
A NOTE ON THE MEAN VALUES OF

THE DERIVATIVES OF ζ 1{ζ

ANDRÉS CHIRRE

Abstract. Assuming the Riemann hypothesis, we obtain a formula for the mean value of the k-derivative

of ζ1{ζ, depending on the pair correlation of zeros of the Riemann zeta-function. This formula allows us to

obtain new equivalences to Montgomery’s pair correlation conjecture. This extends a result of Goldston,

Gonek, and Montgomery where the mean value of ζ1{ζ was considered.

1. Introduction

Let ζpsq denote the Riemann zeta-function. The Riemann hypothesis (RH) states that the non-trivial

zeros ρ of ζpsq have the form ρ “ 1
2 ` iγ with γ P R. We will assume RH throughout this paper.

1.1. Montgomery’s pair correlation conjecture. In 1973, Montgomery [17] defined the pair correlation

function

Npβ, T q :“
ÿ

0ăγ,γ1ďT

0ăγ´γ1ď 2πβ
log T

1,

where the double sum runs over the ordinates γ, γ1 of two sets of non-trivial zeros of ζpsq, counted with

multiplicity. Since there are „ T log T {p2πq non-trivial zeros of ζpsq with ordinates in the interval p0, T s

as T Ñ 8, the function Npβ, T q counts the number of pairs of zeros within β times the average spacing

between zeros. The pair correlation conjecture of Montgomery asserts that

Npβ, T q „
T log T

2π

ż β

0

"

1´
´ sinπu

πu

¯2
*

du, as T Ñ8 for any fixed β ą 0. (1.1)

Assuming RH, there are several known equivalences1 to this conjecture. Define the function

F pα, T q :“
2π

T log T

ÿ

0ăγ,γ1ďT

T iαpγ´γ
1
qwpγ ´ γ1q,

introduced by Montgomery [17], where α P R, T ě 2, and wpuq “ 4{p4` u2q. Using this function, Goldston

[12] showed that the pair correlation conjecture (1.1) is equivalent to
ż b``

b

F pα, T qdα „ `, as T Ñ8 for any fixed b ě 1 and ` ą 0. (1.2)

Another equivalence for the pair correlation conjecture is related to the second moment of ζ 1{ζ. In fact, Gold-

ston, Gonek, and Montgomery [14, Theorem 3] established that the pair correlation conjecture is equivalent
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1 For an equivalence of the pair correlation conjecture related to the asymptotic formula for an integral of Selberg connected
with primes in short intervals, see [10, 12, 14].
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to the asymptotic

Ipa, T q :“

ż T

1

ˇ

ˇ

ˇ

ˇ

ζ 1

ζ

ˆ

1

2
`

a

log T
` it

˙
ˇ

ˇ

ˇ

ˇ

2

dt „

ˆ

1´ e´2a

4a2

˙

T log2 T, as T Ñ8 for any fixed a ą 0. (1.3)

Since Montgomery’s pair correlation conjecture remains a difficult open problem, the efforts have thus

been concentrated in obtaining upper and lower bounds for the functions Npβ, T q,
şb``

b
F pα, T qdα, and

Ipa, T q in place of asymptotic formulae (see for instance [3, 4, 9, 11, 13, 14]).

1.2. Mean values of the k-derivative of ζ 1{ζ. The main goal in this paper is to extend the technique

developed by Goldston, Gonek, and Montgomery in [14] to get new equivalences of the pair correlation

conjecture, related to the mean values of the derivatives of ζ 1{ζ. Let k ě 0 be an integer. For a ą 0 and

T ě 2, define the second moment of the k-derivative of ζ 1{ζ as

Ikpa, T q “

ż T

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt.

With this notation, we have I0pa, T q “ Ipa, T q.

