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Abstract

Recent advances in graph-based learning approaches have demonstrated
their effectiveness in modelling users’ preferences and items’ character-
istics for Recommender Systems (RSs). Most of the data in RSs can
be organized into graphs where various objects (e.g., users, items, and
attributes) are explicitly or implicitly connected and influence each other
via various relations. Such a graph-based organization brings benefits
to exploiting potential properties in graph learning (e.g., random walk
and network embedding) techniques to enrich the representations of the
user and item nodes, which is an essential factor for successful rec-
ommendations. In this paper, we provide a comprehensive survey of
Graph Learning-based Recommender Systems (GLRSs). Specifically, we
start from a data-driven perspective to systematically categorize vari-
ous graphs in GLRSs and analyze their characteristics. Then, we discuss
the state-of-the-art frameworks with a focus on the graph learning mod-
ule and how they address practical recommendation challenges such
as scalability, fairness, diversity, explainability and so on. Finally, we
share some potential research directions in this rapidly growing area.

Keywords: Recommender System, Graph Learning, Graph Neural Network

1 Introduction

In the last few decades, the rapid development of Web 2.0 and smart mobile
devices has resulted in the dramatic proliferation of online unstructured data,
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such as news articles. They are explicitly or implicitly connected with each
other and can naturally be formed into graphs representing objects and their
relationships in varied domains, including e-commerce, social networks, and so
on. On the one hand, the interconnection of objects shows a direct (e.g. social
relations in a social network) or indirect interactive relationship (e.g. item co-
occurrence in an item homogeneous network), which provides a more intuitive
and effective way for recommendation systems to explore the hidden relation-
ships between the target user and the recommended items. On the other hand,
the data structure of graphs breaks the independent interaction assumption1

by linking users or items with their associated attributes such that the rec-
ommender systems are able to capture not only the user-item interactions but
also the rich underlying connections by mining item-item/user-user relations
to make more accurate recommendations. Moreover, most recommendation
models work as black boxes that only provide predictive results rather than
exhibiting the reasons behind a recommendation, such as collaborative signals
in collaborative filtering or knowledge-aware reasoning in knowledge graph-
based recommendation. Some recommender systems give users such as “users
who bought A also bought B” as an explanation of the recommended results.
However, no in-depth explanations of the intrinsic recommendation mechanism
for the selected items may result in the users over-relying on the recommen-
dation system and ignoring that the purpose of the recommendation is to
make the recommendation platform profitable (Jannach et al, 2019). Recent
advances in Graph-based recommender systems have demonstrated their effec-
tiveness in improving the explainability of the recommender systems by using
explicit connections between objects in graphs to reveal the recommendation
results (He et al, 2015; Ma et al, 2019; Hu et al, 2018). Therefore, it is of
crucial significance to fully explore the semantic connections and potential
relations of the graphs to improve the performance on both the explainability
and accuracy of recommendations.

However, there exist some problems and challenges in how recommender
systems (RSs) can make full use of this data:

1) Heterogeneous Objects: Unstructured data can be organized into a graph
including different-typed objects and links. Modelling and abstracting such
a space of information have been a challenging task encountered in RSs.

2) Large-scale Volume: Real graphs, such as social networks, can easily have
millions even billions of nodes and edges, which renders most traditional
recommendation algorithms computationally infeasible.

3) Dynamic Contents: Most real-world graphs are intrinsically dynamic with
addition/deletion of edges and nodes. Meanwhile, similar to a graph struc-
ture, node attributes also change naturally such that new content patterns
may emerge and outdated content patterns will fade.

1The techniques e.g. factorization machine (Koren et al, 2009), Neural FM (He and Chua, 2017),
based upon the independent interaction assumption model the user or item as a single object, but
ignore the connection relationship among them.
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Recently, graph learning (GL) has exhibited the potential to obtain knowl-
edge embedded in different kinds of graphs. Many GL techniques, such as
random walk, graph embedding and graph neural networks, have been devel-
oped to learn the complex relations modelled on graphs and achieve a great
improvement in recommendation performance. An emerging RS paradigm
built on GL, namely Graph Learning-based Recommender Systems (GLRSs),
has attracted growing attention in both research and industry communities.
For example, researchers leverage random walk to propagate users’ prefer-
ence scores from historical item nodes and output a preference distribution
over unobserved items, such as ItemRank (Gori et al, 2007) over the item-
item correlation graph, RecWalk (Nikolakopoulos and Karypis, 2019) over the
user-item bipartite graph, and TriRank (He et al, 2015) over the user-item-
aspect tripartite graph. Moreover, various graph embedding techniques and
graph neural networks have been proposed and incorporated into the repre-
sentation learning of RSs, using direct or multi-hop connections within graphs
to enrich the representations of the user and item nodes. These approaches
further improve the recommendation performance.

To date, there are only a handful of literature reviews related to our paper.
Wang et al. (Wang et al, 2021a) survey KG-embedding models for link predic-
tion. In (Guo et al, 2020; Liu and Duan, 2021), the authors summarize recent
works utilizing KGs as side information for accurate and explainable recom-
mendations. The authors of (Wu et al, 2020a) summarize the most recent works
on GNN-based recommender systems and propose a classification schema for
organizing existing works. Our work differs from the previous works in that
we give a systematic and comprehensive review of recommendation techniques
starting with different types of data-driven graphs rather than focusing on one
specific branch.

Another closely related topic is linked data-based recommendation.
Figueroa et al. (Figueroa et al, 2015) present a systematic literature review
to summarize the state of the art in RS that use structured data published as
Linked Data for providing recommendations of items from diverse domains.
Tarus et al. (Tarus et al, 2018) present a comprehensive review of ontology-
based recommendations for e-learning. The main distinction is that these works
discuss making recommendations with the subject of linked data, which is
structured interlinked data that manifests as a Web of Data from multiple
sources 2. In fact, both works focus on knowledge-based recommendations
without referring to recent deep learning-based technologies. In this paper, we
focus on how raw data can be extracted into a wider range of graphs (e.g.
tree-based graphs, homogeneous graphs and hypergraphs) and how traditional
as well as state-of-the-art graph-learning techniques can be applied to these
graphs for recommendation purposes.

Although there is a variety of literature on this subject, only one study
analyzed the role of GLRSs (Wang et al, 2020e). The limitations lie in that

2https://en.wikipedia.org/wiki/Linked data
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they only cover a limited number of references and do not go into the tech-
nical details on graph learning modules in GLRS and how they address those
challenges. Furthermore, they do not give a systematic summarization of exist-
ing datasets adopted by graph-learning based recommendation research. To
overcome such an information gap, in this paper, we contribute the most com-
prehensive overview of state-of-the-art GLRSs. We systematically analyze the
benchmark datasets in GLRSs, provide detailed descriptions of representa-
tive models, make the necessary comparisons, and discuss their solutions to
practical recommendation issues such as scalability, fairness, diversity, and
explainability.

Contributions: This survey provides a thorough literature review on the
approaches of graph-learning based recommender systems and the involved
various types of graphs from a data perspective. It provides a panorama start-
ing from the various data characteristics to applied technologies, with the hope
that both academic researchers and industrial practitioners can have a rough
guideline and step into the field of graph learning-based recommendation from
the data resources available at hand. This survey serves to promote the inno-
vation and development in the field of GLRSs, while exploring the possibility
of enhancing the richness by discussing and summarizing existing open issues
in the field. To this end, the main contributions of this work are three-fold:

• We explore the different data input categories based on their acquisition
and intrinsic characteristics, and further proposed a novel taxonomy to cat-
egorize various graphs in GLRSs from data perspectives. Meanwhile, we
summarize resources regarding GLRSs, including benchmark datasets and
open-source knowledge graphs.

• We conduct a systematic literature review on traditional and recent devel-
opments and progress of graph learning-based techniques for recommender
systems, which correspond to associated different graph taxonomies.

• We analyze the limitations of existing works and suggest future research
directions of GLRSs such as dynamicity, interpretability, and fairness, for
giving references for this community.

Organization of Our Survey: The rest of the survey is organized as follows.
In Section 2, we review our research methodology on how we collected the
related papers and provide an initial analysis of datasets adopted by reference
papers. In Section 3, we introduce the definitions of the basic concepts required
to understand the graph-learning based recommendation problem, followed by
a formal problem definition of graph-learning based recommendation. Section
4 provides a new taxonomy of graphs that are related to specific datasets.
Section 5 provides an overview of state-of-the-art GLRSs techniques. Section
6 discusses the current challenges and suggests future directions, followed by
the conclusions in Section 7.
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Fig. 1: Statistics of publications related to GLRSs grouped by the publication
year and venue.

2 Research Methodology

2.1 Paper collection

To achieve a systematic structure of existing research on graph-based recom-
mendation, this study was performed based on a bibliographic review proposed
by (Webster and Watson, 2002; Kitchenham, 2004; Wolfswinkel et al, 2013).
Specifically, we first conducted a comprehensive review of previously published
papers concerning GLRSs and used Scopus as the main source of information.
The search strings are listed in Table 1. Other bibliographic databases and
archives also constitute the auxiliary sources used for literature search, such as
ACM Digital Library 3, IEEE Xplore 4, Springer 5, ResearchGate 6 and Web
of Science 7. We conducted the same keyword-based search in these search
engines.

We first checked the paper titles and then reviewed the abstracts, keywords,
results, and conclusions to obtain the first list of studies. We then double-
checked the reference list in those papers to identify additional studies that
were relevant to our review topic. After that, the publications retrieved needed
to be further filtered in order to eliminate false positives, which are irrelevant
to the current survey. Therefore, a pre-defined set of inclusion and exclusion
criteria displayed in Table 2 were applied to the retrieved papers. Finally, we
obtained a collection of 182 papers that meet the mentioned criteria and then
are summarized in Section 3 and 4. Figure 1 gives the statistics of the collected
papers with the publication time and venue.

Note that these papers were mainly selected according to the two criteria:
1) publication time; 2) impact. Therefore, the references cited in this paper on
the field of GLRS are representative, but still limited. The uncited literature
is only limited by the length of this paper and the pre-set filtering criteria.

3https://dl.acm.org
4https://ieeexplore.ieee.org
5https://www.springer.com
6https://www.researchgate.net/.
7https://www.webofknowledge.com
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Table 1: Search String
Key words Search string

graph, hypergraph, recom-
mender, recommendation,
recommender system, rec-
ommendation system,
recommendation service,
recommendation approach,
recommendation model,
recommendation method,
recommendation algorithm,
recommendation applica-
tion, recommendation engine,
recommendation agent, rec-
ommendation framework,
collaborative filtering, social
recommendation, representa-
tion learning, knowledge graph,
graph neural network

(TITLE-ABS-KEY⋆(recommender) OR TITLE-
ABS-KEY(recommendation system) OR
TITLE-ABS-KEY(recommendation service) OR
TITLE-ABS-KEY(recommendation approach) OR
TITLE-ABS-KEY(recommendation model) OR
TITLE-ABS-KEY(recommendation method) OR
TITLE-ABS-KEY(recommendation algorithm) OR
TITLE-ABS-KEY(recommendation application) OR
TITLE-ABS-KEY(recommendation engine) OR
TITLE-ABS-KEY(recommendation agent) OR TITLE-
ABS-KEY(recommendation framework) OR TITLE-ABS-
KEY(collaborative filtering) OR TITLE-ABS-KEY(social
recommendations)) AND (TITLE-ABS-KEY(graph)
OR TITLE-ABS-KEY(hypergraph) OR TITLE-ABS-
KEY(knowledge graph) OR TITLE-ABS-KEY(graph neural
network) OR TITLE-ABS-KEY(representation learning))

⋆ TITLE-ABS-KEY is a combined field that searches abstracts, keywords, and
document titles.

Table 2: Inclusion Criteria and Exclusion Criteria
Criteria Inclusion Criteria Exclusion Criteria

Recommender System
The study focused on recom-
mender system in multiple
domains.

The study presents a system or
technique other than a recom-
mender system.

The use of graph as
input

The study presents a system that
uses a type of graph as the input,
and other data structures such
as texts, image or acoustic infor-
mation can also be the auxiliary
means of system input.

The study presents a system
using a data structure except
graph as input.

Publication Date
The paper is published between
2007 and September 2021.

The paper is published before
2007 or after September 2021.

Language The paper is written in English.
The paper is written in a lan-
guage different than English.

Publication type

The paper has been peer
reviewed and published in pres-
tigious and top-tier international
conferences and journals e.g.
SIGIR, NIPS, ICML, RecSys,
CIKM, ICLR, AAAI, IJCAI,
WWW, WSDM, KDD, UMAP,
TOIS, TKDE, and UMUAI etc.
The paper is a primary study.

The paper has not been peer
reviewed (e.g. theses, books,
technical reports, (extended)
abstracts, talks, presentations,
tutorials, guidelines) or not pub-
lished in top-tier conferences or
journals. The paper is a sec-
ondary study (e.g. systematic
literature review, survey).

Accessibility

The paper’s content can be
accessed from a technical univer-
sity (e.g. Norwegian University
of Science and Technology) with-
out additional payment.

The paper’s content cannot be
accessed from a technical univer-
sity (e.g. Norwegian University
of Science and Technology) with-
out additional payment.

2.2 Data analysis

Analyzing the collected papers, we made two observations on the utilized
datasets: (1) They were across different domains, such as e-commerce and
entertainment domains; (2) Some datasets could be used to construct multiple
types of graphs for different recommendation purposes, while some were only
used to construct one type of graph. For instance, we found nearly all classified
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graph types were utilized for the Amazon dataset, while only a multi-source
graph could be found for the Epinions dataset. To clearly make comparisons
and show the difference of these datasets in terms of both domains and graph
types, we made a detailed comparison of all datasets in Table A1 (Appendix
A).

Recent advances in GLRS either focus on incorporating explicit or implicit
user/item information into the process of mapping, and design learning algo-
rithms for specific graph structures (Christoforidis et al, 2021; Pang et al,
2022), or focus on how to incorporate time information into graph forming and
learning processes to better capture the dynamic needs of users to improve
recommendation performance (Fan et al, 2021; Zhang et al, 2022). In (Lv
et al, 2021), the authors make reproductions of 12 heterogeneous graph neural
network based modes and test them on 11 public available datasets regard-
ing node classification, link prediction and knowledge-aware recommendation
tasks. Their reported experimental results reveal that the superiority of the
performance of the most advanced HGNN models rely on the lack of fair
comparison with the homogeneous GNNs and other baselines in their origi-
nal paper. Beside, some works also reveal issues such as data leakage, tuning
on test set, cost of large amount of memory and time for training. Mean-
while, the authors of (Lv et al, 2021) release a heterogeneous graph benchmark
(HGB) for open, reproducible heterogeneous graph research, and present a
GAT-based heterogeneous GNN model resulting in promising results on three
aforementioned tasks.

We count the corresponding datasets for GLRS technologies adopted in
this survey and present the results in Table C1 (Appendix C). From the table,
we can observe that both datasets and their leveraged GLRS technologies
are distributed extremely unbalanced. The reason for the former one may be
attributed to whether the dataset is public, the date of publication, whether
the dataset contains various attributes of users/items and so forth. The reason
for the uneven distribution of technology can be roughly attributed to the
development of deep learning in the field of graph learning to bring more
possibilities.

3 Problem formalization

In this section, we first introduce the definition of the basic concepts in graph-
based recommendations and then provide a formal definition of the graph-
based recommendation problem.

3.1 Basic definitions

The definitions related to GLRSs are as follows.

Definition 1 Graph A graph is G = (V,E), where v ∈ V is a node and e ∈ E is an
edge. Each edge eij is a pair between vertex vi and vj . Each edge of G can be mapped

to a real number (if any), denoted as W : E → R+ from edge e ∈ E to a real number
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w ∈ R+. Such weights can represent e.g. costs, lengths or capabilities, depending on
the specific problem. G is associated with a node type mapping function fv : V → A
and an edge type mapping function fe : E → R. A and R denote the set of node
types and edge types respectively. Each node vi ∈ V belongs to one particular type,
i.e., fv(vi) ∈ A. Similarly, for eij ∈ E, fe(eij) ∈ R. When a graph has eij ̸≡ eji and
fe(eij) ̸≡ fe(eji), it is a directed graph. Otherwise, the graph is undirected.

Definition 2 Network Schema The network schema (Sun and Han, 2013), denoted
as TG = (A,R), is a meta template for a heterogeneous network G = (V,E) with the
node type mapping fv and the edge mapping fe, which is a directed graph defined
over node type set A with edges as relations from R.

Definition 3 Homogeneous Graph A homogeneous graph Ghomo = (V,E) is a
graph in which |A| = |R| = 1. This is to say that all nodes in G belong to a single
type and all edges to one single type.

Definition 4 Tree Graph A tree graph Gtree = (V,E) is a graph in which all nodes
are connected with each other and there is no cycles in G. The leaf node in a tree
graph has degree 1, where degree of a vertex v, denoted as d(v), is defined as the
number of vertices that are adjacent to v.

Definition 5 Heterogeneous Graph A heterogeneous graph Gheter = (V,E) can
be defined as a graph in which |A| > 1 and/or |R| > 1.

Definition 6 k-partite Graph A k-partite graph Gkpar = (V,E) is a graph in
which nodes are partitioned into k different disjoint sets {A1,A2...Ak} where A =
A1 ∪ A2 ∪ ... ∪ Ak and Ai ∩ Aj = ∅, where i ̸= j; i, j ∈ {1, ..., k}. In Gkpar, no two
nodes within the same set are adjacent. If ∃emn between nodes vm and vn where
fv(vm) ∈ Ai and fv(vn) ∈ Aj , then i ̸= j; i, j ∈ {1, ..., k}.

Definition 7 Knowledge Graph A knowledge graph Gknow = (V,E) is a directed
graph whose nodes are entities and edges are subject-property-object triple facts.
Each edge of the form (head entity, relation, tail entity), denoted as < h, r, t >,
indicates a relationship of r from entity h to entity t. h, t ∈ V are entities and r ∈ E
is the relation. Entities and relations in a knowledge graph are usually of different
types, such that A ∩ R = ∅. Knowledge graphs can be viewed as another type of
heterogeneous graphs.

