysis approach was the most complex approach applied (with the exception of “user 
trends,” in which case all articles using this approach are represented). The bar widths indicate the number of articles 
in the 300-article subset within each category. In panel (b), the y-axis categories represent all articles that use data from 
the indicated data source. The bar widths indicate the overall proportion of the 300-article subset that used each data 
type. The gray portions of the bars represent articles that integrated data from the indicated source with data from other 
sources; because of the confounding effect of data integration on metadata reporting, metadata reporting trends are 
not reported for these articles. The portions of the bars shaded according to the legend represent articles for which the 
indicated source was the only source accessed by the article.
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herbaria, and the literature and 77% of these did not report 
the structure of their data; in the vast majority of these 
cases, metadata on the original sampling design were likely 
unavailable. Users of open data also have inconsistent access 
to metadata, and around half of the articles that obtained 
data exclusively from open sources did not describe data 
structure (figure 7). Although many openly accessible data-
bases enable and encourage metadata standardization and 
sharing, most prominently through the Darwin Core stan-
dard (Wieczorek et  al. 2012), many data available through 
open databases have been digitized from historical records, 
for which such metadata may be unavailable or may have 
been lost over time (Specht et al. 2018). Articles that rely on 
data collected by government agencies and private organi-
zations describe data structure more frequently (figure 7). 
In the instances in which the structure of data from these 
sources is not described, it may be due to the loss of informa-
tion that occurs when complete information was not passed 
from the data owners to the data users. Standardizing the 
methods used by governmental and private institutions to 
share data with researchers may reduce instances of data loss 
associated with more informal sharing of data (Kühl et  al. 
2020). Unsurprisingly, articles exclusively based on origi-
nal field work were most consistent in documenting data 
structure (figure 7). The combination of data from multiple 
sources is an additional barrier to describing presence-only 
data because of practical challenges associated with describ-
ing a large number of separate sampling schemes. For each 
additional source accessed by an article in our review, the 
likelihood of data structure being described decreased by 
12%. Although authors may have little recourse when work-
ing with data sets for which metadata are unavailable or with 
large data sets for which it may be impractical to describe a 
large number of separate sampling schemes, improving data 
citation practices may provide a partial solution by making 
it possible to trace data to its original source to gather any 
available metadata.

Of articles that described the structure of their data, most 
described one or more data source as opportunistic (i.e., 
collected with no predefined sampling design), followed 
by semistructured (sensu Dobson et al. 2020), and finally a 
smaller percentage used presence or absence data and dis-
carded the absence records before analysis. Of the articles 
that converted presence or absence data to presence-only 
format before analysis, one third did this for the purpose 
of comparing different modeling approaches. The remain-
ing two thirds discarded the absence data and conducted 
analyses exclusively in a presence-only framework. Previous 
authors have cautioned that it is not advisable to analyze 
presence or absence data in a presence-only framework 
(Yackulic et al. 2013), so it is concerning that some articles 
in our review took this approach. In some cases research-
ers may be motivated to convert presence or absence data 
to presence-only to facilitate merging presence or absence 
and presence-only data sets, but many recent studies sug-
gest approaches for integrating various data types without 

reducing data structure (Pacifici et  al. 2017, Fletcher et  al. 
2019, Miller et al. 2019, Isaac et al. 2020, Zipkin et al. 2021).

The articles in our review were more consistent in report-
ing the scope of their presence-only data set, in terms of 
both sample size and study scale. The sample size varied 
considerably between articles, but the majority of studies 
were small to mid-size (figure 5). The studies’ geographic 
scale followed a similar trend, with the majority addressing 
a regional scale (figure 5). The small number of articles that 
did not explicitly state a sample size tended to involve several 
separate analyses of a large number of species and stated a 
total sample size and total number of species rather than the 
sample size for each analysis. The tendency toward mid-size 
studies has remained relatively consistent over time, with the 
exception of studies with a sample size of over one hundred 
thousand occurrence records. These very large studies were 
absent from our reviewed articles until 2014. This recent 
increase in large studies likely reflects growing infrastructure 
for and interest in big data macroecology (Hampton et  al. 
2013, Wüest et al. 2020). Such large studies are more likely to 
rely on open data than studies with a smaller scope.

