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a b s t r a c t 

In recent years, there have been studies focusing on the use of different types of autoencoders (AEs) for 

monitoring complex nonlinear data coming from industrial and chemical processes. However, in many 

cases the focus was placed on detection. As a result, practitioners are encountering problems in trying to 

interpret such complex models and obtaining candidate variables for root cause analysis once an alarm is 

raised. This paper proposes a novel statistical process control (SPC) framework based on orthogonal au- 

toencoders (OAEs). OAEs regularize the loss function to ensure no correlation among the features of the 

latent variables. This is extremely beneficial in SPC tasks, as it allows for the invertibility of the covari- 

ance matrix when computing the Hotelling T 2 statistic, significantly improving detection and diagnosis 

performance when the process variables are highly correlated. To support the fault diagnosis and identifi- 

cation analysis, we propose an adaptation of the integrated gradients (IG) method. Numerical simulations 

and the benchmark Tennessee Eastman Process are used to evaluate the performance of the proposed ap- 

proach by comparing it to traditional approaches as principal component analysis (PCA) and kernel PCA 

(KPCA). In the analysis, we explore how the information useful for fault detection and diagnosis is stored 

in the intermediate layers of the encoder network. We also investigate how the correlation structure of 

the data affects the detection and diagnosis of faulty variables. The results show how the combination of 

OAEs and IG represents a compelling and ready-to-use solution, offering improved detection and diagno- 

sis performances over the traditional methods. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The increasing availability of large unlabeled datasets is rein- 

orcing the interest of researchers and practitioners toward unsu- 

ervised learning ( Locatello et al., 2019 ). In industrial and chem- 

cal processes, unlabeled data is more ubiquitous particularly for 

igh-volume production, which often renders measuring the qual- 

ty characteristics of every product unfeasible. This is certainly 

eflected in data analytics applications such as statistical pro- 

ess control (SPC) where the aim is to monitor a process over 

ime and verify that it remains in a state of statistical control 

 MacGregor and Kourti, 1995 ). With the proliferation of automated 

ata collection schemes and advances in sensorics, it is nowadays 

 common occurrence that multiple process variables are collected 
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nd used in summary statistics to monitor the performance of the 

rocesses. The most extensively adopted summary statistic for that 

urpose is the Hotelling’s T 2 statistic ( Hotelling, 1947 ), which re- 

uires computing the p-dimensional vector of sample means and 

he sample p × p covariance matrix, where p represents the num- 

er of process variables to be monitored. 

In multivariate SPC applications, during the initial phase (Phase 

), data is collected from the process under normal operating con- 

itions, and mean vector and covariance matrix are estimated. 

hese estimates are then used to calculate the T 2 statistic 

 

2 = ( x − x ) 
T 

S −1 ( x − x ) (1) 

here x̄ is the estimate of the mean vector and S is the estimate of 

he covariance matrix of p variables. It should be noted that for the 

p × 1 observation vector x , T 2 statistic is a scalar irrespective of the 

umber of variables, p . A T 2 control chart is then constructed using 

eparate control limits for Phase I data and the prospective data 

ollected in real-time, also called Phase II. These limits are calcu- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.compchemeng.2022.107853
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107853&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:dcac@dtu.dk
https://doi.org/10.1016/j.compchemeng.2022.107853
http://creativecommons.org/licenses/by/4.0/


D. Cacciarelli and M. Kulahci Computers and Chemical Engineering 163 (2022) 107853 

l

t

U

U

w

I

B

(

a  

T

n

t

p

t

h

d

p

t

i

(

r

g

i

t

p

t

d

g

t

T

d

i

s

i

a

p

S

t

e

t

t

A

A

t

i

t

2

r

2

2

c

p

r

i

d

e

X

w

p

c

r

2

T

o

T

a

g

Q

(

t

M

u

T

w

i

Q

t

b

2

p

o

2  

t

c

1

m

A

f  

u

n

i

K

o

i  

t

t

t

t

a

b

K

i  

Z

t

m

t

w

w

i

t

A

ated assuming a time-independent p -variate joint normal distribu- 

ion for the data and are given respectively as 

C L I = 

( m − 1 ) 
2 

m 

βα,p/ 2 , ( m −p−1 ) / 2 (2) 

C L II = 

p ( m + 1 ) ( m − 1 ) 

m 

2 − mp 
F α,p,m −p (3) 

here m is the number of observations collected in Phase 

, βα,p/ 2 , (m −p−1) / 2 and F α,p,m −p the upper α-percentiles of the 

eta and F -distributions with the associated degrees of freedom 

 Montgomery, 2017 ). 

The most commonly used measure to assess the performance of 

 control chart is the average run length (ARL) ( Box et al., 2003 ).

he ARL for an in-control process, or ARL 0 , represents the expected 

umber of observations plotted before a false alarm is declared. On 

he other hand, ARL 1 , the average run length for an out-of-control 

rocess corresponds to the expected number of observations plot- 

ed before the control chart detects the presence of a fault. ARL is a 

ighly relevant metric in industrial contexts since it expresses the 

etection delay, which is crucial to understand whether the pro- 

osed method allows for a timely intervention. Another measure 

hat is often used to assess the anomaly detection performance 

s the fault detection rate (FDR), along with the false alarm rate 

FAR). FDR and FAR indicate, respectively, the proportion of cor- 

ectly identified faults and the ratio of false alarms raised over a 

iven time frame. When an out-of-control situation is detected, 

t is possible to inspect the signal by decomposing the T 2 statis- 

ic into components that express the relative contribution of each 

rocess variable to that statistic. Variables that report a high con- 

ribution can be investigated further by operators and engineers to 

etermine the root cause of the alarm. A possible way of investi- 

ating the contribution of the i th variable to T 2 statistic is through 

he difference between the T 2 statistic and a second T 2 statistic, 

 

2 
(i ) 

, obtained by excluding the i th variable ( Runger et al., 1996 ) 

 i = T 2 − T 2 ( i ) (4) 

The Hotelling T 2 control chart is extremely useful for detect- 

ng and identifying faults. A recent work ( Ueda and Souza, 2022 ) 

hows how the T 2 decomposition technique can be effectively used 

n manufacturing processes to identify the sources of process vari- 

bility. It is also widely used for the monitoring of chemical and 

harmaceutical processes ( Liu et al., 2017 ; Moreira et al., 2021 ; 

ilva et al., 2017 ). The main disadvantage of the Hotelling T 2 con- 

rol chart is that it is not as effective when the variables of inter- 

st are highly correlated, which renders the sample covariance ma- 

rix S difficult to invert. Latent structure methods have been tradi- 

ionally proposed to overcome this issue ( MacGregor et al., 2005 ). 

n overview of these methods is offered in the upcoming section. 

mong the recent advances concerning the use of T 2 in produc- 

ion settings, in the latest years some authors have been focus- 

ng on the adaptation of the Hotelling T 2 charts for small produc- 

ion runs through the use of variable sample sizes ( Chong et al., 

019 ); other researchers studied the impact of measurement er- 

ors on the detection performance in Phase II ( Sabahno et al., 

018 ). 