The network schema of a heterogeneous graph specifies type constraints
on graph objects/nodes and relationships of links/edges between the object-
s/nodes. The constraints make the heterogeneous graph semi-structured data,
guiding the exploration of the semantics of the graph.
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3.2 Problem definition

Given a data source X , normally a user set U and an item set I, for each
user u ∈ U , the recommendation problem can generally be seen as a mapping
function Y = argmaxuf(U , I) generating the corresponding recommendation
results from I that are of interests to the user u. However, there is no formal
definition of GLRSs to date due to different implementations of various mod-
els on different datasets with specific characteristics. Graphs in GLRSs can be
built upon input data sources, e.g. user-item interactions as well as other auxil-
iary information. For instance, considering the graph G = (V,E), where nodes
in V can represent e.g. users, items and other named entities, while edges in E
can represent e.g. purchases, clicks, social relations as well as other relation-
ships among entities. In this survey, we formulate the GLRS problem from a
general perspective. Specifically, for the input data source(s) X , we would like
to find a mapping M(X ) → G, which is used as the input to generate the cor-
responding recommendation results Y by modelling graph properties as the
main way complemented with other auxiliary features of graphs:

Y = argmaxuf(M(X ) → G|Θ) (1)

where G can be of different types, e.g. homogeneous, k-partite, tree-based,
complex heterogeneous graph etc, based on specific recommendation scenarios,
while Y can be of different forms, e.g. rating scores, possible links, classifica-
tions, or ranked lists. Θ is the model parameter set to be optimized during
model training. In this survey, we will focus on different types of input data
sources X , different types of graphs G formed from X , the main technolo-
gies used for recommendation purposes f , and the connections between these
aspects to elaborate on GLRSs related studies.

4 From Data to Graphs

Most of the existing reviews on GLRSs only focus on the input graph types
and related recommendation technologies, but none of them associated differ-
ent graph types with original datasets. In fact, the construction of the graph
is largely determined by the dataset at hand. A large amount of semantic and
structural information is hidden in the graphs constructed by analyzing the
data set, and more and more research results show that the performance of
recommendation can be improved in many aspects, such as accuracy (Wang
et al, 2020d; Sun et al, 2021), fairness (Farnadi et al, 2018), diversity (Man-
soury et al, 2020; Isufi et al, 2021) and explainability (Liu et al, 2021a), by
appropriate learning and modelling the graphs. Based on this, before diving
into the specific types of graphs, it is necessary to understand the input data
structures, their attributes and how these attributes are related to the forma-
tion of graphs. Broadly speaking, there are two types of input data: user-item
interaction and side information (Shi et al, 2014), from which side information
can also be further classified into user/item attributes and external resources.
Hence, we classify the input data into three major categories: interactive data,
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context data and external data. The rationale of the classification is two-fold:
(1) If it is interactive data for GLRS, e.g. user-item interactions, or context
data on user/item side. (2) Whether the information should be from additional
data sources, e.g. external knowledge bases. Table 3 illustrates the taxonomy
of datasets, and their relations to graph types as well as techniques in GLRSs.

Interactive Data in GLRSs. Recommendation is inheritly a tool and
technique that provides users with potentially interesting items based on past
user-item interactions. The user-item interaction data as a prerequisite for
GLRS naturally forms a relational connection between the user and item. The
connections can appear in explicit or implicit form depending on whether obvi-
ous numerical numbers or positive/negative responses are directly observed.
User implicit feedback data is inferred by indirect user behaviour such as
clicking, page viewing, purchasing, watching and listening (example datasets
are Last.fm (Cantador et al, 2011), Bing-News (Wang et al, 2018b,c) and
YahooMusic (Dror et al, 2012)), whereas explicit interactive data is collected
directly by prompting users to provide numerical feedback or clear attitudes
on items such as ratings, likes and dislikes (example datasets are MovieLens
(Cantador et al, 2011), Amazon (McAuley et al, 2015; He and McAuley, 2016)
and Douban (Ma et al, 2011a; Zheng et al, 2017)). Such connections most
commonly appear in the form of a user-item matrix, where each row encodes
the preferences of a user with his/her interacted items. Each element in the
user-item matrix represents the user interaction with the item, which can be
binary numbers if implicit interactive data was found or non-negative numbers
if explicit interactive data was found.

Contextual Data in GLRSs. Context refers to the information collected
during the interaction between the user and the item, such as timestamps, loca-
tions or textual reviews, serving as an additional information source appended
to the user-item interactions. Contextual data8 is rich information attached
to an individual user or item that depicts user characteristics such as job and
gender (in e.g. dataset) or item properties such as description and product
categories (in e.g. Foursquare (Gao et al, 2012), Yahoo! traffic stream (Menon
et al, 2011) datasets). Such information associated with the user/item can form
natural connections in certain relationships, and therefore result in a network
structure that can be used as GLRSs. In addition to the directly collected data
attached to users/items, indirect information can also be obtained by a pre-
liminary analysis of the dataset, such as user similarities, and entities derived
from texts (Phuong et al, 2019). Undoubtedly, there exist obvious relation-
ships between the implicitly derived information and the analyzed user/item.
For instance, the user similarity exhibits a hidden connection between users,
and the entities extracted from an item text is originally attached to the item.
It is indisputable that by rationally taking the graphs formed from contextual
data, it can enrich information sources, provide more possibilities for graph

8Other terms may be used to indicate contextual data interchangeably such as side information,
features, demographic data, categories, contexture information, etc (Chen et al, 2020b). We do
not distinguish them in this paper due to the same mathematical representation they share.
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Fig. 2: An example tree structure from the Amazon and Last.fm websites.
From the root node to the leaf node, the hierarchical structure gradually refines
and embodies the types of goods and music.

learning-based recommendations, and improve the performance other than the
accuracy of GLRSs (e.g. diversity).

External Data in GLRSs. To obtain more valuable resources apart from
user-item interactions and their attached data from datasets, one can also seek
external sources for GLRSs. A typical example can be found in knowledge
graphs (KGs) which are graph structured data that describe entities or con-
cepts and connect them with different types of semantic relationships (Liu et al,
2019a). External data can also provide complementary information to over-
come data sparsity issues though some of them e.g. KGs may require domain
knowledge for recommendation in specific domains such as e-commerce. Cross-
domain knowledge is another type of external data, which refers to user/item
side information from multiple sources. For instance, user profiles across dif-
ferent networks connected through anchor links (e.g. the link which connects
the same entity from different platforms is called an anchor link) (Wang et al,
2017), item profiles from different communities (Farseev et al, 2017), user social
relationships through information sharing platforms (Shi et al, 2021), are lever-
aged to improve both recommendation accuracy and diversify recommendation
output. Accordingly, multiple subgraphs are built upon various sources which
are then jointly learned for recommendation tasks (Wang et al, 2017).

Depending on the different data shown above, one or more specific graph
structures can be applied to form the input network to GLRSs. Based on
this, we further innovatively propose to classify different graph types as tree-
based graphs, homogeneous graphs, K-partite graphs, complex heterogeneous
graphs, hypergraphs and multiple graphs. The relations between different data
and graph types are shown in Table A1 (Appendix A).

4.1 Tree-based graphs

A tree-based graph where the items are organized in a hierarchy by a cer-
tain attribute of them (e.g., the category), is a natural yet powerful structure
for human knowledge. It provides a machine- and human-readable description
of a set of items and their parallel or hierarchical relationships like affiliat-
edTo, subClass and isAPartOf relations. Such hierarchical relations between
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Fig. 3: Homogeneous graph illustration. (a) An example attributed homo-
geneous graph with nodes representing users and edges representing social
relations between users in (Song et al, 2019b). Node attributes are from implicit
interactive data. (b) An example of a session graph with nodes representing
interacted items and edges connecting consecutive interacted items in one ses-
sion (Xu et al, 2019a).

items have been widely studied and proven to be effective in generating high-
quality recommendations (Menon et al, 2011; Koenigstein et al, 2011; Mnih,
2012; Kanagal et al, 2012; He et al, 2016; Yang et al, 2016; Sun et al, 2017).
Tree-structured data is mostly obtained in a user/item context in explicit
contextual data. The most common example is the categories of items. Typ-
ical domains of tree-based graphs in GLRSs consist of online products (e.g.,
the Amazon web store (McAuley et al, 2015)), foods (e.g., Gowalla (Liu et al,
2013)), movies (e.g., IMDB) and music (e.g., Last.fm).

Figure 2 illustrates an example of tree-based graphs in Amazon and Last.fm
to organize electronics or music by categories/genres. If a user buys a Monitor,
she may possibly prefer Power Strips to match her Monitor instead of Avia-
tion Electronics. This is due to both Monitor and Power Strips belonging to a
higher layer category – Computers according to their intrinsic electrical char-
acteristics. If a user prefers one song under a certain genre, she is more likely
to favor other songs under this genre.

Representative algorithms coping with such graphs include Latent Factor
Models (LFM) (Kanagal et al, 2012), Graph Distributed Representation based
Techniques (GDRM) (He et al, 2016), Deep Neural Networks (DNN) (Huang
et al, 2019), and Attention Mechanism (AM) (Gao et al, 2019b).

4.2 Homogeneous graphs

A homogeneous graph is a graph with a single type of objects and links in
GLRSs. Typical examples are user graphs in social networks, which include
different types of social relations between users (Verma et al, 2019; Fan et al,
2019b). User-user relations can be derived from interactive data if recom-
mending other users as the ultimate goal of the recommender system such
as friend recommendation (Fan et al, 2019b), or contextual data if social
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relations are potential critical factors affecting users’ next choices (Fan et al,
2019b; Farseev et al, 2017). The hypothesis behind taking a user social effect
as essential contextual information is that two connected users in a user graph
usually share similar preferences and influence each other by recommending
items. Besides, various relationships among items, e.g. item co-occurrence and
substitution items(Wang et al, 2020b; Xin et al, 2019; Gori et al, 2007) in a
user behaviour sequence, connect all the items together and thus result in a
homogeneous item graph. The co-occurrence relations in item graphs implicitly
derived from interactive data not only reflect certain latent relations between
items, but also reveal some behaviour patterns of users. It has been proven that
the fusion of co-occurrence relations between items can yield significant per-
formance enhancements (Wang et al, 2020b). With the development of Graph
Neural Network (GNN) and its varieties, it becomes possible to capture con-
secutive transitions among nodes while generating accurate node embeddings
for recommendation use. Based on this, in (Xu et al, 2019a; Wu et al, 2019c;
Abugabah et al, 2020), by considering the dynamic transitions in the interac-
tive sequence within one session, the authors construct directed homogeneous
session graphs in which a node represents an interacted item and an edge con-
nects adjacent interacted items while retaining the order of interaction. The
nodes of these homogeneous graphs are without attribute information, which is
referred to as non-attributed homogeneous graphs. In practice, many real-world
networks usually have attributes with their nodes that are also important for
making sense of modelling network topological as well as contextual informa-
tion for recommendation purposes. Such networks with node attributes and a
single type of nodes as well as edges are named attributed homogeneous graphs9

(Gao et al, 2018; Jamali and Ester, 2009). An example can be found in a friend
network where edges represent friendship (e.g. follow, like) between two users,
and nodes represent users with attributes e.g. demographic information, or a
sequence of items the user interacted with (Song et al, 2019b). In such a case,
both social influence and user attributes can help to learn user preferences
and thus affect the recommendation performance (Song et al, 2019b). Figure
3 illustrates examples of non-/attributed homogeneous graphs to help resolve
the cold start issue of recommender systems.

Typical approaches in coping with such graphs include PageRank based
Models (PRM) (Gori et al, 2007), Translation-based Embedding Models
(TEM) (Wang et al, 2020b; Gao et al, 2018), Random Walk-based Models
(RWM) (Jamali and Ester, 2009), Deep Neural Networks (DNN) (Xu et al,
2019a; Isufi et al, 2021), Graph Neural Networks (GNN) (Qiu et al, 2020b),
and Deep Hybrid Models (DHM) (Wu et al, 2019c; Abugabah et al, 2020; Song
et al, 2019b; Chen et al, 2019a).

9Some articles also categorize graphs into directed and undirected graphs. In our point of view,
the undirected graph can be readily converted into a directed graph by replacing each edge with
two oppositely directed edges. Thus in this survey, without loss of generality, we assume that all
graphs are directed graphs.
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Fig. 4: K-partite graph illustration. (a) A user-item bipartite graph with nodes
representing user and items and edges representing interactions between users
and items in (Wang et al, 2019f). (b) A k-partite graph with nodes separated
into four parts representing user, genre, movie, actor and director, and edges
only existing among different node sets (Jiang et al, 2018a).

4.3 K-partite graphs

A k-partite graph, also called multipartite graph, is a kind of graph whose
nodes can be partitioned into k different independent sets so that no two
nodes within the same set are adjacent. In the GLRSs scenario, the k-partite
graphs are unipartite graphs when k = 1, bipartite graphs when k = 2 and
tripartite graphs when k = 3. In (Xin et al, 2019), the authors constructed
unipartite graphs where nodes are items, and different relations exist between
two nodes. Relations can be extracted from contextual data or external
sources like knowledge graphs. Especially, bipartite graphs have attracted sig-
nificant attention in areas like social network analysis (Tay and Lin, 2014).
They divide network nodes into two types and edges exist only between dif-
ferent types of nodes. User-item interactions can be naturally considered a
bipartite graph, where the nodes represent users and items, and user nodes
are linked with those interacted item nodes. Figure 4(a) gives an example of
a bipartite graph formed from user-item interactive data (Wang et al, 2019f).
The edges of the bipartite graph can either be a single type or multiple types
of interactions, e.g. click, like, purchase or view (Li and Chen, 2013; Zheng
et al, 2018; Wang et al, 2019f; Zhang et al, 2019a; Phuong et al, 2019; Niko-
lakopoulos and Karypis, 2019; Gori et al, 2007; Sun et al, 2020). In addition
to user-item interactions, auxiliary information of user/item can also be con-
structed as a bipartite graph. For instance, items and their attributes (e.g.,
pin-boards for Pinterest dataset (Ying et al, 2018)) can also be seen as two
types of nodes in forming an item-entity bipartite graph.

Apart from user-item interactions, bipartite graphs can be extended to
multi-partite graphs by mining the contextual information of user/item and
leveraging beneficial attributes or related information such as user query, actors
and actresses of movies as other groups of nodes (Kim et al, 2019; Fan et al,
2019a; Berg et al, 2017; Cheng et al, 2007; Lei et al, 2020a; Jiang et al, 2018a).
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For instance, the authors of (Cheng et al, 2007) built a user-movie-genre tri-
partite graph for personalized recommendation. In Figure 4(b), a multi-partite
graph is formed by utilizing contextual information of items (movies), such as
genre, actor, director (Jiang et al, 2018a).

K-partite graphs can be weighted by assigning numerical points like a
rating or similarity score on corresponding edges (Chen et al, 2020a; Zhang
et al, 2019a; Yao et al, 2015). In (Yao et al, 2015), the authors constructed
a multi-partite graph incorporating user, item and their related contextual
features. Each number on the edge represents the co-occurrence of two end-
nodes. Figure 4 shows examples of k-partite graphs in the GLRS scenario.

Various GLRS-based approaches have been proposed to learn such kind of
graphs, such as Kernel-ased Machine learning methods (KML) (Li and Chen,
2013), RWM (Eksombatchai et al, 2018; Jiang et al, 2018a), Meta-path based
Methods (MPM) (Yu et al, 2014; Lu et al, 2020; Yu et al, 2013), GDRM (Cen
et al, 2019), TEM (He et al, 2015), DNN (Zheng et al, 2018), Auto-Encoder
(AE) (Zhang et al, 2019a), AM (Wang et al, 2019d), GNN (Wang et al, 2019f;
Chen et al, 2020a) (See Table 3 for more details).

4.4 Complex heterogeneous graphs

Complex heterogeneous graphs are related to graphs with multiple types of
nodes and edges. The connections among nodes do not follow specific rules
(Xu et al, 2019b; Jiang et al, 2018b; Shi et al, 2018; Lu et al, 2020; Wang et al,
2020f; Kyriakidi et al, 2020; Feng and Wang, 2012; Zheng et al, 2017). For
instance, in (Wang et al, 2020f) the authors constructed long- and short-term
graphs in which nodes are divided into user and item nodes, and edges can
exist either between user and item, or among items. Complex heterogeneous
graphs are usually non-weighted by default, but they can also be weighted. In
(Zheng et al, 2017; Shi et al, 2016), numbers on user-item edges depict the
user’s rating on the item. Figure 5(a) and 5(b) give examples of weighted and
unweighted complex heterogeneous graphs respectively.

The goal of complex heterogeneous graph learning is to obtain the latent
vertex representations by mapping vertexes into a low-dimensional space,
which then can be leveraged for recommendations (Xu et al, 2019b; Jiang et al,
2018b; Shi et al, 2018; Lu et al, 2020). The authors of (Jiang et al, 2018b) con-
structed a complex heterogeneous graph with four types of nodes and ten types
of edges. The node representations are learned for citation recommendations.
In (Shi et al, 2018), the authors constructed a heterogeneous graph with user,
item and various types of attributes as nodes. Finally, the learned user/item
representation is adopted to predict the user’s rating score of the item to make
recommendations. Differently, in (Kyriakidi et al, 2020), the connection mode
can be revealed via path traversing, so that the similarities between two nodes
can be calculated for a recommendation.

Another typical example falling into this category is a Knowledge Graph
(KG). KG is a multi-relational graph composed of entities as nodes and rela-
tions as different types of edges as illustrated in Figure 5(b). Each edge of
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Fig. 5: Complex heterogeneous graph illustration. (a) An example of complex
heterogeneous graphs in which there are three kinds of nodes representing
group, user and item respectively, and group-user, user-item two kinds of edges,
for social recommendations (Shi et al, 2018). (b) An illustration of KGs with
multiple kinds of entity nodes relation edges for exploring high-order user
preferences for recommendations (Wang et al, 2019a).