How often are presence-only data made available for 
reuse?
Our results suggest that the majority of data used in pres-
ence-only analyses are not made available after the analy-
ses are published, although there is a recent trend toward 
increased data sharing. To characterize trends in data shar-
ing, we excluded the 19% of articles that were based entirely 
on data accessed from open sources. Of the remaining 
articles that used data from at least one source other than 
an open database, just 21% made all data used in the study 
openly available on publication of the article. Of these, 18% 
published their data in an openly accessible online database, 
whereas the rest used a different form of publication, such 
as supplementary material or an online repository (figure 8). 
The most common means of sharing data was to directly 
include it in the article, either the main text or the supple-
mental material. Data formats varied from those that facili-
tate reuse relatively easily (e.g., CSV files, spatial data files) to 
those that pose challenges for reuse (e.g., PDF files). Online 
repositories, including Dryad, Figshare, and GitHub, were 
also used by a small number of articles to share data. Only 
nine articles indicated that their data sets had been shared 
in an openly accessible database, although it is possible that 
the authors of some articles in our review published their 
data to an open database but neglected to mention this in the 
article. Of course, the data analyzed in the 19% of reviewed 
articles that obtained data exclusively from open databases 
remained openly available as long as the databases from 
which the authors accessed their data were still accessible.

To maximize their research value, data must be pub-
lished in a way that is both searchable and persistent 
(Wilkinson et  al. 2016, Bishop et  al. 2019). Therefore, 
publication of data in aggregated databases is preferable to 
publication in supplemental material. In particular, larger 
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databases are more likely to have greater longevity, stability, 
and infrastructure to maintain current best practices for 
data management in this rapidly developing field (Costello 
and Wieczorek 2014, Poisot et  al. 2019). Much like small 
open databases, it has been demonstrated that data in 
supplementary material often become inaccessible over 
time (Vines et al. 2014, Stodden et al. 2018). We attempted 

to access all data shared by our reviewed articles and found 
that it was largely, but not entirely, still accessible: 7% of the 
data sets shared in journal supplementary materials were 
no longer available, and 22% of the data sets shared in an 
open database were no longer available. The inaccessible 
data from open databases were exclusively shared in small 
databases.
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Figure 8. The percentage of the 300-article subset that is associated with the three levels of data availability as a function 
of (a) analysis approach and (b) direct data source accessed by study authors. For all panels of this figure, articles based 
entirely on data accessed from open databases have been excluded, leaving a subset of 242 articles that access data from 
at least one source other than an open database. In panel (a), the y-axis categories represent all articles for which the 
indicated analysis approach was the most complex approach applied (with the exception of “user trends,” in which case all 
articles using this approach are represented). The bar widths indicate the total number of articles within each category. 
In panel (b), the y-axis categories represent all articles in which the indicated direct data source was accessed. The bar 
widths indicate the overall proportion of the 242-article subset that used each data type. The portions of the bars shaded 
according to the legend represent articles for which the indicated source was the only source accessed by the article or which 
integrated the indicated source with open data. The gray portions of the bars represent articles that integrated data from 
the indicated source with data from other sources; because of the confounding effect of data integration on data sharing, 
data sharing trends are not reported for these articles. Panel (c) indicates trends in data availability over time. 2020 is 
indicated with dashed lines because the results for 2020 may be less complete than those for other years; although the set of 
articles was obtained with a search on 4 January 2021, some articles with a 2020 publication date may not yet have been 
indexed by journals or the Web of Science.
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Although the overall accessibility of openly available pres-
ence-only data has increased dramatically in recent years, 
our results make it clear that the traditional peer-reviewed 
literature still largely serves as a sink for presence-only bio-
diversity data rather than facilitating its sharing and reuse. 
Making presence-only data more accessible should be a clear 
priority. Because strong infrastructure and clear best prac-
tices already exist for sharing presence-only occurrence data 
(Costello and Wieczorek 2014, Peterson et al. 2018, Hackett 
et al. 2019, Anderson et al. 2020) this should be achievable. 
However, several barriers can stand in the way of data shar-
ing, including researchers’ lack of incentive and ability, data 
ownership, and data set complexity. The strategies for over-
coming these barriers will differ on the basis of the original 
source, ownership, and structure of the data.