. Preliminaries 

Among the latent structure methods used in SPC, principal 

omponent analysis (PCA) is the most commonly employed unsu- 

ervised approach. Using PCA, the dimensionality of the dataset is 

educed by creating new uncorrelated features that gradually max- 

mize the variance ( Jolliffe and Cadima, 2016 ). The original n × p
2 
ata matrix X , where n is the number of observations, can be mod- 

led as 

 = Z k C 
T 
k + E (5) 

here C k ∈ R 

p×k is the loading matrix, Z k ∈ R 

n ×k is the princi- 

al component matrix, k corresponds to the number of principal 

omponents (PCs) retained in the PCA model, and E ∈ R 

n ×p is the 

esidual matrix representing the “leftover” PCs ( Vanhatalo et al., 

017 ). The process is then monitored using two control charts, a 

 

2 control chart for the k retained PCs, whose statistic for the i th 

bservation is computed as 

 

2 
i = 

(
z k,i − z k 

)T 
S −1 

(
z k,i − z k 

)
(6) 

nd a so-called Q or SPE chart for the error, whose i th statistic is 

iven by 

 i = e i e i 
T (7) 

For the T 2 chart, the UCLs are obtained from Eqs. (2) and 

3) while for the SPE chart, several limits have been proposed in 

he literature ( Box, 1954 ; Frumosu and Kulahci, 2019 ; Jackson and 

udholkar, 1979 ). 

Contributions of each variable on the T 2 statistics are obtained 

sing 

 

2 
Contr ,i = ( x i − x ) 

T 
C k �

1 / 2 

k 
C T k (8) 

here �k is the diagonal matrix of first k eigenvalues in descend- 

ng order. Contributions for the Q chart are given by 

 Contr ,i = ( x i − x ) 
T 
(
I − C k C 

T 
k 

)
(9) 

Despite the widespread use of PCA, its efficacy in fault detec- 

ion is reduced when monitoring industrial processes characterized 

y complex nonlinear relationships among variables ( Lee et al., 

004a ). To overcome this issue, Kernel PCA (KPCA) has been pro- 

osed to obtain PCs in high-dimensional feature spaces by means 

f integral operators and nonlinear kernel functions ( Cho et al., 

0 05 ; Choi et al., 20 05 ). KPCA uses nonlinear mappings to project

he input space into a higher-dimensional feature space and then 

omputes the PCs. The original KPCA method ( Schölkopf et al., 

998 ) does not offer a viable solution to reconstruct the input data, 

aking it difficult to implement SPE charts in process monitoring. 

 solution to this problem is to compute the SPE directly in the 

eature space ( Lee et al., 2004b ). There are two main drawbacks in

sing KPCA for process monitoring. Firstly, the use of a fixed ker- 

el function does not provide great flexibility to the model, making 

t difficult to select the right kernel for a given process. Secondly, 

PCA cannot effectively isolate the faulty process variables in out- 

f-control situations ( Yu and Zhao, 2020 ). One possible approach 

s to use a reconstruction-based index ( Choi et al., 2005 ). Due to

he infeasibility of the inverse mapping from the feature space to 

he input space in KPCA ( Cheng et al., 2019 ), the contributions of 

he process variables for both T 2 and SPE charts are not easily ob- 

ained. 

Besides the PCA-based methods, deep learning methods in SPC 

pplications have also been proposed. Autoencoders (AEs) have 

een introduced in the early 90s ( Bourlard and Kamp, 1988 ; 

ramer, 1991 ) but they have lately gained popularity particularly 

n anomaly detection ( Sakurada and Yairi, 2014 ; Shone et al., 2018 ;

hou and Paffenroth, 2017a ). AEs can be defined as the quintessen- 

ial example of representation learning ( LeCun et al., 2015 ) and 

ay essentially be regarded as networks that try to approximate 

he identity function. An AE is composed of two parts: an encoder, 

hich converts the input into a new representation, and a decoder, 

hich tries to convert this new representation back into its orig- 

nal form. Several variants of the traditional AE are now available 

o practitioners, e.g., convolutional AEs, contractive AEs, denoising 

Es, sparse AEs. 
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Fig. 1. Structure of a multi-layered AE. 
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Fig. 1 depicts a general deep AE. The bottleneck is the most in- 

eresting part of this network since it can help in revealing the un- 

erlying structures for a given dataset ( Oring et al., 2020 ). Depend- 

ng on the dimensionality of the bottleneck k , we can differentiate 

etween two main types of AE. By using k < p the AE is forced

o learn and encode the salient features of the inputs in a lower- 

imensional space, resulting in an undercomplete autoencoder. By 

sing a bottleneck with dimensionality k ≥ p we obtain an over- 

omplete AE, that needs to be regularized or constrained in other 

ays. Otherwise, the network just copies its input features and is 

ot able to generalize. With regards to the depth of the network, 

he number of hidden layers and the number of neurons in each 

ayer can be very problem-specific and depend on the degree of 

omplexity of the data. In the case of a simple AE, composed only 

y one hidden layer, the compression, or embedding, can be ob- 

ained from the input features as 

 = φ( W e x + b e ) (10) 

here W e represents the encoder weight matrix and b e is the bias 

erm. From the embedding z, the network tries to reconstruct the 

nput features as 

ˆ 
 = θ ( W d z + b d ) (11) 

here W d and b d are respectively the decoder weight matrix and 

he bias term. The functions φ and θ are generally referred to as 

ctivation functions. An AE that uses linear activation functions 

nd minimizes the mean squared error (MSE), spans the same sub- 

paces as PCA ( Baldi and Hornik, 1989 ; Plaut, 2018 ). AEs with non-

inear encoder and decoder functions can learn a more powerful 

onlinear generalization than PCA ( LeCun et al., 2015 ). 

The similarity between PCA and AEs motivates the attempts to 

eplicate the traditional PCA-based process monitoring schemes, 

n the pursuit of a more reliable model for complex nonlinear 

ata. Even though KPCA already offers a solution for nonlinear set- 

ings, there are several advantages to using AEs. First of all, in the 

ay nonlinearities are taken into account, AEs offer a much more 

exible solution to empirically approximate highly complex ker- 

el functions, eliminating the need for deciding on a fixed kernel 

unction. Other advantages can be found in the possibility of ad- 

usting the structure of the network to efficiently deal with differ- 

nt kinds of data like images or time series ( Cheng et al., 2019 ;

ehdiyev et al., 2017 ; Sun et al., 2020 ; Zimmerer et al., 2019 ). 

The use of AEs to reduce the dimensionality of the data before 

omputing the Hotelling T 2 scores is not straightforward. Issues to 

onsider are: 
3 
• Correlated features. The main motivation behind the use of la- 

tent structure methods for SPC is to deal with the correlation 

in highly dimensional data. However, in the case of a regu- 

lar AE, it is not guaranteed that the low dimensional latent 

space will be constituted by uncorrelated features. This repre- 

sents a significant issue that is often overlooked by researchers 

and practitioners. Indeed, without warranties on the correla- 

tion among the extracted features, the issue of potential dif- 

ficulties in inverting S in the calculation of T 2 statistic will 

remain. 
• Normality assumption. The assumption of the Normal distribu- 

tion of the p -variate data is rather fundamental in obtaining 

the UCLs in Eqs. (2) and (3) . Yet real-life data may not comply 

with this assumption. Possible solutions to this problem include 

the use of variational AEs (VAEs), which are generative mod- 

els that can reduce the original inputs into a low dimensional 

representation that follows a multivariate normal distribution 

( Lee et al., 2019a ). Recently, another interesting work on VAEs 

( Bi and Zhao, 2021 ) showed how to use self-attention layers for 

dealing independently with the variable and temporal dimen- 

sions in multivariate time series. 
• Contribution plots. In multivariate SPC, one of the most impor- 

tant steps after the detection of a fault is the diagnosis or root 

cause analysis. Being able to offer engineers a set of possi- 

ble causes is crucial to perform timely maintenance and main- 

tain high overall equipment effectiveness (OEE). Unfortunately, 

when using deep learning methods in this context, besides the 

possibility of using residuals to get contributions for the SPE 

chart ( Heo and Lee, 2019 ), a complete solution to get contri- 

bution plots for the T 2 does not exist ( Zhang et al., 2019 ). De-

spite the effectiveness of these deep learning-based methods in 

modeling nonlinear processes, they often fall short in offering 

an easy interpretation of the outcomes ( Shah et al., 2020 ). This 

is also reflected in the multivariate SPC applications that rely 

on these methods. 

