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Chapter 1

Introduction

Citizen Science (CS) is defined as the open engagement of the public in activi-
ties formerly exclusive of trained people in scientific projects, (Newman et al.,
2012). Information and data have been readily available to the society in gen-
eral as consequence of the expansion of technology. The convenience offered by
technology has encouraged people to contribute in scientific research. Hence,
Citizen Science in practice contributes mostly in the stage of data collection of
the scientific projects (Strasser et al., 2019) in a handful of fields, such as social
sciences (Tauginiené et al., 2020), astronomy (Lingard et al., 2020; Beaumont
et al., 2014) or biodiversity (Peter et al., 2021). Citizen scientists also contribute
to CS projects by planning, processing and analysing data, or by assessing the
final outcome of the projects, (European Commission and Directorate-General
for Research and Innovation, 2020). CS has gained a space within the scientific
community as an approach to address research questions. In fact, it has been
recognized within policy makers as a new framework for research and innova-
tion, and has also been acknowledged as part of the conceptualization of open
science (Hecker et al., 2018). In CS projects in biodiversity conservation, citizen
scientists play a key role as data collectors. Some CS databases contain data
for only one country, e.g. Artobservasjoner (www.artsobservasjoner.no), which
contains nearly 29 million CS reports made in Norway. Citizen scientists also
report their observations to species-specific databases as eBird (ebird.org), man-
aged by the Cornell Lab of Ornithology and with more than 100 million bird
sightings reported annually. Ultimately, reports from all the world and from
a broader range of species are available in databases such as the Global Bio-
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diversity Information Facility, GBIF (gbif.org), which contains above 2 billion
reports. In these databases the participants of CS projects voluntarily report
which species they have observed, the spatial location and time of the occur-
rence, as well as other specific details.

About 1 million species are threatened with extinction, mostly due to human
activities (IPBES, 2019). More affectation on ecosystems would mean a con-
siderable impact for the economy, food security and quality of life around the
world. Both UN Sustainability Development Goal (SDG) 15 (United Nations,
2015) and IPBES report on biodiversity and ecosystem services (IPBES, 2019)
urge for actions that contribute to restore and protect nature. In particular,
SDGs 15.4 and 15.5 highlight the necessity of reducing the degradation of ecosys-
tems as well as the importance of halting the loss of biodiversity that inhabits
these ecosystems. Thus, biodiversity conservation has become a relevant re-
search field in ecology for identifying strategies to protect endangered species
and their ecosystems (Asaad et al., 2017). One of the necessities of biodiver-
sity conservation is to make the society aware of the importance of biodiversity.
Through CS projects, not only the participants contribute to science, but also
learn about biodiversity and change their habits so that they can contribute to
protect biodiversity in their daily lives (Peter et al., 2021). Biodiversity con-
servation needs information on species as scientific evidence to target specific
research questions (e.g. conservation in residential landscapes (Cooper et al.,
2007) or management of invasive species (Clements et al., 2021), see also UN
SDG 15.8). CS data provides a massive source of information for overcoming
spatial and species information gaps (Amano et al., 2016). Thus, CS data offer
tools to assess biodiversity and prevent the extinction of endangered species.

Research questions in ecology and biodiversity are also addressed using many
other data types. For example, high quality data are collected by scientists
through professional surveys. These data are collected through standardized
sampling protocols by skilled observers. Hence, sampling effort is even and a
report of presence/absence of species is possible (Gelfand and Shirota, 2019).
Despite the quality of the sampling design of professional surveys, these surveys
are expensive in terms of money, time and effort. Hence, they are not as massive
as CS data, their spatial coverage is low and their temporal resolution is coarse.
Trying to solve ecological questions based only on this data type might produce
accurate estimates, but with high prediction uncertainty due to its low spatial
coverage. Another potential issue using data from professional surveys that re-
quires attention is preferential sampling (Diggle et al., 2010), as the sampling



design of professional surveys is made by experts whose knowledge can make
the selection of sites to visit depend on the target ecological process.