KG represents a triple of the form (head entity, relation, tail entity), also
called a fact, indicating that two entities are connected by a specific relation.
Recent years have witnessed a rapid growth in KG application in recommenda-
tion, resulting in promising improvements in both recommendation accuracy
and explainability due to the rich structured information that KG provides
about the items. Existing KGs, e.g. Yago (Suchanek et al, 2007), DBPedia
(Lehmann et al, 2015), provide auxiliary information apart from user-item
interactions. The relational properties in KGs break down the independent
interaction assumption by linking items with their attributes. Meanwhile, the
introduction of KGs alleviates the data sparsity and cold-start issues raised in
recommender systems (Wang et al, 2019b; Ma et al, 2019; Wang et al, 2020g;
Zhou et al, 2020b; Song et al, 2019a; Yang and Dong, 2020; Wang et al, 2020a;
Ai et al, 2018; Zhang et al, 2016; Ma et al, 2019; Catherine and Cohen, 2016;
Shi et al, 2020; Chen et al, 2019d; Wang et al, 2020g; Zhou et al, 2020a,b; Cao
et al, 2019; Yu et al, 2013; Ostuni et al, 2013). However, the various types of
entities and relations in KGs also pose the challenge of capturing semantically
interconnected information for effective recommendations. In addition, how to
reasonably and vividly provide recommendation results through KG internal
reasoning and the linkage among user-item interactions, deserves more atten-
tion (Wang et al, 2019g). For instance, how to impartially and convincingly
explain the reasoning process of the recommendation list to the target user.
The resources of all KGs used for GLRSs have been collected and displayed in
Table 4.

Typical technologies related to learn complex heterogeneous graphs include
LFM approaches (Zhao et al, 2017), PRM (Catherine et al, 2017; Catherine
and Cohen, 2016), RWM approaches (Bagci and Karagoz, 2016; Ma et al,
2019), Rule-based Model (RM) (Shi et al, 2020), MPM (Shi et al, 2015; Ostuni
et al, 2013), GDRM (Shi et al, 2018; Fu et al, 2020; Palumbo et al, 2017;
Jiang et al, 2018b), TEM (Chen et al, 2019d; Wang et al, 2018b, 2019a; Ai
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et al, 2018), AE (Zhang et al, 2016), AM (Han et al, 2018), Graph Neural
Network (GNN) (Wang et al, 2019e,c), Deep Reinforcement Learning (DRL)
(Song et al, 2019a; Lei et al, 2020a), and DHM (Sheu and Li, 2020; Wang
et al, 2020g; Zhou et al, 2020a; Wang et al, 2018c). Other techniques such as
Spectral Clustering (Farseev et al, 2017) are also adopted to learn such kind
of graphs. (Refer to Table 3 for more details)

Table 4: A collection of commonly used knowledge graphs.
Name Domain Type Main Knowledge Source

General KG

YAGO (Suchanek
et al, 2007)

Cross-Domain Wikipedia

Freebase (Bollacker
et al, 2008)

Cross-Domain
Wikipedia, NNDB, FMD,
MusicBrainz

DBpedia (Lehmann
et al, 2015)

Cross-Domain Wikipedia

Satori10 Cross-Domain Web Data

CN-DBPedia (Xu
et al, 2017)

Cross-Domain
Baidu Baike, Hudong Baike,
Wikipedia (Chinese)

NELL (Carlson
et al, 2010)

Cross-Domain Web Data

Wikidata 11 Cross-Domain Wikipedia, Freebase

Google Knowledge
Graph 12 Cross-Domain Web data

Facebooks Entities
Graph 13 Cross-Domain Wikipedia, Facebook data

ConceptNet (Speer
et al, 2017)

Cross-Domain Web data

MultiWordNet
(Pianta et al, 2002)

Cross-Domain Princeton WordNet

Babelfy (Moro et al,
2014)

Cross-Domain BabelNet

Open Multilingual
Wordnet (Bond and
Paik, 2012)

Cross-Domain
Wiktionary, Unicode Common
Locale Data Repository

Domain
Specific KG

Bio2RDF (Belleau
et al, 2008)

Biological Domain
Public bioinformatics
databases, NCBIs databases

KnowLife (Ernst
et al, 2014)

Biomedical Domain
Scientific literature, Web por-
tals

IMDB 14 Movie Domain Web data

KnowIME (Yan
et al, 2020)

Intelligent Manufac-
turing Domain

Internet, Baidu Encyclopedia,
and related intelligent manu-
facturing websites

10https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
11http://www.wikidata.org/
12https://blog.google/products/search/introducing-knowledge-graph-things-not/
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4.5 Hypergraphs

Hypergraphs are defined as a generalization of graphs in which the edges are
arbitrary non-empty subsets of the vertex set (Agarwal et al, 2006). Instead of
having edges between pairs of vertices, hypergraphs have edges that connect
sets of two or more vertices. Correspondingly, such edges of hypergraphs are
called hyperedge. If the hyperedge always has the degree of 2, the hypergraph
reduces to an ordinary graph. For clarity, we only refer to hypergraphs with
multiple hyperedge degrees. The motivation for introducing hypergraphs for
recommendations is two-fold (Feng et al, 2019): first, the data correlations can
be more complex than the pairwise relationship, which is difficult to model with
traditional graph structures; second, the data representations can be multi-
modal, which means that data can be connected through e.g. text information,
visual information, or social connections, which is difficult to capture with the
traditional graphs. Thus, a hypergraph is a way to model a more general data
structure, and the recommendation performance can be improved through the
modelling of the high-order proximity in the constructed hypergraphs (Yu et al,
2021).

Recent years witness the learning of hypergraphs in promoting the devel-
opment of recommender systems (Wang et al, 2020c; Bu et al, 2010; Li and
Li, 2013; Tan et al, 2011; Zhu et al, 2016; Mao et al, 2019; Yu et al, 2021;
Gharahighehi et al, 2021, 2020). Hypergraphs can be generalised explicitly
from data sources or derived implicitly indirectly through, for instance, a clus-
tering technique. In (Bu et al, 2010), the authors constructed a hypergraph
with six types of vertices and nine types of hyperedges representing complex
relationships of nodes rather than a pair-wise form. Specifically, user-item
interactive data, contextual data such as social relations, tagging and
album information, are adopted. Meanwhile, the group information obtained
through K nearest neighbor and K-means, also form part of the hyperedges.
Pliakos et al. (Pliakos and Kotropoulos, 2014) used a unified hypergraph
model boosted by group sparsity optimisation and encapsulated the high order
connections among users, images, tags and geo-information for tag recommen-
dation. An hyperedge can be weighted by binary values indicating whether
to participate or whether the link exists between two nodes, or integer val-
ues indicating the frequency of participation (Yu et al, 2021). Besides, decimal
values such as similarity scores can also be assigned as edge weight depend-
ing on recommendation context (Bu et al, 2010; Tan et al, 2011). Different
weights assigned to a hypergraph differentiate the impact of each hyperedge.
An example of a hypergraph is illustrated in Figure 6(a), in which the hyper-
graph consists of three nodes with one hyperedge in September 2017, and four
nodes with two hyperedges in September 2019 (Wang et al, 2020c).

Representative approaches in dealing with hypergraphs in GLRS include
Regularization Theory-based Graph Ranking (RTGR) (Bu et al, 2010), GNN

13https://engineering.fb.com/2013/03/06/core-data/under-the-hood-building-out-the-
infrastructure-for-graph-search/

14https://www.imdb.com/
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Fig. 6: (a) An example hypergraph in which nodes are represented in different
colors and edges exist between colors of nodes (Wang et al, 2020c). (b) An
example of multiple graphs in which there is a user-item-attribute tripartite
graph and a homogeneous social graph (Wang et al, 2017).

(Yu et al, 2021) and DHM (Wang et al, 2020c; Gharahighehi et al, 2020). More
specific details can be found in Section 5 and Table 3.

4.6 Multiple graphs

Incorporating various types of information involved into a graph will often
make the composed graph too complicated and not conducive to subsequent
algorithms. Therefore, many researchers choose to split complex heterogeneous
graphs into multiple subgraphs for learning separately. While such a “divide
and conquer” strategy disassembles the complexity of the graph, it can also
be adapted to certain graph-learning algorithms (Verma et al, 2019; Fan et al,
2019b; Wu et al, 2019b; Vijaikumar et al, 2019; Wang et al, 2017). For instance,
in (Fan et al, 2019b), the authors disassembled the complex multigraph with
more than one type of edge between two nodes, into three homogeneous sub-
graphs, which are then learned separately through the DeepWalk technique for
friend recommendation. More researches choose to separate interactive data
from contextual data/external data as a powerful supplementary infor-
mation for learning user/item representations and meanwhile to some extent
alleviating the cold-start issue (Liu et al, 2020; Ali et al, 2020). The authors
of (Fan et al, 2019b; Wu et al, 2019b) extract the user social relations from
original data to build a homogeneous graph of the social network. Similarly,
in Figure 6(b), the authors of (Wang et al, 2017) use the users as anchor
links (e.g. the link which connects the same entity from different platforms is
called an anchor link) to obtain the user social information from cross-domain
knowledge resulting in homogeneous subgraphs to improve recommendation
performance. In (Monti et al, 2017; Isufi et al, 2021), the authors construct
two homogeneous graphs, namely an item graph and a user graph in which
nodes represent items and users respectively, and edges represent similarities
between adjacent nodes.

Another advantage of leveraging a multi-graph for recommendation is scal-
ability. When a new data source is added, it can be constructed as a separate
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graph independent of the original data source, and the learned embedding rep-
resentations can be merged in the upper layer. In such cases, different data
sources can be separated into a more concise and clear form for subsequent
maintenance and learning (Vijaikumar et al, 2019).

Various ways can be adopted to learn multiple graphs for recommendations.
For graphs with similar structures (e.g. either homogeneous or heterogeneous),
similar learning strategies are usually adopted to obtain the low-dimensional
representation of nodes (Ali et al, 2020; Monti et al, 2017). While it is usually
necessary to adopt different learning strategies for graphs with different struc-
tures. This is reasonable because usually a certain learning strategy should be
performed under certain assumptions or rules (Ma et al, 2011a; Chen et al,
2019a).

To deal with multiple graphs, the most common way is to learn each inde-
pendent graph separately, and then aggregate the results for recommendation
purposes. Typical examples are GDRM (Verma et al, 2019; Ali et al, 2020),
LFM (Ma et al, 2011a), AM (Vijaikumar et al, 2019), GNN (Fan et al, 2019b;
Wu et al, 2019b), DHM (Monti et al, 2017) and DNN (Wang et al, 2017).

4.7 Graph Discussion

Graphs, ranging from a flat tree-based structure to a complex network struc-
ture, from a homogeneous network to a heterogeneous one, evolve from both
structural and contextual sides. As summarized in Supplement Table 1, though
many different datasets overlap across various graphs and recommendation
tasks, it is undeniable that there is no perfect graph type that can embrace all
types of data or solve all problems of the recommender system. However, we
can still make several observations:

First, tree-based graphs are mainly derived from e-commerce datasets (e.g.
Amazon and JD) in which types of commodities can be broken down by the
category’s level of granularity. Such kind of tree structure provides recom-
mender systems with a paradigm which can be further refined in a “top-down”
manner.

Second, homogeneous graphs can be formed by leveraging user social net-
works (user graph) or interlinking of items (item graph). A session graph is a
kind of directed item graph with nodes of items that are clicked by the user
and links of relations that are according to the clicked order. Homogeneous
graphs can be used to mine the relationships between a single type of node
(e.g., users/items/sessions) to make targeted modelling for recommendations.

Third, most k-partite graphs, especially for k = 2, are constructed based
on user-item interactions, which are the preliminary requirements for RS and
can be naturally formed into a graph with users and items as two groups of
nodes. For generalized k-partite graphs, they normally formalize by extending
the user-item bipartite graph with contextual knowledge w.r.t. users/items
that are deemed to potentially benefit recommendation performance.

Besides, complex heterogeneous graphs incorporating multi-types of nodes
and relations reveal the intricate relationship between user, item and other
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related information from contextual/external data sources in real scenarios.
Especially, KGs are generally leveraged in the domains of movies, music, books
or news, where named entities are highly recognizable and have been witnessed,
and most of which can be found in the corresponding entries in e.g. Wikipedia,
DBpedia, Yago, etc.

Furthermore, hypergraphs have recently been introduced to represent the
connections between sample groups such as user groups according to social
relationships, or item groups according to a user’s co-purchase history, which
breaks the traditional node-to-node pattern, pursuing a higher-level repre-
sentation of data structure. With their diversity, heterogeneous graphs with
various aspects of information can be used to model more complex situations
than other types of graphs so as to better solve the cold-start and data sparsity
issues of recommender systems. However, such complexity of both graph struc-
ture and content leads to a more complicated modelling process and brings
challenges that cannot be ignored. One possible solution is to break down such
complexity into multiple subgraphs. In this way, the complex relationship of
the graph is degraded, and the relationship between nodes is more concise
and clear. To reveal the group knowledge among nodes and meanwhile incor-
porate multi-modal information for better recommendations, a hypergraph is
proposed to express multiple relationships beyond the pairwise relations. With
the development of technology, the types of graphs that computers can pro-
cess tend to be increasingly complex and fine-grained, which suggests that RS
can handle more sophisticated and multi-dimensional problems and scenarios.

5 Graph-based models for GLRS

In this section, we will go through various models adopted in GLRS and ana-
lyze them from the technical perspective, as shown in Figure 7. Many GLRS
recommendation algorithms are not only based on a specific technology but
often include multiple different types of technologies. Therefore, our classi-
fication is mainly based on the technology used by the key components of
the model pointed out in the paper. A comprehensive technology summary in
GLRS can be found in Table B1 (Appendix B).

5.1 Traditional techniques

Traditional machine learning techniques used in GLRS can generally be clas-
sified into PageRank-based models (PRM), regularization theory-based graph
ranking techniques (RTGR), kernel-based machine learning techniques (KML),
latent factor models (LFM) and others (e.g. association mining and clustering).
Graph learning-based traditional techniques can be used for multiple types of
graphs from various domains of data sources. The classic PageRank algorithm
computes an importance score for every node according to the graph connec-
tivity, which is usually exploited to tackle the recommendation as a ranking
problem. Many adapted PageRank algorithms have been proposed and widely
applied to a variety of graphs like homogeneous item graphs (Gori et al, 2007),
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Fig. 7: A categorization of GLRS techniques from the technical perspective.

K-partite graphs (Shams and Haratizadeh, 2017; Jäschke et al, 2007; Musto
et al, 2021, 2017) and complex heterogeneous graphs (Catherine and Cohen,
2016; Lee et al, 2013) for recommendation. A separate line of work in this area
- regularization theory-based graph ranking techniques - is widely exploited
to learn the ranking results on hypergraphs for recommendations (Bu et al,
2010; Li and Li, 2013; Tan et al, 2011; Mao et al, 2019). They usually use
hypergraphs to model high-order relations among various types of objects in
social networks and use the regularization framework (Zhou and Schölkopf,
2004) for ranking graph data. Some research works use kernel-based machine
learning techniques to compute similarities between structured objects, such
as nodes of a graph, that cannot be naturally represented by a simple set
of numbers, and demonstrate their effectiveness in a variety of graphs in RS
(Li and Chen, 2013; Yajima, 2006; Li et al, 2014; Fouss et al, 2012; Ostuni
et al, 2014) (homogenous graph, K-partite graph and knowledge graph). For
instance, Yajima (Yajima, 2006) used a Laplacian kernel to capture the posi-
tional relations among nodes on a homogenous item graph and built one-class
SVM models for each user to recommend items that are positionally closer to
their previously bought items. Li et al. (Li and Chen, 2013) propose a generic
kernel-based machine learning approach of link prediction in bipartite graphs
and apply it in recommender systems. In a later work, Li et al. (Li et al, 2014)
inspect a spectrum of social network theories to systematically model the mul-
tiple facets of a homogeneous user graph in social networks and infer user
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preferences. They design and select kernels corresponding to major social net-
work theories and then adapt a non-linear multiple kernel learning technique
to combine the multiple kernels for recommendation. Latent factor models are
usually adopted by many researchers to learn the latent feature of users and
items for recommendation purposes. In GLRS, LFM can be accompanied by
regularization terms constraining the trust/distrust relations between users
to integrate contextual information extracted from users’ social networks (Du
et al, 2011; Ma et al, 2009; Sun et al, 2015). Ma et al. (Ma et al, 2008, 2011b)
proposed a factor analysis based on probabilistic matrix factorization to allevi-
ate the data sparsity and poor prediction accuracy problems in recommender
systems by incorporating social contextual information, such as users’ social
trust networks and social tags. In addition, there are many other traditional
machine learning techniques used to model the relations between the nodes in
GLRS, such as clustering (Farseev et al, 2017; Song et al, 2011), association
mining (Huang et al, 2004) and graphing complex numbers (Xie et al, 2015),
and applied to K-partite graphs (Song et al, 2011), complex heterogeneous
graphs (Huang et al, 2004; Xie et al, 2015) and multiple graphs (Farseev et al,
2017).