Data sharing considerations for different types of presence-only 
data.  The most straightforward type of presence-only data 
to target for increased data sharing are likely those collected 
by the study authors. Our results do indicate that original 
data are the most frequently shared, but the sharing rate is 
still low, at just 27% (figure 8). The publishing rate of origi-
nal data collected with citizen science was somewhat higher 
than average, although still fewer than half of the articles 
based on original citizen science published their data. This 
is problematic, because studies have shown that citizen sci-
ence participants generally expect and want their data to be 
made available for research, conservation, and policymaking 
(Chandler et al. 2017, Ganzevoort et al. 2017, Groom et al. 
2017, Fox et al. 2019, Larson et al. 2020). Further integration 
of citizen science with open biodiversity data aggregators 
should therefore be a priority.

We anticipated lower rates of data publication from 
articles that compiled data from third party data owners, 
including the literature and museums and herbaria, and 
our results indicated rates of data publication that were just 
slightly lower than that of original data (figure 8). We sug-
gest two major reasons why authors may not share data they 
have collated from other data owners. First, they may lack 
(or perceive that they lack) the permission to do so. And 
second, they may perceive that data sharing is unnecessary, 
assuming that readers wishing to reproduce their data set 
could retrace the data acquisition methods described in the 
paper to reassemble the data set from its original sources. 
Although this may sometimes be true, collating data from 
multiple sources takes a great deal of time and effort, so it 
is not a trivial process for a reader to reassemble a data set 
following a process described in the literature. And even if 
original data sources are well documented and still acces-
sible, it cannot be assumed that a reader will be able to 
replicate the steps taken to collect data; literature is often 
behind paywalls, and access to institutional databases may 
be limited. Therefore, researchers working with data com-
piled from museums, herbaria, and journal articles should 
strive to provide as thorough a description as possible of 
their exact process of compiling their data set or, better yet, 

publish their complete data set whenever possible (Cousijn 
et al. 2018). Widespread progress on this issue will depend 
in part on the support of institutions: Institutions that host 
data should institute mechanisms to generate citations 
when data are accessed, making data easier to cite (Mooney 
and Newton 2012, Fenner et al. 2019, Powers and Hampton 
2019), and journals that publish research should outline 
clear policies that support and facilitate data sharing and 
citation (Hrynaszkiewicz et al. 2020).

Finally, there are circumstances in which researchers may 
be unable to share data because of its proprietary or sensi-
tive nature. We expect that this issue is most relevant to data 
obtained from private organizations or government agen-
cies; in the present review, articles that accessed data primar-
ily from one of these sources were characterized by low rates 
of data publication (figure 8). This is a complex issue, but 
we would encourage owners of sensitive data to use exist-
ing decision tools and prioritization schemes to consider 
whether there is a suitable way to make these data available 
for reuse, even in a more limited format (Clements et  al. 
2018, Tulloch et al. 2018, Chapman 2020). Because 37% of 
reviewed articles derive at least a portion of their data from 
sources that are assumed to generally be nonopen (e.g., data 
provided by government agencies, private organizations, or 
personal communications), and 41% derive some or all of 
their data from sources that are potentially accessible but 
cannot be assumed to be available to all readers (e.g., muse-
ums, literature, media), it is clear that a large portion of the 
presence-only biodiversity literature relies on data that are 
not accessible, hampering the replicability of these studies 
and the reusability of the data on which they are based.

A separate but related issue concerns data ethics and own-
ership. Issues of data ownership and governance are inher-
ently related to social governance, and it is essential that the 
ethics of data sharing be held in the forefront at all stages of 
data management (Carroll et  al. 2021, Rubert-Nason et  al. 
2021, Trisos et  al. 2021). Data relevant to local communi-
ties must be made accessible to community members and 
must not be used in ways that are counter to community 
priorities (Johnson et al. 2021). This is particularly essential 
when it comes to Indigenous data; the CARE Principles 
for Indigenous Data Governance are a critical framework 
for ensuring Indigenous peoples’ rights to the control of 
Indigenous data (GIDA 2019, Carroll et al. 2021). In addi-
tion, when data are collected by community members, 
as with citizen science, it is important to understand and 
respect volunteers’ motivations for and concerns about the 
use of data they have contributed (Ganzevoort et  al. 2017, 
Lynn et al. 2019, Tengö et al. 2021). The continued normal-
ization of open data sharing must center scholarship and 
practice that respects ethical data governance, stewardship, 
and access.