Compared to data from professional surveys, CS data offer a cost-efficient alter-
native as their collection happens on a voluntary basis, they have broader spa-
tial coverage and thus massive observations are reported every day. Therefore,
large amounts of information are available in the repositories of CS projects.
For example, by August 2022, about 2.2 billion occurrences had been reported
in GBIF. Despite being massive and simple to collect, CS data have some draw-
backs, namely biases in their collection process. These biases can be classified in
four groups: temporal bias, geographical bias, uneven sampling effort per visit
and differences in detectability (Isaac et al., 2014). As usual in most applied
problems only a sample of the population is observed. There are three types
of missing-data mechanisms (Little and Rubin, 2019) that relate the values of
the data and their missingness. The data are called missing completely at ran-
dom (MCAR) if missingness does not depend on the values of the data; missing
at random (MAR) when missingness depends only on the values of observed
data and missing not at random (MNAR) when the missingness depends on the
values of the data. Based on these definitions, it is reasonable to assume that
CS data are generated by MNAR mechanisms. Inferring a parameter based on
these data requires thorough consideration as the most frequently used statisti-
cal methods assume the observations are obtained from a random sample. Using
these methods on MNAR data might yield biased inference of the parameters
(Diggle et al., 2010; Gelfand and Shirota, 2019). For example, Maxent, which is
one of the most used data analysis methods for biodiversity data, fails to account
for common features of biodiversity data as spatial autocorrelation. Further-
more, as Maxent is an approach based on a deterministic algorithm, it does not
report the uncertainty of the variables predicted (Gelfand and Shirota, 2019).
These flaws added to the fact that the biases in the collection process of CS data
are not properly accounted for by MaxEnt (Chakraborty et al., 2011) highlight
the necessity of using methodological approaches that deal with these problems
and hence produce enhanced inference of the ecological state of interest. Other
common approach is to create pseudo-absences (Ferrier et al., 2002) in order
to increase spatial coverage and fit a logistic regression on the new dataset.
This approach implies, however, to incorporate absences in locations where it
is not certain if the species is actually absent. Multiple efforts have been made
to account for the biases in the collection of CS data, and hence contribute to
much more appropriate use of these data. Spatial filtering is performed to stan-
dardize the amount of observations across the region of study (Robinson et al.,
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2018; Borgelt et al., 2022). For many species this means to discard considerable
amount of data. Other researchers have also considered the inclusion of spatial
covariates to account for biases (Fithian et al., 2015). Many of these methods
do not consider the spatial nature of the problem and do not account explicitly
for spatial autocorrelation (Gelfand and Shirota, 2019), or aggregate CS data
to fit spatial areal models (Conn et al., 2017). Given the massive amount of
CS records and the precision of the spatial location of each report, aggregating
these data means loss of information and results that will depend on the size of
the aggregations. Therefore, recent efforts have been made to propose spatial
point process models for CS data while still trying to account for biases in CS
data collection. Chakraborty et al. (2011) presented CS data as the result of
the degradation of the species occurrence caused by factors such as land use
transformation and sampling effort. Fithian et al. (2015) proposed to explic-
itly account for sampling biases in CS data by understanding these data as a
thinned point pattern. The models are specified as Log-Gaussian Cox Processes
(LGCPs) and the biases are assumed to be log-linear. Other approaches have
tried to fusion CS data and other types of biodiversity data so that they borrow
strength from each other and thus better inferential and predictive performance
can be achieved (Pacifici et al., 2017; Miller et al., 2019). However, Simmonds
et al. (2020) highlight the necessity of accounting for the biases in CS data even
when it is integrated with other data types.

As a response to the necessity of methods that make proper use of CS data,
the main aim of this thesis is to contribute with new methods that account for
the biases in the collection process of CS data. By accounting for these biases,
we expect to produce better inferences of model parameters and prediction of
ecological variables. We also aim to take advantage of the potential and quality
of data from professional surveys by proposing methods to properly integrate
them with CS data and other data types so that prediction accuracy is im-
proved and uncertainty reduced. This thesis relies on three main hypotheses:
i) CS data are a realization of a thinned point process, ii) accounting for bi-
ases in CS data collection process is necessary to make valid inference of the
ecological variables of interest, and iii) integrating CS with other data sources
can improve statistical inference and predictive performance. The appropriate
use of methods to simultaneously utilize both CS and professional surveys data
to answer several questions in ecology and biodiversity is still an open question
for statisticians and practitioners. This thesis is composed of five papers (paper
1-5) that propose and develop methodological approaches that are useful for
addressing ecological questions with models when only one data type type is



available, or when there are two (or more) data types to be integrated. Each
paper offers a new contribution for better use of biodiversity data.