Theorem 1. Assume RH and let k ě 0 be an integer. The following statements are equivalent:

(I)

ż b``

b

F pα, T qdα „ `, as T Ñ8 for any fixed b ě 1 and ` ą 0;

(II) Ikpa, T q „

˜

p2k ` 1q!

p2aq2k`2
´

2k`1
ÿ

m“1

m p2kq!

p2k ` 1´mq!

e´2a

p2aqm`1

¸

T plog T q2k`2, as T Ñ8 for any fixed a ą 0.

Note that Theorem 1 gives new equivalences for the pair correlation conjecture. When k “ 0, it recovers the

equivalence for the asymptotic formula (1.3). Moreover, our result shows the dependence of the asymptotic

formulae for Ikpa, T q for all values of k ě 0.

Corollary 2. Assume RH. Then, the asymptotic formula (II) holds for some k ě 0 if and only if it holds

for all k ě 0.

One can estimate the right order of magnitude for Ikpa, T q, as T Ñ 8, for a fixed a ą 0. In fact, using

Proposition 5 and the uniform estimate (see, for instance [13])
ż β

1

F pα, T qdα ! β, (1.4)

it follows that for fixed k ě 0 and a ą 0, we have Ikpa, T q —k,a T plog T q2k`2.

On the other hand, Farmer proved a relation between Ipa, T q and a certain discrete mean value of ζ 1{ζ.

For k ě 0 an integer, define

Dkpa, T q “
ÿ

0ăγďT

ˆ

ζ 1

ζ

˙p2kqˆ
1

2
`

a

log T
` iγ

˙

.

Then, Farmer [7, Lemma 3b] established that, for a fixed a ą 0,

D0pa, T q “
1

2π
I0

´a

2
, T

¯

`O
`

T ε
˘

, for T ě 2 and ε ą 0 sufficiently small. (1.5)

In particular, using (1.3) we obtain that the pair correlation conjecture is equivalent to

D0pa, T q „

ˆ

1´ e´a

2πa2

˙

T log2 T, as T Ñ8 for any fixed a ą 0.
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Extending (1.5) for Dkpa, T q and using Theorem 1 we arrive at the following corollary.

Corollary 3. Assume RH and let k ě 0 be an integer. The following statements are equivalent:

(I)

ż b``

b

F pα, T qdα „ `, as T Ñ8 for any fixed b ě 1 and ` ą 0;

(II) Dkpa, T q „
1

2π

˜

p2k ` 1q!

a2k`2
´

2k`1
ÿ

m“1

m p2kq!

p2k ` 1´mq!

e´a

am`1

¸

T plog T q2k`2, as T Ñ8 for any fixed a ą 0.

1.3. Related results. We would like to point out that for some objects related to the Riemann zeta-

function, there are results where one relates the asymptotic formula of their second moments to suitably

weighted integrals of F pα, T q. For instance, Goldston [11, Theorem 1] showed, under RH, that

ż T

0

|Sptq|2dt “
T

2π2
log log T `

T

2π2

«

ż 8

1

F pα, T q

α2
dα` γ0 ´

8
ÿ

m“2

ÿ

p

ˆ

1

m
´

1

m2

˙

1

pm

ff

` opT q, as T Ñ8,

where πSptq denote the argument of the Riemann zeta-function at the point 1
2`it, and γ0 is Euler’s constant.

Recently, this has been extended to the iterates of the function Sptq (see [6, Theorem 1]). Note that, assuming

(1.2), by integration by parts and (1.4) we get

ż T

0

|Sptq|2dt “
T

2π2
log log T `

T

2π2

«

1` γ0 ´
8
ÿ

m“2

ÿ

p

ˆ

1

m
´

1

m2

˙

1

pm

ff

` opT q, as T Ñ8.

We refer the reader to Farmer [7, 8] for other results related to pair correlation and certain asymptotic

formulae.