5.2 Path-based techniques

For heterogeneous graphs with multiple types of nodes and relations, the basic
idea of earlier recommendation strategies is to leverage path-based semantic
relatedness between users and items over the constructed graphs. Different
from similarity-based techniques based upon the item/user attributes, path-
based techniques especially emphasize the essential role of links in graphs, and
links between start node and end node can form a path serving a recommenda-
tion purpose. In this case, the underlying relationships via network propagation
show particularly important for indirectly connected objects. They can be
used mainly for complex heterogeneous graphs (Bagci and Karagoz, 2016; Ma
et al, 2019; Feng and Wang, 2012; Shi et al, 2020, 2018, 2015; Zheng et al,
2017; Shi et al, 2016; Ostuni et al, 2013) and k-partite graphs (Li and Chen,
2013; Cheng et al, 2007; Yao et al, 2015; Jiang et al, 2018a; Nikolakopoulos
and Karypis, 2019; Sharma et al, 2016; Eksombatchai et al, 2018; He et al,
2015; Cen et al, 2019; Lu et al, 2020; Yu et al, 2014, 2013), but can also
be adopted for multiple and homogeneous graphs (Yin et al, 2010; Vijaiku-
mar et al, 2019; Jamali and Ester, 2009; Gori et al, 2007), covering various
domains such as POI recommendation, academic and book, e-commerce and
entertainment domains.

Earlier studies leverage a series of predefined rules to generate a path on the
constructed graphs followed by different similarity measurements for ranking
the candidate items for recommendation (He et al, 2015; Catherine and Cohen,
2016; Catherine et al, 2017; Kyriakidi et al, 2020). Another graph tracing algo-
rithm initially designed for homogeneous networks is a random walk-based
algorithm (Andersen et al, 2008). It starts at a node and follows outgoing
edges, uniformly at random or according to predefined transition probability,
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Fig. 8: Bibliographic network schema and meta paths defined in (Sun et al,
2011).

until the stop condition is reached. The output paths indicate the context of
connected vertices. The randomness of walks gives the ability to explore the
graph while considering both the global and local structural information by
walking through neighboring vertices. The random walk mechanism enables
capturing complex, high-order and indirect relations between nodes for recom-
mendations. Due to these advantages, random walk and its various variants are
favored for a long period in the GLRS domain for generating paths in homo-
geneous as well as heterogeneous graphs (Jamali and Ester, 2009; Feng and
Wang, 2012; Jiang et al, 2018a; Eksombatchai et al, 2018; Nikolakopoulos and
Karypis, 2019; Gori et al, 2007; Li and Chen, 2013; Yin et al, 2010; Vijaiku-
mar et al, 2019; Sharma et al, 2016; Mao et al, 2019; Bagci and Karagoz, 2016;
Ma et al, 2019; Cheng et al, 2007; Yao et al, 2015). For instance, Jiang et al.
(Jiang et al, 2018a) propose a generalised random walk with restart model on
a k-partite graph to extract the paths. Then a BPR-based machine learning
technique is leveraged to learn the weights of links in the graph.

To integrate different types of objects and links in heterogeneous networks,
the work of (Sun et al, 2011) proposed the concept of a meta-path, which
is adopted by many later researches (Yu et al, 2013; Cen et al, 2019; Lu
et al, 2020; Shi et al, 2018, 2015; Zheng et al, 2017; Shi et al, 2016; Ostuni
et al, 2013; Yu et al, 2014). Specifically, a meta-path is a path defined on
the graph of network schema TG = (A,R)15, and normally denoted in the

form of A1
R1−−→ A2

R2−−→ A3...
Rl−→ Al+1, which defines a composite relation

R = R1 ◦ R2 ◦ ... ◦ Rl between types A1 and Al+1, where → explicitly shows
the direction of a relation from graph G, ◦ denotes the composition opera-
tor on relations. Figure 8 illustrates two examples of meta-paths 8(b) and
8(c) derived from network schema 8(a). When a user-specific meta-path e.g.
P = (A1A2...Al) has been given, several similarity measures can be defined for
a pair-wise nodes comparison, namely to compare vi ∈ A1 and vj ∈ Al accord-
ing to a series of paths derived based on P , referred to path instances. Random
walk is one representative to generate paths instances p ∈ P following the pre-
defined meta-path schema (Shi et al, 2015). To further learn the attributed

15Please refer to Definition 1 and 2 in Section 3.1 for the meaning of the symbols
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Fig. 9: A toy example of embedding a graph into 2D space with different
granularities (Cai et al, 2018). G1,2,3 denotes the substructure containing node
v1, v2, v3.

heterogeneous information network (HIN) for better recommendations, later
studies attempt to combine meta-paths with a traditional latent model, e.g.
FM (Zhao et al, 2017), MF (Shi et al, 2018; Yu et al, 2014). Though random-
walk based similarity measures require less domain knowledge compared to
meta-path based measures16, the latter turn out to be more meaningful and
interpretable in most GLRSs (Sun et al, 2011).

Despite that path-based similarity strategies have achieved initial success
in improving RS accuracy to some extent, challenges still exist. First, meta-
path based similarities rely on explicit path reachability and the quality would
be affected by the sparse and noisy input data, especially for links that are
accidentally formed but do not convey meaningful information for recommen-
dations. Second, the explicit path relatedness derived from the path-based
similarity does not necessarily have a positive impact on recommendation per-
formance. For instance, the work of (Yu et al, 2013) learns a linear weighting
mechanism to integrate the extracted meta-paths for the subsequent recom-
mendations, ignoring the complicated mapping mechanism of the constructed
k-partite graphs. Third, path-based similarity strategies need to generate sim-
ilarity scores for all candidate items at each step for every user which reduces
the effectiveness of the system and thus makes it difficult to be applied in a
large-scale scenario.

5.3 Graph embedding based techniques

The motivation for applying graph embedding (GE) strategies lie in that they
can provide an effective yet efficient way to solve the graph analytics problem
(Cai et al, 2018). GE-based techniques are mainly applied to complex hetero-
geneous graphs (Fu et al, 2020; Wang et al, 2020a; Jiang et al, 2018b; Palumbo
et al, 2017; Wang et al, 2018b; Cao et al, 2019; Wang et al, 2021b; Cao et al,
2019; Ai et al, 2018; Chen et al, 2019d) from multiple data sources but can also
be applied to homogeneous graphs (Gao et al, 2018; Wang et al, 2020b), tree
graphs (He et al, 2016), k-partite graphs (Li et al, 2021b) and multiple graphs
(Verma et al, 2019; Ali et al, 2020) in different recommendation domains.

16Meta-path based approaches usually require handcrafted features to represent path semantics
and thus further require domain knowledge (Sun et al, 2011).
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Specifically, graph embedding converts a graph into a low dimensional space
in which the graph information can be retained as much as possible. By repre-
senting a graph as a (or a set of) low-dimensional vector(s), graph algorithms
can be applied efficiently. Figure 9 illustrates how graph embedding projects a
graph into the vector space with different granularities, e.g. w.r.t. node/edge/-
substructure/whole graph (Cai et al, 2018). Some researches differentiate
graph representation learning and graph embedding by comparing the dimen-
sion of the output embedding vectors with the dimension of the inputs (Cai
et al, 2018). Graph embedding focuses on learning the low-dimensional rep-
resentations, while graph representation learning does not require the learned
representations to be low dimensional. Though they have slight differences, we
do not make a special distinction in this survey. Essentially, the two approaches
aim to project a graph into the vector space while preserving the graph struc-
ture and capturing the connectivity information within the graph to serve the
recommendation task. The mapping can be defined as:

f : vi → xi ∈ Rd (2)

where d ≪ |V|, and xi = {x1, x2, ..., xd} is the embedded or learned vector
that captures the structural properties of node vi.

The recent advances on GE-based GLRSs have been largely influenced by
the skip-gram model (Mikolov et al, 2013a) designed originally to learn word
representations w.r.t. the words context in a sequence e.g. a sentence. For a
specific type of graph, skip-gram can be used on path sequences extracted
from the graph in which nodes can be analogous to words, and paths can
be analogous to sentences. Inspired by this, a series of graph distributed rep-
resentation based GLRSs using skip-gram related algorithms, e.g. DeepWalk
(Perozzi et al, 2014), LINE (Tang et al, 2015), and Node2vec (Grover and
Leskovec, 2016), gradually emerged and achieved encouraging success (Verma
et al, 2019; Palumbo et al, 2017; Jiang et al, 2018b; Vijaikumar et al, 2019; Gao
et al, 2018; Ali et al, 2020; He et al, 2016; Wang et al, 2020a; Gharahighehi et al,
2021; Fu et al, 2020). For instance, the authors of (Gao et al, 2018) apply Deep-
Walk which aims to maximize the average logarithmic probability of all vertex
context pairs in a random walk sequence, to learn user and item representa-
tions on a multi-source homogeneous item graph to consider item structure,
textual content and tag information simultaneously which are then used for
collaborative filtering. In (Palumbo et al, 2017) the authors generate user and
item representations with Node2vec, an extension of DeepWalk by leveraging
a biased random walk to navigate the neighborhood nodes, on a complex het-
erogeneous knowledge graph, which are then used to compute property-specific
relatedness scores between users and items as the input for the learning to
rank approach, resulting in optimizing top-N item recommendations.

Another research line of GE-based technique adopts translation-based
embedding models inspired by (Mikolov et al, 2013b), e.g. TransE (Bordes et al,
2013). Different from DeepWalk related approaches, TransE explicitly models
entities and relationships among entities into the same space or different spaces
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while preserving certain information of the graph, which is later generalized
into a hyperplane translation(TransH (Wang et al, 2014)) and a translation in
separate entity space and relation spaces (TransR (Lin et al, 2015)). The basic
idea behind TransE is that the relationship between two entities corresponds
to a translation between the embeddings of entities, that is, h + r = t where
h, t, and r represent head entity, tail entity and relation between h and t in
triplet (h, r, t) in a graph. Researchers attempted to adopt such translation-
based models for e.g. a knowledge graph embedding for recommendation (Ai
et al, 2018; Wang et al, 2020b; Chen et al, 2019d; Cao et al, 2019; Wang et al,
2018b, 2019a). For example, Wang et al. (Wang et al, 2020b) assign a basic
representation and various relational ones for each item from a directed homo-
geneous graph via TransE, which are then combined dynamically by temporal
kernel functions, providing both recommendations and explanations. Chen et
al. (Chen et al, 2019d) adopt TransH to embed the objects’ social relation-
ships from the homogeneous graph into a shared lower-dimensional space and
learn a user’s dynamic preference via a probabilistic model from the user-item
bipartite graph. Finally, the recommendation list is generated with item-based
collaborative filtering.

5.4 Deep learning based techniques

Deep learning (DL) has driven a remarkable revolution in recommender appli-
cations as can be seen by the number of research publications on deep
learning-based recommendation techniques having increased exponentially
recently. It has been applied to multiple types of graphs from single graph
to multiple graphs, from homogeneous to heterogeneous graphs from different
recommendation domains. To draw an overall concept of this field, we further
classify the existing DL-based approaches into DNN, auto-encoder, attention
mechanism, reinforcement learning, graph neural network, transformer-based
approaches and deep hybrid models as shown in Figure 7.

5.4.1 Deep Neural Network (DNN)

A deep neural network (DNN) is adopted to model complex non-linear rela-
tionships with generated compositional models where the object is expressed
as a layered composition of primitives. By piling up layers, composition of fea-
tures from lower layers can be extracted and learned (Bengio, 2009). DNNs
are typically feedforward networks in which data flows from input layer, is
transformed into vector representations and projected into a different space to
an output layer without looping back. DNN-based techniques can be used for
tree graphs (Huang et al, 2019) and complex heterogeneous graphs (Sun et al,
2018; Mezni et al, 2021; Wang et al, 2019g) in e-commerce and entertainment
domains, or homogeneous graphs (Wu et al, 2019a) in social network domain.
Taking graphs as input, DNN can learn high-order interactions among nodes
by stacking layers with non-linear transformations (Wang et al, 2017; Wu et al,
2019a). For instance, Wang et. al (Wang et al, 2017) apply several multiple
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layers with a pooling operation to explore interaction patterns between user,
item and their attributes from multiple cross domain graphs taking nodes’
one hot encoding as input. To learn the propagation effect of social influence
of users, they further employ the smoothness regularization term to closely
embed users connected by social networks from different data sources.

Another variation of DNN is Recurrent neural networks (RNNs) (Cho et al,
2014; Hochreiter and Schmidhuber, 1997). The original superiority of RNNs
can well capture the dependencies among items from graphs in time-sensitive
user-item interaction sequences or in session-based recommendation settings.
However, the limitations lie in that it is difficult to model dependencies in a
longer sequence, and training is burdened with high cost, especially with the
increase of sequence length. Thus, some works combine RNN with other mech-
anisms to balance this disadvantage of RNN. For instance, Huang et al. (Huang
et al, 2019) design a memory-module to extract a user’s fine-grained preference
on a taxonomy from multiple hops reasoning on a tree-based graph, together
with a GRU layer to learn the sequential pattern. Wang et al. (Wang et al,
2019g) make it different by adopting an LSTM layer to model the sequential
dependencies of entities and relations on a complex heterogeneous KG, generat-
ing path representations followed by a pooling operation to obtain a prediction
signal for user-item pairs. Besides, using RNN for long sequence modelling
also suffers from the vanishing and exploding gradient problem because of the
choice of the number of layers and the activation functions, which is a common
problem in many types of neural networks, e.g. feed-forward neural network,
and CNN. Despite its limitations, the RNN-based approach still dominates
in sequential recommendations due to its recurrent nature that matches the
natural way of our brain to read one after another in a sequence mode.

Convolutional neural networks (CNNs) (Krizhevsky et al, 2012) are capable
of extracting local and global representations from heterogeneous data sources
such as textual and visual information. To leverage CNN for extracting graph
structured data, Wang et al. (Wang et al, 2018c) extend traditional CNN
which allows flexibility in incorporating symbolic knowledge from a complex
heterogeneous knowledge graph for learning sentence representations.

5.4.2 Auto-Encoder

A basic auto-encoder (AE) contains an encoder which encodes (projects) high-
dimensional inputs X to low dimensional hidden representations Z, and a
decoder which decodes (re-projects) hidden representations Z to the output
X̂ that looks like the original input X. The objective is to minimize the
reconstruction error, and find the most efficient and informative compact rep-
resentations for the inputs. In most GLRSs studies, AE is applied to learn a
complex heterogeneous graph (Zhang et al, 2016) in the entertainment and
book recommendation domains.

To apply AE to graph-structured data for a recommendation purpose,
Zhang et al. (Zhang et al, 2016) first use TransE to learn graph topological
information from the complex heterogeneous knowledge graph. Then stacked
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Fig. 10: Illustration of the graph auto-encoder framework in GLRS (Berg
et al, 2017).The system input bipartite user-item graph which is represented an
input data source X and adjacency matrix M . Then the graph encoder learns
node representations of users and items U, V , which go through the decoder
to derive the predicted rating matrix M̂ .

denoising auto-encoders and stacked convolutional auto-encoders are adopted
to learn textual and visual representations of items, which are the input for the
collaborative filtering framework. Later, Berg et al. (Berg et al, 2017) consider
a recommender system as a matrix completion task, and propose to apply a
graph auto-encoder to produce latent features of user and item nodes through
a form of message passing on the bipartite user-item interaction graph. The
learned latent user and item representations are used to reconstruct the rat-
ing links through a bilinear decoder. Generally speaking, a graph auto-encoder
takes node feature embedding X and adjacency matrix A as inputs, gener-
ating latent variable Z as output through the encoder (inference model). To
reconstruct the graph structure data, the decoder (generative model) takes Z
as input and outputs a reconstructed adjacency matrix Â. Based on (Berg
et al, 2017), Zhang et al. (Zhang et al, 2019a) go a step further by proposing
a new stacked and reconstructed graph convolutional network for a user-item
bipartite graph, which takes low-dimensional user and item embeddings as the
input to the model and solves the cold start problem by reconstructing the
masked node embeddings with a block of graph encoder-decoder in the training
phase. Figure 10 illustrates how an auto-encoder operates on graph-structured
data for a recommendation purpose. The problem of the auto-encoder frame-
work is that it usually leads to a local optimum due to the back-propagation
algorithm it employs (Tian et al, 2014), which is also the common problem of
most deep learning-based techniques that adopt back-propagation as a training
procedure. Besides, the encoder-decoder architecture requires that the com-
plete sequence of information must be captured by a single vector, which poses
problems in holding on to information at the beginning of the sequence and
encoding long-range dependencies.

5.4.3 Attention Mechanism

The attention mechanism (Bahdanau et al, 2014) is motivated by human visual
attention. For example, people only need to focus on specific parts of visual
inputs to understand or recognize them. The attention mechanism is proposed
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to determine the significance of the inputs e.g., sequences. The effectiveness
of the attention-based techniques in RSs has been verified and aroused con-
siderable attention over recent years. In attention-based GLRSs, inputs are
weighted with attention scores and outputs are normally vectors that combine
different importance of the inputs. Attention mechanism can be used to allow
the learning process to focus on parts of a graph that are more relevant to a
specific task. Generally, it can be used in conjunction with MLP, CNN, RNN
and other deep learning-based architectures. Thus the heart of the attention-
based techniques is how to obtain and calculate the attention weight of each
input part. In this paper, attention mechanism can be used for multiple differ-
ent types of graphs in various recommendation domains. For instance, in the
e-commerce domain, the Amazon dataset can be formed into a tree graph (Gao
et al, 2019b), k-partite graph (Wang et al, 2019d) and complex graph (Han
et al, 2018) learned with an attention network. The Ciao, Epinions, Taobao
and Kuaishou datasets can be formed into homogeneous graphs (Chen et al,
2019a; Chang et al, 2021b) learned with attention mechanisms. Data sources
in the entertainment domain can be constructed into k-partite graphs (Wang
et al, 2019d; Xin et al, 2019), complex heterogeneous graphs (Han et al, 2018;
Wang et al, 2019a), homogeneous graphs (Hao et al, 2021b; Chen et al, 2019a)
and multiple graphs (Xia et al, 2021a) learned with an attention network.
Attention mechanisms can also be applied in POI (Wang et al, 2019d; Hao
et al, 2021b) and book (Wang et al, 2019a) domains.

