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Abstract
Gloss is an important appearance attribute, and its exact

perceptual mechanisms are yet to be fully understood. Previous
works attempted to model the relationship between optical and
perceptual gloss. The state-of-the-art studies demonstrate that
the human visual system has a poor ability to recover surface re-
flectance and perceived gloss rather depends on image cues that
are generated by a complex interaction among optical material
properties, illumination, object shape and its surface geometry.
Therefore, perceptual models defined on a particular shape, such
as a sphere, may not generalize to other objects. To investigate
shape-specific differences, we conducted a psychophysical exper-
iment with a simple sphere and complex Lucy shapes. We scaled
the magnitude of apparent gloss to study how the shape affects
perceived gloss, and how the role of optical material properties
varies between the shapes. We observed significant cross-shape
differences, which we argue can be explained by the analysis of
the image cues.

Introduction and Background
Gloss is an important appearance attribute. For instance, say-

ing that an object is red would not be enough to fully convey its
look, because matte and highly glossy objects significantly dif-
fer in appearance. The ASTM Standard Terminology of Appear-
ance [1] defines gloss as ”angular selectivity of reflectance, in-
volving surface-reflected light, responsible for the degree to which
reflected highlights or images of objects may be seen as superim-
posed on a surface.” The magnitude of gloss plays an important
role in our lives. Glossiness not only affects how precious and at-
tractive objects appear to potential customers [2, 3, 4, 5], but also
defines how we interact with them due to perceived fragility [5, 6].
Unlike color vision, considerably less is known about gloss per-
ception [7]: neither standard observer is defined for gloss [8], nor
a robust and sophisticated perceptually uniform gloss space has
been established to date that makes manipulation of gloss appear-
ance subject to costly trial-and-error process [9].

The fundamental problem in gloss perception research has
been bridging the gaps between optical material properties, such
as surface reflectance, and the magnitude of gloss perceived by the
human visual system (HVS). The state-of-the-art on gloss percep-
tion is well summarized in the following reviews [7, 8]. Hunter’s
classic work [10] was the first one to point out the multidimen-
sional nature of apparent gloss, mentioning at least six differ-
ent types of it: Specular gloss (”brilliance of specularly reflected
light, shininess”); Sheen (”shininess at grazing angles”); Contrast
gloss (”contrast between specularly reflecting areas and other ar-
eas”); Absence-of-bloom gloss (”absence of smear or excess semi-
specular reflection adjacent to reflected highlights and images”);
Distinctness-of-reflected-image gloss (”distinctness and sharpness
of reflected images”); Absence-of-surface-texture gloss (”surface

Figure 1: Although both objects are made of an identical material,
the sphere permits observing a mirror reflection of the environ-
ment, while Lucy does not. This difference in shape and surface
complexity affects perceived gloss.

evenness, absence of texture, indicated by difficulty of recogniz-
ing presence of surface”). These dimensions may vary across the
shapes. Gigilashvili et al. [11] noticed striking differences in the
responses when observers were asked to rank objects by glossi-
ness. For a spherical shape, some observers prioritized DOI –
i.e. how clearly they could see the mirror reflection of the en-
vironment, while others put more weight on overall shininess of
the object and brightness of the highlights. When spheres were
replaced with complex bust figurines, the vast majority of the ob-
servers relied on the latter criterion only, as the DOI factor was
absent, because the complex shape of the object did not permit
seeing the environment reflectance image.

The seminal work by Pellacini et al. [12] proposed the first
psychophysically-based light reflection model that enabled gloss
manipulation in a perceptually meaningful way for computer
graphics applications. The authors varied the reflectance param-
eters of Ward’s [13] heuristic model to generate synthetic im-
ages of different materials. They quantified perceptual distances
among these materials and conducted MDS to identify contrast
and DOI as two essential perceptual dimensions. Afterward, they
used magnitude estimation techniques to scale each of these di-
mensions and proposed a psychophysically-based model, which
related steps in Ward’s reflectance parameters with intuitive and
perceptually uniform steps in gloss. Although this work was a
great breakthrough and remains influential to this date, the whole
model is defined on spherical objects only, which is identified as
a limitation by the authors themselves.

When discussing shape, it is important to specify what scale
of geometric variation is meant. Micro-scale roughness of the
surface is inversely correlated with perceived gloss [12, 14, 15]
– rougher objects appearing less glossy. Meso-scale pertuba-
tions, such as adding bumps also effects perceived gloss, but in
more non-monotonic and complex way. While small pertuba-
tions decrease DOI and hence gloss, the bumps with very high
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amplitude change the local curvature of the surface and make
more specular reflections visible, which can increase perceived
gloss [16, 17]. Macro-scale differences in shape may also change
apparent gloss [11, 18, 19, 20].