2. The representation formula for Ikpa, T q

In this section, we establish a representation formula for the second moment of the k-derivative of ζ 1{ζ,

related to the function F pα, T q. It can be seen as an extension of [14, Theorem 1]. The Poisson kernel plays

an important role in our formula. For b ą 0, let hb : RÑ R be the Poisson kernel defined as

hbpxq “
b

b2 ` x2
, (2.1)

and let `b : RÑ R be an auxiliary function2 defined as

`bpxq “
b2 ´ x2

pb2 ` x2q2
. (2.2)

The following technical lemma about the derivatives of hb and `b will be useful for us.

Lemma 4. Let k ě 0 be an even integer. Then, for all x P R we have

ˇ

ˇphbq
pkqpxq

ˇ

ˇ !k
1

bk´1pb2 ` x2q
, and

ˇ

ˇp`bq
pkqpxq

ˇ

ˇ !k
1

bkpb2 ` x2q
.

Proof. Let us prove the first estimate for b “ 1. For any k ě 0, it is easy to see by induction that

ph1q
pkqpxq “

P pxq

p1` x2q2k
,

where P is a polynomial of degree at most 2k`1 ´ k ´ 2. In particular, when k “ 2m with m P Z we have

ˇ

ˇph1q
p2mqpxq

ˇ

ˇ !m
1

p1` x2qm`1
.

2 The function `b has previously been used to bound the real part of the derivative of ζ1{ζ (see [5, Theorem 3]).
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In the general case, since hbpxq “ h1px{bq{b, it follows that

ˇ

ˇphbq
p2mqpxq

ˇ

ˇ “
1

b2m`1

ˇ

ˇ

ˇ
ph1q

p2mq
´x

b

¯
ˇ

ˇ

ˇ
!m

b

pb2 ` x2qm`1
ď

1

b2m´1pb2 ` x2q
.

We conclude the first estimate. The proof of the second estimate is similar. �

Proposition 5. Assume RH and let k ě 1 be a fixed integer. Then, for 0 ă a ! 1 and T ě 3 we have

Ikpa, T q “
p´1qk

22kπ2k
plog T q2k`1

ÿ

0ăγ,γ1ďT

`

ha{π
˘p2kq

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q `O

ˆ

T plog T q2k`1

a2k´1
`
plog T q2k`4

a2k`2

˙

,

where ha{π is defined in (2.1) and wpuq “ 4{p4` u2q. In particular, for a fixed a ą 0,

Ikpa, T q “

˜

ż 1

0

α2k`1e´2aα dα`

ż 8

1

α2ke´2aα F pα, T qdα` op1q

¸

T plog T q2k`2, as T Ñ8. (2.3)

Proof. We start obtaining a bound for
`

ζ 1{ζ
˘pkq

. Let s “ σ` it, with 1
2 ă σ ď 3

2 and t ě 2. From the partial

fraction decomposition for ζ 1{ζ [18, Eq. 2.12.7]

ζ 1

ζ
psq “ B ´

1

s´ 1
`

1

2
log π ´

1

2

Γ1

Γ

ˆ

s

2
` 1

˙

`
ÿ

ρ

ˆ

1

s´ ρ
`

1

ρ

˙

, (2.4)

where the sum runs over the non-trivial zeros ρ “ 1
2 ` iγ of ζpsq and B “ ´Re

ř

ρ ρ
´1. Taking k derivatives

in (2.4) and using the estimate3

ˆ

Γ1

Γ

˙pkq

pwq “ O

ˆ

1

|w|k

˙

, for Rew ě σ0 ą 0,

it follows that
ˆ

ζ 1

ζ

˙pkq

psq “ p´1qk k!
ÿ

ρ

1

ps´ ρqk`1
`O

ˆ

1

|t|k

˙

. (2.5)

Since
ř

|γ´t|ď1 1 “ Oplog tq, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γąt`1

1

ps´ ρqk`1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ně1

#

ÿ

t`năγďt`n`1

1

|t´ γ|k`1

+

ď
ÿ

ně1

#

ÿ

t`năγďt`n`1

1

nk`1

+

!
ÿ

ně1

logpt` nq

nk`1
! log t.