In many applied problems the only available source of information are CS data.
Figuring out new methods for and how relevant accounting for the biases in
comparison to not accounting for them is of paramount importance. In paper 1,
we develop this comparison for both simulated and real data of moose observa-
tions with distance to roads as proxy for differences in accessibility, a recurring
source of bias in the collection process of CS data (Fithian et al., 2015; Isaac
et al., 2014). This bias is accounted for by incorporating appropriate functional
forms to the likelihood of a Log-Gaussian Cox Process (LGCP) (Mgller et al.,
1998). Two functional forms are proposed in this paper, one that follows the
half-normal detection function, typical of distance sampling (Yuan et al., 2017)
and a more flexible specification that makes use of I-spline basis functions (i.e.
monotonic non-increasing functions ,Ramsay (1988)). This is a relevant con-
tribution to the use of CS data as it provides a simple way to account for one
of the most fundamental sources of bias for CS data and shows how relevant
it is to account for these biases as the posterior distribution of the ecological
parameters are considerably less biased when the proposed model is used.

For other research questions multiple professional surveys are available. Gelfand
and Shirota (2019); Miller et al. (2019) introduce modeling frameworks that rely
on the idea of shared process models (Diggle et al., 2010; Wackernagel, 2003;
Banerjee et al., 2008; Wang and Wall, 2003; Knorr-Held and Best, 2001) for
integrating multiple data types. It assumes that the observed data types are
realizations of one or more shared underlying Gaussian Random Fields (GRF).
Based on this assumption, in paper 2 we propose modeling frameworks that fu-
sion multiple bird monitoring surveys that are designed with different sampling
protocols and cover disjoint portions of the space. By integrating multiple data
types we enhance the predictive power of our models. This framework offers a
novel way to use professional surveys to infer any ecological state beyond any
defined national border. These ecological states can be used as input for other
ecological models.

When data from professional surveys and CS data are available for solving
research questions in ecology, fusioning these data types offers the possibility of
covering larger portions of space and hence reducing prediction uncertainty and
estimating more accurately parameters that drive the ecological process stud-
ied. (Simmonds et al., 2020; Wang et al., 2021). Integrating data types with
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differences in their collection process requires that these processes are accounted
for, in order to avoid biased inferences (Simmonds et al., 2020). In paper 3, we
propose a flexible Bayesian spatial modeling framework for integrating CS data
and professional surveys while accounting for biases in data collection, such as
preferential sampling, differences in sampling effort, accessibility, among others.
In addition to the fusion of these two data types, we also provide methods to
explicitly account for these factors. Moreover, we address challenges in the im-
plementation of these models such as identifiability issues that may arise as more
parameters are introduced to the model and the fact that accounting for some
of these biases introduces non-linear terms into the linear predictor of a point
process model. We show the utility of these models through both simulation
studies and a case study about powerline-induced death of birds. This paper
offers both statistical solutions for performing data fusion of different types of
spatial data, and also methodological tools based on data fusion to effectively
tackle identifiability issues. The methods in this paper are accessible to practi-
tioners by providing open-source code so that CS data can become more widely
used by researchers in ecology and biodiversity.

The diversity of data types available in ecology and biodiversity offers the pos-
sibility of applying plenty of statistical methods to solve important research
questions for the ecological community. For example, in paper 4, we have pro-
posed a simple Bayesian spatial model for finding out if the presence of human
populations across Europe represents a factor that determines the spatial distri-
bution of big mammal species. Although simple, these models are of high value
for ecologists as they are useful tools for making decisions for the conservation
of species of mammals. The proposed model is useful for presence/absence data
aggregated at large extensions. Given the size of the aggregated cells, meth-
ods for areal data were used in this paper. The results of this paper convey
a simple, but powerful message for stakeholders in big mammals conservation:
the spatial distribution of big mammals species is not affected by anthropogenic
factors such as human disturbance or the existence of protected areas. Hence,
it is up to humans populations to decide whether or not to allow for coexistence
with big mammals.

The volume and spatial coverage of CS data gives them great potential for aid-
ing ongoing and future conservation programs. In paper 5, thousands of citizen
science observations around the globe are used to produce species range of plant
species. These species are characterized by not being as studied as, for example
vertebrate species, despite their relevance for assessing anthropogenic impact



and for defining conservation priorities. This paper makes use of existing native
regions for around 47,000 plants species and opportunistic occurrences reported
by citizen scientist to predict the spatial range of plant species. The resulting
dataset offers a simple tool to access spatial data of understudied species and
thus support the conservation of plant species. Moreover, the resulting dataset
shows how CS data can support the resolution of relevant research questions
through proper management.