To understand why shape impacts the magnitude of apparent
gloss, we need to look deeper into the perceptual mechanisms of
the HVS. The HVS proposedly relies on image cues, i.e. statisti-
cal and spatio-geometric regularities in the image intensities, such
as brightness of the specular highlights and the contrast between
specular and non-specular ares [12, 14, 21, 22, 23], sharpness of
the highlights [12, 22, 23], and total area covered by specular re-
flections [21, 22, 23]. While these cues are indeed affected by
surface reflectance, the image structure is generated by a com-
plex interaction among illumination, 3D object shape, and optical
properties of a material [19, 23].

Nevertheless, the attempts to bridge a gap between physics
and perception, and to construct gloss space or a perceptual em-
bedding, are limited to variations in BRDF properties, and at
most, surface roughness [12, 14, 24]. While the micro-level sur-
face roughness indeed affects DOI or the ability to reflect sur-
rounding scene, as well as contrast, sharpness, coverage area of
the highlights, and other image cues proposedly used by the HVS,
the same is true for macro-level shape variations (for instance, see
Fig. 1). Models defined on one shape may not generalize to oth-
ers [20], and proposedly, we may even need to refer to the problem
as object appearance rather than material appearance [25].

In order to demonstrate the importance of shape in mod-
eling perceptual gloss, in this study we revisit the classic work
by Pellacini et al. [12]. We use the same set of materials but
in addition to a sphere, we also study a Lucy shape. We con-
ducted psychophysical experiment to scale perceived gloss for
both shapes, to investigate how the magnitude of perceived gloss
changes between them, and to explore to what extent the percep-
tual model [12] can be generalized from spheres to more complex
Lucy. Finally, we discuss how image cues explain observed cross-
shape discrepancies and formulate directions for future work.

Methodology
We conducted a psychophysical experiment to scale the mag-

nitude of perceived gloss in individual synthetic images.

Stimuli
We used a path tracer of the Mitsuba Physically-based

Renderer [26] to generate the synthetic images that varied in
three parameters of the original Ward model [13] used to de-
scribe the BRDF: diffuse reflectance, ρd ; strength of the spec-
ular component, ρs; and the spread of the specular lobe α ,
which is phenomenologically similar to surface roughness found
in microfacet-based models. We used the same 27 materials used
by Pellacini et al. [12] that according to the authors correspond
to the measured properties of real paints ranging from white to
shades of gray and black, and rendered them in two different
shapes: sphere and Stanford Lucy [27]. Three levels of each
parameter (α , ρs, and ρd) were used, totaling to 27 images per
shape, and 54 in total (examples in Fig. 1). The parameters are
summarized in Table 11. Apart from this, we included 30 ad-

1The dataset of the images is available at: https://github.com/
davitgigilashvili/TheRoleOfShapeinModelingGloss

ditional materials (60 images). They were selected in a way to
simplify correlating gloss rating with distinctness and contrast di-
mensions from the previous work [12]. Similarly to that work, we
fixed α to 0.04 and varied ρd and ρs, to scale the contrast axis. ρd
and ρs values from the original 27 materials were supplemented
with values sampled between them (summarized in Table 2); and
fixed ρd and ρs, and varied α from 0.01 to 0.19, to scale distinct-
ness axis (summarized in Table 3). Two materials with α , ρd and
ρs equal to 0.07, 0.099, 0.03 and 0.10, 0.099, 0.03, respectively,
were shown twice for each shape to check the intra-observer con-
sistency. For sphere, observers turned out highly consistent, and
the scores between the two trials differed on average by 2 (by 8 for
Lucy). In the final analysis, the mean of the two trials is reported.

As DOI is essential for perceiving gloss, it is important the
images to be shown in a realistic, complex scene, which will be
reflected if the material is reflective enough. For this purpose,
we used Bernhard Vogl’s museum environment map [28]. Simi-
larly to the previous study, the objects were placed on a diffusely
reflecting checkerboard texture. The width and height of each
rendered image was 512×512 pixels, rendered with 16384 sam-
ples per pixel. Mitsuba default tonemapper was used to tone map
high-dynamic range result to 8-bit PNG images.