Similarly, we can prove the same estimate when the sum runs over γ ă t´ 1. Therefore, in (2.5) we obtain,4

for 1
2 ă σ ď 3

2 and t ě 2,
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

ˇ

ˇ

ˇ

ˇ

ˇ

!
log t

pσ ´ 1
2 q
k`1

. (2.6)

Now, let us prove Proposition 5. Using the elementary identity |w|2 “ 2pRe twuq2 ´ Re tw2u for all w P C,

we write

ż T

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “ 2

ż T

1

ˆ

Re

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

˙2

dt´ Re

ż T

1

ˆˆ

ζ 1

ζ

˙pkq

pσ ` itq

˙2

dt. (2.7)

We estimate the second integral on the right-hand side of (2.7) by pulling the contour to the right, up to the

line Re s “ 3
2 (see [14, p. 111]). In fact, to estimate the vertical edge at Re s “ 3

2 we use the representation

3 It can be proved as the proof of Stirling’s formula, but starting after taking k derivatives in [1, Eq. (34) in p. 202].
4 The estimate (2.6) also holds when k “ 0.
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as a Dirichlet series of pζ 1{ζqpkqpsq, and for the upper horizontal edge we use the estimate (2.6). Therefore,

in (2.7) we get

ż T

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “ 2

ż T

1

ˆ

Re

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

˙2

dt`O

˜

log2 T

pσ ´ 1
2 q

2k`1

¸

. (2.8)

On the other hand, note that

p´1qk k! Re

"

ÿ

ρ

1

ps´ ρqk`1

*

“
ÿ

γ

Re

"

p´iqk
dk

dxk

˜

1

pσ ´ 1
2 q ` ix

¸+
ˇ

ˇ

ˇ

ˇ

ˇ

x“t´γ

“
ÿ

γ

Re

"

p´iqk
dk

dxk

˜

σ ´ 1
2

pσ ´ 1
2 q

2 ` x2

¸

` p´iqk`1 d
k

dxk

˜

x

pσ ´ 1
2 q

2 ` x2

¸+
ˇ

ˇ

ˇ

ˇ

ˇ

x“t´γ

“
ÿ

γ

#

Re
 

p´iqk
( dk

dxk

˜

σ ´ 1
2

pσ ´ 1
2 q

2 ` x2

¸

` Re
 

p´iqk`1
( dk´1

dxk´1

˜

pσ ´ 1
2 q

2 ´ x2

ppσ ´ 1
2 q

2 ` x2q2

¸+
ˇ

ˇ

ˇ

ˇ

ˇ

x“t´γ

.

Therefore, taking the real part of (2.5) we arrive at

Re

ˆ

ζ 1

ζ

˙pkq

pσ ` itq `O

ˆ

1

|t|k

˙

“
ÿ

γ

fk,σpt´ γq, (2.9)

where fk,σpxq “ Re tp´iqku phσ´1{2q
pkqpxq ` Re tp´iqk`1u p`σ´1{2q

pk´1qpxq, and the functions hσ´1{2 and

`σ´1{2 are defined in (2.1) and (2.2) respectively. Using the Fourier transforms5

xhb pyq “ πe´2πb|y| and x`b pyq “ 2π2|y|e´2πb|y|,

the Fourier transform of fk,σ is given by

yfk,σpyq “
´

`

Re
 

ik
(˘2
yk `

`

Re
 

ik`1
(˘2
yk´1|y|

¯

p´1qk2kπk`1e´2πpσ´1{2q|y|. (2.10)

Now, we square (2.9), integrate from 1 to T , and use (2.6) to get

ż T

1

˜

Re

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

¸2

dt`O

˜

log2 T

pσ ´ 1
2 q
k`1

¸

“

ż T

1

˜

ÿ

γ

fk,σpt´ γq

¸2

dt. (2.11)

We proceed to analyze the right-hand side of (2.11). From Lemma 4, it follows that6

|fk,σpxq| !
hσ´1{2pxq

pσ ´ 1{2qk
,

and using Montgomery’s argument [17] we can restrict the inner sum over the zeros of ζpsq such that 0 ă γ ď