At least one Gaussian Random Field (GRF) is part of the models we propose.
Performing Bayesian inference for these random effects is computationally ex-
pensive. Therefore, we mostly use the Integrated Nested Laplace Approxima-
tion (INLA) and the Stochastic Partial Differential Equation (SPDE) approach
for fitting our models (Rue et al., 2009; Lindgren et al., 2011). While INLA
reaches computational efficiency by producing a numerical approximation of
the marginal posterior distribution of the parameters of the model, the SPDE
approach is an efficient way of approximating a continuous spatial process by
making use of a Gaussian Markov Random Field. The SPDE approach is espe-
cially relevant for efficiently approximating the likelihood of a LGCP as pointed
out in Simpson et al. (2016). One of the most challenging tasks when fitting
some of the proposed models is the fact that the likelihood of the LGCP is
not log-linear with respect to the parameters of the model. Bachl et al. (2019)
propose to solve this by iteratively linearizing the likelihood until the posterior
mode has been found. As we expect the proposed modeling framework to be
used by a broad group of practitioners, we use the Penalized Complexity (PC)
prior (Simpson et al., 2017) as an intuitive way of specifying the prior distri-
bution of the parameters of our models. PC priors are defined as probabilistic
statements about the prior distribution of a parameter.

1.1 Spatial statistics

The models presented along these thesis have a spatial nature as they explic-
itly account for spatial autocorrelation by including both spatially referenced
covariates and spatial random effects. The origins of spatial statistics are linked
to the graphical depiction of data on maps and the solution of problems in agri-
culture during the early twentieth century (Cressie, 2015). Later, advances in
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geostatistics (Matheron, 1963), spatial autocorrelation hypothesis testing (Cliff
and Ord, 1973) and areal data models (Besag, 1974) set the basis for new meth-
ods in spatial statistics. In modern times, the increasing capacity of computers
and Geographic Information Systems (GIS) have increased the popularity of
spatial statistics among statisticians and practitioners. This has broadened the
fields where spatial statistics is applied, including among others oil and mining,
ecology and hidrology. A broader historical overview of spatial statistics is pre-
sented in Cressie (2015).

Banerjee et al. (2015) classify spatial data types in three big groups depend-
ing on how a random variable Y is observed and how the space is assumed:

e Geostatistical data: the space is assumed continuous as observations are
collected at the point level in fixed locations defined by a sampling design.

e Lattice data: the space is discretized into areal units and a summary
measure of Y is observed at each of them.

e Point pattern data: observations are collected at the point level, so the
space is assumed continuous. Unlike geostatistical data, the locations of
the events are assumed random.

Despite the differences between these data types, the notion of distance plays a
fundamental role in any statistical spatial analysis. Its role is stated in Tobler’s
first law of geography: ”everything is related to everything else, but near things
are more related than distant things.” (Tobler, 1970). Let s vary over D C R9 to
generate the process Z(s), when D is assumed continuous the distance between
two locations s; and s; affects the association between the process Z(s) at these
locations. The relation between distance and association is formally defined in
the covariance function Cov(Z(s;), Z(s;)).

In this thesis we focus mostly on models for geostatistical and point pattern

data. Hence, in this section we introduce Gaussian Random Fields and spatial
point patterns.

1.1.1 Gaussian Random Fields

A Random Field (RF), {Z(s) : s € D} is as a collection of random variables that
vary over D, a fixed subset of R? (Cressie, 2015; Banerjee et al., 2015). Along



this thesis we will assume d = 2. A RF is defined through the finite-dimensional
distribution

Fo s (z1, 0 2m) = P(Z(s1) <z1,..., Z(8m) < Zm) m>1 (1.1)

IfFs, . s,.(21,...,%n) is an m-variate Gaussian distribution, the process {Z(s) :
s € D} is a Gaussian Random Field (GRF). In order to determine all distri-
butions of a GRF, only the mean and covariance structure of Z(s) need to
be specified (Banerjee et al., 2015). The mean structure of Z(s) is described
by u(s) = E(Z(s)) and the covariance structure by the covariance function
C(s1,82) = Cov(Z(s1), Z(s2)).