There are three attention mechanisms commonly used in recent studies: (1)
the vanilla attention mechanism learns the attention scores for the input data
by transforming the representations of input data via fully-connected layers,
and then adopting a softmax layer to normalize the scores (Han et al, 2018;
Wang et al, 2019d; Gao et al, 2019b). Han et al. (Han et al, 2018) propose to
use multi-layer MLP to learn a user/item aspect-level representation based on
extracted meta-paths from the complex heterogeneous graph. Then an atten-
tion mechanism is adopted to weigh the contribution of different aspect-level
latent factors to final user/item representations. (2) The self-attention mech-
anism (Vaswani et al, 2017) gained exposure recently as it can replace RNN
and CNN in sequence learning, achieving better accuracy with lower compu-
tational complexity. It focuses on the self-matching of a sequence whereby
the attention weights are calculated by the multiplication between key and
query vectors transformed from the input sequence (Cen et al, 2019; Wu et al,
2019b). For instance, Cen et al. (Cen et al, 2019) adopt self-attention to cap-
ture the influential factors between different edge types of the neighbors of a
specific node on the attributed bipartite graph. (3) The co-attention mech-
anism focuses on co-learning and co-matching of two sequences whereby the
attention weights of one sequence are conditioned on the other sequence, and
vice versa. Some studies prefer to classify co-attention and self-attention as
one category (Zhang et al, 2019b; Sun et al, 2019), but for clarity, in this sur-
vey we describe them separately. In (Xu et al, 2019b), the authors design a
parallel co-attention mechanism to dynamically infer the primary reasons of
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Fig. 11: Illustration of different attention mechanisms in GLRS. (a) In (Xu
et al, 2019b), the co-attention component takes embeddings derived from dif-
ferent meta-paths as inputs. Then the query vectors qu, qi transformed from
user and selling agent embeddings, as well as the item embeddings hρ

vi go
through the parallel co-attention network to learn the item embedding ỹvi . (b)
To update the representation of the ring node 2 in the context of the annular-
graph, a self-attention mechanism takes two context vector and the node 2
vectors as input to learn the importance of context nodes to the central node
(Hao et al, 2021b).

the user purchase decision, assigning higher attention weights to more relevant
meta-paths extracted on the k-partite graph. Other studies adopt attention
variations based on these three categories. For instance, in (Verma et al, 2019)
the authors adapt a skip-gram to a merged heterogeneous user-item interac-
tion and use social networks followed by a multi-layer and multi-head attention
(Vaswani et al, 2017) mechanism to learn the different importance of enti-
ties. Multi-head attention improves self-attention mechanisms to draw global
dependencies between inputs and outputs by eschewing the use of recurrence
in neural network and running through an attention mechanism several times
in parallel. In (Liu et al, 2020) the authors adopt Sentence-BERT (Reimers
and Gurevych, 2019), a language model that is based on multi-head attention
and a bidirectional training procedure, to explore the potential links between
item based on reviews. The learned item representations from BERT are then
used to generate an item subgraph according to the cosine similarities between
all items.

Figure 11 illustrates several above mentioned attention mechanism archi-
tectures for GLRSs. The core of the attention mechanism of focusing on the
most relevant parts of the input by providing a direct path to the input
helps to alleviate the bottleneck problem of the vanishing gradient and to
resolve the disadvantage of the encoder-decoder architecture that has the prob-
lem of remembering long sequence dependencies. However, one believes that
the attention mechanism adds more weight parameters to the model, which
increases training time, especially for long input sequences.
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Fig. 12: Deep reinforcement learning based GLRS with a knowledge graph (Lei
et al, 2020a). The system first performs the walking starting with the target
user u0 over the adjacent attribute vertices on the complex heterogeneous
graph, resulting in a path to the desired item. Two reasoning function f and
g score attributes and items. Then the policy network takes the state vector s
as input and outputs the values Q(s, a), indicating the estimated rewards for
two actions aask and arec.

5.4.4 Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) uses a trial-and-error experience with an agent
that learns a good behavior by modifying or acquiring new behaviors and skills
incrementally. During such a learning process, the agent interacts with the
environment and must make value judgements so as to select good actions over
bad. Actions that get them to the target outcome are rewarded (reinforced).
Deep reinforcement learning (Mnih et al, 2015) goes a step further by incorpo-
rating deep neural networks to represent the knowledge acquisition progress.
It has been mainly adopted to learn k-partite (Song et al, 2019a) and complex
heterogeneous graphs (Lei et al, 2020a; Liu et al, 2021a; Xian et al, 2019) in
entertainment, book and e-commerce domain for recommendation purposes.

In GLRSs, one can take a path generation procedure as a decision-making
process for training with RL, so that the optimal recommendation results as
well as the interpretation of the results can be generated at the same time
(Song et al, 2019a; Xian et al, 2019; Lei et al, 2020a; Wang et al, 2020g). For
instance, Xian et al. (Xian et al, 2019) propose to use an RL approach where
an agent starts from a given user, and learns to navigate to the potential items
of interest on the complex heterogeneous KG. After that, the reasoning path
history can serve as a genuine explanation for the recommendation results.
Similarly, Song et al. (Song et al, 2019a) formulate the generation of user-to-
item paths extracted from a k-partite graph as a sequential decision process.
Specifically, it defines the target user as the initial state and then walks on the
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constructed heterogeneous user-item-entity graph as actions. In the work of
(Zhou et al, 2020b), the authors adopt a complex heterogeneous KG to improve
the sample efficiency as well as interactive recommendation performance by
applying a deep Q-network to fit on samples from the local graph of the KG
rather than the whole graph. Interestingly, we can find that most DRL-based
recommendation approaches utilize a KG as an important medium to learn
user-to-item inference. Figure 12 illustrates a typical example of adopting a
KG with DRL for recommendation purpose. It is probably due to the explicit
association between the target user and items which reveals the user’s potential
interests, compared with traditional recommendation systems, a KG-based
recommender system can mine more potential relationships between nodes for
learning user and item representations.

DRL-based approaches have great potential in decision-making and long-
term planning in a dynamic environment (Silver et al, 2016). However, the ideal
way to train a DRL model to learn the optimal recommendation policy is to
train the agent online, which cannot always be satisfied. One commonly used
training strategy is to make use of offline logged data directly, but it will suffer
from the estimation bias problem under the real-time interaction setting (Chen
et al, 2019c). Besides, similar to other deep learning-based techniques, DRL-
based approaches also lack interpretability. More importantly, few appropriate
platforms or resources for developing and testing DRL-based techniques in
academia exist (Fang et al, 2020).

5.4.5 Graph Neural Networks

Graph neural network (GNN) enjoy a massive hype as recent works have wit-
nessed a boost of performance in RSs. They are motivated from CNN and
graph embeddings and designed specifically on graph-structured data in the
non-Euclidean domain (Zhang et al, 2020). GNN can be applied from homo-
geneous graphs (Zhu et al, 2021b; Isufi et al, 2021), k-partite graphs (Wang
et al, 2019f; Chen et al, 2020a; Wang et al, 2019e; Sun et al, 2020; Wu et al,
2021b; Fan et al, 2019a; Chen et al, 2021a; Ying et al, 2018; Wei et al, 2021;
Li et al, 2021a) to complex heterogeneous (Zhao et al, 2019; Zheng et al, 2021;
Wang et al, 2019c,b; Wu et al, 2021a; Zhang et al, 2021d) and multiple ones
(Zhu et al, 2021a; Zhang et al, 2021c; Liu et al, 2020; Huang et al, 2021b; Tang
et al, 2021; Wu et al, 2019b; Tian et al, 2021; Chang et al, 2021a) in different
recommendation domains.

GNN achieve improvements in recommendation results by capturing the
higher-order interaction in user-item relationships through iterative propaga-
tion resulting in better user/item representations. Specifically, GNN aim to
iteratively aggregate feature information from neighbors and integrate the
aggregated information with the current node representation (Wu et al, 2020b).
Further, they can simultaneously model the diffusion process on the graph
with the RNN kernel. Following the existing work of (Wu et al, 2020a), we cat-
egorize GNN as spectral (Zheng et al, 2018; Wang et al, 2020a; Farseev et al,
2017) and non-spectral approaches (Sun et al, 2020; Isufi et al, 2021; Kim et al,
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Fig. 13: Illustration on GNN-based GLRSs. (I) The representation of the
central node updates by incorporating the influence of its neighborhood repre-
sentation in GNN algorithm (Wang et al, 2019c). (II) GGAT takes into account
the different effects of neighbor nodes on the central node, and combines the
attention mechanism with the GNN node propagation process to update the
representation of the central node (Veličković et al, 2017).

2019; Chen et al, 2020a; Wang et al, 2019c,f,b; Fan et al, 2019a; Liu et al,
2020; Ying et al, 2018; Zhao et al, 2019). Spectral GNN are based on spectral
graph theory (Shuman et al, 2013) which studies connections between combi-
natorial properties of a graph and the eigenvalues of matrices associated with
the graph, e.g. laplacian matrix. They focus on the connectivity of the graph
rather than geometrical proximity. For instance, (Farseev et al, 2017) performs
spectral clustering to form user community w.r.t. user side information e.g.
geographical regions, user’s active timestamp from a complex heterogeneous
graph, which are then considered to sort all candidate items to a generate
ranked list for recommendation. Zhang et al. (Zheng et al, 2018) propose to
use a spectral convolution operation in the spectral domain of the bipartite
user-item graph to alleviate the cold-start problem of RS.

The non-spectral approaches mainly include aggregator and updater to
learn a multi-layer graph. The aggregator is responsible for collecting infor-
mation from neighborhood nodes and related edges, while the updater aims
to merge the propagation information around the central node and collected
through the aggregator. Normally, GNN are utilized to learn the representa-
tions of nodes and links of the graphs, which are then used for the following
recommendation strategies, e.g. rating prediction and link prediction etc. For
instance, Monti et al. (Monti et al, 2017) propose a GCN-based technique for
recommender systems for the first time, in which GCN is a variant of GNN
and used to aggregate information from two auxiliary user-user and item-item
homogeneous graphs with the convolutional operation. The latent factors of
users and items were updated after each aggregation step, and a combined
objective function of GCN and MF was used to train the model. Ying et al.
(Ying et al, 2018) propose to use GCN to generate item embeddings from both
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a bi-partite graph structure as well as item feature information with random
walks for recommendations. It can be applied to very large-scale web recom-
menders and has been deployed in Pinterest to address a variety of real-world
recommendation tasks. In (Chen et al, 2019a) the authors adopt a GNN layer
for modelling both the local and global influence of user social relations on
constructed homogeneous user social graph. Graph attention networks (GATs)
(Veličković et al, 2017) are an enhanced version of GNN which utilize masked
self-attention layers to limit the shortcomings of prior graph convolutional
based approaches. An attention weight αi ∈ [0, 1] is assigned to the neighbor-
hood nodes of a target node nt, where

∑
i∈N(t) αi = 1 and N(t) denotes the

set of neighboring nodes of nt. One advantage of applying attention to graphs
is to avoid the noisy part of a graph so as to increase the signal-to-noise ratio
in information processing. Specifically, GAT aims to compute the attention
coefficients

αij =
exp(LeakyReLU(−→a T [W

−→
hiW

−→
hj ]))∑

k∈Ni
exp(LeakyReLU(−→a T [W

−→
hiW

−→
hk]))

(3)

where −→a and W is the weight matrix. hk is the neighbor node embedding of
node ni whose node embedding is hi. Figure 13(II) illustrates the schematic
diagram of the attention operation of GAT.

Despite their verified effectiveness in the community of graph-based rec-
ommendations, they suffer from the expensive computation overhead with the
exponential growth of the neighborhood size as the layers stacked up (Ying
et al, 2018). Besides, researchers empirically show that the performance of
GNN quickly degenerate when the number of layers is deep owing to that
the effectiveness of informative neighbours will be diminished in large amount
irrelevant neighbours (Liu et al, 2019b). To solve this, Xu et al. (Xu et al,
2019b) design a relation-aware GNN with an attention mechanism to priori-
tize neighbors based on their importance. Then a meta-path defined receptive
field sampler is integrated to derive the node embeddings as well as address the
rapid growth of the multiple-hop neighborhood of each node from a k-partite
graph, which is followed by a co-attention mechanism for differentiating pur-
chase motivations. In (Zhang et al, 2019a), the authors also point out that
training GCN-based models for rating prediction faces the label leakage issue,
which results in the overfitting problem and significantly degrades the final
performance, which can be improved by removing the sampled edges. Figure
13(a) and 13(b) illustrate examples of how GNN can be used for recommender
systems in (Wang et al, 2019c), and the main component of GAT in (Veličković
et al, 2017), respectively.

Although some problems have been proposed by researchers for improve-
ment or solutions, other challenges still exist and deserve more attention from
both academia and industry. First, though GNN-based graph recommendation
strategies can incorporate a high-order proximity of vertices, it suffers from the
problem of performance degradation and complexity increase with the increase
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of the number of layers. As a result, it is more prone to encounter the over-
smoothing problem with the increase of the network depth (Liu et al, 2019b; Li
et al, 2018a; Yu et al, 2021). This phenomena can become a pervasive problem
when learning large-scale graph/networks when aggregating high-order infor-
mation from distant neighbors is necessary. Second, current GNN are mainly
applied for a static graph, but how to apply GNN for dynamic graphs with
changing structures is still an open challenge.

5.4.6 Deep Hybrid Models

In order to deal with more complicated and diverse problems, as well as pro-
cess more complex graphs, many graph-based recommendation models utilize
more than one deep learning technique. The flexibility of neural blocks in deep
neural networks makes it possible to combine several neural components to
complement one another and form a more powerful hybrid model. The use of
a variety of different DL-based components can also maximize the strengths
and improve the defects of a single technology to a certain extent. Such hybrid
models can be leveraged to learn homogeneous graphs (Song et al, 2019b;
Abugabah et al, 2020; Xu et al, 2019a; Wu et al, 2019c; Huang et al, 2021a),
k-partite graphs (Kim et al, 2019; Zhang et al, 2019a; Wang et al, 2020f; Liu
et al, 2021c; Xie et al, 2021; Xu et al, 2019b; Xia et al, 2021b), complex hetero-
geneous graphs (Wang et al, 2020g; Xie et al, 2021; Yang and Dong, 2020; Zhou
et al, 2020b; Sang et al, 2021; Sheu and Li, 2020; Shi et al, 2021; Wang et al,
2018c; Zhou et al, 2020a; Yang et al, 2021a), hypergraphs (Wang et al, 2020c;
Gharahighehi et al, 2020), and multiple graphs (Monti et al, 2017; Zhang et al,
2021a; Xia et al, 2021c; Fan et al, 2019b; Liu et al, 2021b; Monti et al, 2017) in
social network, e-commerce, entertainment, academic, book and many other
recommendation domains.

In (Sun et al, 2018) the authors employ a batch of bi-directional recurrent
networks (Schuster and Paliwal, 1997) to learn the semantic representations of
each path extracted from complex heterogeneous KG. Then an attention gated
hidden layer is applied to learn the different importance of the derived paths
between two entities followed by a pooling operation and a fully-connected
layer for rating prediction. Zhang et al. (Zhang et al, 2019a) propose to lever-
age multi-link GCN as an encoder and two-layer feedforward neural network
as a decoder to learn the user and item (users and items are denoted as nodes)
representations, considering both node’s content information as well as struc-
tural information of the undirected user-item bipartite graph. Some studies
leverage different techniques to learn various graph features, such as node
attributes and graph structure. Zhang et al. (Zhang et al, 2016) construct
a complex heterogeneous knowledge graph to learn a user’s potential prefer-
ences, where the item nodes associate with textual and visual features as their
attributes. To model such multi-modal information, the authors first apply a
network embedding (TransR) approach to extract items’ structural representa-
tions by considering the heterogeneity of both nodes and relationships, followed
by a stacked denoising auto-encoder and stacked convolutional auto-encoder
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to extract items’ textual and visual representations respectively. Finally, the
pair-wise ranking between items is considered to learn the CF architecture.
Deep hybrid approaches have become a trend in solving complex recommen-
dation problems, facing the complicated and changeable network structure for
modelling dynamic user preferences.

5.5 Discussion of Graph-based Recommendation Models

In this section, we present the main ideas and the basic technical details of each
class of graph-learning based recommendation approaches. From the descrip-
tions above, we make several observations: (1) traditional graph-learning based
approaches may suffer from information loss, e.g. nearest neighbor based
approaches. Some of them ignore long-term or high-order dependencies such
as the latent factor model (Tao et al, 2021). However, they laid a theoretical
foundation for the later development of graph learning-based technologies, so
that many recent advanced deep learning-based techniques for graphs still use
traditional algorithms as the basic framework. (2) For path-based approaches,
they either rely on domain knowledge which may not always be applicable
e.g. meta-path based similarities, and/or require explicit path reachability
which may incorporate noisy, meaningless paths and thus do not always have
a positive impact on recommendation results (Noia et al, 2016). Besides, rec-
ommendations that rely on similarity measures cannot be easily applied to
large-scale networks. (3) Graph embedding based approaches pave the way for
more complex and high-order features among nodes and links modelling. More
and more state-of-the-art GLRSs leverage GE combined with deep learning
approaches such as an attention network for more efficient recommendation
tasks. (4) With the many achievements of the deep learning-based GLRSs,
the number of research works in the field has become exponentially increased.
Deep learning-based approaches can be applied to more complicated graphs
with multi-type nodes and links, as well as additional attributes associated
with graphs (Song et al, 2019b). Besides, deep learning-based approaches are
more robust to sparse data and can adapt to the varied magnitude of the input
(with the help of e.g. attention mechanism) (Fang et al, 2019). However, inter-
pretability and efficiency are still the main concerns for most GE-based and
deep learning-based GLRSs which need to be further studied in the future.
(5) From Table A1, by relating graph types to their associated modelling
technologies, we observe that tree graphs are modelled mainly by traditional
techniques, while other types of graphs are modelled and learned mainly
through deep-learning and graph embedding based approaches. Besides, atten-
tion mechanisms become especially prevalent and are adopted for nearly all
types of graphs for selecting branches, filtering noisy nodes, and learning better
nodes and edges representations for recommendation purposes.
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6 Challenges and open issues in GLRS

Graph-based recommendation is an exciting and rapidly growing research area
that attracts attention from both industrial and academic domains. While
existing works have established a solid foundation for GLRSs research, this
section reveals several challenges and promising prospective research direc-
tions. Specifically, there are two types of challenges: (1) Challenges still
unsolved by graphs, which include explainability, fairness and generality issues;
(2) Challenges caused by graphs and their limitations, including scalability,
dynamic graph, and complex heterogeneity learning issues. We will explain
these issues separately.