We believe that providing a solution for tackling these obsta- 

les may be highly beneficial for enhanced performance in terms 

f detection and diagnosis. Indeed, despite the fact that deep learn- 

ng methods can be used to construct control charts and con- 

ribution plots in the residual space, we argue that there may 

e cases where the correlation structure of the process variables 

ould make it easier to detect and identify faults in the feature 

pace. A numerical study that synthetically reproduces similar cir- 

umstances is presented in Section 4 . 
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Fig. 2. Progressively learning orthogonality: correlation matrices for the output of the encoder network, from the first layer (a) to the bottleneck (f) with λ= 1(one simulation). 
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. Proposed approach 

.1. Orthogonal autoencoder 

A simple solution to dramatically reduce the possibility of a sin- 

ular S matrix in Eq. (1) is to impose the orthogonality of the 

earned representation. This can be done by modifying the loss 

unction of the AE ( Wang et al., 2019 ) to include a regulariza-

ion term that penalizes the loss function when the learned low- 

imensional embedding is not orthogonal 

 

(
x, ̂  x 

)
= ‖ x − ˆ x ‖ 

2 + λ‖ z T z − I‖ 

2 (12) 

An AE that minimizes the following loss function is referred to 

s Orthogonal AE (OAE) and it provides quasi-uncorrelated features 

n its latent space. To investigate the progression of orthogonality 

n the encoded features, a deep OAE with encoder layer dimen- 

ions equal to [100, 80, 50, 40, 30, 20, 10], where 100 refers to 

he number of input features, was trained. We can see in Fig. 2 

ow the orthogonality enforced in the latent space is progressively 

earned by the various layers of the encoder network, and this al- 

ows to construct several Hoteling T 2 charts on the intermediate 

ayers and not only on the bottleneck. This also allows for the ex- 

loration of the latent space of the encoder network for different 

imensions of the extracted features. 

The same network was trained without applying the orthogo- 

ality regularization to the encoded features, and the resulting cor- 

elation plots are shown in Fig. 3 . This figure highlights how en- 

orcing orthogonality becomes crucial for SPC purposes, as the en- 

oded features report a high level of correlation, which would ren- 

er the inversion of the covariance matrix for building an Hotelling 

 

2 control chart very difficult. 
4 
.2. Upper control limits 

Instead of assuming a multivariate normal distribution for the 

ata to obtain the UCLs, we used a kernel density estimator to find 

he quantiles for the T 2 and SPE control charts ( Yan et al., 2016 ).

iven an observation X 1 , X 2 , . . . , X n from an unknown distribution 

f and given a kernel function K and a positive number h , the ker- 

el density estimator is defined as ( Wasserman, 2004 ) 

ˆ f ( x ) = 

1 

n 

n ∑ 

i =1 

1 

h 

K 

(
x − X i 

h 

)
(13) 

The bandwidth h is used to control the amount of smooth- 

ng while the kernel K is a smooth function such that K(x ) ≥
 , ∫ K(x ) dx = 1 , ∫ xK(x ) dx = 0 and σ 2 

K 
≡ ∫ x 2 K(x ) dx > 0 . For this

tudy, the Gaussian (Normal) kernel, K(x ) = ( 2 π) −1 / 2 e −x 2 / 2 is 

sed. The UCLs are then defined as the α-upper percentile, 

ith α = 0 . 05 . To allow a fair comparison between the proposed

ethod and the traditional approaches, kernel density estimation 

as also been used to determine the UCLs for the T 2 and SPE con- 

rol charts based on PCA and KPCA. 

.3. Contribution Plots 

For the SPE charts, it is possible to perform a diagnostic analysis 

y considering the residuals, expressed as the difference between 

he original input x and the reconstruction ˆ x . Since the OAE learns 

 regularized representation of the input space, it is expected to 

earn a salient k -dimensional representation of the p-dimensional 

nput, without being allowed to perfectly replicate the initial input 

 . Hence, when training our model on Phase I data, we expect not 

o be able to perfectly reconstruct data points that are dissimilar 

n the p-dimensional space from the ones that it has seen during 

raining. This means that if the error during the reconstruction is 
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Fig. 3. Correlation matrices for the output of the encoder network, from the first layer (a) to the bottleneck (f) with λ= 0 (one simulation). 
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arge, the probability that it will be classified as a fault by the SPE 

hart will also be high. By decomposing the reconstruction error 

or each of the original features, we can obtain a contribution plot 

s in the case of PCA in Eq. (9) . 

This is however more complicated for the T 2 control chart. 

ome approaches to SPC with AEs can be found in Yu et al. (2019) ,

u and Zhao (2020) , and Zhang et al. (2019) but, to the best of

ur knowledge, this is the first work providing diagnosis mea- 

ures for the Hotelling T 2 chart when using AEs. To do so, we 

ropose an adaptation of the integrated gradients (IG) technique 

 Sundararajan et al., 2017 ), an approach mostly used for classifica- 

ion tasks in computer vision. In this case, we are interested in ob- 

erving how much the low dimensional representation learned by 

he network changes as the input observations change. We could 

o so by computing the product of the feature values of the k -

imensional input and the gradient of our encoder function. How- 

ver, this will not give us a reliable measure since the use of non-

inear activation functions will not make the product sensitive to 

hanges in the input features. For example, using a rectified lin- 

ar unit (ReLU) as activation function will return exactly the same 

radient for all the features with values lower than zero. This is 

ecause the ReLU will flatten every negative value to zero, making 

t impossible for a change in values to be traced by the gradient 

f the encoder. To tackle this issue, the IG method proposes the 

se of a baseline (a black image in image classification) to measure 

ow much the output of the network changed from the baseline as 

he input changed from the baseline. IG are obtained by calculating 

he integral of the gradients between the baseline and the current 

oint of interest. For SPC applications, we suggest the use of an 

n-control data point or the sample mean computed in Phase I as 

he baseline, b. The integral can be approximated with a Riemman 

um as in 

G i ( x ) = ( x i − b i ) ×
m ∑ 

k =1 

∂F 
(
b + 

k 
m 

× ( x − b ) 
)

∂x i 
× 1 

m 

(14) 
5 
The main difference with the contribution measures used for 

CA is that Eqs. (8) and (9) are computed using the retained and 

isregarded PCs separately, thus representing complementary as- 

ects of the PCA model. This is not true for the two measures pro- 

osed for the OAE since, while the IG index offers a view on the 

atent representation of the model, the SPE diagnosis is focused 

n the reconstruction errors. Hence, an extremely high value in a 

pecific input feature will affect both the gradient of the encoder 

unction and the specific reconstruction error. Nonetheless, we be- 

ieve IG represents a highly efficient and effective approach to in- 

erpretability for deep neural networks since it allows for obtaining 

eliable contribution plots for the latent space without the need 

or using complex methods or algorithms. Moreover, being derived 

rom the image analysis research ( Sundararajan et al., 2017 ), it can 

e easily applicable in vision-based SPC as well. 