The future of presence-only biodiversity data sharing.  Data sharing 
practices in the presence-only biodiversity literature have 
until recently remained relatively constant over time, but the 
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proportion of reviewed articles that publish their data has 
increased somewhat since 2016 (figure 8). This is cause for 
optimism and continued efforts to normalize open sharing 
of biodiversity data. Recent studies document overwhelm-
ingly positive attitudes to data sharing (Tenopir et al. 2020, 
Soeharjono and Roche 2021), so if practical barriers can 
be overcome, there is a high likelihood that data sharing 
will continue to increase. Increased sharing of biodiversity 
data may even produce a ripple effect across disciplines; 
biodiversity research has historically exhibited a higher rate 
of open data sharing than closely related scientific disci-
plines such as ecology and conservation science (Michener 
2015, Osawa 2019, Shin et  al. 2020), but given the broad 
and growing application of presence-only biodiversity data 
across many related scientific disciplines (Ball-Damerow 
et al. 2019, Heberling et al. 2021), continued improvements 
in open sharing of presence-only biodiversity data may serve 
to spread awareness of open data practices across disciplines.

Past studies have indicated that the majority of biodiver-
sity researchers support data sharing but may be held back 
by lack of sufficient incentive, lack of familiarity with data 
aggregators, lack of information on data set structure or 
ownership, and lack of trust in public databases (Huang et al. 
2012, Tenopir et al. 2020). We compared articles that did and 
did not publish their data to examine the relative impact of 
some potential barriers to data sharing. First, we anticipated 
that two measures of data set complexity might negatively 
correlate with data sharing: first, the number of data sources 
accessed to compile a data set and, second, whether the 
original sampling design was reported. We expected that 
authors might be held back from sharing data by the com-
plexity of crediting multiple original sources or by their own 
lack of complete information on data structure. However, 
we did not find either of these relationships in our results. 
This finding suggests that data set complexity may not be 
the primary factor prohibiting researchers from publishing 
their data sets. It is a concern but is more likely second-
ary to other barriers. Because lack of familiarity with open 
databases has also been cited as a barrier to data sharing, we 
expected that authors’ familiarity with open data, as has been 
demonstrated by the integration of data from open databases 
with presence-only data from other sources, would correlate 
with greater rates of data publication. This was not the case: 
Of the articles that integrated data from open databases and 
other sources, 76% did not publish the data that were not 
already open.

These findings suggest that other concerns, including 
lack of researcher incentive and concern about receiving 
appropriate credit for shared data, may be more serious 
barriers to data sharing (Escribano et al. 2018, Tenopir et al. 
2020). Some developments have begun to address the issue 
of researcher incentive: Data sharing is increasingly incen-
tivized through journal policies, funding agency require-
ments, and the promotion of data citations (Mills et al. 2015, 
Colavizza et al. 2020, Walters 2020). Continuing to normal-
ize these incentives may help overcome existing barriers to 

data sharing, especially in situations in which data users are 
the original data owners (Chavan and Penev 2011, Mooney 
and Newton 2012, Kattge et al. 2014, Escribano et al. 2018). 
Furthermore, researchers are increasingly taking ownership 
over the process of data sharing, establishing grassroots 
collaborations that organize specific research communi-
ties to engage with open data infrastructure and practices 
(Aubin et al. 2020). This integration of open data practices 
into local networks of biodiversity researchers has great 
potential to incentivize open data sharing by establishing it 
as a key component of network building and collaboration 
within specific research areas. As open data sharing becomes 
increasingly normalized, it will be essential that practitioners 
of open science maintain a supportive, rather than critical, 
approach to encouraging researchers who are taking their 
first steps into open data sharing. Researchers do not all 
have equal access to the resources, training, technical capac-
ity, and institutional support to fully engage in open data 
practices, and small steps toward open data sharing must be 
welcomed while the field as a whole shifts to become more 
equitably supportive of open data practices (Bahlai et  al. 
2019, Chawinga and Zinn 2019, Powers and Hampton 2019, 
Soeharjono and Roche 2021).