In the models we will present along this thesis GRF's are included as random
effects to account for the dependency between spatial units. A GRF is station-
ary and isotropic if p(s) = p and C(s1, $2) = Cov(||s2 — s1|]) (Rue and Held,
2005). That is, a GRF is stationary and isotropic if the mean does not depend
on the location and the covariance function depends on the Euclidean distance
between a pair of locations, but not on the direction of the vector that defines
the distance between these two points.

A covariance function is valid if it induces a positive covariance function. It
means:
ZZaiajC(si,sj) >0 (1.2)
i g

for any coefficients a;,a; € R and locations s;,s; € R? (Cressie, 2015). Valid
covariance functions include, among others, exponential, Gaussian and Matérn
covariance functions. In the models to be presented hereafter, the GRFs are
assumed stationary, zero-mean, isotropic and with Matérn covariance function

0.2

C(Si, Sj) = m

(klls; = sil)” Ky (slls; — sill) (1.3)
with v > 0 a parameter that defines the smoothness of the field and its mean-
square differentiability (Blangiardo and Cameletti, 2015), K, the Bessel function
of the second kind and order v, ¢? the marginal variance of the field, x >
0 a scaling parameter, I' the Gamma function and ||s; — s;|| the Euclidean
distance between the locations s; and s; € R%. A Matérn covariance function
can be characterized by its marginal standard deviation ¢ and its spatial range
p. The spatial range for a stationary GRF is defined as the Euclidean distance
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at which the correlation between two points is nearly 0.1 (Rue and Held, 2005).
Therefore, in the models proposed in this thesis, o and p will be the parameters
estimated for the GRFs. The parameter v is usually difficult to identify, hence
it is usually fixed (Lindgren et al., 2011).

1.1.1.1 Gaussian Markov Random Fields

As the number of observations increase, performing inference for GRFs imply
high computational burden as they are linked to continuously indexed locations
(Rue and Held, 2005). Available solutions in literature include, among others,
covariance tapering (Furrer et al., 2006), likelihood approximation (Stein et al.,
2004) and low rank approximations (Banerjee et al., 2008; Eidsvik et al., 2012).
Gaussian Markov Random Fields (GMRFs) offer a computationally efficient so-
lution to the so called big N problem as they are discretely indexed. They are
based on the Markov property which means they consider a neighboring struc-
ture, which ensures the sparsity of the precision matrices.

A GMRF can be represented via a graph that represents the nonzero pattern
of the precision matrix. Undirected graphs are useful to understand the notion
of GMRFs. An undirected graph G is defined as a tuple G = V,E where V is
the set of nodes in the graph and £ is the set of edges {7,j}, where i,j € V
and i # j. If {i,j} € € there is an undirected edge from edge i to node j. Let
r = (x1,...7,)T be normally distributed and G = (V,€), with V = {1,...,n}
and & such that there is no edge between node ¢ and j if and only if x; L xj|x_;;.
The vector # = (x1,...7,)T is a GMRF with respect to G with mean g and
precision matrix Q > 0 if and only if its density has the form

1) = (20) Qe (< x-TQx ) (1)

with Q;; # 0 if and only if {7,j} € £ for all ¢ # j. The next Markov properties
of the GMRF x with respect to the graph G are equivalent:
The pair Markov property:

vi Lajlx—; if{i,j} ¢ € andi#j
The local Markov property:

T L X_j ne(i)[Xne(iy for every i €V
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with ne(7), the nodes in G that have an edge to node 1.
The global Markov property:

x4 L xp|xc

for all disjoint A,B and C where C separates A and B, and A and B are non-
empty.

The Markov properties imply that the neighboring structure of a GMRF will
only be given by those non-zero entries of the precision matrix Q, so techniques
such as the Stochastical Partial Differential Approach (SPDE) approach (see
Sec. 1.2.4.1, Lindgren et al. (2011)) for approximating continuous GRFs can
rely on the sparseness of Q to be efficient computationally.

1.1.2 Spatial point patterns

As previously mentioned , the locations of a spatial point pattern are random.
Spatial point processes aim to analyse the geometrical structure of spatially
randomly distributed points (Illian et al., 2008). If each of these points contain
information, hereafter marks, we say the point pattern is marked. Unless oth-
erwise is mentioned, we will assume our point patterns have no marks. For a
bounded region D C R2, both the amount of points in D, N(D), and the lo-
cation of these points in the point pattern S are random (Gelfand and Schliep,
2018). As a random variable, an expected value, E(N (D)), can be considered
for N(D). Following the notation in Gelfand and Schliep (2018):

with A(D) the intensity measure, which is defined as:

A(D) = / A(s)ds (1.5)
D
where A(s) is the intensity function.