T and extend the integral to all t P R, with a final error at most ! pσ´1{2q´2k log3 T `pσ´1{2q´2k´2log2 T

(see [14, p. 113]). Therefore, from (2.10) and using the fact that fk,σ is even,

ż 8

´8

˜

ÿ

0ăγďT

fk,σpt´ γq

¸2

dt “
ÿ

0ăγ,γ1ďT

`

fk,σ ˚ fk,σ
˘

pγ ´ γ1q “
ÿ

0ăγ,γ1ďT

{

`

y

˘2
fk,σ pγ ´ γ1q

5 For a function f P L1pRq, we define its Fourier transform as pfpyq “
ş8

´8
e´2πiyx fpxq dx, and the convolution of f and g is

defined as pf ˚ gqpyq “
ş8

´8
fpxq gpy ´ xq dx.

6 We highlight that depending on the parity of k, only one of the terms of fk,σ appears.
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“ πp´1qk
ÿ

0ăγ,γ1ďT

`

h2σ´1

˘p2kq
pγ ´ γ1q.

We want to add the weight wpγ ´ γ1q to the last sum. In fact, Lemma 4 gives the bound
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăγ,γ1ďT

`

h2σ´1

˘p2kq
pγ ´ γ1q

`

1´ wpγ ´ γ1q
˘

ˇ

ˇ

ˇ

ˇ

!
1

p2σ ´ 1q2k´1

ÿ

0ăγ,γ1ďT

4

4` pγ ´ γ1q2

!
T log T F p0, T q

p2σ ´ 1q2k´1
!

T log2 T

p2σ ´ 1q2k´1
,

where in the last estimate we have used (2.14). Thus,

ż T

1

˜

ÿ

γ

fk,σpt´ γq

¸2

dt “ πp´1qk
ÿ

0ăγ,γ1ďT

`

h2σ´1

˘p2kq
pγ ´ γ1qwpγ ´ γ1q

`O

ˆ

T log2 T

p2σ ´ 1q2k´1
`

log3 T

p2σ ´ 1q2k
`

log2 T

p2σ ´ 1q2k`2

˙

.

Now, considering that σ “ 1
2`

a
log T for 0 ă a ! 1 and using the fact that h2σ´1pxq “ ha{πpx log T {2πq log T {2π

for x P R, we obtain in (2.11)

ż T

1

˜

Re

ˆ

ζ 1

ζ

˙pkq

pσ ` itq

¸2

dt “
p´1qk

22k`1π2k
plog T q2k`1

ÿ

0ăγ,γ1ďT

`

ha{π
˘p2kq

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

`O

ˆ

T plog T q2k`1

a2k´1
`
plog T q2k`4

a2k`2

˙

.

Inserting it in (2.8) we conclude that

ż T

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “
p´1qk

22kπ2k
plog T q2k`1

ÿ

0ăγ,γ1ďT

`

ha{π
˘p2kq

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

`O

ˆ

T plog T q2k`1

a2k´1
`
plog T q2k`4

a2k`2

˙

.

(2.12)

From Fourier inversion, it is known that for any function R P L1pRq such that pR P L1pRq we have the formula

(see [17, Eq. (3)])

ÿ

0ăγ,γ1ďT

R

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “
T log T

2π

ż 8

´8

pRpαqF pα, T qdα.