Explainability on graphs. A good explanation for recommendation results
can help to improve the transparency, persuasiveness, effectiveness, trustwor-
thiness and satisfaction of recommender systems, facilitate system designers
for better system debugging, and allow a user to control how the system utilises
her profiles making the RS scrutable. Earlier studies provide explanations of
GLRSs highlighting top keywords or aspects as an explanation for recom-
mendation results (He et al, 2015) but none of them shows the constructed
graphs.

With the surge of deep learning-based approaches in GLRSs, it is even
harder to provide convincing explanations and calibrate why the recommenda-
tion models are effective and thus yield a robust model for varied scenarios. Ma
et al. (Ma et al, 2019) provide recommendation explanations according to the
learned reasoning rules on heterogeneous graphs with ground-truth item asso-
ciations in the knowledge graph. The emergence of attention mechanisms has
more or less eased the non-interpretable concerns of deep learning-based rec-
ommendations on graphs. The learned attention weights can tell which parts
of the input graph contribute more than others with higher attention scores
to the recommendation results. However, the faithfulness of the higher atten-
tion weights in contributing to the performance of the recommendation is still
doubtful (Liu et al, 2022).

In addition, most existing graph leaning-based recommendation models
generally consider paths along with nodes in the KG as pertinent signals for
recommendation (Hu et al, 2018). User-item paths in the KG can directly
serve as explanations that provide the reason why an item is recommended
(Xian et al, 2019). In (Fu et al, 2020), Fu et al. considered a relational struc-
ture serving as explanation across different paths with similar semantics w.r.t.
relations in each path. We argue that this lacks reliable evaluation metrics for
the explainability and persuasiveness for target users, such as GLUE (Wang
et al, 2018a) for language understanding. For some kinds of graphs, e.g. hyper-
graphs and multiple graphs, it is more difficult to provide explanations with
such graphs due to the dispersion of edges or nodes. Besides, how to show
user dynamic preferences on graphs is also worth studying. Besides, we need
to consider the target population who we provide explanations for. This can
be the end-users or researchers. For both groups, whether they are satisfied
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with this explanation and whether this explanation is sufficient still requires
further empirical verification. Such verification cannot just stay on a small-
scale user study or case study. It requires more target audience participation
and different situations should also be taken into account.

Fairness. Fairness in recommendation has gradually attracted increasing
attention in recent years and has been studied mainly as an equity and parity
problem for individuals or groups of users. Current RSs discriminate unfairly
among the users in terms of recommendation performance, and further, the
systems may discriminate between users in terms of explanation diversity (Far-
nadi et al, 2018). One reason is probably related to the issue of data imbalance.
E.g. economically disadvantaged customers tend to make fewer purchases, lead-
ing to imbalanced data. However, such imbalances may lead to biased models
that exhibit unfairness w.r.t. the recommendation quality and explanation (Fu
et al, 2020). Though active users tend to interact with more items, an empir-
ical study (Fu et al, 2020) shows that the majority of users are inactive users
who are easily disregarded by recommendation engines. The imbalanced data
can easily lead to biased observation on graphs where path inference from
user-to-item usually participates in the process of graph learning and mean-
while provide recommendation explanations. Many researches have been done
to alleviate data sparsity issue. Fu et al. (Farnadi et al, 2018) propose to solve
the fairness on the user side for both the individual- and group-level for KG
enhanced explainable RSs. Specifically, they reveal that the unfairness issue
is due to data imbalance through an empirical study on e-commerce dataset,
namely Amazon. Then they propose fairness metrics in terms of path diversity
as well as recommendation performance disparity based on KG. In (Gharahigh-
ehi et al, 2021), the authors constructed a hypergraph taking into account
multiple stakeholders in the news domain to mitigate the imbalance problem
caused by stakeholders with few articles. Exposure bias can be caused by the
users being only aware of a very small fraction of items in a large dataset. Chen
et al. (Chen et al, 2019a) pointed out the exposure bias that users are only
aware of a very small fraction of items in a large dataset so that they infer data
confidence with the help of users’ social network and draw different weights
on training instances via personalized random walk to alleviate it. Another
possible reason lies in the incomplete evaluation metrics, which renders the
inclination of the learning objectives on accuracy driven for recommendation
purposes.

Despite some studies considering the influence of fairness in GLRSs, related
research is still quite limited with many issues remaining to be focused on. For
instance, whether the construction and learning process of the graphs affects
the fairness and discrimination of the ranking of recommendation results,
whether there exists algorithmic bias among various graph-learning technolo-
gies, and whether fairness, bias and discrimination conflict with the accuracy
of graph-based recommendations. Some biases can be dynamic. For instance,
in the real world, users’ preferences, exposure and relations may evolve over
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time (Chen et al, 2019a). How to solve the dynamic bias problem in GLRS is
also one of the research directions worth thinking about in the future.

Scalability on large-scale graphs. Scalability is an essential factor that
affects the applicability of recommendation models in real-world scenarios. To
deal with large-scale graphs, most existing models choose to adopt a sam-
pling scheme to construct subgraphs following the sampling strategy proposed
in GraphSage (Hamilton et al, 2017). Some use the random walk strategy to
get the neighborhood nodes and links, while others consider using the short-
est path algorithm for subgraph construction. Another algorithm to increase
model scalability is to use a clustering scheme. Whether using sampling or clus-
tering, a model will lose part of the graph information. The scalability is gained
at the price of corrupting graph completeness. A node may miss its influential
neighbors with a bad sampling strategy, and a graph may be deprived of a
distinct structural pattern by clustering. Though the subgraph strategy makes
GNN-based algorithms applicable no matter how large-scale the whole graph
is, the shortcoming is that the node representation should be recalculated for
each propagation layer. Thus, how to tradeoff the algorithm scalability and
graph integrity could be one of the further research directions. More researches
can be studied on the sampling strategy in integrating more informative infor-
mation from neighborhood nodes and links while minimizing the harm to the
graph integrity. Recently, Kyriakidi et al. (Kyriakidi et al, 2020) propose to
adopt graph databases as a base to improve the data scalability and mean-
while build recommendation models on top. Different from other graph-based
recommender systems which focus on model complexity when considering the
efficiency problem, the work of (Kyriakidi et al, 2020) transforms the recom-
mendation problem into a path optimization problem from start nodes to end
nodes on heterogeneous graphs, which sheds light on a new perspective for
improving the scalability of GL-based recommendations.

Data Sparsity on Graphs. Data sparsity issues will cause the graph’s adja-
cency matrix to be sparse and affect recommendation performance. In order
to alleviate this problem, one way is to construct auxiliary graphs by min-
ing contextual information of users or items, such as friendship connections
amongst users, co-purchase networks associated with products and services to
the end-users, or trust relationships associated with users, entities associated
with items. On the other hand, data augmentation techniques can be used.
The former has been widely used and studied (Wu et al, 2019b), while the
latter has not been extensively explored. Recently, some studies try to alle-
viate the data sparsity problem with item/segment dropout to augment data
(Wu et al, 2021b), with which edges are randomly dropped out in the con-
structed graph, resulting in the robustness of recommendation models facing
noisy input data such as unsatisfied clicking or viewing behavior. However,
it may also lead to sparser data. In (Xia et al, 2021c), the authors adopted
a self-supervised graph co-training strategy for learning session representa-
tions with two different encoders in the session-based recommendation. As
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the initial attempt in many graph-learning based recommendation domains,
more in-depth attempts are still needed, and the advantages and disadvantages
of different data augmentation technologies with different types of graphs in
different recommendation domains also require a comprehensive analysis.

Recommendation on Dynamic Graphs. Most research focuses on the
modelling and learning of static graphs, but neglects the dynamic properties
of graphs. In many real-world scenarios, the graphs changes over time, such
as people may be followed or unfollowed day to day in a social network, or
newly published news articles appear everyday resulting in changes of news-
related graphs for news recommendation. As a result, some works crop the
dynamic graph as a sequence of graph snapshots (Abugabah et al, 2020; Xia
et al, 2021d; Huang et al, 2021a), most of which are in session settings. Though
a surge of works consider modelling dynamic graphs from the changes of the
adjacency matrix (Li et al, 2017), leveraging dynamic random walk sampling
(Nguyen et al, 2018), Hawkess process (Huang et al, 2020) or combining with
other algorithms capturing the dynamic properties of the graph (Xu et al,
2020), they do not adapt to recommendation scenarios. Thus, we believe it is
an important research direction with significance and practical value.

Complex Heterogeneity Learning. Apart from the user-item bipartite
graph, most heterogeneity of graphs is reflected in the integration of differ-
ent side information. Side information has demonstrated a high degree of
effectiveness in improving recommendation performance, especially for data
sparsity and cold-start issues (Zhang et al, 2016). It can appear in different
forms: textual, visual, or audio information; structure or non-structure. In cur-
rent studies of graph-based recommendations, side information is extensively
involved either as extra attributes of nodes or edges (Song et al, 2019b), or as
sources being learned to construct heterogeneous graphs (Sheu and Li, 2020),
or as external resources outside the graph, which are learned in parallel with
the graph and then integrated at a high level. Despite the variety of utiliz-
ing side information, no study can indicate which fusion strategy is better in
general cases, or suitable for which recommendation scenarios (Farseev et al,
2017). These we believe are extremely significant references and guidance for
future researchers and technology users. Besides, some side information is from
multi-sources such as user social relationships pointing out user-user interlinks
directly (Farseev et al, 2017), while item-item relations may be from the co-
interaction pattern from a specific user or user group (Xia et al, 2021a). To
integrate multi-sourced side information for recommendation purposes, some
works learn representations from different graphs separately and combine the
vectors from different sources (Zhang et al, 2021c). Some works combine dif-
ferent graphs into a large-scale heterogeneous graph which is then learned in
a unified way (Wu et al, 2021a). These two kinds of integration strategies can
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both contribute to the improvement of recommendations, but there is no evi-
dence showing which one is better. This is thus another research question for
further study.

Generality of Graph Learning. Currently, no model can be applied for all
types of input graphs. For existing GLRS approaches, given a data source, the
common way is to take graph(s) formed by data objects and their explicit or
implicit relationships as input, and the model usually needs to be reformu-
lated and retrained under certain conditions, or a general model is applied for
a specific task in a specific scenario, rather than extending the existing models
for new tasks. This led to thousands of new models corresponding to thou-
sands of different kinds of input graphs, which is far from the true generality of
the graph model for recommendations. Therefore, one possible future research
direction is whether there is a model suitable for learning all kinds of graphs.
The dynamic property of online graphs shows the inevitability of changes in
modelling input graphs. When additional attributes are added to the input
data, for instance, when contextual or external information is attached to inter-
active data, resulting in the expansion of the graph, a model with generality
should be expanded in a small range on the basis of the previously learned
content to adapt to the change of the input graph rather than retraining new
models. This should be one of the future research directions in the long run.

Privacy Issue Of Graph Learning. Though existing GLRSs reveal promis-
ing improvements on recommendation tasks, the graph topological and node
binding features may cause privacy issues. The users’ private information may
be inferred from such a recommendation, which falls into the attribute infer-
ence attack problem. To deal with such an issue, in (Zhang et al, 2021b)
a privacy-preserving graph learning-based recommender is designed with a
two-stage perturbation on input feature encoding and an optimisation pro-
cess to defend against attribute inference attacks. However, the authors also
point out the challenge of balancing the personalised recommendation per-
formance and the extent of the privacy protection mechanism, which means
the privacy-preserving recommender systems are far from mature and deserve
more attention in the future.

7 Conclusion

The study systematically investigated graph learning-based recommendation.
The recommendation algorithms based on graph-structured data can be well
applied to solve the sparsity and cold-start problems with improved accuracy
by mining and leveraging the explicit as well as implicit relations revealed
in graphs. In GLRSs, the core is how to process graph-structured data, how
to learn and obtain adequate information from the graph to fulfil the final
recommendation purpose, and how to adapt the graph operation process to
more complex and diverse graph structures as well as large-scale node and
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edges in the real-world. Looking at the changes of GLRSs in recent years,
the graph structure has gone from homogeneous to heterogeneous, the graph
attribute from zero to multiplex, the technology used from the traditional
recommendation algorithm to deep learning-based models, and the evalua-
tion of recommendation performance from focusing only on accuracy and
click-through rate to increasingly multidimensional development. Such devel-
opments shed light on a new perspective for the community of recommendation
researchers and practitioners. We argue that the current graph-based recom-
mendation algorithms are far from being fully developed, and further research
investment and empirical studies are still needed.
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Appendix A Statistics of datasets commonly
used in GLRS

Table A1: Statistics of datasets commonly used in GLRS
Domain Dataset Graph Type Related Papers

E-commerce

Amazon (He and McAuley,
2016; McAuley et al, 2015)

Tree-based Graph
He et al (2016); Sun et al
(2017); Gao et al (2019b);
Huang et al (2019)

Homogeneous Graph
Wang et al (2020b); Ma et al
(2020); Zhu et al (2021b)

K-partite Graph

Cen et al (2019); Zheng et al
(2018); Wang et al (2019f);
Chen et al (2020a); Wang
et al (2019d); Vijaikumar et al
(2019); Wang et al (2019e); He
et al (2015); Sun et al (2020);
Wu et al (2021b); Sun et al
(2021); Yang et al (2021b); Fan
et al (2021); Zhang et al (2022)

Complex Heterogeneous Graph

Han et al (2018); Zhao et al
(2017, 2019); Xian et al (2019);
Wang et al (2020a); Ai et al
(2018); Ma et al (2019); Wang
et al (2020g, 2021b); Xie et al
(2021); Liu et al (2021c); Chen
et al (2021b)

Hypergraph Wang et al (2020c)

Multiple Graphs
Zhang et al (2021c); Zhu et al
(2021a)

Tree-based Graph Gao et al (2019b)

Homogeneous Graph
Wu et al (2019a); Song et al
(2019b); Zhu et al (2021b)

Yelp1

K-partite Graph

Wang et al (2019f); Vijaiku-
mar et al (2019); Wang et al
(2019e); Lu et al (2020); He
et al (2015); Yu et al (2014);
Wu et al (2021b); Sun et al
(2021)

Complex Heterogeneous Graph

Zhao et al (2017); Sun et al
(2018); Shi et al (2018, 2015);
Kyriakidi et al (2020); Cather-
ine and Cohen (2016); Lei et al
(2020a); Wang et al (2020g);
Zheng et al (2017); Shi et al
(2016); Mezni et al (2021); Xie
et al (2021); Liu et al (2021c)

Hypergraph
Mao et al (2019); Yu et al
(2021)

Multiple Graphs

Liu et al (2020); Xia et al
(2021a); Huang et al (2021b);
Tang et al (2021); Zhu et al
(2021a); Guo et al (2021a)

Epinions (Ma et al, 2011a;
Tang et al, 2012; Massa and
Avesani, 2007; Zhao et al,
2014; Richardson and
Domingos, 2002)

Homogeneous Graph
Chen et al (2019a); Jamali and
Ester (2009); Ma et al (2009,
2008, 2011b)

K-partite Graph Mansoury et al (2020)

Complex Heterogeneous Graph Salamat et al (2021)

Multiple Graphs

Fan et al (2019b); Wu et al
(2019b); Liu et al (2020); Ma
et al (2011a); Zhang et al
(2021a); Huang et al (2021b)

Continued on next page
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Table A1 – Continued from previous page

Domain Dataset Graph Type Related Papers

Diginetica2
Homogeneous Graph

Xu et al (2019a); Wu et al
(2019c); Qiu et al (2020a);
Pan et al (2020); Huang et al
(2021a)

Multiple Graphs
Wang et al (2020h); Xia et al
(2021c)

Ciao (Tang et al, 2012)

Homogeneous Graph Chen et al (2019a)

Complex Heterogeneous Graph Salamat et al (2021)

Multiple Graphs
Fan et al (2019b); Zhang et al
(2021a)

JD (Wang et al, 2015) Tree-based Graph Huang et al (2019)

E-commerce

Retailrocket3
Homogeneous Graph

Xu et al (2019a); Huang et al
(2021a)

Multiple Graphs Xia et al (2021c)

Bbookstore (Huang et al,
2007b)

K-partite Graph Li and Chen (2013)

Clothing retail (Huang
et al, 2007a)

K-partite Graph Li and Chen (2013)

Alibaba (Cen et al, 2019)

K-partite Graph
Cen et al (2019); Tan et al
(2020); Wu et al (2021b)

Complex Heterogeneous Graph Wang et al (2021b)

Multiple Graphs Guo et al (2021b)

Taobao (Fan et al, 2019a;
Zhao et al, 2019)

Homogeneous Graph
Chang et al (2021b); Ouyang
et al (2021)

K-partite Graph
Fan et al (2019a); Xia et al
(2021b); Chen et al (2021a)

Complex Heterogeneous Graph Zhao et al (2019)

Multiple Graphs
Zhao et al (2019); Wang et al
(2020d)

Beidian (Xu et al, 2019b) K-partite Graph Xu et al (2019b)

YOOCHOOSE4
Homogeneous Graph

Wu et al (2019c); Qiu et al
(2020a); Pan et al (2020);
Huang et al (2021a)

Multiple Graphs Xia et al (2021c)

Etsy (Wang et al, 2020c) Hypergraph Wang et al (2020c)

Beibei (Xia et al, 2021b;
Gao et al, 2019a)

K-partite Graph
Xia et al (2021b); Chen et al
(2021a)

HOOPS (Fu et al, 2021) Complex Heterogeneous Graph Fu et al (2021)