Conclusions
Open access to high quality biodiversity occurrence data 
is key to many emerging themes in biodiversity research 
and conservation, including development and implementa-
tion of international biodiversity assessments and targets 
(Hochkirch et al. 2020), research synthesis for conservation 
decision-making (Nakagawa et  al. 2020), and near-term 
ecological forecasting of species abundance in space and 
time (Callaghan et al. 2021), so continued efforts to increase 
the open sharing of biodiversity data will be critical. This 
will require increased incentivization, institutional support, 
ongoing shifts in cultural norms, and a growing emphasis 
on an ethical, equitable framework for data sharing. Recent 
trends toward increased sharing of presence-only biodiver-
sity data are a cause for optimism, but there is still a great 
deal of work to be done in normalizing the use of best prac-
tices in data access, documentation, citation, and sharing. 
Still, we see evidence in the trends reported in the present 
article for an often-reported survey result: Researchers 
generally feel positively toward reusing and sharing data, 
despite persistent uncertainty about best practices and con-
cern about credit and incentives (Ross-Hellauer et al. 2017, 
Tenopir et  al. 2020, Soeharjono and Roche 2021). Such 
evidence includes the recent increase in the proportion of 
articles that produce open data, the efforts taken by some 
authors to credit original data providers even when no clear 
mechanism had yet been developed to do so, and the above-
average sharing rate for citizen science data.

For researchers looking to begin or continue their jour-
ney into reuse and sharing of open biodiversity data, 
there are many excellent resources that offer an entry 
point into accessing and sharing open data; we particularly 
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point such researchers to Hampton and colleagues (2015), 
Wilkinson and colleagues (2016), Boland and colleagues 
(2017), Alston and Rick (2021), and to guides such as the 
FAIR Principles (GO FAIR 2021), the CARE Principles of 
Indigenous Data Governance (GIDA 2019), and the Quick 
Guide to Publishing Data Through GBIF.org (GBIF 2021). 
To those beginning to engage with open data, we echo the 
wisdom of Bahlai and colleagues (2019), Alston and Rick 
(2021), and others in encouraging researchers to begin 
with any first steps, however small, that are feasible given 
their circumstances. Increased open data sharing will rely 
on both the progressive adoption of data sharing practices 
by individual researchers and ultimately on broad cultural 
shifts within biodiversity and related fields (Chawinga and 
Zinn 2019). This shift to a culture of ethical open data shar-
ing will be essential to meet challenges associated with the 
growing biodiversity crisis and to support a growing need 
for biodiversity assessment, monitoring, and conservation.
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S1. Extended methods for literature search and screening 

We searched the Web of Science Core Collection to target all scholarly articles that report on the 

application of presence-only biodiversity occurrence data, targeting articles whose titles, 

abstracts, or keywords contained any of 31 terms commonly used in the literature to indicate 

presence-only data as well as any of five terms used to indicate biodiversity: 

 

(((TS=("presence-only" OR "presence only" OR "opportunistic observation*" OR "opportunistic species 

observation*" OR "opportunistic occurrence*" OR "opportunistic distribution*" OR "opportunistic species 

occurrence*" OR "opportunistic species distribution*” OR "pseudo-absence*" OR "pseudoabsence*" OR 

"inferred absence*" OR "presence-background" OR “presence background" OR "citizen science" OR 

"community science" OR "participatory science" or “ad hoc data” OR “ad hoc collection” OR “ad hoc method*” 

OR “incidental data” OR “incidental sighting*” OR “incidentally collected” OR “geographic one-class data” 

OR “incidental detection*” OR “opportunistic detection*” OR “primary biodiversity data*” OR “occurrence 

record*” OR “atlas data” OR “unstructured occurrence data” OR “unstructured species observation” OR 

“unstructured biodiversity data”)) 

AND (TS=("distribution" OR "species" OR "biodiversity" OR "habitat*" OR "niche*"))) 

AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

 

The search, conducted on January 4, 2021, returned 4021 peer-reviewed English-language 

articles. 
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We screened the abstracts of all returned articles and retained those that demonstrated the 

analysis or reporting of presence-only occurrence data. in the following categories were excluded: 

1) articles unrelated to use of presence-only biodiversity occurrence data; 2) review or conceptual 

articles that did not perform data analysis or reporting; 3) articles that focused on the storage or 

management, rather than analysis or reporting, of occurrence data; and 4) articles that used 

exclusively simulated data. The article screening process is reported in the following diagram, 

modified from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) scheme (Moher et al. 2009). After screening, a total of 2151 articles were included in 

the review. Data management and bibliometric summary statistics were conducted in part with 

the bibliometrix package in R (Aria and Cuccurullo 2017). 
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S2. Sets of topic clusters produced by LDA topic modeling 

We ran Latent Dirichlet Allocation (LDA) topic modeling six times to produce sets of clusters 

ranging from three through eight clusters per set. We assessed each set of results for redundancy 

and interpretability and selected the set of three clusters as the most interpretable and least 

redundant. All six sets of modeling results are shown here. All topic modeling was conducted 

and LDA figures were produced using the revtools package in R (Westgate 2019). 