Experimental Procedure and Observation Conditions
The objective of the experiment was to assess how overall

magnitude of perceived gloss varies across the shapes. The im-
ages were shown one-by-one in a random order, and the task of
the observer was to use a scale slider to assess the glossiness of
the depicted object on the scale of 0-100, where 0 corresponds to
minimal gloss. The experiment was performed using QuickEval
tool [29] in a controlled environment on a calibrated sRGB EIZO
CG246 ColorEdge display, with a gamma of 2.2, a whitepoint
color temperature of 6500K, and a max. luminance of 80 cd/m2.
Distance between the display and the observer was 65 cm. The
display resolution was 1920x1080. The image size was 13.55cm
(both horizontally and vertically) occupying approximately 12°
of the field of view (FoV). The experiment took approximately
20-25 minutes per observer.

Instructions
Before the experiment, the definition of gloss from the

ASTM Standard Terminology of Appearance [1], as well as the
real life examples of glossy and matte objects were given to en-
sure that the observers understood the task correctly. They also
went though a quick pilot experiment to clear up any uncertain-
ties regarding the task. The following instruction was given to
the observers: “Judge the apparent glossiness of the object in the
image on a scale from 0 (least glossy) to 100 (most glossy) by
adjusting the scale slider”.

Observers
15 observers with normal or corrected-to-normal vision par-

ticipated in the experiment, including the two authors of this arti-
cle. Except of the authors, the observers were naı̈ve to the purpose
of the study. 14 observers were first- and second-year computer
science graduate-level students. The standard deviation among
observers’ scores for each stimulus was on average 15, which
points out the existing cross-observer differences. However, no
difference was found between the authors and the naı̈ve observers.
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Table 1: Parameters for the original 27 materials from [12].
Name Value
Alpha, α 0.04, 0.07, 0.10
Specular Reflectance, ρs 0.033, 0.066, 0.099
Diffuse Reflectance, ρd 0.03, 0.193, 0.767

Table 2: Parameters for additional images for contrast gloss scal-
ing. Alpha was fixed to 0.04. Additional points were sampled
between original ρd and ρs values (cf. Table 1).

Name Value
Alpha, α (fixed) 0.04
Specular, ρs 0.017, 0.033, 0.050, 0.066, 0.083, 0.099
Diffuse, ρd 0.030, 0.087, 0.193, 0.420, 0.767

Table 3: Parameters for additional images for DOI gloss scaling.
Similarly to the original work [12], ρd and ρs were fixed to 0.03
and 0.099, respectively. 11 levels of al pha were used, sampled
from 0.01 to 0.19 with steps of 0.02, supplemented with 0.10.

Name Value
Alpha, α 0.10, 0.01 to 0.19 (with 0.02 interval)
Specular, ρs (Fixed) 0.099
Diffuse, ρd (Fixed) 0.03

Results
First of all, we investigate how the magnitude of perceived

gloss changes between the shapes when the material remains iden-
tical. Fig. 2 shows gloss rating for spherical objects as a function
of gloss rating for Lucy made of the same material. If the null
hypothesis were true and the shape had no impact on perceived
gloss, then the values for both shapes should have been nearly
identical (assuming some degree of noise) and the correlation
should have been nearly perfectly linear. However, we observe
from the plot that this is not the case. Not only the absolute mag-
nitudes of the two are not similar, but also simple linear regression
fails to adequately explain all variation in the data, manifesting a
gloss constancy failure. The boxplots in Fig. 3 show that mean
and median gloss rating is higher for spheres when α=0.04, and
higher for Lucy when α=0.07 and α=0.10. We studied how the
gloss rating changed for all 57 materials. Fig. 4 illustrates that for
low α , sphere is perceived glossier than Lucy made of the same
material, while for high α , Lucy is perceived glossier. For more
moderate α values, the two become roughly equivalent. The box-
plots also show that spherical objects depend on all those three
parameters: perceived gloss being positively correlated with ρs,
and negatively correlated with α and ρd , while for Lucy’s gloss
rating is weakly affected by changes in ρd and especially, in α;
while, on the other hand, it rapidly increases with the increase of
specular component ρs.

Afterward, we analyze the stimuli with fixed alpha and vary-
ing ρs and ρd , and with fixed ρs and ρd , and varying alpha, to
study how contrast and distinctness (as defined by Pellacini et
al. [12]) relate with the gloss rating of our stimuli, respectively.
The results for distinctness are shown in Fig. 5. It turned our that
d = 1−α definition of distinctness is robust enough for our data
too, which describes approximately 94% of the variation in gloss
rating for this subset of stimuli (R2 = 0.94 both for sphere and
Lucy). Root Mean Square Error (RSME) is also reasonably low
and equals to 5.20 and 2.86, for sphere and Lucy, respectively.
There is another important point worth highlighting: the slope of
the fitted curve is considerably steeper for sphere than it is for
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Figure 2: Gloss rating for spheres as a function of gloss rating
for Lucies made of the same material, for all 57 materials. As we
can observe, the magnitudes are not only far from being similar,
but also the relationship cannot even be adequately described by
a simple linear model. R2, RMSE, and the fitted curve equation
are shown in the top left corner.

