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Abstract— Sensor technologies empower Industry 4.0 by enabling
integration of in-field and real-time raw data into digital twins.
However, sensors might be unreliable due to inherent issues and/or
environmental conditions. This paper aims at detecting anomalies
instantaneously in measurements from sensors, identifying the
faulty ones and accommodating them with appropriate estimated
data, thus paving the way to reliable digital twins. More specifically,
a real-time general machine-learning-based architecture for sensor
validation is proposed, built upon a series of neural-network estima-
tors and a classifier. Estimators correspond to virtual sensors of all
unreliable sensors (to reconstruct normal behaviour and replace the
isolated faulty sensor within the system), whereas the classifier is
used for detection and isolation tasks. A comprehensive statistical
analysis on three different real-world data-sets is conducted and the
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performance of the proposed architecture is validated under hard and soft synthetically-generated faults.

Index Terms— Digital twin, Fault diagnosis, Machine learning, Neural networks, Sensor validation.

|. INTRODUCTION

IGITAL TWINS (DTs) have recently emerged in several

industrial applications and exploit Internet of Things
(IoT) technology [1]. More specifically, most environments
have been pervaded by the extensive use of spatially-
distributed sensors, generating enormous amount of hetero-
geneous data over time, which requires advanced integrated
solutions involving sensing, communication, and processing
[2]-[4]. DTs represent one of the main products for building
advanced analytics over such data and extract relevant infor-
mation for prediction and effective control. DTs have been
widely employed in various sectors such as industry [5], health
care [6] and smart cities [7], [8], where their capabilities to
visualize and treat with a perpetual stream of real-time sensor
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data is enabling new opportunities. Leveraging sensor data
enables DTs to model system dynamics effectively for remote
monitoring and controlling, for safety and risk analysis and
for maintenance purposes. Since DTs rely on accurate sensor
data, system performance may be affected severely by sensor
failures. Sources of sensor faults are commonly found in: (¢)
Hardware and inherited limitations - sensors are electronic
components and can collect inaccurate measurements or stop
working without any indication due to low production quality,
calibration issues, low battery level, end of life span, poor
connections [9]; (i4) Harsh environment - in real-world sce-
narios, sensors can be deployed in inaccessible and unattended
environments with possibility of unlikely situations which
would hinder sensors performance [10]; (ii¢%) Malicious attacks
- faulty data can be injected by an attacker into a vulnerable
system [11], [12].

A fault in a system refers to a complete (or partial) malfunc-
tion and manifests over a permanent (or transient) time span.
As shown in Fig. 1, the most common types of sensor faults in
a sensor network are defined (a detailed discussion of sensor
faults is found in [13], [14]). Depending on the characteristics
of sensor data, faults can be classified as following:

1) Bias fault: also known as offset fault, the deviation from
nominal values is given by an additive constant bias;

2) Drift fault: sensor readings drift with a small slope from
nominal values (drift faults are more subtle since they
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Fig. 1: Types of sensor faults.

appear gradually over time and their effect is not very
apparent);

3) Noise fault: an increased noise level in sensor readings
(when noise power is much larger than usual, it is an
indication of sensor malfunctioning).

4) Freeze fault: also known as stuck-at fault, the sensor
readings stuck at a constant value (i.e. the variance of
the readings becomes zero);

The impact of sensor faults would affect stability, reliability
and accuracy of the system depending on the specific appli-
cation. Hence, to fully utilize the expected properties of the
DT, it is essential to continuously evaluate and amend sensor
data. From this perspective, prompt Sensor Fault Detection,
Isolation and Accommodation (SFDIA) is one key issue for
deploying DTs while assuring reliable performance. SFDIA
indeed consists of three parts:

e fault detection, i.e. determining sensor fault(s) within the

system’s sensor network;

o fault isolation, i.e. identifying specific faulty sensors and

block their measurement feeding to DT;

o fault accommodation, i.e. feeding DT with some other

replaced trustworthy data.

In what follows, related literature is reviewed by focusing
on recent progress on sensor fault diagnosis and SFDIA
approaches. It is worth highlighting that the following dis-
cussion leaves out the (huge) corpus of literature dealing
with soft/virtual sensor design (see, for instance, the excellent
survey [15]). Indeed, it should be noted the latter field is out
of the scope of this paper, as soft/virtual sensors are usually
meant to provide predictions only for analyzing, monitoring
and/or controlling purposes (corresponding to the first layer of
the proposed SFDIA architecture). Also, we emphasize that
this work focuses on sensor faults only, i.e. the monitored
physical process does not exhibit any anomaly while the
measurement data do (e.g. errors in data acquisition and/or
communication). Process fault detection and related analysis
is beyond the scope of this work.

A. Related Work

In the last years, the main advancements in fault diagnosis
technology have relied on the milestone concept of redun-
dancy which embraces a wide spectrum of design solutions,
e.g. redundancy can be accomplished by either hardware
or analytical schemes. Within the class of hardware-based
approaches (also referred to as physical-based approaches),
multiple identical sensors (i.e. sensing the same physical
parameter) along with a voting scheme (or more sophisti-
cated techniques, see [16]) are employed to detect, isolate
and accommodate sensor failures [17]-[19]. If the difference
(namely, the residual signal) between the measured signal of
a sensor and each other sensor in the set is considerably high,
the aforementioned sensor is declared faulty and its data is
replaced with those from the remaining (identical) sensors. For
instance, the aforementioned assumptions apply to the case of
homogeneous WSNs, where neighboring nodes are assumed
to measure roughly the same parameter [16]. Conventional
physical-redundancy approaches however cannot handle cases
with simultaneous failures of identical sensors, as they do not
capitalize the statistical dependence of measurements origi-
nating from other sensor types [17], [18]. Moreover, in many
applications, it is impractical to implement these approaches
due to space and/or weight and/or cost constraints [18].

Accordingly, it is not surprising that methods adopting
analytical redundancy have gained increasing attention within
the research on SFDIA [20]-[22]. Unlike physical redundancy,
the latter approaches exploit correlations and functional rela-
tionships within the system instead of introducing additional
(redundant) hardware. Still, it is worth highlighting that the
above two philosophies are not mutually exclusive and hybrid
approaches can be pursued toward the sophisticated design
of fault-tolerant DTs. Analytical redundancy can be usually
implemented by either model-based or data-driven techniques.

Model-based SFDIA have been mostly investigated in the
context of power systems [23], e.g. using electrical dynamics
equations [20] or Luenberger observers [24]. Some other
methods have focused on the detection and accommodation of
proportional-type faults in nonlinear systems [25], [26]. Unfor-
tunately, those methods (a) usually result in high complexity,
(b) require an explicit, application-dependent, formulation of
the analytical redundancy relationship among sensors and (c)
are seldom able to handle multiple sensor faults simultane-
ously. On the contrary, data-driven approaches relying on
historical data have recently received large interest, starting
from simpler methods (e.g. auto-regressive models with ex-
ogenous inputs (ARX) [27]) to more complicated (non-linear)
learning approaches (e.g. random forest (RF) [28], support
vector machines (SVMs) [29], [30] and NNs [31], [32]).
Indeed, data-driven techniques do not require exact knowledge
of the mathematical model for sensor fault diagnosis.