 

For each set of clusters, the biplot indicates the arrangement of articles relative to each other in 

terms of topic similarity. Each point represents an article and proximity indicates topical 

similarity. Colors indicate clusters. The topic bar charts represent the number of articles classified 

into each topic cluster. The word bar charts indicate the words most strongly associated with 

each cluster; these word associations were used to assign interpretations to each cluster. 
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Three clusters
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Four clusters 
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Five clusters 
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Six clusters 
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Seven clusters 
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Eight clusters 
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S3. Data sheet categories used to categorize the set of 300 papers 

read in full 

All variable categories, except for study region, were not mutually exclusive; that is, an article 

could be coded with as many variable responses as applicable. 

Variable category Variable (True/False Response) 

Topic categories 

mentioned in abstract 

[True/false] 

Invasive species 

Land use change 

Climate change 

Overexploitation 

Pollution 

Other conservation issues 

Other basic ecology topics 

New methods development 

Comparing multiple presence-only approaches 

Comparing presence-only with more structured approaches 

Testing methodological choices within one presence-only approach 

Testing new technology for analyzing/reporting presence-only data 

Taxa 

[True/false] 

Bird 

Mammal 

Amphibian/reptile 

Fish 

Invertebrate 

Virus/bacteria/similar 

Plant/similar 

Study system 

[True/false] 

Terrestrial 

Marine 

Freshwater 

Study region 

[True/false]1 

Africa 

Asia 

Europe  

Latin America 

North America 

Oceania 

Oceans 

Polar regions 

Multiple/global 

Author region 

[True/false]1 

Africa 

Asia 

Europe  

Latin America 

150



13 
 

North America 

Oceania 

Study scale 

[True/false] 

Local (upper size limit defined as municipality) 

Regional (upper size limit defined as large state/province and/or small 

nation) 

Large (defined as large national to continental scale) 

Global (defined as multiple continents)  

Sample size 

[True/false] 

1-10 

11-100 

101-1,000 

1,001-10,000 

10,001-100,000 

100,001-1,000,000 

> 1,000,000 

Not described 

Sampling design 

[True/false] 

Explicitly described as opportunistic 

Semi-structured sampling design 

Structured presence/absence data 

Not described 

Direct data source 

[Number of each 

type of source, unless 

otherwise noted] 

Original data 

Large openly accessible database 

Small openly accessible database 

Literature 

Social media 

Unpublished data/personal communication 

Private organization/nonprofit 

Government agency 

Museum/herbarium/collections 

[For open databases] Name of database [open-ended response field] 

[For open databases] Is open database still available? [True/false] 

Original data source 

[True/false] 

Citizen science 

Data availability 

[True/false, unless 

otherwise noted] 

All data shared after publication – in an open database 

All data shared after publication – other method 

Location/format of shared data [open-ended response field] 

Is shared data still accessible? 

Analysis approach 

[True/false] 

Report of occurrence 

Spatial summary statistics 

Analysis of user trends 

Species distribution/ecological niche modeling 

Occupancy modeling 

List length analysis 

Species richness/diversity measures 
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Phenology 

Population dynamics/demographic modeling 

Multivariate analyses 

Other analysis 

information 

[True/false] 

Comparison with more structured analysis types 

Integration with more structured data types 

Presence-only data used to evaluate a different type of analysis 

Presence-only data used to design a different type of analysis 

Biases associated with presence-only data discussed 
 

1 Study and author region categories were derived from the GBIF Regions (GBIF Secretariat 
2019). 
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S4. Data collected from the set of 300 articles 

Data are available here: 

DOI: 10.17605/OSF.IO/JUEQC 
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S5. Ten most cited articles and most commonly cited references 

among included articles 
 

Table S5a. The ten most cited articles from within the articles included in our review. 