Applying this formula to the function pha{πq
p2kq and using the fact that {phbqp2kqpyq “ p´1qk22kπ2k`1y2ke´2πb|y|,

we get in (2.12) that, for a fixed a ą 0,

ż T

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “
T plog T q2k`2

2

ż 8

´8

α2ke´2a|α| F pα, T qdα`O
`

T plog T q2k`1
˘

. (2.13)

Refining the original work of Montgomery [17], Goldston and Montgomery [15, Lemma 8] proved that, under

RH,

F pα, T q “
`

T´2|α| log T ` |α|
˘

p1` op1qq, as T Ñ8, (2.14)

uniformly for 0 ď |α| ď 1. Using (2.14) and the fact that F pα, T q “ F p´α, T q for all α P R, we have
ż 8

´8

α2ke´2a|α| F pα, T qdα “ 2

ż 1

0

α2k`1e´2aα dα` 2

ż 8

1

α2ke´2aαF pα, T qdα` op1q.
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Inserting this in (2.13) we arrive at (2.3). �

3. A Tauberian lemma and the Proof of Theorem 1

3.1. A Tauberian lemma. The following lemma can be seen as a generalization7 of [14, Lemma 2], where

the case G ” 1 was considered. The proof uses Karamata’s method and some examples of these Tauberian

lemmas are given in [18, Section 7.12].

Lemma 6. Let fpα, T q ě 0 be a function such that the function α ÞÑ fpα, T q is continuous for each T ě 2

fixed, and for β ą 0 and T ě 2,
ż β

0

fpα, T qdα ! β ` 1. (3.1)

Let G be a polynomial such that Gpαq ą 0 for α P r0,8q. The following statements are equivalent:

(A)

ż 8

0

fpα, T qGpαq e´bα dα „

ż 8

0

Gpαq e´bα dα, as T Ñ8 for any fixed b ą 0.

(B)
1

d´ c

ż d

c

fpα, T qdα „ 1, as T Ñ8 for any fixed 0 ď c ă d.

Proof. Let us start assuming (A). Let 0 ď c ă d be fixed, and define the function h : r0, 1s Ñ R by

hpuq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, if 0 ď u ă e´d

1

uGp´ log uq
, if e´d ď u ď e´c

0, if e´c ă u ď 1.

By the Weierstrass approximation theorem, for any ε ą 0 sufficiently small we can construct a polynomial

P puq “
řN
n“0 anu

n (depending on ε) such that

hpuq ď P puq for all u P r0, 1s, and

ż 1

0

pP puq ´ hpuqq2 du “ Opεq. (3.2)

Defining the function Qpαq “ e´αP
`

e´α
˘

, it follows that8

χrc,dspαq

Gpαq
ď Qpαq

for all α ě 0. Recalling that Gpαq ą 0 we have

ż d

c

fpα, T qdα ď

ż 8

0

fpα, T qGpαqQpαqdα “

ż 8

0

fpα, T qGpαq
N
ÿ

n“0

ane
´pn`1qα dα

“

N
ÿ

n“0

an

ż 8

0

fpα, T qGpαq e´pn`1qα dα.

Taking lim sup as T Ñ8 and using (A) we arrive at

lim sup
TÑ8

ż d

c

fpα, T qdα ď
N
ÿ

n“0

an

ż 8

0

Gpαq e´pn`1qα dα (3.3)

7 See [2] for another extension of [14, Lemma 2] depending of certain measures.
8 Here χrc,dspαq denotes the characteristic function of the interval rc, ds.
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By a change of variables, the definition of h, the Cauchy-Schwarz inequality and (3.2), one can see that

N
ÿ

n“0

an

ż 8

0

Gpαq e´pn`1qα dα “

ż 1

0

Gp´ log uqP puqdu

“

ż 1

0

Gp´ log uqhpuqdu`

ż 1

0

Gp´ log uq pP puq ´ hpuqqdu

“

ż e´c

e´d

1

u
du`O

¨

˝

˜

ż 1

0

G2p´ log uqdu

¸1{2˜
ż 1

0

pP puq ´ hpuqq2 du

¸1{2
˛

‚

“ d´ c`Opε1{2q.

Letting εÑ 0 and combining this with (3.3), we conclude that

lim sup
TÑ8

ż d

c

fpα, T qdα ď d´ c.

Similarly, we can proceed to prove that

d´ c ď lim inf
TÑ8

ż d

c

fpα, T qdα.