Specifically, SVM-based classification was one of the rel-
evant attempts to detect sensor faults in WSNs, in both
batch [29] and online forms [30], which showed relatively
small computational costs, but limited performance. Succes-
sive works [33], [34] have also employed the SVM approach
to allow both detection and identification of faults: a binary
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classifier was trained from the residuals of each sensor.
Specifically, in the former case [33], the residual signals
were generated by comparing the true measurements with a
single (global) observer designed by including fault models.
Conversely, in the latter case [34], a residual was obtained
from each (correlated) sensor pair via an ARX model, thus
providing multiple classification outputs for a given sensor
then aggregated at a higher level.

A second important class of approaches for SFDIA relies
on the well-known Autoencoder (AE) NN [12], [21], [35],
[36]. Indeed, the AE is an unsupervised learning technique
capable of learning and extracting hidden representations from
raw data and it is thus suited for fault detection. Hence,
once trained, the AE can provide a reconstructed estimate
of the sensors’ measurements, thus allowing straightforward
computation of residuals (i.e. the difference between inputs
and outputs of the AE). Specifically, an AE-based (aided
by exogenous inputs) sensor validation scheme for a heat-
ing, ventilation and air conditioning system was proposed in
NNs [36]. Detection and identification are simply performed
by comparing overall and per-sensor residuals to a given
threshold. A similar AE-based SFDIA method is presented
in [21] for an air quality controlling system, with identification
scheme performed via a more involved sensor validity index.
In both works [21], [36] accommodation is simply performed
by using the AE output associated to the sensor(s) declared
as faulty. Differently, a more sophisticated proposal uses an
additional denoising AE (a supervised learning technique) to
perform the accommodation task [12], namely to clean faulty
data. Despite their simplicity, AE-based SFDIA approaches
can suffer however from degraded performance under weak-
faults, as the latter type of faults does not considerably impact
correlations in data.

Multi-layer perceptron (MLP) NNs (including variants)
have also been proved to perform satisfactorily for a number of
relevant sensor fault diagnosis tasks [22], [37], [38], including
heavy-duty diesel engines’ and aircrafts, based on a sensor-
centric viewpoint. Indeed, in all the aforementioned works, one
MLP estimator per each sensor is designed (solely on the basis
of other sensors’ measurements) and detection/identification is
based on the evaluation of the residual vector. Accommodation
is then performed by using the estimator(s) associated to the
sensors declared as faulty. Specifically, the proposal in [37]
adopts fully-connected cascade NNs (i.e. MLPs allowing direct
connections across different hidden layers) for the sensor
estimator design, while [22] considers a hybrid structure with
a linear NN and resource allocation network (a variant of well-
known radial basis function NN) for the same task. More
recently, a plain MLP estimator (exploiting the sole spatial
correlation among sensors) has been proven to provide reliable
detection with low false-alarm rate as well [38].

A different rationale is pursued in [31], where a single Deep
belief network (a Bayesian type of NNs) has been trained (in a
supervised fashion) to detect a faulty condition whereas sensor
identification is naively carried out based on the maximum
deviation from data mean-value. Along the same lines, a gen-
eral approach is presented to detect and identify sensor faults
using either a single Recurrent NN (RNN) or an MLP [39]

for predicting next-step measurements and comparing with
actual ones. A disentanglement regularization term on the NN
loss function is introduced to help the algorithm coping with
propagation of faults to non-faulty sensors in the identification
stage. Unfortunately, the accommodation stage is not taken
into account in the above work. Interestingly, also a dynamic
Bayesian network has succeeded in sensor fault detection and
accommodation exploiting spatial and temporal correlations
in the context of intelligent connected vehicles [40]. Still, its
training difficulty (in terms of both parameter and structure
learning) appears limiting in large-scale sensor systems.

Recently, the sensor-centric viewpoint in [22], [37], [38]
has further been exploited to devise a modular SFDIA (M-
SFDIA) method based on MLP NN in [32], [41], with focus
on supporting DTs. The proposed structure consists of a set
of estimators (each associated to a sensor) providing residual
signals as well as replacements (estimates) for faulty data.
Therein a supervised classifier is trained to make detection &
identification decisions upon the residual signals by leveraging
their (possibly-nonlinear) relationships. An experimental anal-
ysis on three real-world data-sets has demonstrated satisfactory
performance of M-SFDIA method. Although promising (from
the estimators’ design viewpoint), M-SFDIA architecture does
not completely exploit the temporal correlations among sen-
sors within the monitored system.

B. Paper Contribution

In view of the previous discussion, some proposals are
restricted to a given vertical domain (e.g. aircraft [37], ve-
hicle [34] or HVAC system [36] monitoring), thus lacking
a general formulation. Secondly, part of the literature eval-
uates corresponding proposals on private (e.g. [39], [40])
or simulated (e.g. [28], [36], [37]) measurement data, thus
precluding reproducibility and convincing evaluation, respec-
tively. Thirdly, a number of the discussed works evaluate
their proposals only on a single fault type (e.g. bias [21],
[39] or drift [22]). Equally important, some architectures
are only limited to fault detection [29], [30]. On the other
hand, some recent proposals do not foresee all the three
tasks in their original formulation, e.g. the identification and
accommodation tasks in [12] and [39], respectively. Still, even
when all three tasks can be carried out, in some cases only
spatial correlation [22], [36], [38] is used to accommodate
faulty measurements. Finally, some approaches have a limited
modularity [12], [21], [39]. Accordingly, the main contribu-
tions of this article are summarized as follows:

o A real-time and modular data-driven SFDIA architecture
is developed, fully exploring (viz. learning) spatial and
temporal dependence in sensory data. The proposed ar-
chitecture relies on the novel use of a pair of regressors
for each sensor, performing estimation and prediction op-
erations, respectively. In the former case, each estimator
is leveraging readings from other sensors only to obtain a
“virtual measurement”. Conversely, each predictor plays
a complementary role (to the estimator) by using only
previous data from the sensor under consideration to ob-
tain an analogous virtual measurement. Hence, their joint
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adoption enables the proposed architecture to ultimately
exploit spatio-temporal correlation within the system,
thus supporting nearly-instantaneous fault detection and
isolation performance.

o The dissimilarity measured by predictors (resp. estima-
tors) and measurements, referred to as residual signals,
are then used as the perfect candidate for designing a
reliable classifier able to perform both fault detection
(i.e. whether there is a fault in the whole sensor set) and
identification (i.e. which sensors are faulty).

o The proposed approach employs MLP NNs for both
regression (estimation and prediction) and classification
modules to capture and process analytical redundancy
relations while keeping a reasonable complexity at the
operational stage. In the latter case, a multi-task MLP
NN (i.e. each sensor condition is seen as a binary
classification task) is designed for detecting and (if any)
identifying multiple faulty sensors via a single neural
network.

« Moreover, classifier decisions, residual signals and virtual
measurements are exploited by a a specifically-designed
controller to make corrections on sensor models inputs
and improve overall system performance both for detec-
tion and isolation tasks. Specifically, in a feedback loop,
the controller is in charge of replacing corrupted input
data and, consequently, avoiding propagation of faults
throughout the architecture.

o The performance of the proposed SFDIA architecture is
assessed on three real-world (public) data-sets [42]-[44]
which are corrupted with (a) four relevant fault types
(bias, drift, noise and freeze) and (b) different levels of
faults (with special emphasis on weak faults, as they are
more difficult to detect).

e The proposal is compared with two state-of-the-art
machine-learning-based architectures [12], [41] from both
performance (in terms of detection delay and probabilities
of detection, false alarm, and correct identification, and
accommodation error) and computational complexity (in
terms of number of trainable parameters) standpoints.