 

Article Times cited 

Phillips et al. 2006. Maximum entropy modeling of species geographic 

distributions. Ecological Modelling. 

7546 

Phillips and Dudík 2008. Modeling of species distributions with Maxent. 

Ecography. 

3063 

Elith et al. 2011. A statistical explanation of MaxEnt for ecologists. 

Diversity and Distributions. 

2658 

Pearson et al. 2007. Predicting species distributions from small numbers of 

occurrence records: a test case using cryptic geckos in Madagascar. Journal 

of Biogeography. 

1540 

Hernandez et al. 2006. The effect of sample size and species characteristics 

on performance of different species distribution modeling methods. 

Ecography. 

1258 

Phillips et al. 2009. Sample selection bias and presence‐only distribution 

models: implications for background and pseudo‐absence data. Ecological 

Applications. 

1251 

Merow et al. 2013. A practical guide to MaxEnt for modeling species’ 

distributions: what it does, and why inputs and settings matter. Ecography. 

1129 

Anderson et al. 2003. Evaluating predictive models of species’ 

distributions: criteria for selecting optimal models Ecological Modelling. 

712 

Engler et al. 2004. An improved approach for predicting the distribution 

of rare and endangered species from occurrence and pseudo‐absence data. 

Journal of Applied Ecology. 

576 

Pearson et al. 2006. Model‐based uncertainty in species range prediction. 

Journal of Biogeography. 

556 
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Table S5b. The most common references cited by articles included in our review. These 

references are not necessarily within the set of articles included in our review. 

 

Article 
Times 

referenced 

Phillips et al. 2006. Maximum entropy modeling of species geographic 

distributions. Ecological Modelling. 

695 

Elith et al. 2006. Novel methods improve prediction of species’ distributions 

from occurrence data. Ecography. 

509 

Hijmans et al. 2005. Very high resolution interpolated climate surfaces for 

global land areas. International Journal of Climatology. 

429 

Phillips and Dudík 2008. Modeling of species distributions with Maxent. 

Ecography. 

347 

Fielding and Bell 1997. A review of methods for the assessment of prediction 

errors in conservation presence/absence models. Environmental Conservation. 

322 

Elith et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity 

and Distributions. 

306 

Guisan and Zimmermann 2000. Predictive habitat distribution models in 

ecology. Ecological Modelling. 

291 

Phillips et al. 2009. Sample selection bias and presence‐only distribution 

models: implications for background and pseudo‐absence data. Ecological 

Applications. 

289 

Elith and Leathwick 2009. Species Distribution Models: Ecological 

Explanation and Prediction Across Space and Time. Annual Review of 

Ecology, Evolution, and Systematics. 

263 

Guisan and Thuiller 2005. Predicting species distribution: offering more than 

simple habitat models. Ecology Letters. 

261 
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S6. Openly accessible databases used by articles in the set of 300  

 

Asterisk indicates databases considered ‘large’ for the purpose of this review. 

 

Database 
Times 

used 

*Global Biodiversity Information Facility (GBIF) 37 

*eBird 9 

*Atlas of Living Australia 8 

*iNaturalist 8 

*Tropicos 8 

*OBIS 4 

*speciesLink 4 

Butterflies for the New Millenium 3 

*FishBase 3 

Victorian Biodiversity Atlas 3 

Birdlife Australia 2 

Biodiversity Information Serving Our Nation (US) (BISON) 2 

BugGuide.net 2 

Butterfly Conservation 2 

Chinese Virtual Herbarium 2 

Dutch National Database Flora and Fauna 2 

EDDMaps 2 

*iDigBio 2 

Joint Nature Conservancy Council Seabird Censuses 2 

ManisNet.org 2 

National Specimen Information Infrastructure (China) 2 

SEINet Portal Network 2 

Swedish Lifewatch 2 

Taiwan Roadkill Observation Network 2 

UK Biological Records Centre 2 

VertNet 2 

WikiAves 2 

AK Libellen NRW 1 

AquaNIS 1 

ArtDatabanken (Swedish Species Observation System) 1 

Artsdatabanken (Norwegian Biodiversity Information Centre) 1 

Atlas of New South Wales Wildlife 1 

Aves de Chile 1 

Base de Datos sobre Scarabaeidae (BANDASCA) 1 

Basking Shark Watch (UK Marine Conservation Society) 1 

Biodiversity Databank of Catalonia 1 

BioObs 1 
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Bird Conservation Society of Thailand (BCST) 1 