To model probabilistically S, a distribution is needed for N(D) and a mul-
tivariate location density over D™ for any n. The Poisson process is the most
used model for point patterns. Thus, we assume for any D C R% N(D) ~
Poisson(A(D)). Under a Poisson process, for disjoint sets Dy and Dy, N(Dy)
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and N (D) are independent. Hence, under a Poisson process we have a condi-
tionally independent location distribution. A key property of Poisson processes
is:

P(N(9s) =1) = E(N(0s)) = A(0s) = A(s)|0s|

with 9s a small circular neighborhood around s (Gelfand and Schliep, 2018).
Depending on the nature of \(s), a Poisson process can be homogeneous or inho-
mogeneous. A homogeneous Poisson process (HPP) assumes A(s) = A, while a
nonhomogeneous Poisson process (NHPP) assumes A(s) is not constant. When
a point process is homogeneous, it exhibits complete spatial randomness. Thus,
the distribution of points is expected to be uniform across space. Complete spa-
tial randomness represents a baseline for point process theory, as for example
the exploratory tools to determine whether the assumption of complete spatial
randomness holds, see Illian et al. (2008) for further details. If a point pattern is
nonhomogeneous, i.e. the assumption of complete spatial randomness does not
hold, processes of attraction or repulsion between point might happen. These
point patterns can be characterized through first- and second-order properties.
Most of the interest in the study of nonhomogeneous spatial point patterns is
focused on modeling the intensity function A(s). Approaches for modeling A(s)
include those that depend on a bivariate density function or on spline surfaces.
The most common way of modeling A(s) is by assuming that a group of spatial
covariates, z7(s), drive it. That is, assuming log A\(s) = 7 (s)3 (Gelfand and
Schliep, 2018). Understanding A(s) as a Gaussian process (see Section 1.1.1),
gives rise to the Log Gaussian Cox Process (LGCP) (Mgller et al., 1998). It has
the typical expression of a Cox process, A(s) = g(z(s)B)Ao(s) with g(-) > 0
and A\o(s) a local adjustment process with Z(s) = log(Ao(s)) a Gaussian process
(Gelfand and Schliep, 2018).

We now focus on LGCPs as they provide an interpretable expression for the
intensity function. Assume N(D) = n, then the location density f(s) =
A(8)/A(D) of a point pattern is given by (Gelfand and Schliep, 2018):

f(s1,...,8a|N(D) =n) = H ig%;

As mentioned above, we assume N (D) ~ Poisson(A(D)), thus:

A(s;) n e~ MP)
A OO)

n!

f(sh...,smN(D):n):H
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Thus, the likelihood of a LGCP is expressed as:

L({A(s),s € D};Sops) = e P [ Alsy) (1.6)

where A(D) = [, A(s)ds. Note that part of the likelihood depends on an inte-
gral over the whole area D, which makes computations challenging as discussed

in upcoming sections. For more details about the theory of point processes see
Gelfand and Schliep (2018); Illian et al. (2008).

Even though we assume the spatial distribution of species arguably follows a
spatio(-temporal) point process model, one of our working hypotheses is that CS
data are a degraded version of the reality (Chakraborty et al., 2011). Therefore,
we regard CS data as realizations of a thinned point pattern.

Thinned point pattern

Observed point patterns can be generated after some basic operations are per-
formed on other point patterns. These operations include for example, thinning,
clustering and superposition (Illian et al., 2008). A point pattern S; is thinned
when a specified rule determines which points of the original point pattern S
are deleted. These rules are classified in Illian et al. (2008) as:

p-thinning : Each point is deleted with probability 1 — p. This rules does not depend
on the location of the points, or on the deletion of other points in S

p(s)-thinning : Now, a deterministic function p(s), which depends on the location s,
determines whether or not a point is deleted. For this rule the deletion of
a point in S is independent of the deletion of other points.

P(s)-thinning : Still a thinning where the deletion of one point in H has no association
with the deletion of the other points in the point pattern. However, it
generalizes p(s)-thinning as p(s) is not deterministic anymore. Now, it is
assumed that p(s) is the realization of a random process P(s), which is
independent of S.