The present work extends earlier conference paper [45],
which (a) presented only an intermediate version of the
proposed novel architecture (no controller block), (b) reported
a significantly-smaller experimental analysis (focusing only
on the WSN data-set [43]), (¢) considered a smaller set of
baselines in the comparison and (d) assessed the effectiveness
of the SFDIA approach only on bias faults.

The remainder of this paper is structured as follows: in
Sec. 1II, the proposed data-driven SFDIA architecture is pre-
sented and the functionalities of each block are illustrated;
Sec. III describes the configuration of the NNs and the
related training process; the description of the data-sets and
the framework for fault generation are provided in Sec. IV;
Sec. V presents and discusses the numerical performance of
the proposed architecture in contrast with benchmarks from
the current literature. Finally, concluding remarks and future
directions of research are given in Sec. VI.

Notation - Lower-case bold letters indicate vectors; Iy
denotes the null column vector of length N; (-)7 refers to the
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Fig. 2: Block diagram of the proposed SFDIA architecture.

transpose operator, € is the set membership, and O(-) denotes
the Landau notation.

Il. SFDIA

The proposed method aims to exploit the full potential of
spatial and temporal correlation among sensors in a system.
Specifically, it is assumed that the sensors are divided into
two sets: (i) the set of unreliable sensors Sy, containing
sensors that are vulnerable to faults; and (i%) the set of reliable
sensors Sg, which, depending on the working system, include
sensors whose flawless functionality can be guaranteed [41].
This (ideal) level of reliability could be associated to: a
meta-sensor modeling a group of identical sensors (enjoying
hardware redundancy), high-quality sensors, a proper design
and safe working environment, a device being at the middle
of life span [46], or context measurement information which
is assumed to have significantly higher reliability than the
considered networked sensor system. In a more general sense,
any reliable source of data correlated with the unreliable
sensors could be included in the set of reliable sensors. In
the following, without loss of generality, it is assumed Sy =
{1,...,Ny} and Sg = {Ny +1,..., N}, where Ny and N
denote the number of unreliable sensors and total number of
sensors, respectively. Also, for compactness, Nr denotes the
cardinality of the reliable set Sp (i.e. N = N — Ny).

A. Architectural Overview

The block diagram of the proposed SFDIA architecture is
shown in Fig. 2. It consists of five building blocks (controller,
estimators, predictors, residual calculator, classifier) arranged
in four layers, whose function is explained as follows. The
first layer contains two parallel blocks, the estimators block
and the predictors block, each providing a virtual measurement
for all the unreliable sensors in the system either regressed via
other sensors’ observations (i.e. the estimator) or based only on
previous measurements of the same sensor under consideration
(i.e. the predictor). The second layer is responsible for the
computation of a discrepancy measure between the true and
each calculated virtual measurement, usually in the form of a
function of the residual signals. The third layer is fed with the
aforementioned discrepancy measures and is able to perform a
multidimensional classification to (a) detect a faulty condition
and (b) identify the corresponding faulty sensors. Finally, the
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Fig. 3: Diagram detailing the estimators and predictors blocks.

Sfourth layer controls the inputs of the blocks in the first layer
in order to preserve estimators and predictors accuracy, by
avoiding error propagation.

The present architecture improves over the one proposed
in [41] where the main novelty is the introduction of the
controller and the predictors. Despite the addition of these
two modules, it is worth remarking that the proposed ar-
chitecture retains the advantages of modularity and real-time
implementation. Indeed, regarding the former property, the
proposed approach allows the implementation of diversified
ML techniques for different modules and a more flexible
deployment, also taking computational/hardware limitations
into account. Differently, regarding the latter property, each
of the proposed modules can be flawlessly implemented
in real-time since they are all based on a sliding window
implementation. Finally, given the adoption of MLP-based
solutions for the estimators/predictors (Sec. 1I-B) and the
classifier (Sec. II-D), the proposed implementation also retains
simplicity. The following subsections detail each of the four
layers constituting the proposed approach.

B. First Layer: Estimation & Prediction

The first layer aims to model the unreliable sensors within
the system and is based on two subsystems: (a) a bank of
estimators and (b) a bank of predictors.

As detailed in Fig. 3, the bank of estimators is composed of
Ny estimators (each associated to an unreliable sensor), each
providing the estimation Zs[n| of the measurement (at current
time step n) from its corresponding unreliable sensor s € Sy.
Each estimator receives as input the vector x(,) collecting all
existing sensors readings (from current time step n back to L.
previous time steps using a sliding window mechanism) except
the one from the sensor to be estimated {Sy U Sy — s}, i.e.

iS[n] = fAEHmN“)(m(s) [n]7 cee 7:13(5)[77' - LGD ’ (n
where fﬁH""N"’)(~) denotes the function model of the MLP-

based estimator for the sth sensor, being H, and N, the num-
ber of hidden layers and the number of neurons, respectively.

Residual Calculator

X1 /—. -

{—— Residual

. ! —— Estimator

[ | . :

|y, S e

Fig. 4: Diagram detailing the residual calculator block.

Previous time samples are fed into the estimators in order to
exploit the temporal correlation among the input signals.

The bank of predictors operates a complementary ap-
proach. Each of the Ny predictors provides a prediction
Zs[n] of the measurement (at current time step n) from
its corresponding unreliable sensor s € Sy. Each predictor
receives as input the readings 5[] of the sensor to be predicted
(from previous time step n — 1 back to L, previous time steps
using a sliding-window mechanism), i.e.

zs[n) = g N (asfn— 1], asn = L)), (@)
where g,ﬁH"”N"’)(~) denotes the function model of the MLP-

based predictor for the sth sensor, again being H, and N,
the number of hidden layers and the number of neurons,
respectively.

C. Second Layer: Residual Evaluation

The second layer computes the square of residual signals
i.e. the difference of sensors reading with their respective
estimation or prediction values (see Fig. 4), namely

ep.s[n] = (zsn] — &4[n])?, 3)

ePys[n] = (Z‘S[7l] - £S[n])27 “4)

for each unreliable sensor s € Syy. Residual signals are used
as input to the classifier in the third layer as they contain
effective information for fault classification. It is worth notic-
ing that the proposed SFDIA architecture enjoys modularity
and generality: thus other discrepancy measures (other than
that used in Eqgs. (3) and (4)) may be adopted without any
substantial change in the subsequent layers.

D. Third Layer: Classification

An MLP classifier, meant to work in real-time, is used
for fault detection and the identification of the faulty sen-
sors, and its detailed structure is shown in Fig. 5. Denoting
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Fig. 5: Structure of the MLP-based classifier block.

ey[n] = (eganl,...,egn,[n),ep1nl, ... epn,[n])T the
residual vector containing the residual signals of all Ny sen-
sors at time step n, the input of the classifier is the collection
of residual vectors from L. previous time steps up to current
time step n, namely ey[n],...,ey[n — L.]. Conversely, a
decision vector d[n] = (dy[n],dz[n],...,dn,[n])? represents
the output of the classifier and identifies which among the
unreliable sensors are suspected to be in failure, i.e.

d[n] =hWeNd(ey[n],... ep[n— L)), %))

where h(e:NVe)(.) denotes the function model of the MLP-
based classifier, being H. and N, are the number of hidden
layers and the number of neurons of the classifier, respectively.
More specifically, the sth entry of the decision vector, i.e.
ds[n] € 0,1], s=1,..., Ny, represents a pseudo-probability
for the sth unreliable sensor to be faulty. Apparently, dg[n] = 1
(resp. ds[n] = 0) represents the situation in which the system
declares with maximum confidence the sth sensor to be faulty
(resp. fault-free). As a consequence, a vector d[n] = Oy,
indicates healthy operation of all the sensors within the system
at time n.