. Simulations 

.1. A motivating example 

The following numerical example has the objective of highlight- 

ng a pathological case where the Hotelling T 2 control chart may 

ignificantly outperform a detection method solely based on the 

PE chart. We examine a process with only two process variables, 

hich are normally distributed with mean μ and covariance ma- 

rix �. We first consider a case where the two variables are not 

orrelated and the variance-covariance matrix � is given by 

u = 

[
1 0 

0 1 

]

Phase I data is collected from the process in normal operating 

onditions, with μ corresponding to the zero-mean vector [ 0 , 0 ] . 

n Phase II data, the process undergoes a fault, represented by a 

arge shift in the process mean, which increases from [0, 0] to 
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Fig. 4. Scatterplot of the 2D example (one simulation run from the scenario with 

correlated features). 

Table 1 

ARL 1 and FDR of the PCA-based control charts of the 2D example (100 simulations). 

Scenario ARL 1 T 2 ARL 1 SPE FDR T 2 FDR SPE 

Uncorrelated features 8.900 9.890 0.409 0.442 

Correlated features 0.790 22.850 0.559 0.050 
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Table 2 

ARL 1 and FDR of the AE-based control charts of the 2D example (100 simulations). 

Scenario ARL 1 T 2 ARL 1 SPE FDR T 2 FDR SPE 

Uncorrelated features 4.940 3.730 0.445 0.475 

Correlated features 0.720 9.040 0.555 0.110 
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2, 2]. A Hotelling T 2 and a SPE control chart can then be con- 

tructed by fitting a PCA-based monitoring system, where we keep 

ne PC for the model space and leave the remaining one for the 

esidual space. To test the detection rates of the two charts we re- 

eated 100 times the following steps: To begin, 10 0 0 0 fault-free 

ata points are created in Phase I and used to fit a PCA model and

stimate the UCLs. In Phase II, 10 0 0 faulty observations are gener- 

ted to calculate ARL and FDR. 

In a second scenario, to assess the impact of the correlation 

n the detection performance, we assume the two variables to be 

ighly correlated. To generate correlated variables, we simply as- 

ume the variance-covariance matrix being equal to 

c = 

[
1 0 . 8 

0 . 8 1 

]

We can see from the scatterplot in Fig. 4 how the shift is always

eflected along the axis of the largest PC, which will be the one 

ncluded in the PCA model. Indeed, the out-of-control data points 

re well within the range of the in-control observations along the 

xis corresponding to the second PC, which is the one associated 

ith the residual space. If we were to reduce the problem to one 

imension, we would only be able to detect the shift by projecting 

he data points along the PC1 axis in Fig. 4 . 

Accordingly with this intuition, the T 2 and SPE control charts 

eport substantially dissimilar detection results. An example of the 

wo charts is reported in Fig. 5 . It is worth emphasizing that the

ey factor that leads to this finding is that the mean shift affects 

oth correlated variables; the situation would have been different 

f only one of the two variables was affected by a shift in the mean.

he ARL and FDR of the PCA-based control charts from the 100 

imulations are reported in Table 1 . It should be noted how in 

he scenario with correlated variables, the detection performance 

f the SPE chart is dramatically worsened. Indeed, the ARL and the 

DR are very close to the nominal value of 20 and 5%, which are

he same values that are obtained with fault-free data. 

The example has been shown using PCA because it is easier 

o visualize the PC directions in the two-dimensional plot. How- 

ver, we repeated the same experiment with the AE-based con- 
6 
rol charts and obtained similar behavior in terms of detection. 

here was no need to enforce orthogonality in this basic situa- 

ion because the bottleneck dimensionality was decreased to one. 

ence, the regularization term has been omitted during the train- 

ng by setting the λ shown in Eq. (12) equal to zero. Non-linearities 

re introduced in both the encoder and decoder layers by using 

oint-wise hyperbolic tangent (Tanh) functions. The same proce- 

ure used for PCA has been replicated 100 times, training the net- 

ork on 10 0 0 0 observations from each scenario, with an early stop 

riterion on the validation loss, to arrest the learning procedure 

fter 10 epochs without improvement and avoid overfitting. It is 

lear from the data in Table 2 that the PCA intuition still holds true 

n the deep learning context. With correlated data, the T 2 chart 

ignificantly outperforms the SPE one, despite the latter’s improve- 

ent from the PCA-based scenario. 

This simple example highlights how the feature space can be 

rucial, in terms of fault detection, when the process variables are 

ighly correlated. 

.2. Simulation setup 

We now test the performance of the OAE-based process 

ontrol scheme against more conventional methods using high- 

imensional simulated data. Several datasets have been generated 

o analyze detection and diagnosis performances in the presence 

f process mean shifts. Hence, the covariance matrix of the pro- 

ess has not been considered to be affected by faults and remained 

onstant in both Phase I and Phase II. Without the mean shifts, the 

ata is generated using 

 = μ0 + Y (15) 

here μ0 corresponds to the zero-mean vector [ 0 , 0 , . . . , 0 ] T and 

 ∼ N p ( 0 , �0 ) Y ∼ N p (0 , �0 ) . The matrix �0 represents a unit 

ariance-covariance matrix with randomly sized correlation blocks. 

he dimension of a block ranges from two variables to 15% of the 

umber of variables p. Cov ( x i , x j ) = 0 . 9 if x i and x j belong to the

ame block and 0.2 otherwise. Faults have been introduced by a 

hift in the process mean, which is increased from μ0 to 

i = μ0 + δi · σ for i = 1 , . . . , 5 (16) 

here i corresponds to the i th level of fault magnitude introduced 

nd δi goes from 0.2 to 1 in 0.2 increments. 

Two cases are considered, the first one with 50 process vari- 

bles and the second one with 100. The covariance matrices used 

n the two cases are reported in Fig. 6 . Within each case, three dif-

erent scenarios have been simulated to investigate the detection 

nd diagnosis performance of the Hotelling T 2 and SPE charts for 

he considered methods. In scenario A, 10% of the variables belong- 

ng to different correlation blocks are affected by the mean shift. In 

cenario B for the case with 50 variables, all variables belonging to 

he first two correlation blocks are shifted. In scenario B for the 

ase with 100 variables, the first three blocks are affected by the 

hift. Note that the number of blocks affected by the fault differs 

n order to attain similar ratios between faulty and non-faulty vari- 

bles. Finally, scenario C combines scenarios A and B. 

The training sets used for the 50 and 100 variables cases con- 

ain 10 0.0 0 0 observations each. The test sets contain 1.0 0 0 obser-

ations each and have been replicated 1.0 0 0 times to compute ARL, 

DR, and FAR. 
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Fig. 5. PCA-based control charts of the 2D example (one simulation run from the scenario with correlated features): Hotelling T 2 (a) and SPE (b). 

Fig. 6. Covariance matrices: 50 variables (a) and 100 variables (b). 
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.3. Fault detection results 

The proposed method is compared to PCA, KPCA, and an ordi- 

ary AE by observing ARL and FDR. The UCL is found by setting 

he false alarm rate to 5%, which corresponds to a nominal value 

f 20 for the ARL. With regards to the configuration of the mod- 

ls, OAE is the only one requiring hyperparameter tuning on the 

umber and dimensionality of the layers and the number of ex- 

racted features ( Cheng et al., 2019 ). In this case, we could opt for

n undercomplete or overcomplete OAE, depending on the struc- 

ure of the data. Even if we use an overcomplete AE, which is a 

etwork whose bottleneck has a dimensionality that is higher than 

he number of process variables p, the model could still be able to 

roperly generalize given the orthogonality constraint enforced on 

he z k extracted features. Despite most of the focus is often dedi- 

ated to dimensionality reduction, learning useful higher-level rep- 

esentation is also a task of interest for various problems ( Ca et al.,

010 ) and it cannot be tackled with the use of PCA, given that the

umber of axes where the data can be projected is at most equal 

o the number of features p. 

