A NOTE ON THE MEAN VALUES OF
THE DERIVATIVES OF (/¢

ANDRES CHIRRE

ABSTRACT. Assuming the Riemann hypothesis, we obtain a formula for the mean value of the k-derivative
of ¢’/¢, depending on the pair correlation of zeros of the Riemann zeta-function. This formula allows us to
obtain new equivalences to Montgomery’s pair correlation conjecture. This extends a result of Goldston,

Gonek, and Montgomery where the mean value of ¢’/ was considered.

1. INTRODUCTION
Let ((s) denote the Riemann zeta-function. The Riemann hypothesis (RH) states that the non-trivial
zeros p of ((s) have the form p = % + iy with v € R. We will assume RH throughout this paper.

1.1. Montgomery’s pair correlation conjecture. In 1973, Montgomery [17] defined the pair correlation

function

where the double sum runs over the ordinates 7,7 of two sets of non-trivial zeros of ((s), counted with
multiplicity. Since there are ~ TlogT/(27) non-trivial zeros of ((s) with ordinates in the interval (0,7]
as T — oo, the function N(8,T) counts the number of pairs of zeros within § times the average spacing

between zeros. The pair correlation conjecture of Montgomery asserts that

TlogT (* i 2
N(B,T) ~ ;f Jo {1 (Sli;m) }du, as T — oo for any fixed 5 > 0. (1.1)

Assuming RH, there are several known equivalencesﬂ to this conjecture. Define the function

2w
FlaT) = 70eT

T w(y =),
0<y,Y'<T
introduced by Montgomery [17], where o € R, T' > 2, and w(u) = 4/(4 + u?). Using this function, Goldston
[12] showed that the pair correlation conjecture (1.1 is equivalent to

b+-4
J F(a,T)da~ £, as T — oo for any fixed b > 1 and ¢ > 0. (1.2)
b

Another equivalence for the pair correlation conjecture is related to the second moment of ¢'/¢. In fact, Gold-

ston, Gonek, and Montgomery [I4, Theorem 3] established that the pair correlation conjecture is equivalent
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1 For an equivalence of the pair correlation conjecture related to the asymptotic formula for an integral of Selberg connected

with primes in short intervals, see [10] [12] [14].



to the asymptotic

T
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=+ —=+1
¢\2 logT
Since Montgomery’s pair correlation conjecture remains a difficult open problem, the efforts have thus

, 5+€ F(a,T)de, and

2 —2a

1—

dt ~ (462 ) Tlog?’T, as T — o for any fixed a > 0.  (1.3)
a

I(a,T) := J

1

been concentrated in obtaining upper and lower bounds for the functions N(5,T)

I(a,T) in place of asymptotic formulae (see for instance [3], 4 [9] [T}, 13 [14]).

1.2. Mean values of the k-derivative of (’/{. The main goal in this paper is to extend the technique
developed by Goldston, Gonek, and Montgomery in [14] to get new equivalences of the pair correlation
conjecture, related to the mean values of the derivatives of ('/(. Let k > 0 be an integer. For a > 0 and
T > 2, define the second moment of the k-derivative of {'/( as

T
dt.

B a G
(c)(zﬂogﬂ”)

Theorem 1. Assume RH and let k = 0 be an integer. The following statements are equivalent:

Ii(a,T) =J

1

With this notation, we have Iy(a,T) = I(a,T).

b+¢
) J Fla,T)da ~ ¢, asT — o for any fized b > 1 and £ > 0;
b

2k + 1)! 2k+1 m (2 6720,
(I1) Ix(a,T) ~ <((2a)2k+)2 - Z (2k +(1 —)m)! (2a)m+1

Note that Theorem [I] gives new equivalences for the pair correlation conjecture. When k = 0, it recovers the

)T(log T)**2  as T — o for any fived a > 0.

m=1

equivalence for the asymptotic formula (|1.3). Moreover, our result shows the dependence of the asymptotic

formulae for Ij(a,T) for all values of k > 0.

Corollary 2. Assume RH. Then, the asymptotic formula (II) holds for some k = 0 if and only if it holds
for all k = 0.

One can estimate the right order of magnitude for Iy(a,T), as T — oo, for a fixed a > 0. In fact, using

Proposition [5| and the uniform estimate (see, for instance [13])

JBF(OL,T) da « S, (1.4)

1
it follows that for fixed k > 0 and a > 0, we have Ij(a,T) = T(log T)?*+2.

On the other hand, Farmer proved a relation between I(a,T') and a certain discrete mean value of ¢’/(.