Therefore, faulty sensors are identified via a threshold-
based logic for each of the components of the decision
vector. The considered threshold will be denoted + in what
follows. Principally, herein faulty sensors are detected and
identified/isolated when the entries of the decision vector d[n]
exceed the threshold . Specifically, maxY¥; d.[n] = v is used
for detection. Accordingly, for the identification task, the set
of identified faulty sensors (denoted with Z;;) is obtained as
Iy £ {s€ Sy : ds[n] > v}

It is worth mentioning that, from overall SFDIA system
perspective, the measurements from the sensors declared faulty
are replaced (viz. accommodated) with their corresponding
estimates in order to preserve system utility.

E. Fourth Layer: Control

The role of the control block is to preserve the performance
of the proposed SFDIA method when faults occur. Referring to
Fig. 2, this block operates at the beginning of each time step,
and controls inputs-outputs of both estimators and predictors

regarding the latest residual signals and the decision vector
d[n—1].

The symbol ¢f s (resp. ¢p ) denotes the average residual
signal for the sth estimator (resp. predictor) computed with a
moving average over a window of size L, starting from time
step n — 1 while excluding the identified faulty time steps.
The signal ¢ (resp. ¢p,s) of the unreliable sensor s is used
by the controller as a metric to define the estimation (resp.
prediction) accuracy of the corresponding estimator (resp.
predictor).

In the first step, after applying the proposed SFDIA scheme
at time step (n—1), the elements of the decision vector d[n—1]
larger than a predefined threshold v identify faulty sensors for
the controller. Then, the following process will be conducted
at the beginning of each time step n. To keep the discussion
simple, we will generically refer to sth sensor as the one
identified as faulty.

As for the predictor controlling scheme, if the estimator’s
average residual signal ¢g . is smaller than a certain value
7 (i.e. the system tolerable level of deviation), the estimator
output &, [n — 1] replaces the respective sensor input zs[n — 1]
to the corresponding predictor. In other words, the predictor
in Eq. (2) will be then fed as:

za[n] = g M (En =1z = L)), (©)
——
replacement

This logic is intended to use only those estimates whose
quality is better than the faulty-data within the sth predictor.
As for the estimator controlling scheme, if the predictor’s
average residual signal ¢p ; smaller than both (¢) the system
tolerable level of deviation 7 and (i) ¢ s, the predictor output
Zs[n] is obtained and replaces the respective sensor input xs[n]
(updates all estimators’ input vectors except (4)[n]) to the
estimators. In other words, we have Vs, € S, s, # s:

js* [TL] = f_s(f{mN”)( i(s*) [71} y ooy Lsy) [TZ - Le]) ) @)
——
replacement

where the vector Z,,[n] collects all existing sensors readings
except for s, and with sth reading being replaced by Z,[n].
Otherwise, if ¢, is smaller than the system tolerable level of
deviation', the estimator output £5[n] is obtained and replaces
the respective sensor input z4[n] (updates all input vectors
except x(5)[n]) to the estimators. Specifically, Vs, € S, s, #
s

fi’s* [”] = fé,{lvva)( :%(s*) [n} sy L(sy) [TL - Le]) ) (8)
——
replacement

where the vector &, [n] collects all existing sensors readings
except for s, and with sth reading being replaced by &[n].
This logic is intended to replace the input faulty-data with
estimates/predictions whose accuracy are better than the input
faulty-data (i.e. z(5)[n]) to all estimators (except the corre-
sponding sensor s estimator). We highlight that, in all three
cases, no architectural modification (i.e. varying input size for

'In other words, the corresponding estimator is providing better accuracy
than the corresponding predictor, i.e. ¢ s < ¢p s and ¢pp s < 7.
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the estimators and predictors) is required for the blocks of the
proposed SFDIA method.

Conversely, in the case of no-fault detected, this block
merely slides the window forward in time to update both ¢p ¢
and ¢ s by using the recent residual signals es[n — 1].

A pseudo-code of the controlling block process is given in
Algorithm 1. It is worth remarking that substitution of faulty
inputs with either estimated or predicted values maintains esti-
mators and predictors accuracy (by avoiding error propagation)
and results in better accommodation performance as well as
increased detection rate.

Algorithm 1 Controller

1: procedure CONTROLLER

2 Input: d, ey, and z; for all s € Sy;

3 At starting of each time step n:

4: for s=1: Ny do > Corresponds to sé€ Sy

5 if ds[n — 1] > v then > Identified faulty

6 if op s <7 then

7: Feed &4[n — 1] instead of zs[n — 1] to the
prediction block as input;

8: if gps < ¢p.s and ¢ps < 7 then

9: Obtain Z[n] from Eq. (2);

10: Feed #,[n] instead of xs[n| to the estima-
tion block as input;

11: else if ¢, < 7 then

12: Obtain ,[n] from Eq. (1);

13: Feed &,[n] instead of xs[n| to the estima-

tion block as input;
14: else > Identified healthy
15: Update ¢g s, ¢p,s using ey[n — 1J;

[11. NNS CONFIGURATION

The MLP is a feed-forward layered NN made up of an input
layer, an arbitrary number of hidden layers and an output layer,
where neurons are interconnected in forward direction from
the input to the output layer [47]. The MLP is a suitable NN
for regression and classification tasks and is capable to model
arbitrary non-linearities while exhibiting fine generalization on
unseen data [38], [41]. MLP NNs in the proposed SFDIA
architecture are trained using an optimization algorithm [48].

A. Estimators and Predictors

Each MLP-based estimator has been implemented with
(N —1)-(Le + 1) inputs, H, hidden layers with N, neu-
rons each, and a single output. Conversely, each MLP-based
predictor has been implemented with L, inputs, H, hidden
layers with N, neurons each, and a single output. For both
the estimators and predictors, the hyperbolic tangent has been
selected as the activation function for the hidden layers, while
the linear activation function has been selected for the output
layer.

Training was accomplished using the Nesterov-accelerated
adaptive moment estimation (Nadam) optimization algorithm
[49] over real-world data-sets. The mean square error (MSE)

loss function was considered as the relevant optimization
metric for both the estimators and the predictors. More
specifically, the MSE loss for sth estimator and predictor,
respectively, is defined as

1 w—1 )
£es.s(¢s) = E Z(i’i‘(d)q) - Ef@)z (9)
j=0
Le |
Lors(ps) = — > (#(ps) —2])? (10)
7=0

where w is the number of samples in each batch, ¢; (resp.
;) represents the vector of trainable parameters of the sth
estimator (resp. predictor). Finally, 27 (resp. #7) is the network
output associated to the sth estimator (resp. predictor), while
27 denotes the true measurement (viz. the labeled sample) of
sth sensor.