For PCA- and KPCA-based control charts, the number of re- 

ained PCs is the most important model configuration criterion. 

ollowing an established practice in multivariate SPC, we chose the 

umber of principal components accounting for at least 80% of the 

otal variance in Phase I data ( Lee et al., 2019b ). KPCA is imple-

ented using a radial basis function kernel. The ordinary AE, here- 

nafter simply referred to as AE, is designed with linear activation 

unctions and no regularization enforced on the bottleneck. The 

umber of hidden layers is in this case kept at 1 since there is no

alue-added in stacking multiple linear layers, and the dimension- 

lity of the bottleneck is the same as the number of retained PCs. 

t should be noted that the AE is only included in the analysis for 
7 
llustrative purposes. Indeed, confirming the theory introduced in 

ection 2 ( LeCun et al., 2015 ; Oring et al., 2020 ), the experiments

ill show how the detection results obtained with the AE con- 

erge to the ones obtained with PCA. The OAE is instead composed 

f several stacked nonlinear layers, with ReLU activation functions. 

e observed enhanced detection results by first expanding the fea- 

ure space and then reducing it back to the dimension of the in- 

ut space. The dimensionality of the layers of the encoder network 

or the scenarios with 50 and 100 variables is [50, 250, 100, 50] 

nd [10 0, 50 0, 20 0, 10 0], respectively; the decoder is constructed 

n a symmetric fashion. The choice of keeping a higher dimension 

han the one chosen for PCA is motivated by some recent works 

 Li et al., 2021 ; Zhang et al., 2018 ), whose findings suggested how

he detection and diagnosis performances of regularized AEs could 

e improved by increasing the size of the hidden layers and the 

ottleneck. This strategy is most effective when applied altogether 

ith some regularization, otherwise there will be a significant risk 

f overfitting, as anticipated in Section 2 for the case of overcom- 

lete AEs. Finally, the weight of the orthogonal regularization term 

was set to 1. With regards to the training details, we used the 

dam optimizer with a learning rate of 0.001 to update the net- 

ork parameters. As for the number of epochs, to avoid overfitting 

nd favor the convergence of the loss function, instead of setting a 

xed number of epochs, a patience on the loss decrease has been 

et using an early stopping approach for both the AE and the OAE. 

ndeed, according to this procedure, the training is stopped when 

he validation loss does not show any improvement for a certain 

umber of consecutive iterations. The number of successive epochs 

or which no improvement is tolerated is also called patience and 

as in this case set equal to 10. The validation loss was measured 

n a separated validation set, which corresponds to 20% of the ob- 

ervations collected in Phase I. 
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Table 3 

ARL 1 of different methods on the simulated dataset (10 0 0 simulations). 

Scenario Process Variables Shift Size PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

A 50 δ = 0.2 19.441 18.614 19.509 16.923 19.792 19.005 14.497 15.507 

δ = 0.4 19.01 16.035 18.910 11.871 19.205 16.069 6.373 12.048 

δ = 0.6 17.581 11.856 18.073 6.489 17.433 11.596 2.266 6.946 

δ = 0.8 17.909 8.012 18.417 2.722 17.603 8.106 0.705 3.683 

δ = 1.0 17.589 4.827 17.311 0.958 17.46 4.944 0.191 1.865 

100 δ = 0.2 19.081 16.816 17.974 16.555 19.16 16.726 11.621 17.902 

δ = 0.4 18.298 11.68 19.338 10.966 18.343 11.663 4.021 16.892 

δ = 0.6 18.998 6.673 19.280 5.610 18.826 6.653 0.979 13.965 

δ = 0.8 17.487 2.763 17.705 2.282 17.186 2.758 0.118 8.647 

δ = 1.0 17.629 1.028 19.186 0.772 17.563 1.000 0.007 4.966 

B 50 δ = 0.2 16.997 18.504 16.885 19.103 16.926 18.354 18.695 17.638 

δ = 0.4 14.636 19.035 15.264 19.131 14.916 19.416 14.698 17.493 

δ = 0.6 12.149 18.21 11.819 18.36 12.156 18.229 11.292 15.747 

δ = 0.8 8.922 18.695 9.137 18.045 8.890 18.528 8.626 14.39 

δ = 1.0 5.906 16.686 6.480 17.014 5.992 17.193 6.633 12.484 

100 δ = 0.2 17.437 19.243 17.654 19.871 17.784 19.009 16.168 16.862 

δ = 0.4 14.138 18.013 13.376 19.805 13.986 17.58 13.293 13.116 

δ = 0.6 10.013 15.861 9.384 19.28 10.003 15.875 10.152 10.85 

δ = 0.8 6.975 12.990 6.149 20.210 6.978 13.096 7.603 9.608 

δ = 1.0 4.765 11.222 3.928 19.841 4.794 11.115 5.494 7.269 

C 50 δ = 0.2 18.305 18.009 18.389 18.071 18.653 18.303 16.615 17.150 

δ = 0.4 15.713 16.177 15.717 14.261 15.733 16.297 9.459 12.766 

δ = 0.6 12.792 14.02 13.666 10.254 12.954 13.997 4.600 8.783 

δ = 0.8 8.726 10.789 9.386 5.611 9.052 11.048 1.868 4.896 

δ = 1.0 6.602 7.705 7.055 2.996 6.699 7.919 0.713 2.714 

100 δ = 0.2 18.776 16.835 17.66 17.98 18.442 16.862 14.195 14.984 

δ = 0.4 14.157 12.12 13.645 12.294 14.168 11.921 5.353 12.702 

δ = 0.6 10.769 7.418 10.233 7.834 10.776 7.571 1.811 10.151 

δ = 0.8 7.835 3.865 7.218 3.802 7.939 3.794 0.398 7.318 

δ = 1.0 5.203 1.845 4.462 1.895 5.330 1.845 0.072 4.419 

t

t

s

r

f

c

b

e

l

f

A

i

c

r

o

l

a  

I

f

1

c

f

t

p

1

4

T

t

d

i

t  

t

o

s

w

a

P

g

a

d

n

t

t

t

t

f

w

f

c

d

d

o

b

b

t

h

i

n

i

o

d  
From Tables 3 and 4 we can see how the stacked layers of 

he OAE and the regularization imposed on the orthogonality of 

he learned representation encourage the encoder network to learn 

ignificant features in the latent space, with compelling detection 

esults on the T 2 charts. With regards to PCA and KPCA, the way 

aults are introduced deeply affects the performances of the two 

harts. In scenario A, when the faults are introduced to variables 

elonging to different correlation blocks, the SPE chart is the most 

ffective control chart. Conversely, when whole blocks of corre- 

ated variables are shifted (scenario B), the Hotelling T 2 chart per- 

orms better. Finally, in the hybrid scenario, both charts report low 

RLs, with the SPE being slightly superior. This behavior is further 

nvestigated in the fault identification phase of the analysis. 