2 logT )

Then, Farmer [7, Lemma 3b] established that, for a fixed a > 0,

For k > 0 an integer, define

pien- 5 (6

0<y<T

1
Dy(a,T) = o I0<g,T) +O(T?), for T =2 and e > 0 sufficiently small. (1.5)

In particular, using (1.3)) we obtain that the pair correlation conjecture is equivalent to

—a

Do(a, T) ~ <1_

a2 ) Tlog2 T, asT — o for any fixed a > 0.
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Extending (1.5 for Dy(a,T) and using Theorem [1| we arrive at the following corollary.

Corollary 3. Assume RH and let k = 0 be an integer. The following statements are equivalent:
b+¢

I Fla,T)da ~ ¢, asT — o for any fired b > 1 and £ > 0;
b

1 [(k+1)! & m@2k)! e S
(I1) Dg(a,T) ~ 271'(@2’“2_7;1 Oh T 1= m)l gt T(logT) , as T — o for any fized a > 0.
1.3. Related results. We would like to point out that for some objects related to the Riemann zeta-
function, there are results where one relates the asymptotic formula of their second moments to suitably
weighted integrals of F'(«,T'). For instance, Goldston [I1l Theorem 1] showed, under RH, that
T 0 0
T T F(a,T) 1 1)\ 1
297 = t fd) _ N N
L |S#)Pdt = o loglog T + - — Ul o dart m%; (m mg) pm] +o(T), as T — o,

where 75(t) denote the argument of the Riemann zeta-function at the point 3 +it, and 7o is Euler’s constant.
Recently, this has been extended to the iterates of the function S(¢) (see [6, Theorem 1]). Note that, assuming

(1.2)), by integration by parts and (1.4]) we get
T o
T T 1 1 1
J |S(t)|%dt = ﬁloglogTJr 7.2 ll + v — Z Z < - > 1 +o(T), as T — oo.

2 m
0 m=2 p m m b

We refer the reader to Farmer [7, 8] for other results related to pair correlation and certain asymptotic

formulae.

2. THE REPRESENTATION FORMULA FOR Ij(a,T)

In this section, we establish a representation formula for the second moment of the k-derivative of ('/(,
related to the function F'(a, T). It can be seen as an extension of [I4, Theorem 1]. The Poisson kernel plays

an important role in our formula. For b > 0, let Ay : R — R be the Poisson kernel defined as

b
(@) = 353 (2.1)
and let ¢, : R — R be an auxiliary functiorﬂ defined as
b? — 22

The following technical lemma about the derivatives of hj and £, will be useful for us.

Lemma 4. Let k = 0 be an even integer. Then, for all x € R we have

|(hb)(k)(gg)| Lk m, and |(Zb)(k)(g;)| &g m

Proof. Let us prove the first estimate for b = 1. For any k > 0, it is easy to see by induction that

P(x)
B )R =7
( 1) (x) (1 + mQ)Qk
where P is a polynomial of degree at most 2¥*! — k — 2. In particular, when k = 2m with m € Z we have
1
2m
’(hl)( )(x)‘ L A )T

2 The function &, has previously been used to bound the real part of the derivative of ¢’/¢ (see [B, Theorem 3]).
3



In the general case, since hy(x) = hy(x/b)/b, it follows that

(2m) (] — (2m) (% b !
|(hb) (.13)| T pml ‘(hl) (b)‘ Lm (b2 + Cr2)m+1 < b2m71(b2 + x2)'

We conclude the first estimate. The proof of the second estimate is similar. O

Proposition 5. Assume RH and let k > 1 be a fized integer. Then, for 0 < a < 1 and T = 3 we have

—1)F 2% log T T(logT)?¢+1  (logT)?k+4
(@ T) = e (e TP 3 (o)™ (=) Juty =) + O o + ),

0<y,v'<T

where hq/r is defined in (2.1)) and w(u) = 4/(4 + u?). In particular, for a fived a > 0,

1 o
Iy(a,T) = (J o2k tle=2a0 g 4 f a?*e=29 P(a, T) da + 0(1)) T(logT)***2, as T — 0. (2.3)
0 1

Proof. We start obtaining a bound for (C’/C)(k). Let s = o +it, with % <o < % and ¢ > 2. From the partial
fraction decomposition for ¢’'/¢ [I8, Eq. 2.12.7]