B. Classifier

The MLP-based classifier has been implemented with 2Ny -
(Le + 1) inputs, H. hidden layers with N, neurons each,
and Ny outputs. The hyperbolic tangent has been selected
as the activation function for the hidden layers, while a
logistic (viz. sigmoid) activation function has been selected
for each node in the output layer. In order to accomplish both
detection & identification tasks, a loss capitalizing multitask
learning is employed for training the classifier. Specifically, a
weighted sum of the losses of the Ny binary (fault/no-fault)
classification tasks associated with the unreliable sensors is
minimized, i.e.

Ny
Lcl ( shared s {9 }NU ) 2 Z )\s Es (esharcd: 95) (11)
s=1
In the above formula, the weight )\, indicates the preference
level of the sth task (i.e. detection of a fault at sth unreliable
sensor). It is worth noticing that the multitask objective func-
tion allows the proposed classifier to solve multiple learning
tasks at once (i.e. via a single NN). Accordingly, in the above
expression, Oghared represents the vector of shared parameters
of the MLP common to all the Ny different tasks, whereas
6, indicates the vector of parameters which are task-specific
for sth learning task.

In this work uniform weighting is adopted, i.e. Ay = 1/Ny
for s = 1,..., Ny, and a binary cross-entropy (BCE) loss
function for all the Ny binary tasks £q(-),..., LN, (-). The
BCE loss for sth task is formally defined as

w—1

Ls (esharcrh =—-— Z {U} lnd Oshared, es) + (12)

(1 - ys) In (1 - d{q(ashareda 04))}

where w is the number of samples in each batch. Furthermore
dJ is the entry of classifier output associated to sth sensor,
while y? denotes (the 0/1 representation of) the true fault
status (viz. the labeled sample) of sth sensor. The same op-
timization algorithm (i.e. Nadam) as the estimators/predictors
is employed for training the aforementioned MLP-based clas-
sifier.
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C. Summary of the training phase

The whole training process of the proposed SFDIA architec-
ture is summarized in Algorithm 2. In detail, the estimators and
predictors (Sec. III-A) are trained only with healthy (fault-free)
data, according to the inputs specified via Egs. (1) and (2),
respectively. A similar comment applies to the associated
validation set for estimators and predictors.

Conversely, the classifier block (Sec. III-B) is also trained
based on faulty training data, by including the controller and
residual evaluation blocks in an open-loop fashion. Indeed,
during the training process, the controller is given the classi-
fier label set (i.e. the binary-valued vector pattern collecting
true faulty/healthy condition for all the sensors) as input, in
the place of the classifier decision vector. This is to avoid
detrimental effects due to training instability of the classifier.
However, since perfect identification provided by the label
set may lead to overfitting, 25% of controller decisions are
randomly dropped out to help the classifier generalize better
during the training process. The corresponding validation set
for the classifier block includes faulty measurements as well.

Algorithm 2 Training Process

1: procedure INITIALIZE

2 Preparing training set and create a falsified copy;

3 Random weights and biases for all networks;

4: Set initial value of all other parameters to zero;

5: procedure ESTIMATORS AND PREDICTORS

6 Input: healthy training set; > Fault free

7 while Epoch number < Max epoch or Validation loss
Not triggered do

8: for each epoch do

9 Calculate MSE;

10: Update weights and biases using Nadam opti-
mization;

11: Calculate validation loss;
12: procedure CLASSIFIER

13: Input: Falsified training set;

14: while Epoch number < Max epoch or Validation loss
Not triggered do

15: for each epoch do

16: Obtain &, T, for all s € Sy with respect to
the controller mechanism;

17: Calculate residual signals;

18: Feed residual signals to the classifier;

19: Calculate weighted BCE;

20: Update weights and biases using Nadam opti-
mization;

21: Calculate validation loss;

|V. DATA-SETS AND FAULTS SETUP
A. Data-sets Setup

For the sake of a complete evaluation, three real-world
data-sets (similarly as [41]) have been employed to assess
the proposed SFDIA architecture. Specifically, the air qual-
ity (AQ) data-set [42] includes readings from five chemical

sensors (assumed to be unreliable, namely Ny = 5) which
are complemented by measurements originating from humidity
and temperature sensors (assumed to be reliable, i.e. Np = 2).
Such a sensor system is aimed at pollution-level evaluation in
an Italian city. The second data-set is related to a wireless sen-
sor network (WSN) with four unreliable sensors measuring
indoor and outdoor humidity and temperature [43]. Labeled
anomalies injected into the data-set were omitted and only
the temperature readings of the multi-hop section of data-set
are considered as unreliable readings (Ny = 4, Ng = 0) for
our analysis. The last data-set includes multiple sensors on a
permanent-magnet synchronous motor (PMSM) [44], [50].
Among the collected measurementsZ, (%) coolant temperature,
(i) voltage and (¢¢¢) current (summation of q and d compo-
nents), (v) motor speed and (v) torque are included in the
unreliable set Sy (thus Ny = 5), whereas the stator yoke
temperature is assumed to belong to the reliable set Sg (thus
Np =1).

Before feeding the data-sets to the proposed architecture,
sensors readings in each data-set are normalized using min-
max scaling on the training set to avoid polarization during the
learning process. Finally, the entire rows containing missing
values are ignored from the data-sets. Table I summarizes data-
sets description.

TABLE I: Data-sets description. The reliable sensors in each
data-set are highlighted in italic.

Data-set Samples N;; Ny Attributes

Multivariate, time-series; carbon
monoxide (CO), non-metanic hydrocarbons
(NMH), nitrogen oxides (NO), nitrogen
dioxide (NO2) and ozone (O3) gas
concentrations, as well as measurements of
temperature and humidity

AQ 8991 5 2

Multivariate, time-series; four temperature

WSN !
sensors: two indoor, two outdoor

4589 4 0

Multivariate, time-series; coolant temper-
ature, voltage and current (summation of q
and d components), motor speed, torque and
stator yoke temperature

PMSM 55000 5 1

B. Sensor Faults Modeling

The performance of the proposed SFDIA architecture is
evaluated under transient faults.

Also, with the aim of adapting and examining the proposed
architecture according to DTs’ needs, four different fault
types with varying severity levels were modeled, as detailed
hereinafter. It is worth highlighting that the practice of mod-
eling simulated faults superimposed to real data is a common
practice in the evaluation of SFDIA systems (e.g. [12], [29],
[39]), as (¢) real faulty measurements are sporadic and very
hard to obtain and (i7) simulated faults also allow quantifying
accommodation performance. This is also to highlight the
generality of the proposed architecture in accommodating
diversified faulty conditions.

2The readings were sampled with 1.5 s-intervals and the first 55k readings
were picked after sampling.
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Bias faults: for each bias fault, a constant bias b injected to
the normal operation data-sets for M consecutive samples as
follows

0<n—-m<M

13
otherwise 13)

IMM_{%MM+h

x5 n[n] ,

where x, p[n] and x;p[n] are the healthy and possibly-faulty
reading of sensor s € Sy, respectively, under bias fault.
Finally, m denotes the starting time instant of the fault.
Drift faults: as for drift fault, an additive term drifts to bias
level b in M samples and remains for K samples (M > K),
namely:

b(n—m+1) ,
= 0<n—-m<M

M<n-m<M+K

otherwise

T pln] +
Tsn[n] +0,

l‘st[nlv

Zs.aln] =

(14)

where x5 4[n] is the possibly-faulty reading of sensor s € Sy
under drift-type faults.