Tmall5 Multiple Graphs
Wang et al (2020h); Xia et al
(2021c); Guo et al (2021b)

MALib dataset (He et al,
2020)

K-partite Graph Li et al (2021a)

Cosmetics6 Multiple Graphs Liu et al (2021b)

UserBehavior7 Multiple Graphs Liu et al (2021b)

Criteo8 Complex Heterogeneous Graph Zheng et al (2021)

Avazu9 Complex Heterogeneous Graph Zheng et al (2021)

USCFC10 Complex Heterogeneous Graph Zheng et al (2021)

Continued on next page
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Table A1 – Continued from previous page

Domain Dataset Graph Type Related Papers

Adult11 Complex Heterogeneous Graph Zheng et al (2021)

Google Play (Liang et al,
2017)

Complex Heterogeneous Graph Xie et al (2021)

AppChina (Xie et al, 2015) Complex Heterogeneous Graph Xie et al (2015)

Advertising (PVC, PCC,
Click) (Agarwal et al, 2010)

Tree-based Graph Menon et al (2011)

Yahoo! shopping dataset
(Kanagal et al, 2012)

Tree-based Graph Kanagal et al (2012)

Homogeneous Graph

Gori et al (2007); Isufi et al
(2021); Hao et al (2021b); Du
et al (2011); Ma et al (2020);
Ouyang et al (2021)

Entertainment

MovieLens (Cantador et al,
2011; Harper and Konstan,
2015)

K-partite Graph

Zheng et al (2018); Wang
et al (2019d, 2020f); Zhang
et al (2019a); Lu et al (2020);
Phuong et al (2019); Song
et al (2019a); Yu et al (2014);
Xin et al (2019); Cheng et al
(2007); Yu et al (2013); Jiang
et al (2018a); Nikolakopoulos
and Karypis (2019); Wei et al
(2021); Musto et al (2017);
Fouss et al (2012); Ostuni et al
(2014); Lei et al (2020b); Tan
et al (2020); Mansoury et al
(2020); Zhang et al (2021b);
Wu et al (2021c); Zhang et al
(2022); Fan et al (2021); Hao
et al (2021a); Yang et al
(2021b); Hsu and Li (2021)

Complex Heterogeneous Graph

Palumbo et al (2017); Han et al
(2018); Wang et al (2018b);
Sun et al (2018); Wang et al
(2019a,c,b,g); Yang and Dong
(2020); Wang et al (2020a);
Zhang et al (2016); Cather-
ine and Cohen (2016); Zhou
et al (2020b); Cao et al (2019);
Shi et al (2016); Ostuni et al
(2013); Sang et al (2021); Lee
et al (2013); Xie et al (2015);
Palumbo et al (2020)

Multiple Graphs
Monti et al (2017); Wang et al
(2020d); Xia et al (2021a);
Tang et al (2021)

Tree-based Graph Huang et al (2019)

Last.fm (Schedl, 2016;
Cantador et al, 2011)

Homogeneous Graph
Chen et al (2019a); Qiu et al
(2020b)

K-partite Graph

Wang et al (2019e); Song et al
(2019a); Yao et al (2015); Lei
et al (2020b); Wu et al (2021c);
Hao et al (2021a)

Complex Heterogeneous Graph

Wang et al (2019c,b); Lei et al
(2020a); Wang et al (2020g);
Feng and Wang (2012); Ostuni
et al (2013); Sang et al (2021);
Wang et al (2021b); Palumbo
et al (2020); Pang et al (2022)

Hypergraph
Bu et al (2010); Tan et al
(2011); Yu et al (2021)

Multiple Graphs Tian et al (2021)

YahooMusic(Monti et al,
2017; Nikolakopoulos et al,
2019; Dror et al, 2012)

Tree-based Graph
Koenigstein et al (2011); Mnih
(2012)

K-partite Graph
Nikolakopoulos and Karypis
(2019)

Continued on next page
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Table A1 – Continued from previous page

Domain Dataset Graph Type Related Papers

Multiple Graphs
Monti et al (2017); Tang et al
(2021)

Flixster (Monti et al, 2017;
Jamali and Ester, 2010)

Homogeneous Graph Isufi et al (2021)

K-partite Graph Zhang et al (2019a)

Multiple Graphs
Monti et al (2017); Tang et al
(2021)

Entertainment

Bing-News (Wang et al,
2018b,c)

Complex Heterogeneous Graph
Wang et al (2018c,b, 2019a);
Liu et al (2021a)

KKBox’s music12
K-partite Graph Xin et al (2019)

Complex Heterogeneous Graph Wang et al (2019g)

HetRec Delicious (Cantador
et al, 2011)

Homogeneous Graph Song et al (2019b)

Complex Heterogeneous Graph Feng and Wang (2012)

Hypergraph Zhu et al (2016)

Xing13 14

Homogeneous Graph Abugabah et al (2020)

Complex Heterogeneous Graph
Wang et al (2020a); Pang et al
(2022)

DepaulMovie (Zheng et al,
2015)

K-partite Graph
Phuong et al (2019); Musto
et al (2021)

InCarMusic (Zheng et al,
2015)

K-partite Graph Phuong et al (2019)

Dianping-Food (Wang et al,
2019b)

Complex Heterogeneous Graph Wang et al (2019b)

InMind Movie Agent
(Catherine et al, 2017)

Complex Heterogeneous Graph Catherine et al (2017)

IntentBooks (Zhang et al,
2016)

Complex Heterogeneous Graph Zhang et al (2016)

IMDB (Yin et al, 2010) Multiple Graphs Yin et al (2010)

YouTube (Tang et al, 2009) K-partite Graph Cen et al (2019)

Adressa (Gulla et al, 2017)
Complex Heterogeneous Graph

Sheu and Li (2020); Shi et al
(2021)

Hypergraph Gharahighehi et al (2021)

Roularta (Gharahighehi
et al, 2021)

Hypergraph Gharahighehi et al (2021, 2020)

MIND15 Complex Heterogeneous Graph
Wu et al (2021a); Liu et al
(2021a); Zhang et al (2021d)

Multiple News Portal (Li
et al, 2011)

Hypergraph Li and Li (2013)

Sougou News (Shi et al,
2021)

Complex Heterogeneous Graph Shi et al (2021)

Filmtrust (Guo et al, 2013) Multiple Graphs Zhang et al (2021a)

Mtime (Li et al, 2014) Homogeneous Graph Li et al (2014)

Netease (Cao et al, 2017) Multiple Graphs Chang et al (2021a)

Kuaishou (Chang et al,
2021b)

Homogeneous Graph Chang et al (2021b)

Tiktok (Wei et al, 2021) K-partite Graph Wei et al (2021)

Kwai (Wei et al, 2021) K-partite Graph Wei et al (2021)

Continued on next page
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Table A1 – Continued from previous page

Domain Dataset Graph Type Related Papers

Restaurant&consumer
(Vargas-Govea et al, 2011)

K-partite Graph Jiang et al (2018a)

Social
Network

Douban (Song et al, 2019b;
Ma et al, 2011a; Zheng
et al, 2017; Shi et al, 2018;
Monti et al, 2017)

Homogeneous Graph
Song et al (2019b); Isufi et al
(2021)

K-partite Graph Zhang et al (2019a)

Complex Heterogeneous Graph
Shi et al (2018, 2015); Salamat
et al (2021)

Hypergraph Yu et al (2021)

Multiple Graphs

Ma et al (2011a); Zheng et al
(2017); Shi et al (2016); Monti
et al (2017); Zhang et al
(2021a); Tian et al (2021); Guo
et al (2021a)

WeChat (Wu et al,
2019b; Wang et al, 2020f)

K-partite Graph Wang et al (2020f)

Multiple Graphs Wu et al (2019b)

Twitter (Sharma et al,
2016; De Domenico et al,
2013)

K-partite Graph
Cen et al (2019); Sharma et al
(2016)

Reddit16
Homogeneous Graph Abugabah et al (2020)

Complex Heterogeneous Graph Pang et al (2022)

Pinterest(Ying et al, 2018;
Eksombatchai et al, 2018)

K-partite Graph

Ying et al (2018); Eksombat-
chai et al (2018); Lei et al
(2020b); Tan et al (2020); Yang
et al (2021b)

Flickr (Wu et al, 2019a) Homogeneous Graph Wu et al (2019a)

Hike network (Verma et al,
2019)

Multiple Graphs Verma et al (2019)

Academic
or Book

BookCrossing (Ziegler et al,
2005)

K-partite Graph
Fouss et al (2012); Li and Chen
(2013); Hsu and Li (2021)

Complex Heterogeneous Graph
Wang et al (2018b, 2019a,c,b);
Yang and Dong (2020); Zhou
et al (2020b); Sang et al (2021)

DBbook17 (Lu et al, 2020)

K-partite Graph
Song et al (2019a); Musto et al
(2017); Lu et al (2020)

Complex Heterogeneous Graph Cao et al (2019)

DBLP (Tang et al, 2008)
Complex Heterogeneous Graph Zhu et al (2021c)

Multiple Graphs Ali et al (2020); Yin et al (2010)

CiteULike (Wang et al, 2013)

Homogeneous Graph Gao et al (2018)

K-partite Graph
Yao et al (2015); Song et al
(2011)

Hypergraph Zhu et al (2016)

Goodreads (Wang and
Caverlee, 2019)

Homogeneous Graph Ma et al (2020)

Hypergraph Wang et al (2020c)

User-Tag (Pan et al, 2008;
Sun et al, 2015; Song et al,
2011)

Homogeneous Graph
Du et al (2011); Sun et al
(2015)

K-partite Graph Song et al (2011)

Librarything (Zhao et al,
2014)

Complex Heterogeneous Graph Palumbo et al (2020)

Multiple Graphs Liu et al (2020)

Youshu (Chen et al, 2019b) Multiple Graphs Chang et al (2021a)

Continued on next page
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Domain Dataset Graph Type Related Papers

ACL Anthology Network
(Radev et al, 2013)

Multiple Graphs Ali et al (2020)

OHSUMED (Hersh et al,
1994)

K-partite Graph Cheng et al (2007)

K-partite Graph
Wang et al (2019f); Chen et al
(2020a); Tan et al (2020)

Gowalla (Liang et al, 2016;
Cho et al, 2011; Liu et al,
2013)

Homogeneous Graph
Qiu et al (2020b); Hao et al
(2021b)

Complex Heterogeneous Graph Bagci and Karagoz (2016)

Multiple Graphs Christoforidis et al (2021)

POI

Trip.com+Facebook+Twitter
(Wang et al, 2017)

Multiple Graphs Wang et al (2017)

Foursquare (Gao et al,
2012)

Tree-based Graph Yang et al (2016)

K-partite Graph Wang et al (2019d)

Complex Heterogeneous Graph Bagci and Karagoz (2016)

Multiple Graphs Christoforidis et al (2021)

Brightkite (Cho et al, 2011) Complex Heterogeneous Graph Bagci and Karagoz (2016)

Google Local (He et al,
2017)

Homogeneous Graph Zhu et al (2021b)

Multiple Graphs Zhu et al (2021a)

Tripadvisor18 K-partite Graph Musto et al (2021)

NUS-MSS (Farseev et al,
2015)

Homogeneous Graph Farseev et al (2017)

Others

Educational website and
textbooks (Shi et al, 2020)

Complex Heterogeneous Graph Shi et al (2020)

MIT AI + CASAS (Chen
et al, 2019d)

Complex Heterogeneous Graph Chen et al (2019d)

REDIAL (Li et al, 2018b) Complex Heterogeneous Graph Zhou et al (2020a)

VizML corpus (Hu et al,
2019)

K-partite Graph Li et al (2021b)

Legal recommendation
dataset (Yang et al, 2021a)

Complex Heterogeneous Graph Yang et al (2021a)

Yahoo! traffic stream
(Menon et al, 2011)

Tree-based Graph Menon et al (2011)

1https://www.yelp.com/dataset/documentation/main
2https://competitions.codalab.org/competitions/11161
3https://www.kaggle.com/retailrocket/ecommerce-dataset
4https://2015.recsyschallenge.com/challenge.html
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
6https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
7https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
8https://www.kaggle.com/c/criteo-display-ad-challenge
9https://www.kaggle.com/c/avazu-ctr-prediction

10https://www.kaggle.com/kaggle/us-consumer-finance-complaints
11http://archive.ics.uci.edu/ml/datasets/Adult
12https://wsdm-cup-2018.kkbox.events/
13https://2016.recsyschallenge.com/
14http://www.recsyschallenge.com/2017/
15https://msnews.github.io/
16https://www.kaggle.com/colemaclean/subreddit-interactions
17http://2014.eswc-conferences.org/important-dates/call-RecSys.html
18https://github.com/irecsys/CARSKit/tree/master/context-aware data sets
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Appendix B Technology summary in GLRS

Table B1: Technology summary in GLRS
Technology

Class
Tech

Subclass
Domain Dataset Graph Type

Traditional
Machine Learning

Techniques

PRM

E-commerce Yelp
Complex Heterogeneous Graph:
Catherine and Cohen (2016)

Entertainment

InMind Movie
Agent

Complex Heterogeneous Graph:
Catherine et al (2017)

MovieLens

Complex Heterogeneous Graph:
Catherine and Cohen (2016); Lee
et al (2013)

K-partite Graph: Shams and Harati-
zadeh (2017); Musto et al (2017)

Last.fm
K-partite Graph: Jäschke et al
(2007)

DePaulMovie K-partite Graph: Musto et al (2021)

Academic or
Book

BibSonomy
K-partite Graph: Jäschke et al
(2007)

DBbook K-partite Graph: Musto et al (2017)

POI Tripadvisor K-partite Graph: Musto et al (2021)

RTGR

E-commerce Yelp
Hypergraph: Mao et al (2019); Yu
et al (2021)

Entertainment

Last.fm
Hypergraph: Bu et al (2010); Tan
et al (2011); Yu et al (2021)

Multiple News
Portal

Hypergraph: Li and Li (2013)

HetRec Delicious Hypergraph: Zhu et al (2016)

Adressa
Hypergraph: Gharahighehi et al
(2021)

Roularta
Hypergraph: Gharahighehi et al
(2021)

Social Network Douban Hypergraph: Yu et al (2021)

Academic or Book CiteULike Hypergraph: Zhu et al (2016)

POI Trip.com+Face
book+Twitter

Multiple Graphs: Gao et al (2019b)

KML

Entertainment
MovieLens

K-partite Graph: Fouss et al (2012)

Complex Heterogeneous Graph:
Ostuni et al (2014)

mtime Homogeneous Graph: Li et al (2014)

Academic or Book Book-Crossing K-partite Graph: Fouss et al (2012)

LFM E-commerce

Amazon

Complex Heterogeneous Graph: Zhao
et al (2017)

Tree-based Graph: Sun et al (2017)

Yelp
Complex Heterogeneous Graph: Zhao
et al (2017); Kyriakidi et al (2020)

Epinions

Multiple Graphs: Ma et al (2011a)

Homogeneous Graph:Ma et al (2009,
2008, 2011b)
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Tech
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Yahoo! Shopping
Tree-based Graph: Kanagal et al
(2012)

LFM

Entertainment

Yahoo!Music
Tree-based Graph: Koenigstein et al
(2011); Mnih (2012)

MovieLens
Complex Heterogeneous Graph: Du
et al (2011)

Social Network Douban Multiple Graphs: Ma et al (2011a)

Academic or Book User-Tag
Homogeneous Graph: Du et al
(2011); Sun et al (2015)

POI Foursquare Tree-based Graph: Yang et al (2016)

Other
Yahoo! traffic
stream

Tree-based Graph: Menon et al
(2011)

Traditional
Machine Learning

Techniques

Others
(Spectral
graph)

E-commerce Amazon K-partite Graph: Zheng et al (2018)

Entertainment
MovieLens K-partite Graph: Zheng et al (2018)

HetRec Delicious K-partite Graph: Zheng et al (2018)

POI NUS-MSS
Homogeneous Graph: Farseev et al
(2017)

Others
(Similarity)

Entertainment

DepaulMovie K-partite Graph: Phuong et al (2019)

MovieLens K-partite Graph: Phuong et al (2019)

InCarMusic K-partite Graph: Phuong et al (2019)

Others
(Clustering)

Social Network
User-Tag K-partite Graph: Song et al (2011)

BbSonomy K-partite Graph: Song et al (2011)

Academic or Book CiteULike K-partite Graph: Song et al (2011)

Others
(Complex
Number)

E-commerce AppChina
Complex Heterogeneous Graph: Xie
et al (2015)

Entertainment MovieLens
Complex Heterogeneous Graph: Xie
et al (2015)

E-commerce

Clothing-Retail K-partite Graph: Li and Chen (2013)

Amazon

Multiple Graphs: Vijaikumar et al
(2019)

Complex Heterogeneous Graph: Ma
et al (2019)

Path-based
Techniques

RWM

Yelp
Multiple Graphs: Vijaikumar et al
(2019)

Epinions
Homogeneous Graph: Jamali and
Ester (2009)

Entertainment

IMDB Multiple Graphs: Yin et al (2010)

MovieLens

K-partite Graph: Cheng et al (2007);
Jiang et al (2018a); Nikolakopoulos
and Karypis (2019)

Homogeneous Graph: Gori et al
(2007)

Last.fm

K-partite Graph: Yao et al (2015)

Complex Heterogeneous Graph: Feng
and Wang (2012)

Yahoo2RMusic
K-partite Graph: Nikolakopoulos
and Karypis (2019)
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Tech
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HetRec Delicious
Complex Heterogeneous Graph: Feng
and Wang (2012)

Restaurant &
Consumer

K-partite Graph: Jiang et al (2018a)

Social Network

Twitter
K-partite Graph: Sharma et al
(2016)

Pinterest
K-partite Graph: Eksombatchai et al
(2018)

Path-based
Techniques

RWM
Academic or
Book

Book-Crossing K-partite Graph: Li and Chen (2013)