¢ 11 1T (s 11

S(s)=B— ——+ -logn— ~— (2 +1 - 2.4

C(S) —tyleT— o5t +Zp: o) (2.4)
where the sum runs over the non-trivial zeros p = 1 +iv of {(s) and B = —Re ), o p~L. Taking k derivatives

in (2.4) and using the estimateﬂ

I (k) 1
(F) (w) = O<w|’€>’ for Rew > g9 >0,

it follows that
(&)= 0w S+ =

Since 3,4 <; 1 = O(logt), we have

1 1 1 log(t +n

y>t+1 n=l \t+n<y<t+n+1 n=zl \t+n<y<t+n+1 n=1

Similarly, we can prove the same estimate when the sum runs over v < t — 1. Therefore, in (2.5]) we obtainﬂ

' (CC/)(k()a +it)

Now, let us prove Proposition [5| Using the elementary identity |w|? = 2(Re {w})? — Re {w?} for all w € C,

LT (gjk()a +it) th —2 LT(Re (i/jk()a + it))zdt —Re £T<(§>(k()a + it))zdt. (2.7)

We estimate the second integral on the right-hand side of (2.7)) by pulling the contour to the right, up to the

line Res = 3 (see [14} p. 111]). In fact, to estimate the vertical edge at Res = 3 we use the representation

for%<a<%andt>2,

logt

< m. (2.6)

we write

2

3 It can be proved as the proof of Stirling’s formula, but starting after taking k derivatives in [ Eq. (34) in p. 202].
4 The estimate (2.6) also holds when k = 0.
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as a Dirichlet series of (¢’/¢)*)(s), and for the upper horizontal edge we use the estimate (2.6). Therefore,

in we get
L (i) (o +it) th = 2J1T<Re (i.) (0 + lt))zdt +0 <(01_og;';rm> . (2.8)

On the other hand, note that

(=1)* Kl Re{z (S;)M}

p

d* 1
_ ZRe{ D (W> } o
d* O’—% paeg dF P
- ZRe{ kdxk (W) + (=)t — (W) } o
dk o—3 AN (0 —3)7—2a?
_Z{Re daf;k ((—é)z-l-xz>+Re{( k } dak— 1(((0—;)2+x2)2>}

Therefore, taking the real part of (2.5) we arrive at

Re <§>(’E)<7+zt)+0<|t|k) Sheelt =) 2.9

where fi o, (z) = Re{(—i)k}(h(,,lp)( )(z) + Re{(—=4)**1} (¢, 1/2)(k’1)(1:), and the functions h,_1/, and
ls_1/2 are defined in and respectively. Using the Fourier transformsﬂ

r=t—"y

ﬁ;(y) — e 2™l and Z;(y) = 212 |yle~2m0lYl,
the Fourier transform of f , is given by

Feo () = (Re {1y + (Re (i1} fy] ) (- )bt o2/l (2.10)

Now, we square (2.9)), integrate from 1 to T, and use (2.6 to get

T B 2 loo? T T 2
L (Re <C>(J+zt) dt + 0 (U_gw :Jl ;ﬁw(t—y) dt. (2.11)

We proceed to analyze the right-hand side of . From Lemma 4} it follows tha‘ﬂ

ha—l/Q (z)

(0 —1/2)F

and using Montgomery’s argument [I7] we can restrict the inner sum over the zeros of {(s) such that 0 < v <
T and extend the integral to all ¢ € R, with a final error at most « (o —1/2)"2*log® T'+ (¢ — 1/2)~2*—2log® T
(see [14, p. 113]). Therefore, from and using the fact that fj » is even,

L (Z Jro(t—7 )dt— 2 (fro * fro) (v =) = 2 (ﬁ%’y—’ﬂ

0<y<T 0<vy,y'<T 0<y,y'<T

‘fk,a(x” <

5 For a function f € L'(R), we define its Fourier transform as f S e~2mWe f(x)dx, and the convolution of f and g is
defined as (f * g)(y) = S_ f(z) g(y — =) d=.
6 we highlight that depending on the parity of k, only one of the terms of f , appears.
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=7(-1)F Z (h20—1)(2k)(V 7).