Noise faults: in the latter case, zero-mean additive Gaussian
noise win] ~ N (0, ¢) is added to the sensor measurement for
M consecutive samples, i.e.:

%AM_{%MM+WM7

zsn[n] ,

0<n—-m<M

15
otherwise {13)

where x5 4[n] is the possibly-faulty reading of sensor s € Sy
under noise-type faults and c is the variance of the noise.
Freeze faults: for freeze-type faults, sensor output stuck at
previous reading for M consecutive samples as follows

T sln] = {%,h[m -1,

x5 n[n] ,

0<n-m<M

16
otherwise (16)

where x5 ¢[n] is the possibly-faulty reading of sensor s € Sy
under freeze-type faults.

V. NUMERICAL RESULTS

The effectiveness of the proposed architecture for detection,
isolation and accommodation of sensor faults has been as-
sessed by means of a comprehensive analysis conducted on the
three previously-described real world data-sets. The following
section first details the considered system setup and employed
parameters, for the sake of reproducibility (Sec. V-A). Then,
the working principle of the two relevant SFDIA baselines
used for comparison is recalled (Sec. V-B). Finally, the SFDIA
performance is reported and discussed (Sec. V-C).

A. System Setup and Parameters

Training and Evaluation Setup: MLP NNs within the pro-
posed architecture were trained using the first 70% and 15%
of samples of each data-set as train set and validation set,
respectively. The rest ending 15% of samples of each data-set
was used as test set for performance evaluation. A validation
process based on early stopping method [51] was employed
during the training phase to avoid over-fitting: the training
process was stopped if the loss on the validation set had

not decreased for 20 consecutive epochs or if the maximum
number of epochs was reached?.

Hyperparameter specification of proposed approach: As
in [41], a similar configuration for the classifiers and the
estimators was considered. More specifically, estimators and
predictors with H, = 1 hidden layer, N, = 10 nodes per
hidden layer and L, = L, = 10, along with a classifier with
H. = 2 hidden layers, N. = 15 nodes per hidden layer and
L. = 10 were trained. Table II lists MLPs’ configurations and
corresponding hyper-parameters of the proposed architecture.
In addition, the predefined thresholds 7 and v are set to
0.15 and 0.9 for the controller, respectively. The threshold
7 needs to be adjusted with respect to the system tolerable
level of deviation as well as the estimators/predictors accuracy,
whereas threshold v is selected heuristically according to the
system performance on the validation set.

Random generation of synthetic faults: The four types of
faults considered in this work are synthetically generated [12],
[29], [39] according to the corresponding models detailed in
Sec. IV-B on the top of the real measurement data described
in Sec. IV-A. Unless otherwise stated, the fault absolute level b
(with unbiased random positive and negative faults) and noise
variance c¢ are assumed uniformly distributed between 0.2 and
0.4 to represent weak fault signals. The fault length (M and
K) is also assumed uniformly distributed between 3 and 11
consecutive samples to represent transient faults*. It is worth
stressing that the uniform distribution choice for the fault level
b (resp. the noise variance ¢) and the fault length (M and K)
helps the classifier to generalize better without focusing on a
specific fault level/length [37], [39]. To verify the robustness
of the proposed architecture against simultaneous faults, up ro
three concurrent faulty sensors were considered for the (fault-
)generation process.

Training phase of classifier block: Fig. 6 shows the evolution
of the classifier loss function vs. number of epochs (during the
training phase) on both training (solid lines) and validation
(dashed lines) sets, under bias faults. Indeed, validation and
training losses under other fault types resemble those shown
under bias fault and are thus omitted for brevity. For complete-
ness, both the weighted (multitask) BCE (cf. Eq. (11)) and the
per-sensor BCE (cf. Eq. (12)) are reported in Figs. 6a and 6b,
respectively. As evident from the curves, the training phase on
WSN data-set stops after ~ 260 epochs (“[J” marker) by early-
stopping mechanism as the validation loss stops decreasing.
Conversely, the training phase on the other two data-sets stops
after reaching the maximum number (400) of epochs.

B. Considered Baselines

Results of the proposed approach in terms of detection,
identification and accommodation performance are compared

3We implement the proposed architecture and other baselines using Keras
Python API running on TensorFlow version 2.9.2 on MacBook pro M1 CPU
2.1-3.2 GHz with 16 GB memory.

4Under freeze fault, the fault length (M) is uniformly distributed between
100 and 400 consecutive samples due to smooth oscillating (WSN and
PMSM) data-sets. Smaller fault lengths cause negligible faults on the working
data-sets.
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TABLE IlI: Configuration of the proposed architecture.
Parameter Estimator Predictor Classifier
No. of input nodes (N—=1)-(Ly+1) Ly 2Ny - (Le + 1)
No. of output nodes 1 1 Ny
No. of hidden layers 1 1 2
No. of nodes per hidden layer 10 10 15
Output activation Linear Linear Sigmoid
Hidden layers activation Tanh Tanh Tanh
Optimizer Nadam Nadam Nadam
Loss function MSE MSE BCE
Maximum epochs 400 400 400
Batch size 20 (50 for PMSM) 20 (50 for PMSM) 200
Learning rate 4-10~% (1073 for PMSM) 4 -10~% (103 for PMSM) 10-3
AQ AQ
10 o axt0t —ranst - vatsion st the MSE between input and output of the AE. As for the
W Tt e S Ve | accommodation task, a second stage based on a (supervised)
@ w2107t —— Train_S4 Validation_S4 . . . .
g 9 wicaion ss | denoising AE is then used to clean faulty data. It is worth
H noticing that the identification task for AE architecture was

0 100 200 300 400 0 100 200 300 400
Epoch Epoch
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—— Train_s1
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—— Train_S3
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--- Validation_S2
Validation_S3
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(a) Weighted loss.

(b) Per-sensor loss.

Fig. 6: Training and validation loss of the classifier during the
training phase under bias fault.

with two state-of-the-art architectures: () M-SFDIA [41] and
(i1) AE [12].

Similar to the proposed method, our previous M-SFDIA
proposal is able to detect and isolate faulty sensors from
patterns within the input residual signals. However, solely
a bank of estimators is used to derive the residual signals,
and to accommodate unreliable sensors in M-SFDIA method.
Additionally, the controller block is absent in M-SFDIA. Fur-
thermore, the original M-SFDIA’s decision logic was designed
to detect, isolate and accommodate only up fo one faulty
sensor. For this reason and for the sake of a fair comparison,
the same decision logic as the proposed method was used (see
Sec. 1I-D) to enable the M-SFDIA method to detect, isolate
and accommodate multiple sensors simultaneously.

Conversely, the AE-based architecture devised in [12] is
based on a two-stage approach. Specifically, the first stage
is represented by a (standard) AE to learn data correlations
among sensors, and detect anomalies (viz. faults) by tracking

not addressed in the original work [12]. Indeed, in the afore-
mentioned AE-based method, the overall MSE of input and
output (reconstructed) vector of the first AE is compared to
a predefined threshold for fault detection only. As opposed to
the aforementioned decision logic, herein (for the sake of a
fair comparison) the squared error between the corresponding
input and output for each entry (viz. unreliable sensor) is
traced. Then, this error is compared with a predefined thresh-
old o, enabling the AE method to both detect & identify the
faulty sensors’. Specifically, similar to the proposed method,
max¥, eap o[n] = o is used for detection, where eap ¢[1]
is the squared error for the sth unreliable sensor. Accordingly,
for the identification task, the set of identified faulty sensors
is obtained as Iy = {s € Sy : eap,s[n] > o}.