Lucy, meaning that change in distinctness has larger impact on
apparent gloss of spherical shapes than it is for Lucy.

As for contrast (Fig. 6), whose optimal definition was found
in [12] to be c = 3

√
ρs +ρd/2− 3

√
ρd/2, our fitting did not turn

out as good as it was reported in the previous work [12]. R2 is
0.77 for sphere, and 0.62 for Lucy, with RMSE equal to 10.39 for
the latter. More accurate embedding was obtained with a more
straightforward linear regression with two independent variables
ρs and ρd , that increased R2 to 0.89 for both shapes. Moreover,
the strength of specular component alone (ρs) describes the vari-
ation in Lucy gloss rating better than the sophisticated contrast
parameter (R2=0.69).

Analysis and Discussion
The results in the previous section have shown that apparent

gloss constancy fails across shapes, and Lucy and Sphere made of
the same material oftentimes differ in perceived gloss.

The results from Pellacini et al. [12] have been partially re-
produced for a spherical shape, but the model did not generalize
to Lucy. For low α materials, spheres are glossier than Lucy ob-
jects made of the same material; for high α the opposite is true.
While all of Ward’s parameters have considerable impact on gloss
appearance of a sphere, Lucy remains less affected by α , and pri-
marily co-varies with the strength of the specular component. The
model by Pellacini et al. [12] varied DOI with Ward’s heuristic
spread of specular lobe parameter (α), which is phenomenologi-
cally similar to surface roughness found in microfacet-based mod-
els. As mentioned in the introduction, DOI can be blurred and
become less distinct not only by micro-level variations of shape,
but also macro-level complexities of surface geometry and vary-
ing curvature. As observed by Gigilashvili et al. [11], observers
rely on DOI for spherical shapes, but it is not the factor when
more complex shapes are used. This can be attributed to the fact
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 Figure 3: Boxplots for original 27 materials show how gloss ratings change by optical properties: α , ρs, and ρd . The boxes correspond to
the interquartile range, the horizontal line inside the box is median, while X symbol corresponds to mean. The top and bottom whiskers
extend to the maximum and minimum values, respectively. While all three parameters seem important for sphere, Lucy seems to be
strongly variant to specular component only.
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Figure 4: The bar plots show how the average Sphere and Lucy gloss ratings vary for all 57 materials. Material properties are written
below, where numbers correspond to α , ρs, and ρd , respectively. The materials are ranked by α from left to right. It is apparent that for
low alphas, sphere is usually glossier than Lucy made of the same material, while for high alphas the opposite is true.

that simple shape, such as a sphere, permits to observe the mirror
reflection of the environment, while Lucy does not (see Fig. 1).
This is also consistent with another study [20], which showed that
subsurface scattering albedo is negatively correlated with gloss
for spherical objects, but not for Lucy, because higher absorption
in the subsurface increases the contrast, and better contrast in-
creases the visibility of the mirror reflections. These observations
once again highlight a need to include shape in modeling gloss,
or to tailor existing models to each shape [25].

As mentioned above, Hunter [10] identified at least six dif-
ferent dimensions of gloss. However, in this study we have pri-
marily discussed just two of them: DOI and contrast gloss. Pel-
lacini et al. [12] argue that these two dimensions are sufficient to

model gloss specifically for their stimuli, however, they leave pos-
sibility that for other stimuli other gloss dimensions may be more
important. Our findings indicate that gloss dimensions are not
universal and they can be specific to an object. While distinctness-
of-image gloss and contrast gloss are primary gloss dimensions
for a simple spherical object, specular gloss comes into play in-
stead of DOI for more complex shapes, such as Lucy in this study
and the bust figurine in the previous one [11].

Observed differences in the magnitudes of apparent gloss be-
tween the shapes once again illustrate that we have poor ability
to recover surface reflectance. These discrepancies could poten-
tially be explained by differences in image cues (coverage area,
contrast and sharpness of the highlights [9, 23]). Let’s refer to
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Figure 5: Gloss rating as a function of distinctness parameter,
which is defined in [12] as: d = 1−α . The fitted line is shown in
blue. The equation R2 and RMSE are given in the top left corner
of the plot. We can observe that both fitting are good, and the
slope of a sphere is larger.
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Figure 6: Gloss rating as a function of distinctness parameter,
which is defined in [12] as: c = 3

√
ρs +ρd/2− 3

√
ρd/2. Neither

shape provided as good fitting as in the previous work, and the fit
looks less accurate for Lucy.