0<y,y'<T

We want to add the weight w(y —+’) to the last sum. In fact, Lemma [4| gives the bound

1 (h2et)™ (=) (1 - w(y =)

0<v,y'<T

« 1 3 4
_ 2k—1 _ 2
TlogTF(0,T) Tlog>T
(20 — 1)2k=1 7 (20 — 1)2k—1"

where in the last estimate we have used (2.14]). Thus,

L (Z f’w(t - 7)) dt = W(—l)k 2 (h2071)(2k)(’7 - 7/) w(y — 7’)

0<7,y'<T

L0 Tlog?T N log® T n log? T
(20 — 1)2k—1 * (20 — 1)2k (20 — 1)2k+2 )"

Now, considering that o = $+ a7 for0 < a « 1and using the fact that hoy—1(2) = he/x(xlog T'/27)log T'/2m

for z € R, we obtain in (2.11)

T B 1)k . 5 ,log T ,
f (Re (i) (U—s—zt))dt—M(logT) LS () m((v—v) fﬂ )w(v—v)

1 0<v,y'<T
T(log T 2k+1 loe T 2k+4
o(Tlen )
a a

Inserting it in (2.8) we conclude that

NG 2 k
¢ 1 a , (-1) 2%+1 (2k) nlogT /
) (24— +it)|dt =2 (logT h - -
< v'<T (2.12)
T(log T)2k+1 (log T)2k+4
+ O( a2k—1 + a2k+2 '

From Fourier inversion, it is known that for any function R € L!(R) such that R € L!(R) we have the formula
(see [I7, Eq. (3)])

logT TlogT (* =«

5 R((6-"E ) ul - 1) = T [ R() Fla,T)da:
2w 2w —»

0<y,y'<T

—

Applying this formula to the function (ha/,r)(%) and using the fact that (hy)(2%) (y) = (—1)k22kg2k+1y2ke=270ly|
we get in (2.12) that, for a fixed a > 0,

T C/ (k) 1 a ] 2
Jo () Gz o)

Refining the original work of Montgomery [I7], Goldston and Montgomery [I5, Lemma 8] proved that, under
RH,

dt = afe2alel Pa, T)da + O(T(log T)? ). (2.13)

T(log T)2Ic+2 J«oo
2

—00

F(a,T) = (T72°1og T + |a]) (1 + 0(1)), as T — oo, (2.14)
uniformly for 0 < |a] < 1. Using (2.14) and the fact that F(«,T) = F(—a,T) for all « € R, we have

0 1 Q0
J a?kem20lel P, T) do = QJ a?ktle=2a0 qq 4 QJ a?ke72F (o, T) da + o(1).
— 0 1
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Inserting this in (2.13]) we arrive at (2.3). O

3. A TAUBERIAN LEMMA AND THE PROOF OF THEOREM [I]

3.1. A Tauberian lemma. The following lemma can be seen as a generalizatiorﬂ of [14, Lemma 2], where
the case G = 1 was considered. The proof uses Karamata’s method and some examples of these Tauberian

lemmas are given in [I8] Section 7.12].

Lemma 6. Let f(a,T) = 0 be a function such that the function o — f(a,T) is continuous for each T = 2
fized, and for >0 and T > 2

B
J fla,T)da <« B+ 1. (3.1)
0
Let G be a polynomial such that G(a) > 0 for a € [0,0). The following statements are equivalent:

0 o0
A) f f(a,T)G(a)e b da ~J G(a)e *da, asT — o for any fived b > 0.
0 0
1 d
(B) d—f fla,T)da ~1, asT — o for any fized 0 < ¢ < d.
—c),

Proof. Let us start assuming (A). Let 0 < ¢ < d be fixed, and define the function & : [0,1] — R by

0, if 0<u<e™
1
h(u) = f e“<u<e™
() uG(—logu) noe s
0, if e“<u<l.

By the Weierstrass approximation theorem, for any ¢ > 0 sufficiently small we can construct a polynomial
P(u) = 22[:0 anu™ (depending on €) such that

1

h(u) < P(u) for all w e [0,1], and J (P(u) — h(u))? du = O(e). (3.2)
0
Defining the function Q(a) = e=*P(e™*), it follows thatﬂ
X[e,d] (Ol)
W < Qo)

for all & = 0. Recalling that G(a) > 0 we have

Jf o, T)d f f(a,T)G(a) Q(a) da _wa(a,T) G(w) i ane” " qg

Taking limsup as T'— oo and using (A) we arrive at

N 0
limsupf fla, T)d Z J e~ (e qq (3.3)

T—o0

7 See [2] for another extension of [14] Lemma 2] depending of certain measures.
8 Here X[e,d] (@) denotes the characteristic function of the interval [c, d].
7



By a change of variables, the definition of h, the Cauchy-Schwarz inequality and (3.2)), one can see that
N o0 1
Z anJ Gla) e (Do qo = f G(—logu) P(u)du
n=0 0 0

_ fo G~ log u) h(u) du + fo G~ logu) (P(u) — h(u)) du

ey . 1/2 1 1/2
_ J Lauto ( f G?(log@du) ( f <P<u>h(u)>2dU)
e—d U 0 0

=d—c+0(Y?),

Letting £ — 0 and combining this with (3.3]), we conclude that
d
limsupf fla,T)da <d—c.
T—0 c
Similarly, we can proceed to prove that
d
d—c< liminf—[ fla,T)de.
T—owo ).