C. Performance Analysis and Comparison

Fig. 7 illustrates fault detection performance in terms of
probability of detection vs. probability of false alarm, i.e.
showing the receiver operating characteristic (ROC) curves.
In this case, a fault rate® Fr = 0.1 is considered. Also, ROC
performance is reported separately for each of the three data-
sets and for all four fault typologies considered. It is evident
that the proposed architecture outperforms the two baselines
for all four fault types. Specifically, the best detection rate is
attained on AQ data-set when bias faults are present. Also, for
all architectures, detection accuracy under bias faults appears
to be generally higher than the other types of faults. Moreover,
as can be seen, AE architecture fails to detect freeze faults on
the WSN data-set. Indeed, drift and freeze faults are “trickier”
to detect since they slowly appear in the system and have a
less-appreciable effect on spatio-temporal correlations within
the system.

SNumerical results (not shown for brevity) based on the original detection
logic as [12], namely Zg’:Ul €AE,s[n] 2 o (and a matched identification
logic, i.e. Iy £ {s € Sy : eap,s[n] > /Ny }) highlighted worse perfor-
mance than the considered variant, due to the inability to cope with weak
(and transient) faults.

SFault rate refers to the ratio between the number of faulty and non-faulty
samples.
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Fig. 7: Detection performance in terms of ROC curves for all
architectures over different fault types.

Delving into real-time performance of SFDIA architectures,
in Tab. III a detection delay analysis’ for fixed false alarm
rate of 1072 is reported. Specifically, the expected detection
delay is evaluated, defined as the average number of samples
needed by an SFDIA architecture to detect a faulty sensor. The

7Every span of simultaneous faults is considered as a unified fault.
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Fig. 8: Identification (isolation) performance in terms of ROC
curves for the proposed architecture over different fault types.
Sensor numbers refer to sensor indices.

latter delay is indeed another important indicator of the SFDIA
framework performance, which has a crucial effect on DTs
functionality. In the experiments, the fault rate is set to Fr =
0.5 to generate a sufficient number of fault events allowing to
obtain a reliable estimate of the aforementioned metric. Results
highlight that the proposed architecture achieves the lowest
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Fig. 9: Averaged identification (isolation) performance in
terms of ROC curves for all architectures over different fault

types.

detection delay in comparison to the state-of-the-art for all
data-sets and fault types considered. Specifically, the average
detection delay for the proposed architecture is confined below
1 sample (except for the AQ data-set with drift fault-types),
whereas the other two architectures always require a longer
span to detect fault(s) within the system. The most evident

Fig. 8 shows the identification performance from the indi-
vidual sensor perspective for the proposed architecture under
different fault types. The probability of identification refers
to the probability that SFDIA architecture correctly isolates
the corresponding faulty sensor(s), where the averaged value
is the average probability of identification over all unreliable
sensors in each data-set. Apparently, different sensors undergo
different performances, mostly depending on the level of
spatio-temporal correlation (implicitly) providing the available
redundant information within the system. The corresponding



DARVISHI et al.: A MACHINE-LEARNING-BASED ARCHITECTURE FOR SENSOR FAULT DETECTION, ISOLATION AND ACCOMMODATION 13

sensor-averaged identification performance (under the same
fault rate) is depicted in Fig. 9. Here in Fig. 8 and 9, the
proposed architecture performs even better over other meth-
ods since it manages to reduce fault propagation within the
architecture itself and avoid functionality degradation using the
controlling block. Replacing faulty sensors with their estimates
or predictions by the controller provides the classifier with
easier interpretative residual signals.

The accommodation performance in terms of root mean
square error (RMSE) is shown in Fig. 10, where fault rates
Fr € {0.1,0.5} are considered. Herein the term error means
the difference between sensor healthy values before adding the
fault and the accommodated values provided by the SFDIA
architecture (or the original values, in the case of an unde-
tected/unidentified fault). First of all, it is apparent that the
proposed architecture outperforms the M-SFDIA architecture
by presenting more accurate replacements for faulty data. The
reason is that the proposed architecture relies on a combined
estimator/predictor pair for each sensor and a controller block
to continuously improve the accommodation performance by
modifying their inputs based on the decision vector obtained
from the classifier in a closed-loop fashion. Conversely, the M-
SFDIA architecture does not take advantage of these excessive
data. Finally, the proposed architecture outperforms AE-based
SFDIA on all the three available data-sets (except for PMSM-
Noise), with the higher improvement (viz. RMSE reduction)
in the case of WSN data-set.

The rest of analysis specifically focuses on bias and drift
faults as they well represent sudden (hard) faults and slowly
appearing (soft) faults, respectively. The impact of different
fault rates on the detection and (averaged) isolation per-
formance is assessed in Figs. 11 and 12, respectively. In
the above cases, two relevant false-alarm probability values
are considered, namely Py = 107! and Py = 1072 As
expected, both detection and identification results reveal that
higher fault rates have a negative impact on the architecture
overall performance, as well as the considered baselines. Still,
while the proposed architecture is capable to preserve its de-
tection and isolation performance by incurring a milder detec-
tion/identification loss, both AE and M-SFDIA architectures
exhibit a higher degradation with the fault rate. This outcome
is mostly due to the estimators and predictors limiting the
impact of fault propagation within the proposed architecture.
For instance, referring to PMSM data-set, drift faults and
Pr = 1072, a (harsh) fault-rate condition equal to 0.3 leads
to a detection probability ~ 0.4 (resp =~ 0.7) for AE (resp. M-
SFDIA). This corresponds to a 30% (resp. 10%) decrement
w.r.t. a fault-rate scenario equal to 0.1. On the contrary, our
architecture attains a detection probability =~ 0.85 in the same
harsh condition, with a corresponding degradation (w.r.t. fault-
rate equal 0.1) equal to 0.05.

Figs. 13 and 14 compare the performance trend of different
architectures under versus the fault level b. Clearly, detection
and isolation performance for all architectures under strong
faults are higher than the case of weaker faults. However,
this in turn motivates the importance of developing techniques
suited for weak faults. Results demonstrate a clear advan-
tage of the proposed architecture over other architectures for
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Fig. 11: Impact of different fault rate on the detection accu-
racy.
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Fig. 12: Impact of different fault rates on the averaged
identification accuracy.

different fault levels, with performance improvement being
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Fig. 13: Impact of different fault level (b) on the detection
accuracy.

extremely evident under weak faults. For instance, referring
to the case of bias faults with b = 0.2 on the PMSM data-
set and assuming Py = 1072, the proposed architecture
achieves correct-identification probability of 0.9 while the
AE architecture is below 0.1. The AE architecture mostly
exploits change detection in the correlation structure of the
signals and weak faults might have a negligible impact from
this perspective. Conversely, the combined use of estimators,
predictors and residual processing employed by the proposed
architecture is able to detect & isolate these “low-observable”
faults. Moreover, as the fault level increases, the proposed
architecture is overtaking the M-SFDIA architecture since the
proposed method mitigates propagation of strong faults within
the architecture by means of the controller block.