Therefore we obtain (B). Let us prove that (B) implies (A). Using integration by parts and (3.1), we see that

ż 8

0

fpα, T qGpαq e´bα dα “ ´

ż 8

0

˜

ż α

0

fpβ, T qdβ

¸

`

Gpαq e´bα
˘1

dα. (3.4)

Finally, using (B), the dominated convergence theorem, and integration by parts one more time, we conclude.

�

3.2. Proof of Theorem 1. Since the case k “ 0 was considered in the work of Goldston, Gonek and

Montgomery (see [14, Theorem 3]), assume k ě 1. Using the identity9

ż 1

0

α2k`1e´2aα dα`

ż 8

1

α2ke´2aα dα “
p2k ` 1q!

p2aq2k`2
´

2k`1
ÿ

m“1

m p2kq!

p2k ` 1´mq!

e´2a

p2aqm`1
, for any a ą 0,

and (2.3) we have that (II) is equivalent to
ż 8

1

α2ke´2aα F pα, T qdα „

ż 8

1

α2ke´2aα dα.

A translation gives that (II) is equivalent to
ż 8

0

pα` 1q2ke´2aα F pα` 1, T qdα „

ż 8

0

pα` 1q2ke´2aα dα.

Using Lemma 6 with the function fpα, T q “ F pα ` 1, T q, Gpαq “ pα ` 1q2k, and b “ 2a we conclude the

proof. We remark that the additional constraint (3.1) follows from (1.4).

4. Proof of Corollary 3

Assume RH. From [18, p. 340], for each n P N there is Tn P pn, n` 1q such that for ´1 ď σ ď 2,
ˇ

ˇ

ˇ

ˇ

ζ 1

ζ
pσ ` iTnq

ˇ

ˇ

ˇ

ˇ

! plog Tnq
2. (4.1)

9 See [16, Eq. 3.351-1 and 3.351-2].
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Now, let k ě 1 be an integer, 0 ă a ! 1 and T ě 4 , T R N. Choose n P N such that T, Tn P pn, n` 1q and Tn

satisfies (4.1). Note that log Tn — log T . Using integration by parts k times and the bound (2.6), we have

ż Tn

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “

ż Tn

1

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙ ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
´ it

˙

dt

“
1

i

ż

1
2´

a
log T `iTn

1
2´

a
log T `i

ˆ

ζ 1

ζ

˙pkqˆ

s`
2a

log T

˙ ˆ

ζ 1

ζ

˙pkq

p1´ sqds

“
1

i

ż

1
2´

a
log T `iTn

1
2´

a
log T `i

ˆ

ζ 1

ζ

˙p2kqˆ

s`
2a

log T

˙

ζ 1

ζ
p1´ sqds`O

ˆ

plog T q2k`3

a2k`1

˙

.

We use the residue theorem on the rectangle with vertices 1
2 ´

a
log T ` i, 2 ` i, 2 ` iTn and 1

2 ´
a

log T ` iTn

(since RH holds, the function pζ 1{ζqp2kq
`

s ` 2a
log T

˘

is analytic in this rectangle) and the bounds (2.6) and

(4.1) to deduce that

ż Tn

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “ 2π
ÿ

0ăγăTn

ˆ

ζ 1

ζ

˙p2kqˆ

ρ`
2a

log T

˙

`
1

i

ż 2`iTn

2`i

ˆ

ζ 1

ζ

˙p2kqˆ

s`
2a

log T

˙

ζ 1

ζ
p1´ sqds`O

ˆ

plog T q2k`4

a2k`1

˙

.

It is known that ζpsq satisfies the functional equation ζpsq “ χpsqζp1´ sq, where

χpsq “
πs´

1
2 Γp 12 ´

s
2 q

Γp s2 q
.