Therefore we obtain (B). Let us prove that (B) implies (A). Using integration by parts and (3.1)), we see that

wa(oz,T) G(a)e **da = — Jw (Jaf(ﬂ,T) dﬂ) (G(a)e™) da. (3.4)
0 0 0

Finally, using (B), the dominated convergence theorem, and integration by parts one more time, we conclude.
O

3.2. Proof of Theorem Since the case £k = 0 was considered in the work of Goldston, Gonek and
Montgomery (see [14, Theorem 3)), assume k > 1. Using the identityﬂ
2k+1)! 23 m(2k)! e~2a

1 o
2k+1 _—2a« 2k ,—2ax _ _
Joa e da—&-L ae da77(2a)2k+2 Z @+ 1= m)l 2a)mT’ for any a > 0,

m=1

and (2.3]) we have that (II) is equivalent to

0 o¢]
f ke P, T) da ~ J a?kem20% dq,
1 1

A translation gives that (II) is equivalent to

og] o0
J (a+1)*e 2% F(a 4+ 1,T) do ~ J (o + 1)*ke7202 dq.
0 0

Using Lemma |§| with the function f(a,T) = F(a + 1,T), G(a) = (o + 1)?*, and b = 2a we conclude the
proof. We remark that the additional constraint (3.1) follows from (1.4).

4. PROOF OF COROLLARY [

Assume RH. From [I8, p. 340], for each n € N there is T, € (n,n + 1) such that for —1 < o < 2,

C—/(U +4T,)

: « (log T},)?. (4.1)

9 See [16, Eq. 3.351-1 and 3.351-2].



Now, let k > 1 be an integer, 0 <a <« 1 and T' >4 ,T ¢ N. Choose n € N such that T, T,, € (n,n+1) and T,,
satisfies (4.1). Note that logT,, = logT. Using integration by parts k times and the bound (2.6)), we have

2
C/ _ C/ a ) C/ (k) a .
JNE G e)|oe= 7 () o +) (6] (o i)
1 .
1 (3~ wer+iTn ¢ (k) ¢
i () ) () o

2 Tog T
1
1 (2~ TogT TiTn 7\(2k) ! locT 2k+3
:—.J <<> <s+ ><(1—s)ds+o<(‘°g%)+l).
i %*bgrﬂ ¢ logT ) ¢ a
We use the residue theorem on the rectangle with vertices % — logT +11,2+14,24+4T, and logT + 1T,

(since RH holds, the function (¢'/¢)*) (s + IOQ;T) is analytic in this rectangle) and the bounds and

(4.1) to deduce that
2
_ ¢ (2) 2a
= Z (C p+logT

JTn <C/)< . +it>
1 C logT 0<y<T),

L A ¢ (log T)24+4
i (6) (o) co-nmeo(®imam)

It is known that ((s) satisfies the functional equation {(s) = x(s)((1 — s), where

x(s) = SFP((f) 2l

Then, we write

1 (2itn ¢ (2k) 2a ¢ _1 2+iT), ¢! (2k) 2% Y ¢
e () o) comma=2 [ 7(5) (rir) (Fo-to)e w2

Using the estimate

/

&(O' + it) = —log
X

t
‘ <||>, for || =1 and |o| « 1,

and the representation as a Dirichlet series of (¢'/¢)(?*)(s) in the right hand-side of (&.2]), we integrate term
by term the right-hand side of (4.2)) to obtain O(logT'). Therefore, we arrive at

ey a Al ¢\ 2a (log T)2+4
L <C)< +10gT+Zt> dt =27 Z (C) <p+1ogT)+O<a2k+1>'

0<vy<T),
We can replace T, by T" using (2.6) and >}, ;1 = O(logt) with an error at most « (log T)2k+4 /q2k+2
Therefore, we conclude for 0 < a « 1 and T sufficiently large, that

(log T)2k+4
a2k+2 :

Ik(a,T) = 27er(2a,T) + O(

Finally, we use Theorem [1| to conclude.
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