To deepen the investigation of the controller block, a sen-
sitivity analysis was also performed, focusing on detection
and identification performance of the proposed architecture,
by varying the threshold v during the test phase. More
specifically, Fig. 15 shows the detection and identification
performance of the proposed method with respect to the
threshold v. To better apprehend the impact of the threshold
v, the detection and identification performance of the state-of-
the-art counterparts were reported as a lower bound. Results
highlight quite smooth performance trends on the three data-
sets with respect to the threshold v. Interestingly, predefined
threshold v = 0.9 based on the validation set is pretty near to
the optimum value on the test set.

Finally, to have a finer-grained view of the three archi-
tectures for detection & isolation tasks, Fig. 16 reports their
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Fig. 14: Impact of different fault level (b) on the averaged
identification accuracy.
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Fig. 15: Impact of threshold (v) on the detection and identifi-
cation accuracy (Py = 1072). Threshold v = 1 associated to
a zero-effect of the controller (i.e. off-circuit controller).

decision outcomes for a time-segment long 50 samples taken
from the PMSM data-set under bias fault (P; = 10~2). Specif-
ically, for each time index m, “o” symbol denotes the actual
(true) faulty sensors, whereas “None” is used in the case of a
healthy system. Then, for each architecture, the miss-detected
faults (denoted with red “+” symbol) and the false-alarms (i.e.
sensors erroneously declared as faulty by the architecture when
the system is healthy, with blue “x” symbol) are highlighted.
Finally, when each SFDIA architecture declares a detection,
the corresponding identified faults are reported with a green
“+” symbol. The most eminent point in Fig. 16 is that, by
resorting to the proposed architecture, only one fault remained
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Fig. 16: Visualization of fault classification for all architec-
tures on PMSM data-set.

undetected whereas M-SFDIA and AE architectures miss-
detected 13 and 16 out of 24 faulty samples, respectively.
As mentioned earlier, the proposed architecture attains better
prompt detection & identification performance with respect
to its counterparts. For instance, according to Fig. 16, the
latter two architectures were only capable to identify only
one faulty sensor for the given snapshot when simultaneous
faults occurred, while the proposed architecture successfully
identified most of them.

D. Complexity Analysis

As the final stage of the numerical comparison, the proposed
approach is compared with the considered baselines in terms
of the relevant computational complexity involved, by looking
at both the (7) training and (4¢) operational (testing) phases.

Regarding the training phase, the number of trainable
parameters associated with each architecture is summarized
in Tab. IV. Trainable parameters refer to weights and bi-
ases of each NN to be learned during the training phase
(through stochastic gradient descent by resorting to the back-
propagation technique) in the architecture. Clearly, the number
of trainable parameters grows with the complexity of the (sen-
sor) system to be accommodated, with the higher complexity
associated with AQ data-set on all three architectures. Also,

the info in the table highlights that the proposed architecture
has a comparable complexity with M-SFDIA while enjoying
shorter training times than the considered AE. Furthermore,
thanks to the modularity granted by the proposed approach,
different blocks of the considered architecture (e.g. estimators
and predictors) could be trained in a parallel fashion on
distributed (e.g. cloud) architectures.

Regarding the testing phase, the assumption of an equal
number of hidden layers (H, = H. = H ), time delays (L, =
L, = L. = Lj) and nodes per hidden layer (N, = N. = N;)
is made, as considered in [41], where index J refers to the
joint value. Additionally, the impact of the activation functions
is neglected (for simplicity). Accordingly, the computational
complexity of the operational phase is analyzed in terms of
the well-known big-O (Landau’s) notation. First, it is worth
recalling that the computational complexity of M-SFDIA ap-
proximately equals O(L;NZN;+L;NrNyNyj+H;NyN?)
for one input sample [41]. Furthermore, the complexity cost of
each predictor in the proposed architecture is approximately
O(LjNy). Accordingly, the overall computational complexity
of the proposed architecture approximately equals the M-
SFDIA architecture. Indeed, the complexity is mainly dom-
inated by the computational cost of the estimators and of the
classifier, which is almost equal in both architectures [41]. In-
deed, the impact of the residual and controller block operations
is negligible in the overall cost.

TABLE IV: Number of NNs’ trainable parameters.

Data-set Ny Np Proposed M-SFDIA AE
Est. Pre. CIf. Est. CIf. AE Denoising-AE
AQ 5 o 681 121 1985 681 1160 16945 16945
In total = 5995 4565 33890
WSN 4 o 351 121 1639 351 979 5470 5470
In total = 3527 2383 10940
PMSM 5 1 571 121 1985 571 1160 12250 12250
In total = 5445 4015 24500

For instance, for AQ data-set the computational complexity
for estimators block is O(3510), for the classifier block® is
O(1740) and for the predictors block is O(550). This results
in a total computational complexity of O(5-10%) and O(6-10%)
for M-SFDIA and the proposed architecture, respectively. Still,
the proposed architecture attains substantially higher overall
SFDIA performance at the expense of a manageably higher
complexity (see Sec. V-C).

Conversely, for AE-based architecture (which is made of
two similar AEs with a three-fold compression factor [12]),
the computational complexity is O((452/81) - (Ly - (Nu +
Ng))?). Accordingly, in the peculiar case of AQ data-set, the
computational complexity of the aforementioned architecture
is approximately O((452/81) - (10 - (5 + 2))%) =~ O(3 - 10%)
for one input sample. As a result, the complexity of the AE-
based architecture appears to be considerably higher than that
incurred by the proposed approach.

8The computational complexity for the classifier in M-SFDIA architecture
is 0(990).
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VI. CONCLUSION

This article presented a four-layer architecture for SFDIA
based on MLP NNs. Our contribution represents a stepping
stone towards the development of (modular) DTs based on
sensor systems/networks in IoT contexts. The (four) designed
layers consist of estimation&prediction, residual, classification
and controlling blocks. The classifier block at the heart of
the architecture is in charge of detecting and identifying
faulty sensors based on residual signals provided by estimators
and predictors. Moreover, a controlling block is placed to
track the classifier’s decision output in order to boost overall
system performance. This is accomplished by stopping fault
propagation chain at the first layer by modifying estimators
and predictors inputs with respect to the classifier’s decision.

The proposed method was trained and tested on three real-
world and publicly-available data-sets (i.e. [41], [42], [50]) for
the sake of a complete and reproducible assessment. For the
sake of generalization, four types of faults were considered
in this study: bias, drift, noise and freeze. The proposed
architecture yielded notably higher detection and isolation
performance compared to the state-of-art M-SFDIA [41] and
AE [12] architectures, for all four fault types. Moreover, the
proposed architecture was shown to enjoy robustness against
different fault rates while other architectures’ performances
were affected considerably.

Future works will focus on (¢) the study of DTs for sensors
operating under channel uncertainty, (i7) the design of SFDIA
architectures which scale well with the number of sensors,
(¢97) the investigation of reinforcement-learning algorithms
for optimized controller design and (iv) the application of
explainable artificial-intelligence algorithms’ in interpreting
(and improving) the proposed SFDIA approach. Finally, more
sophisticated NN approaches (e.g. convolutional NNs, RNNs)
for each SFDIA module we will be also investigated with the
intent of improving detection, identification and accommoda-
tion performance under specific circumstances while meeting
the operational deployment constraints.
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