Figs. 7 and 8 show the performance of the OAE-based control 

harts (with a false alarm rate equal to 5%) for one simulation 

un. The first 3 charts (a-c) are Hotelling T 2 charts applied to the 

utput of the encoder layers of the network since the OAE can 

earn representations characterized by quasi-uncorrelated features 

lso in its early layers. SPE chart is reported in the last plot (d).

n these examples, Phase II data contains 20 0 0 observations, and 

aults ( δ = 1.0) are introduced on 10% of the variables after the 

0 0 0 th observation. The process mean shifts are detected by all the 

harts, with the bottleneck being the most successful one. After the 

aults are introduced, almost all data points fall above the UCL in 

he third layer, which is the last layer of the encoder network. The 

erformance of the OAE is similar for the two scenarios (50 and 

00 process variables). 

.4. Fault identification results 

Once a fault is detected, a contribution analysis based on the 

 

2 and SPE charts can be performed for all the methods. To bet- 

er understand the detection behavior, we show the results of the 

iagnostic analysis for both control charts. The heatmaps shown 
8 
n Figs. 9 –11 report the average contribution of each variable to 

he faults over 10 0 0 simulation runs for the last 10 0 0 observa-

ions of Phase II data in which the process was out-of-control. We 

nly present the results obtained by OAE and PCA since the re- 

ults obtained with KPCA are very similar to the ones obtained 

ith the PCA. Contributions for the Hotelling T 2 chart of the OAE 

re obtained by applying Eq. (14) to each observation of the faulty 

hase II data. The score represents the approximated integral of the 

radients computed on the interpolation between a fixed baseline 

nd the observation of interest. The gradients represent the partial 

erivatives of the encoder function with respect to the inputs. 

We would like to draw attention to a relevant aspect that con- 

ects detection delay and fault identification. In real-life applica- 

ions, as soon as an out-of-control situation is detected by a con- 

rol chart, we would expect to be able to intervene to investigate 

he possible root causes of the faults by looking at the contribu- 

ion plot of the signaling control chart. We would hereinafter re- 

er to this concept as detection-diagnosis coherence. In this regard, 

e can see from Figs. 9 –11 how the OAE is particularly coherent 

or the T 2 chart. That is, whenever a fault is signaled by the T 2 

ontrol chart, we are immediately able to identify all the process 

isturbance sources from the IG scores. PCA, on the other hand, 

oes not exhibit the same level of coherence. Indeed, regardless 

f which chart is signaling the fault, the shift related to a whole 

lock of correlated variables is always recognized by the T 2 contri- 

ution plots. The behavior of the three scenarios is unaffected by 

he number of variables included in the simulations. 

Besides better detection and diagnosis performances, OAE also 

as additional advantages, which are mostly related to its flexibil- 

ty and versatility. First of all, in terms of function approximation, 

ot having a fixed kernel K as in KPCA allows for a better general- 

zation of complex nonlinear relationships. Secondly, the structure 

f the network may be efficiently adjusted to deal with sequential 

ata or complex sets of images ( Beggel et al., 2020 ; Li et al., 2020 ;
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Table 4 

FDR of different methods on the simulated dataset (10 0 0 simulations). 

Scenario Process Variables Shift Size PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

A 50 δ = 0.2 0.050 0.056 0.050 0.059 0.050 0.056 0.065 0.060 

δ = 0.4 0.051 0.077 0.051 0.093 0.050 0.077 0.134 0.078 

δ = 0.6 0.052 0.131 0.052 0.194 0.052 0.132 0.306 0.121 

δ = 0.8 0.053 0.260 0.053 0.431 0.052 0.262 0.584 0.207 

δ = 1.0 0.056 0.516 0.055 0.755 0.055 0.518 0.842 0.355 

100 δ = 0.2 0.050 0.058 0.049 0.059 0.052 0.056 0.076 0.054 

δ = 0.4 0.050 0.092 0.049 0.094 0.055 0.085 0.203 0.058 

δ = 0.6 0.051 0.176 0.050 0.185 0.061 0.157 0.529 0.069 

δ = 0.8 0.052 0.364 0.050 0.387 0.069 0.324 0.883 0.099 

δ = 1.0 0.054 0.665 0.052 0.702 0.081 0.615 0.993 0.176 

B 50 δ = 0.2 0.052 0.050 0.052 0.051 0.052 0.050 0.051 0.053 

δ = 0.4 0.061 0.050 0.060 0.050 0.061 0.050 0.054 0.054 

δ = 0.6 0.077 0.051 0.075 0.050 0.077 0.051 0.061 0.058 

δ = 0.8 0.100 0.052 0.099 0.051 0.100 0.052 0.071 0.065 

δ = 1.0 0.135 0.054 0.132 0.051 0.135 0.053 0.086 0.076 

100 δ = 0.2 0.054 0.050 0.053 0.050 0.054 0.049 0.052 0.059 

δ = 0.4 0.065 0.050 0.064 0.050 0.066 0.049 0.055 0.067 

δ = 0.6 0.088 0.050 0.085 0.050 0.088 0.049 0.063 0.079 

δ = 0.8 0.124 0.050 0.120 0.050 0.125 0.049 0.075 0.096 

δ = 1.0 0.178 0.050 0.172 0.050 0.179 0.049 0.093 0.118 

C 50 δ = 0.2 0.052 0.054 0.052 0.055 0.052 0.054 0.058 0.057 

δ = 0.4 0.061 0.066 0.060 0.072 0.060 0.066 0.096 0.071 

δ = 0.6 0.075 0.091 0.074 0.112 0.074 0.093 0.183 0.102 

δ = 0.8 0.098 0.142 0.095 0.205 0.096 0.146 0.344 0.162 

δ = 1.0 0.131 0.243 0.126 0.382 0.128 0.252 0.568 0.265 

100 δ = 0.2 0.053 0.056 0.051 0.056 0.054 0.055 0.068 0.059 

δ = 0.4 0.064 0.078 0.062 0.079 0.067 0.075 0.151 0.071 

δ = 0.6 0.083 0.128 0.079 0.133 0.089 0.121 0.365 0.091 

δ = 0.8 0.115 0.232 0.109 0.244 0.125 0.218 0.698 0.127 

δ = 1.0 0.162 0.417 0.153 0.442 0.180 0.392 0.934 0.187 

Table 5 

FAR of different methods on the simulated dataset (10 0 0 simulations). 

Scenario Process Variables PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

Fault- 

free 

50 0.050 0.050 0.050 0.051 0.050 0.050 0.050 0.054 

100 0.050 0.050 0.049 0.050 0.051 0.049 0.050 0.054 

Table 6 

Allocation of faults to variables in the simulated scenarios. 

Scenario Process Variables Faulty Variables 

A 50 1, 11, 21, 31, 41 

100 1, 11, 21, 31, 41, 51, 61, 71, 81, 91 

B 50 From 1 to 11 

100 From 1 to 27 

C 50 From 1 to 11 + 21, 31, 41 

100 From 1 to 27 + 31, 41, 51, 61, 71, 81, 91 
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a and Li, 2020 ; Zhou and Paffenroth, 2017b ). Having a model that

an deal with images or time-series data is particularly useful, es- 

ecially in data-rich environments like smart factories, where IoT 

llows the simultaneous gathering of data in many different shapes 

nd formats. Moreover, it has been shown how autocorrelation im- 

acts PCA-based SPC by causing lower false alarm rates and de- 

ayed shift detection ( Vanhatalo and Kulahci, 2016 ). 