DBLP Multiple Graphs: Yin et al (2010)

OHSUMED K-partite Graph: Cheng et al (2007)

CiteULike K-partite Graph: Yao et al (2015)

POI

Brightkite
Complex Heterogeneous Graph:
Bagci and Karagoz (2016)

Gowalla
Complex Heterogeneous Graph:
Bagci and Karagoz (2016)

Foursquare
Complex Heterogeneous Graph:
Bagci and Karagoz (2016)

RM

E-commerce
Amazon K-partite Graph: He et al (2015)

Yelp K-partite Graph: He et al (2015)

Academic or Book
Educational
Website and
Textbooks

Complex Heterogeneous Graph: Shi
et al (2020)

Amazon K-partite Graph: Cen et al (2019)

E-commerce

Alibaba K-partite Graph: Cen et al (2019)

MPM

Yelp

K-partite Graph: Lu et al (2020); Yu
et al (2014)

Complex Heterogeneous Graph: Shi
et al (2018, 2015); Zheng et al
(2017); Shi et al (2016)

Entertainment

YouTube K-partite Graph: Cen et al (2019)

MovieLens

K-partite Graph: Lu et al (2020); Yu
et al (2014, 2013)

Complex Heterogeneous Graph: Shi
et al (2016); Ostuni et al (2013)

Last.fm
Complex Heterogeneous Graph:
Ostuni et al (2013)

Social Network

Twitter K-partite Graph: Cen et al (2019)

Douban
Complex Heterogeneous Graph: Shi
et al (2018, 2015); Zheng et al
(2017); Shi et al (2016)

Academic or Book DBook K-partite Graph: Lu et al (2020)

E-commerce
Amazon

Complex Heterogeneous Graph: Fu
et al (2020); Wang et al (2020a)

Tree-based Graph: He et al (2016)

Graph Embedding
based Techniques

GDRM
Taobao Multiple Graphs: Wang et al (2020d)

Entertainment MovieLens
Complex Heterogeneous Graph:
Wang et al (2020a); Palumbo et al
(2020)
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Domain Dataset Graph Type

Multiple Graphs: Wang et al (2020d)

Last.fm
Complex Heterogeneous Graph:
Palumbo et al (2020)

Xing
Complex Heterogeneous Graph:
Wang et al (2020a)

GDRM

Social Network Hike Network Multiple Graphs: Verma et al (2019)

Academic or
Book

Citation
Complex Heterogeneous Graph:
Jiang et al (2018b)

LibraryThing
Complex Heterogeneous Graph:
Palumbo et al (2020)

DBLP Multiple Graphs: Ali et al (2020)

ACL Anthology
Network

Multiple Graphs: Ali et al (2020)

POI

Foursquare
Multiple Graphs: Christoforidis et al
(2021)

Graph Embedding
based Techniques

Gowalla
Multiple Graphs: Christoforidis et al
(2021)

E-commerce

Amazon

Complex Heterogeneous Graph: Ai
et al (2018)

Homogeneous Graph: Wang et al
(2020b)

TEM

Alibaba
Complex Heterogeneous Graph:
Wang et al (2021b)

Entertainment

MovieLens
Complex Heterogeneous Graph:
Palumbo et al (2017); Wang et al
(2018b); Cao et al (2019)

Bing-News
Complex Heterogeneous Graph:
Wang et al (2018b)

Last.fm
Complex Heterogeneous Graph:
Wang et al (2021b)

Book-Crossing
Complex Heterogeneous Graph:
Wang et al (2018b)

Academic or
Book

CiteULike
Homogeneous Graph: Gao et al
(2018)

DBBook
Complex Heterogeneous Graph: Cao
et al (2019)

Other

MIT AI+CASAS
Complex Heterogeneous Graph:
Chen et al (2019d)

VizML Corpus K-partite Graph: Li et al (2021b)

E-commerce

Amazon
Tree-based Graph: Huang et al
(2019)

JD
Tree-based Graph: Huang et al
(2019)

DNN
Yelp

Homogeneous Graph: Wu et al
(2019a)

Complex Heterogeneous Graph: Sun
et al (2018); Mezni et al (2021)

Entertainment

MovieLens
Complex Heterogeneous Graph: Sun
et al (2018); Wang et al (2019g)

Last.fm
Tree-based Graph: Huang et al
(2019)
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Tech
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Domain Dataset Graph Type

KKBox
Complex Heterogeneous Graph:
Wang et al (2019g)

Social Network Flickr
Homogeneous Graph: Wu et al
(2019a)

AE

Entertainment MovieLens
Complex Heterogeneous Graph:
Zhang et al (2016)

Academic or Book IntentBooks
Complex Heterogeneous Graph:
Zhang et al (2016)

Amazon

Tree-based Graph: Gao et al (2019b)

K-partite Graph: Wang et al
(2019d); Zhang et al (2022)

Complex Heterogeneous Graph: Han
et al (2018)

Yelp
Tree-based Graph: Gao et al (2019b)

Multiple Graphs: Xia et al (2021a)

Deep Learning
based Techniques AM

E-commerce
Epinions

Homogeneous Graph: Chen et al
(2019a)

Ciao
Homogeneous Graph: Chen et al
(2019a)

HOOPS
Complex Heterogeneous Graph: Fu
et al (2021)

Taobao
Homogeneous Graph: Chang et al
(2021b)

Kuaishou
Homogeneous Graph: Chang et al
(2021b)

Entertainment

MovieLens

Complex Heterogeneous Graph: Han
et al (2018); Wang et al (2019a)

Homogeneous Graph: Hao et al
(2021b)

K-partite Graph: Wang et al
(2019d); Xin et al (2019); Zhang
et al (2022)

Multiple Graphs: Xia et al (2021a)

Bing-News
Complex Heterogeneous Graph:
Wang et al (2019a)

KKBox K-partite Graph: Xin et al (2019)

Last.fm
Homogeneous Graph: Chen et al
(2019a)

Academic or Book Book-Crossing
Complex Heterogeneous Graph:
Wang et al (2019a)

POI

Foursquare K-partite Graph: Wang et al (2019d)

Gowalla
Homogeneous Graph: Hao et al
(2021b)

DRL

E-commerce

Amazon
Complex Heterogeneous Graph: Xian
et al (2019)

Yelp
Complex Heterogeneous Graph: Lei
et al (2020a)

Entertainment Last.fm

K-partite Graph: Song et al (2019a)

Complex Heterogeneous Graph: Lei
et al (2020a)
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Tech
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Domain Dataset Graph Type

DRL

MovieLens K-partite Graph: Song et al (2019a)

MIND
Complex Heterogeneous Graph: Liu
et al (2021a)

Bing-News
Complex Heterogeneous Graph: Liu
et al (2021a)

Academic or Book DBbook K-partite Graph: Song et al (2019a)

Amazon

K-partite Graph: Wang et al (2019f);
Chen et al (2020a); Wang et al
(2019e); Sun et al (2020); Wu et al
(2021b)

Homogeneous Graph: Zhu et al
(2021b); Ma et al (2020)

Deep Learning
based Techniques

GNN E-commerce

Complex Heterogeneous Graph: Zhao
et al (2019)

Multiple Graphs: Zhang et al
(2021c); Zhu et al (2021a)

Yelp

Homogeneous Graph: Zhu et al
(2021b)

K-partite Graph: Wang et al
(2019f,e); Wu et al (2021b); Sun
et al (2021,?); Yang et al (2021b)

Multiple Graphs: Liu et al (2020);
Huang et al (2021b); Tang et al
(2021); Zhu et al (2021a); Guo et al
(2021a)

Epinions
Multiple Graphs: Wu et al (2019b);
Liu et al (2020); Huang et al (2021b)

Taobao

Homogeneous Graph: Ouyang et al
(2021)

K-partite Graph: Fan et al (2019a);
Chen et al (2021a)

Complex Heterogeneous Graph: Zhao
et al (2019)

Alibaba

K-partite Graph: Tan et al (2020);
Wu et al (2021b)

Multiple Graphs: Guo et al (2021b)

Beibei K-partite Graph: Chen et al (2021a)

Criteo
Complex Heterogeneous Graph:
Zheng et al (2021)

Tmall
Multiple Graphs: Wang et al
(2020h); Guo et al (2021b)

Diginetica

Homogeneous Graph: Qiu et al
(2020a); Pan et al (2020)

Multiple Graphs: Wang et al
(2020h); Xia et al (2021c)

Yoochoose

Homogeneous Graph: Qiu et al
(2020a); Pan et al (2020)

Multiple Graphs: Xia et al (2021c)

Avazu
Complex Heterogeneous Graph:
Zheng et al (2021)

USCFC
Complex Heterogeneous Graph:
Zheng et al (2021)
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Tech
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Adult
Complex Heterogeneous Graph:
Zheng et al (2021)

Entertainment

MovieLens

Homogeneous Graph: Ma et al
(2020); Isufi et al (2021); Ouyang
et al (2021)

K-partite Graph: Lei et al (2020b);
Tan et al (2020); Yang et al (2021b);
Zhang et al (2021b)

Complex Heterogeneous Graph:
Wang et al (2019c,b)

Multiple Graph: Tang et al (2021)

Deep Learning
based Techniques

GNN

Last.fm

Homogeneous Graph: Qiu et al
(2020b)

K-partite Graph: Wang et al (2019e);
Lei et al (2020b)
Complex Heterogeneous Graph:
Wang et al (2019c,b)

Multiple Graphs: Tian et al (2021)

Dianping-Food
Complex Heterogeneous Graph:
Wang et al (2019b)

Flixster

Homogeneous Graph: Isufi et al
(2021)

Multiple Graphs: Tang et al (2021)

MIND
Complex Heterogeneous Graph: Wu
et al (2021a); Zhang et al (2021d)

Netease
Multiple Graphs: Chang et al
(2021a)

YahooMusic Multiple Graphs: Tang et al (2021)

Tiktok K-partite Graph: Wei et al (2021)

Kwai K-partite Graph: Wei et al (2021)

Social Network

WeChat Multiple Graphs: Wu et al (2019b)

Pinterest
K-partite Graph: Ying et al (2018);
Lei et al (2020b); Tan et al (2020);
Yang et al (2021b)

Douban

Homogeneous Graph: Isufi et al
(2021)

Multiple Graphs: Tian et al (2021);
Guo et al (2021a)

Academic or
Book

Book-Crossing
Complex Heterogeneous Graph:
Wang et al (2019c,b)

Librarything Multiple Graphs: Liu et al (2020)

Youshu
Multiple Graphs: Chang et al
(2021a)

Goodreads Homogeneous Graph: Ma et al (2020)

POI

Gowalla

Homogeneous Graph: Qiu et al
(2020b)

K-partite Graph: Wang et al (2019f);
Chen et al (2020a); Tan et al (2020)

Google Local
Homogeneous Graph: Zhu et al
(2021b)
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Class

Tech
Subclass

Domain Dataset Graph Type

Multiple Graphs: Zhu et al (2021a)

Other MALib-Dataset K-partite Graph: Li et al (2021a)

Amazon

K-partite Graph: Fan et al (2021)

Complex Heterogeneous Graph:
Wang et al (2020g); Liu et al (2021c);
Xie et al (2021); Chen et al (2021b)

Hypergraph: Wang et al (2020c)

Yelp

Homogeneous Graph: Song et al
(2019b)

Complex Heterogeneous Graph:
Wang et al (2020g); Liu et al
(2021c); Xie et al (2021)

Deep Learning
based Techniques

DHM

E-commerce

Diginetica

Homogeneous Graph: Xu et al
(2019a); Wu et al (2019c); Huang
et al (2021a)

Multiple Graphs: Xia et al (2021c)

Retailrocket
Homogeneous Graph: Xu et al
(2019a); Huang et al (2021a)

Yoochoose
Homogeneous Graph: Wu et al
(2019c); Huang et al (2021a)

Ciao

Complex Heterogeneous Graph:
Salamat et al (2021)

Multiple Graphs: Fan et al (2019b);
Zhang et al (2021a)

Epinions

Complex Heterogeneous Graph:
Salamat et al (2021)

Multiple Graphs: Fan et al (2019b);
Zhang et al (2021a)

Etsy Hypergraph: Wang et al (2020c)

Beidia K-partite Graph: Xu et al (2019b)

Taobao K-partite Graph: Xia et al (2021b)

Beibei K-partite Graph: Xia et al (2021b)

Tmall Multiple Graphs: Xia et al (2021c)

RetailRocket Multiple Graphs: Xia et al (2021c)

Cosmetics Multiple Graphs: Liu et al (2021b)

UserBehavior Multiple Graphs: Liu et al (2021b)

Google Play
Complex Heterogeneous Graph: Xie
et al (2021)

Entertainment

MovieLens

K-partite Graph: Wang et al (2020f);
Zhang et al (2019a); Wu et al
(2021c); Fan et al (2021); Hao et al
(2021a); Hsu and Li (2021)

Complex Heterogeneous Graph:
Yang and Dong (2020); Zhou et al
(2020b); Sang et al (2021)

Multiple Graphs: Monti et al (2017)

Deep Learning
based Techniques

DHM

Entertainment

Last.fm
K-partite Graph: Wu et al (2021c);
Hao et al (2021a)
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Technology
Class

Tech
Subclass

Domain Dataset Graph Type

Complex Heterogeneous Graph:
Yang and Dong (2020); Wang et al
(2020g); Sang et al (2021); Pang
et al (2022)

Entertainment

HetRec Delicious
Homogeneous Graph: Song et al
(2019b)

Adressa
Complex Heterogeneous Graph: Sheu
and Li (2020); Shi et al (2021)

Roularta
Hypergraph: Gharahighehi et al
(2020)

Bing-News
Complex Heterogeneous Graph:
Wang et al (2018c)

Flixster
K-partite Graph: Zhang et al (2019a)

Multiple Graphs: Monti et al (2017)

Xing

Homogeneous Graph: Abugabah et al
(2020)

Complex Heterogeneous Graph:
Pang et al (2022)

Deep Learning
based Techniques

DHM

YahooMusic Multiple Graphs: Monti et al (2017)

Filmtrust Multiple Graphs: Zhang et al (2021a)

Sougou
Complex Heterogeneous Graph: Shi
et al (2021)

Douban

Homogeneous Graph: Song et al
(2019b)

Social Network

K-partite Graph: Zhang et al (2019a)

Complex Heterogeneous Graph:
Salamat et al (2021)

Multiple Graphs: Monti et al (2017);
Zhang et al (2021a)

WeChat K-partite Graph: Wang et al (2020f)

Reddit

Homogeneous Graph. : Abugabah
et al (2020)

Complex Heterogeneous Graph:
Pang et al (2022)

Others K-partite Graph: Kim et al (2019)

Academic or
Book

Goodreads Hypergraph: Wang et al (2020c)

Book-Crossing

K-partite Graph: Hsu and Li (2021)

Complex Heterogeneous Graph:
Yang and Dong (2020); Zhou et al
(2020b); Sang et al (2021)

DBLP
Complex Heterogeneous Graph: Zhu
et al (2021c)

Others

REDIAL
Complex Heterogeneous Graph:
Zhou et al (2020a)

Legal recommen-
dation dataset

Complex Heterogeneous Graph:
Yang et al (2021a)
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Appendix C Statistics of datasets and related
technologies in GLRS

Table C1: Quantitative summarization of different datasets on adopted GLRS
technologies

Domain Dataset
Traditional

ML
Path-
based

Graph
embedding

Deep Learning

DNN AE AM DRL GNN DHM

E-commerce

Amazon 3 4 5 1 4 1 12 6

Yelp 5 8 3 2 1 9 4

Epinions 4 1 1 3 3

Diginetica 4 4

Ciao 1 3

JD 1

Retailrocket 3

Clothing
retail

1

Alibaba 1 1 3

Taobao 1 1 4 1

Beidian

YOOCHOOSE 3 2

Etsy 1

Beibei 1 1

HOOPS 1

Tmall 2 1

Cosmetics 1

UserBehavior 1

Criteo 1

Avazu 1

USCFC 1

Adult 1

Google Play 1

AppChina 1

Yahoo!
shopping
dataset

1

MovieLens 10 9 6 2 1 7 1 9 10

Last.fm 4 3 2 1 1 2 6 6

YahooMusic 2 1 1 1

Flixster 2 2

Bing-News 1 1 1 1

KKBox’s
music

1 1

Continued on next page
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Domain Dataset
Traditional

ML
Path-
based

Graph
embedding

Deep Learning

DNN AE AM DRL GNN DHM

Entertainment

HetRec
Delicious

2 1 1

Xing 1 2

DepaulMovie 2

InCarMusic 1

Dianping-
Food

1

InMind
Movie
Agent

1

IntentBooks 1

IMDB 1

YouTube 1

Adressa 2 2

Roularta 2 1

MIND 1 2

Multiple
News Portal

1

Sougou
News

1

Filmtrust 1

Mtime 1

Netease 1

Kuaishou 1

Tiktok 1

Kwai 1

Restaurant
&consumer

1

Social
Network

Douban 2 4 3 5

WeChat 1 1

Twitter 2

Reddit 2

Pinterest 1 4

Flickr 1

Hike
network

1

BookCrossing 1 1 1 1 2 4

Academic
or Book

DBbook 1 1 1 1

DBLP 1 1 1

CiteULike 2 1 1

Goodreads 1 1

User-Tag 3

Continued on next page
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Domain Dataset
Traditional

ML
Path-
based

Graph
embedding

Deep Learning

DNN AE AM DRL GNN DHM

Librarything 1 1

Youshu 1

ACL
Anthology
Network

1

OHSUMED 1

POI

Gowalla 1 1 1 4

Trip.com+
Facebook+
Twitter

1

Foursquare 1 1 1 1

Brightkite 1

Google
Local

2

Tripadvisor 1

NUS-MSS 1

Other

Educational
website and
textbooks

1

MIT AI +
CASAS

1

REDIAL 1

VizML cor-
pus

1

Legal
recom-
mendation
dataset

1

Yahoo traf-
fic stream

1
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