Then, we write

1

i

ż 2`iTn

2`i

ˆ

ζ 1

ζ

˙p2kqˆ

s`
2a

log T

˙

ζ 1

ζ
p1´ sqds “

1

i

ż 2`iTn

2`i

ˆ

ζ 1

ζ

˙p2kqˆ

s`
2a

log T

˙ ˆ

χ1

χ
psq ´

ζ 1

ζ
psq

˙

ds. (4.2)

Using the estimate
χ1

χ
pσ ` itq “ ´ log

ˇ

ˇ

ˇ

ˇ

t

2π

ˇ

ˇ

ˇ

ˇ

`O

ˆ

1

|t|

˙

, for |t| ě 1 and |σ| ! 1,

and the representation as a Dirichlet series of pζ 1{ζqp2kqpsq in the right hand-side of (4.2), we integrate term

by term the right-hand side of (4.2) to obtain Oplog T q. Therefore, we arrive at

ż Tn

1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ζ 1

ζ

˙pkqˆ
1

2
`

a

log T
` it

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

dt “ 2π
ÿ

0ăγăTn

ˆ

ζ 1

ζ

˙p2kqˆ

ρ`
2a

log T

˙

`O

ˆ

plog T q2k`4

a2k`1

˙

.

We can replace Tn by T using (2.6) and
ř

|t´γ|ď1 1 “ Oplog tq with an error at most ! plog T q2k`4{a2k`2.

Therefore, we conclude for 0 ă a ! 1 and T sufficiently large, that

Ikpa, T q “ 2πDkp2a, T q `O

ˆ

plog T q2k`4

a2k`2

˙

.

Finally, we use Theorem 1 to conclude.

Acknowledgments

A.C. was supported by Grant 275113 of the Research Council of Norway. I would like to thank Oscar

Quesada-Herrera and the referee of this paper for their valuable suggestions.
9



References

[1] L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable., Third

edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.

[2] S. Baluyot, On the pair correlation conjecture and the alternative hypothesis, J. Number Theory 169 (2016), 183–226.

[3] E. Carneiro, V. Chandee, F. Littmann, and M. B. Milinovich, Hilbert spaces and the pair correlation of zeros of the

Riemann zeta-function, J. Reine Angew. Math. 725 (2017), 143–182.

[4] E. Carneiro, V. Chandee, A. Chirre, and M. B. Milinovich, On Montgomery’s pair correlation conjecture: A tale of three

integrals, preprint.

[5] A. Chirre and F. Gonçalves, Bounding the log-derivative of the zeta-function, to appear in Math. Z.

[6] A. Chirre and O. E. Quesada-Herrera, The second moment of Snptq on the Riemann hypothesis, to appear in Int. J.

Number Theory.

[7] D. W. Farmer, Long mollifiers of the Riemann zeta-function, Mathematika 40 (1993), no. 1, 71–87.

[8] D. W. Farmer, Mean values of ζ1{ζ and the Gaussian unitary ensemble hypothesis, Internat. Math. Res. Notices (1995),

no. 2, 71–82.

[9] P. X. Gallagher, Pair correlation of zeros of the zeta function, J. Reine Angew. Math. 362 (1985), 72–86.

[10] P. X. Gallagher and J. H. Mueller, Primes and zeros in short intervals, J. Reine Angew. Math. 303/304 (1978), 205–220.

[11] D. A. Goldston, On the function SpT q in the theory of the Riemann zeta-function, J. Number Theory 27 (1987), no. 2,

149–177.

[12] D. A. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta-function, J. Reine Angew. Math. 385

(1988), 24–40.

[13] D. A. Goldston and S. M. Gonek, A note on the number of primes in short intervals, Proc. Amer. Math. Soc. 108 (1990),

no. 3, 613–620.

[14] D. A. Goldston, S. M. Gonek, and H. L. Montgomery, Mean values of the logarithmic derivative of the Riemann zeta-

function with applications to primes in short intervals, J. Reine Angew. Math. 537 (2001), 105–126.

[15] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, Analytic number theory

and Diophantine problems (Stillwater, OK, 1984), 183–203, Progr. Math., 70, Birkhäuser Boston, Boston, MA, 1987.
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