BirdLife Finland Tiira database  1 

Birdlife International 1 

BOLD (Barcode of Life) 1 

British Dragonfly Society Recording Scheme 1 

British Trust for Ornithology 1 

Butterflies and Moths of North America 1 

CalOdes 1 

CardObs 1 

Centre for Agriculture and Biosciences International (CABI) 1 

Centre of Environmental Data and Recording (CEDaR) (North Ireland) 1 

Centre Suisse de la Faune 1 

cloudbirders.com 1 

COL (National Colombian Herbarium of the Instituto de Ciencias Naturales) 1 

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) 1 

Database for Ecosystems and Ecosystem Service Zoning in China 1 

Datenbank Artenschutzkartierung 1 

Données d'Observations pour la Reconnaissance et l'Identification de la faune et la 

flore Subaquatiques (DORIS) 1 

Dutch Butterfly Monitoring Scheme 1 

Dutch Dragonfly Monitoring Scheme 1 

eButterfly 1 

EPPO Global Database (European and Mediterranean Plant Protection Organization) 1 

EUFORGEN (European Forest Genetic Resources Programme) 1 

European Environment Agency (http://eunis.eea.europa.eu) 1 

falterfunde.de (science4you) 1 

Faune-Aquitaine 1 

Flora of Cyprus 1 

Flora-On 1 

Flotrop  1 

Global Ant Biodiversity Informatics (GABI) 1 

Global Mammal Parasite Database 1 

HOLOS Ecoinformatics Engine 1 

http://magicicada.org/ 1 

http://mammiferimarini.unipv.it/ Strandings Database 1 

https://www.geocetus.it/ Stranding Information System 1 

https://www.ornitho.at/ 1 

https://www.ornitho.ch/ 1 

https://www.ornitho.it/ 1 

Influenza Research Database (FluDB) 1 

INPN Espèces 1 

Insect Database (Finnish Museum of Natural History) 1 

insecte.org 1 

iSeahorse 1 

JABOT (Rio de Janeiro Botanical Garden) 1 
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Jaguar GIS (http://www.savethejaguar.org) 1 

JellyWatch (http://www.jellywatch.org) 1 

JSTOR 1 

LANDFIRE reference data base 2010, v1.2.0 1 

Malaysian Nature Society Bird i-Witness database 1 

Massachusetts Audubon Butterfly Atlas 1 

MosquitoMap 1 

Natagora 1 

National Biodiversity Data Centre (Ireland) 1 

National Indigenous Vegetation Survey Database (New Zealand) 1 

National Institute of Invasive Species Science (NIISS) database (US)  1 

NeoTropTree  1 

New Zealand Herpetofauna Database 1 

North American Breeding Bird Survey 1 

OBIS-SEAMAP 1 

Observadores del Mar 1 

Odonata Central 1 

PERSEUS (Policy-oriented marine Environmental Research in the Southern European 

Seas) 1 

REBIOMA (Réseau de la Biodiversité de Madagascar) 1 

Red de Observadores de Libélulas de Andalucía 1 

Redmap 1 

Reef Life Survey 1 

Seaquest Southwest, Cornwall Wildlife Trust 1 

SIG-Ivoire 1 

Société française d’Odonatologie 1 

SOMBASE (Southern Ocean Mollusc Database) 1 

SWEMP (Southwest Exotic Mapping Program) 1 

The Database on Taxonomy of Drosophilidae 1 

Tokyo Butterfly Monitoring 1 

UK National Biodiversity Network 1 

University of British Columbia E-fauna 1 

USGS Nonindigenous Aquatic Species database (US) 1 

VectorMap 1 

West African Vegetation database of the Senckenberg Research Institute 1 

www.naturbeobachtung.at 1 

xeno-canto 1 
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S7. Bibliography of the subset of 300 articles that were randomly 

selected from the full set of 2151 articles to be read in full and 

coded for analysis 
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S8. R scripts 
 

All scripts used in data management and analysis for our review are available here: 

DOI: 10.17605/OSF.IO/JUEQC 
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