. Tennessee Eastman process 

The Tennessee Eastman Process (TEP) is a well-known process 

imulator that is often used as a benchmark in chemical engi- 

eering research. Its initial publication dates back to the early 

0s ( Downs and Vogel, 1993 ) and, since then, it has been com-

only considered the gold standard testbed for comparing SPC 
9 
pproaches to fault detection and diagnosis ( Capaci et al., 2019 ). 

t has also been extensively studied from a process dynamics 

nd control perspective ( Lawrence Ricker, 1996 ; Lyman and Geor- 

akis, 1995 ; McAvoy and Ye, 1994 ; Ricker, 1995 ). Recently, an ex- 

ended version of TEP has been published ( Reinartz et al., 2021 ). In

his application, we used the data available in Rieth et al. (2017) . 

ncluding all the manipulated and control variables, 52 process 

ariables are available and 20 different faults are introduced 

 Table 8 ). As in Gajjar et al. (2018) , 33 variables ( Table 7 ) have been

sed for predictive and diagnostic purposes. Composition measure- 

ents are excluded since they are not practical to be tracked dur- 

ng routine operations and agitator speed values have also been 

xcluded since they are constant. In Table 7 , XMEAS refers to con- 

inuous process measurements and XMV to process manipulated 

ariables. 
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Fig. 7. OAE-based control charts (one simulation run from scenario A, with 50 variables and δ = 1.0): Hotelling T 2 (a-c) and SPE (d). 

Fig. 8. OAE-based control charts (one simulation run from scenario A, with 100 variables and δ = 1.0): Hotelling T 2 (a-c) and SPE (d). 
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.1. Fault detection results 

The different faults, shown in Table 8 , are introduced in Phase 

I data after 8 simulation hours, which correspond to 160 observa- 

ions. Figs. 13 to 15 show how observations begin to plot above the 

CL only after the faults are introduced. The values in the plots are 

eported on a logarithmic scale as the statistics of out-of-control 

ata points are several orders of magnitude higher than the ones 

orresponding to in-control observations. As in the numerical sim- 

lations, the faults could also be detected through the Hotelling 

 

2 charts based on the early layers of the encoder, given that the 

xtracted features are sufficiently uncorrelated to allow for the in- 

ersion of the sample covariance matrix. For this case study, the 
10 
imensionality of the layers of the encoder network for the OAE is 

33, 100, 75, 50, 25], with a symmetrically designed decoder. The 

raining details for OAE and AE are the same as the ones speci- 

ed for the numerical study. The number of retained PCs is set to 

4 as in other related works ( Gajjar et al., 2018 ). Also in this case,

e used a higher dimensionality for the bottleneck of the OAE as 

ther approaches based on regularized AEs reported better moni- 

oring performances with increased width of the layers ( Li et al., 

021 ; Zhang et al., 2018 ). 

From Tables 9 and 10 , which show the ARL and FDR results of 

he four methods, we can see how the OAE attains superior detec- 

ion performances for many of the reported faults. The upcoming 

ection will focus on the diagnosis phase of the analysis. 
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Fig. 9. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) (10 0 0 simulations from scenario A, with 100 variables and δ = 1.0). 

Fig. 10. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) (10 0 0 simulations from scenario B, with 100 variables and δ = 1.0). 

Fig. 11. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) (10 0 0 simulations from scenario C, with 100 variables and δ = 1.0). 

11 
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Fig. 12. Flowsheet of the TEP ( Liu, 2012 ). 

Fig. 13. OAE-based control charts (one simulation run with IDV 1): Hotelling T 2 (a-c) and SPE (d). 
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.2. Fault identification results 

As the TEP is affected by several types of faults, we dedicated 

he fault identification of analysis to three different kinds of pro- 

ess disturbances. 

.2.1. IDV 1 (step) 

As expected, since there are no faults introduced before the 

60 th observation, no variable shows any strong contribution in 

hose observations. After that, both PCA and OAE reveal the can- 
12 
idate process variables for the root cause analysis, as Fault 1 

s a relatively easy fault to identify. Indeed, we can see from 

ig. 16 that many individual variables go out-of-control. Some of 

hese variables, as is the case of the A feed (variable 1) and the 

 feed flow (variable 25), assume a significantly high value and 

emain above the UCL throughout the monitoring period. This is 

eflected in all the contribution plots. During this time window, 

ther variables such as the A and C feed (variable 4), the stripper 

emperature (variable 18), the stripper steam flow (variable 19), 

nd the stripper steam valve (variable 31) remain in an out-of- 
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Fig. 14. OAE-based control charts (one simulation run with IDV 14): Hotelling T 2 (a-c) and SPE (d). 

Fig. 15. OAE-based control charts (one simulation run with IDV 17): Hotelling T 2 (a-c) and SPE (d). 
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ontrol state. It can be seen, however, that their respective values 

o not exceed the individual UCLs, resulting in lower contributions 

or both PCA and OAE. 

.2.2. IDV 14 (sticking) 

Although this fault is still relatively straightforward to de- 

ect, it does provide some enticing fault identification insights. 

ig. 18 shows that there are only three variables that exhibit an 

ut-of-control behavior. These are the reactor temperature (vari- 

ble 9), the reactor cooling water temperature (variable 21), and 

he reactor cooling water flow (variable 32). However, numerous 

dditional variables report a large contribution to the fault in the 

CA contribution plots. This issue is referred to in the literature as 

he smearing effect ( Liu, 2012 ), and may lead to a misinterpreta- 
13 
ion of the root cause variables. Conversely, the IG scores of the 

AE offer a clear view of the true causes of the process distur- 

ance. It should be noted how the smearing effect also affects the 

ontributions on the SPE side of the OAE. This highlights anew how 

xploring the contributions in the feature space might be highly 

eneficial for the fault diagnostic. 

.2.3. IDV 17 (unknown) 

Despite being a significantly different fault in terms of detec- 

ion performance, the variables that are out-of-control during IDV 

7 and IDV 14 are the same. OAE is still coherent on the T 2 side

nd, although displaying lower contributions for reactor cooling 

ater temperature and reactor cooling water flow, it still manages 

o only focus on the three variables that assume anomalous values. 
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Fig. 16. Individual control charts for the 33 variables, the black dotted line represents the mean from Phase I and the red lines represent the control limits obtained as the 

Phase I mean ± 3 standard deviations, the blue dashed line indicates the fault start (one simulation run with IDV 1). 

Fig. 17. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) on the IDV 1 (500 simulations). 

Table 7 

Monitored variables of the TEP. 

Process Variable ID Process Variable ID Process Variable ID 

A Feed (Stream 1) XMEAS 1 Separator Level XMEAS 12 D Feed Flow (Stream 2) XMV 1 

D Feed (Stream 2) XMEAS 2 Separator Pressure XMEAS 13 E Feed Flow (Stream 3) XMV 2 

E Feed (Stream 3) XMEAS 3 Product Separator Underflow (Stream 10) XMEAS 14 A Feed Flow (Stream 1) XMV 3 

A and C Feed (Stream 4) XMEAS 4 Stripper Level XMEAS 15 A and C Feed Flow (Stream 4) XMV 4 

Recycle Flow (Stream 8) XMEAS 5 Stripper Pressure XMEAS 16 Compressor Recycle Valve XMV 5 

Reactor Feed Rate (Stream 6) XMEAS 6 Stripper Underflow (Stream 11) XMEAS 17 Purge Valve (Stream 9) XMV 6 

Reactor Pressure XMEAS 7 Stripper Temperature XMEAS 18 Separator Pot Liquid Flow (Stream 10) XMV 7 

Reactor Level XMEAS 8 Stripper Steam Flow XMEAS 19 Stripper Liquid Product Flow (Stream 11) XMV 8 

Reactor Temperature XMEAS 9 Compressor Work XMEAS 20 Stripper Steam Valve XMV 9 

Purge Rate (Stream 9) XMEAS 10 Reactor Cooling Water Outlet Temperature XMEAS 21 Reactor Cooling Water Flow XMV 10 

Separator Temperature XMEAS 11 Separator Cooling Water Outlet Temperature XMEAS 22 Condenser Cooling Water Flow XMV 11 

14 
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Table 8 

Process disturbances of the TEP. 