Fig. 7, which shows a sphere and a Lucy with identical param-
eters. Both of them have low α , which is associated with high
DOI. As we can observe, the visible surface of a sphere is entirely
covered with specular reflections, the object appearing like a mir-
ror. On the other hand, Lucy has a more diverse distribution of
surface normals, and within a small region, different parts of the
surface are facing to completely different directions. Because of
this, only small part of Lucy is covered with specular reflections,
which is not enough for getting the impression of the surrounding
world. This explains why sphere appears glossier when α is low.

On the other hand, when α is high, Lucy appears glossier. In
this case, DOI is very low, and a sphere cannot be used as a mir-
ror anymore. This difference can be rooted in other gloss cues:
sharpness of the specular highlights, and contrast between specu-
lar and non-specular areas that are higher for Lucy, because color
of a rough sphere is rather homogeneous, while Lucy has more
diverse distribution of light and dark regions, which it owes to
its high surface curvature. The complex surface of Lucy creates
larger contrast in the areas occluded from the direct illumination
(e.g. below the wings, in the armpit etc.). Furthermore, Lucy
produces smaller yet higher number of specular regions (Fig. 7),
which has been demonstrated to be also playing a role [16]. Fi-
nally, within a given dataset, observers get used to the fact that a
sphere can be a mirror. When α increases and this is not possible
anymore, the loss of mirror-effect is more noticeable than blurring
small highlights of the Lucy that was not mirror-like anyway.

Figure 7: Coverage area is an important gloss cue (marked with
red ellipses). While the entire surface of a sphere is covered with
specular reflections, only small part of Lucy’s surface is posi-
tioned in a way to reflect specularly toward the camera (compare
areas a cyan arrow is pointing to). This makes Lucy less mirror-
like, even though both objects are made of an identical material
with α=0.01, ρs=0.03, and ρd=0.099.

This study comes with multiple limitations: first of all, we
used the Ward’s heuristic model to make our study comparable
with that of Pellacini et al. [12], while real-life optical counter-
parts of its heuristic parameters cannot be varied independently.
Future study should use more realistic microfacet-based model,
which enables investigation on materials with subsurface light
transport that also affects apparent gloss [20]. More robust defini-
tion of the perceptual dimensions than in the discussed model [12]
is also needed (e.g., it neglects the effect of α on contrast gloss).
Besides, low dynamic range images are subject to limitations
of the tone mapping. High intensity specular highlights, which
might be clipped, contain crucial gloss cues. Thus, future works
should be conducted on HDR displays, or with physical objects.

We understand that the link between the computer graphics
model and perception is not straightforward and the explanation
of underlying perceptual mechanisms most probably lies in anal-
ysis of image cues. However, Pellacini et al. [12] demonstrated
that exploring the link between the rendering parameters and per-
ception can enable more perceptually-aware rendering in practi-
cal applications. The objective of this work is to demonstrate why
this kind of models should also incorporate the shape parame-
ters, while the exact reason for cross-shape discrepancies needs
to be brought to light with further studies. There are indications
that dimensionality of gloss may differ between Lucy and sphere.
The shape-specific dimensionality of gloss can be revealed with
MDS in future studies. Besides, the exact mathematical definition
of candidate image cues and quantitative modeling of perceived
gloss by them definitely merits a rigorous study in the future.

Conclusion
We conducted a psychophysical experiment to identify

whether the overall magnitude of perceived gloss varies between
the shapes. We found that gloss constancy fails across the shapes,
and a sphere and a Lucy made of an identical material do not nec-
essarily appear equally glossy. If the spread of the specular lobe
is low and the reflected image is sharp, sphere appears glossier;
if it is high and reflected image is blurry, conversely, Lucy ap-
pears glossier than a sphere. The distinctness-of-image is a strong
glossiness cue for spherical objects that permit observing mirror-
reflections. Its importance decreases considerably for Lucy, as
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Lucy’s complex surface geometry does not permit observing clear
reflectance image of the environment. We also illustrated that the
model defined on spherical objects [12] does not generalize well
to Lucy. Therefore, we advocate for incorporating shape features
into future gloss models, which requires rigorous investigation in
the years coming. We hypothesize that this can be achieved by
analysis of the image cues. While we propose area covered by the
specular highlights, their sharpness, and contrast between specu-
lar and non-specular parts as potential candidate cues, future work
is needed for exact mathematical formulation of these metrics and
bridging the gap between image statistics and perception.
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