IDV Description Type 

1 A/C feed ratio, B composition constant (Stream 4) Step 

2 B composition, A/C ratio constant (Stream 4) Step 

3 D feed temperature (Stream 2) Step 

4 Reactor cooling water inlet temperature Step 

5 Condenser cooling water inlet temperature Step 

6 A feed loss (Stream 1) Step 

7 C header pressure loss-reduced availability (Stream 4) Step 

8 A, B, C feed composition (Stream 4) Random variation 

9 D feed temperature (Stream 2) Random variation 

10 C feed temperature (Stream 4) Random variation 

11 Reactor cooling water inlet temperature Random variation 

12 Condenser cooling water inlet temperature Random variation 

13 Reaction kinetics Slow drift 

14 Reactor cooling water valve Sticking 

15 Condenser cooling water valve Sticking 

16 Unknown Unknown 

17 Unknown Unknown 

18 Unknown Unknown 

19 Unknown Unknown 

20 Unknown Unknown 

Table 9 

ARL 1 of different methods on the TEP simulation data (500 simulations). 

IDV PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

1 4.349 1.545 1.663 3.577 3.603 1.563 1.354 2.273 

2 8.707 9.553 7.918 12.701 8.585 9.874 7.061 10.242 

3 30.741 21.655 31.160 21.066 28.303 21.281 17.768 45.586 

4 2.062 1.018 1.339 1.064 1.443 1.076 1.000 1.313 

5 1.000 1.036 1.000 1.768 1.004 1.002 1.000 1.000 

6 4.399 1.000 3.691 1.000 1.000 1 .000 1.000 1.000 

7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8 13.876 10.752 11.585 12.926 13.086 11.170 10.465 13.232 

9 30.345 21.403 31.285 20.894 28.760 21.232 15.394 39.788 

10 26.164 16.437 26.491 15.617 21.090 15.637 12.000 13.626 

11 5.982 4.569 5.062 5.499 5.353 5.106 4.384 5.939 

12 5.273 5.685 5.299 6.537 5.555 5.451 4.778 5.333 

13 20.703 16.852 20.022 17.581 20.002 17.265 14.111 24.232 

14 1.335 1.036 1.110 1.090 1.188 1.060 1.030 1.051 

15 26.090 20.200 27.341 19.854 25.575 19.635 14.525 39.798 

16 24.208 12.032 23.056 11.986 17.669 11.417 7.697 7.717 

17 18.068 14.822 17.912 14.731 17.725 15.160 12.677 20.354 

18 22.419 17.715 22.906 17.138 21.862 17.782 13.010 26.152 

19 5.044 3.477 5.459 3.663 5.242 2.980 1.424 1.313 

20 22.531 17.279 22.214 17.297 21.182 17.399 13.242 21.576 

Table 10 

FDR of different methods on the TEP simulation data (500 simulations). 

IDV PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

1 0.993 0.998 0.998 0.994 0.993 0.998 0.998 0.997 

2 0.986 0.973 0.987 0.962 0.986 0.974 0.988 0.983 

3 0.053 0.054 0.055 0.052 0.053 0.053 0.066 0.057 

4 0.317 1.000 0.678 1.000 0.508 1.000 1.000 0.996 

5 0.299 0.229 0.308 0.205 0.322 0.272 1.000 1.000 

6 0.992 1.000 0.994 1.000 0.999 1.000 1.000 1.000 

7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8 0.967 0.917 0.978 0.854 0.967 0.922 0.979 0.976 

9 0.055 0.055 0.057 0.053 0.055 0.054 0.069 0.060 

10 0.344 0.419 0.410 0.337 0.351 0.430 0.807 0.907 

11 0.461 0.869 0.594 0.788 0.542 0.847 0.860 0.740 

12 0.984 0.958 0.986 0.938 0.985 0.951 0.991 0.991 

13 0.943 0.931 0.950 0.900 0.943 0.931 0.954 0.949 

14 0.986 1.000 0.999 0.999 0.998 1.000 1.000 1.000 

15 0.062 0.057 0.064 0.054 0.062 0.056 0.075 0.070 

16 0.175 0.351 0.219 0.298 0.186 0.380 0.820 0.940 

17 0.775 0.942 0.846 0.921 0.791 0.941 0.949 0.920 

18 0.934 0.942 0.933 0.942 0.935 0.942 0.945 0.940 

19 0.310 0.280 0.271 0.328 0.345 0.274 0.849 0.916 

20 0.370 0.593 0.501 0.524 0.383 0.592 0.751 0.800 

15 
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Fig. 18. Individual control charts for the 33 variables, the black dotted line represents the mean from Phase I and the red lines represent the control limits obtained as the 

Phase I mean ± 3 standard deviations, the blue dashed line indicates the fault start (one simulation run with IDV 14). 

Fig. 19. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) on the IDV 14 (500 simulations). 
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he smearing effect still exists in PCA, and the contributions of 

ariables that do not alter their value from in-control observations 

re highlighted just as much as the contributions of process 

ariables 9, 21, and 32. Indeed, PCA suggests the D feed (variable 

), reactor feed rate (variable 6), separator temperature (variable 

1), product separator underflow (variable 14), and D feed flow 

variable 23) as plausible root causes in this case. The OAE’s 

PE contributions accurately identify the reactor cooling water 

emperature, but they are unable to correctly isolate the other two 

ut-of-control variables. 
16 
. Conclusions 

Deep learning algorithms are becoming extremely popular in 

igh-dimensional industrial problems. In SPC applications, AEs can 

e used, similarly to PCA, to construct a Hotelling T 2 control 

hart on the latent space and a SPE chart on the residuals. How- 

ver, when process variables are highly correlated, constructing a 

otelling T 2 control chart on the latent space of an AE is not re- 

iable as the covariance matrix of the extracted features may not 

e invertible. Modifying the loss function of multi-layered AEs, 



D. Cacciarelli and M. Kulahci Computers and Chemical Engineering 163 (2022) 107853 

Fig. 20. Individual control charts for the 33 variables, the black dotted line represents the mean from Phase I and the red lines represent the control limits obtained as the 

Phase I mean ± 3 standard deviations, the blue dashed line indicates the fault start (one simulation run with IDV 17). 

Fig. 21. Hotelling T 2 diagnosis and SPE diagnosis with PCA (a, b) and OAE (c, d) on the IDV 17 (500 simulations). 

Table 11 

FAR of different methods on the TEP simulation data (500 simulations). 

IDV PCA KPCA AE OAE 

T 2 SPE T 2 SPE T 2 SPE T 2 SPE 

0 0.049 0.051 0.051 0.050 0.049 0.051 0.059 0.052 

17 
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e can obtain a quasi-orthogonal representation of the input fea- 

ures in various latent spaces of the network and subsequently use 

he Hotelling T 2 control chart. The modified loss function also al- 

ows the OAE to learn salient features in its bottleneck, resulting 

n highly favorable detection results. We also showed how to per- 

orm root cause analysis for the OAE-based control charts through 

he interpretation of the latent space of the network using the IG 

cores. Moreover, this diagnosis approach offers compelling perfor- 

ances, being able to identify the faulty variables in each simu- 

ated scenario and reducing the smearing effect on contribution 

lots. In that regard, OAE offers a promising alternative to tradi- 

ional methods for both fault detection and diagnosis. 
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