As the process S; is the result of a thinning operation on the process S,
its first- and second-order properties depend on the properties of the process S



14 Jorge Sicacha Parada

(Ilian et al., 2008). If A(s) is the intensity of the process S, then the intensity
of S; will be:

Ai(s) = p(s)A(s) (1.7)

For a stationary process P(s) with mean p, the intensity of the P(s)-thinned
process would be given by

At(s) = pA(s)

Note that When Poisson processes are thinned, the resulting point pattern re-
mains in the family of Poisson processes. This introduction to thinned point
patterns has been completely based on Section 6.2.1 of Illian et al. (2008), where
more technical details about these type of point processes are presented.

1.2 Bayesian Statistics

For the research questions we aim to solve in this thesis, quantifying the uncer-
tainty is relevant to communicate the results obtained. Furthermore, in many
real-life scenarios experts have prior knowledge about some of the parameters
we want to estimate. Bayesian statistics offer an appealing methodological ap-
proach to learn about these parameters. The origins of Bayesian statistics date
back to 1763 when Bayes’ theorem was proposed by Thomas Bayes. During the
nineteenth century the lack of clarity about the concept of prior distribution
stopped the progress of Bayesian statistics. It was only during the end of the
twentieth century that Bayesian methods became popular between statisticians
and practitioners as computers with more processing capacity were released and
new computational approaches for Bayesian statistics were developed. For more
details about the history of Bayesian statistics see Gamerman and Lopes (2006);
Carlin and Louis (2008). In this section we will go through the basic elements
of Bayesian statistics. Then, we go into more detail about prior distributions,
hierarchical modelling and computational methods for Bayesian statistics. In
particular, we focus our interest on the class of Latent Gaussian Models and the
INLA-SPDE approach.

Whereas in the traditional frequentist setting, parameters @ are regarded as
fixed quantities, in the Bayesian setting the elements of 8 are random vari-
ables. Assume we are interested in performing inference on € and we have prior
knowledge about @ expressed in a prior distribution 7(€) and data denoted as
y. Bayesian analysis aims to update one’s prior belief based on Bayes’ theorem
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(Givens and Hoeting, 2012; Gamerman and Lopes, 2006):

_ n(6)r(y16)
w(oly) = "

x 7(6)7(y10) (1.8)
with m(y|0) the likelihood function and 7(0|y) the posterior distribution, which
is used to perform statistical inference on 6. Summary measures as the pos-
terior mean, median and variance are obtained from the posterior distribution
m(0ly) (Gamerman and Lopes, 2006). In addition to the posterior distribution
of the parameters in 6, prediction can be performed within the Bayesian setting
through the predictive distribution of a new observation y*:

r(y"ly) = /@ 7(y"10)m(6)d6 (1.9)

1.2.1 Prior distribution

The definition of a prior distribution is a fundamental step when Bayesian anal-
ysis is performed. It can reflect some previous knowledge regarding the (hy-
per)parameters involved in the model, regardless of how certain it is. In some
cases the prior distributions reflect information from past studies, subjective
opinions from experts, belong to a familiar distributional family, or in cases
with too little information, it is defined so that the data become the most in-
fluential part in the posterior distribution (Carlin and Louis, 2008).

When there is some information about the parameters to be estimated, prior
elicitation (Carlin and Louis, 2008; Wolfson, 1995; Chaloner, 1996) is performed
in order to propose a prior distribution that reflect this knowledge (O’Hagan
and Kendall, 1994). However, elicitation is not as widely used as it could be due
to the lack of methods that fit into the Bayesian workflow and can be performed
efficiently (Mikkola et al., 2021). In other cases a computationally convenient
choice is to select a prior distribution that is conjugate to the likelihood distri-
bution so that the resulting posterior distribution is part of the same family as
the prior distribution. Within the exponential family there are plenty of con-
jugate priors (Carlin and Louis, 2008; Gamerman and Lopes, 2006). In case a
conjugate prior lacks flexibility to reflect any existing prior knowledge, a finite
mixture of conjugate priors might reach the desired flexibility while still pre-
serving the computational simplicity of the resulting posterior distribution.
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In case little knowledge about the parameters we want to estimate is avail-
able, non-informative priors can be defined. This is a controversial topic among
Bayesians as some non-informative priors are improper, which in some cases
leads to improper posteriors. That is, distributions that do not integrate to
1. Two broadly accepted non-informative prior distributions are Jeffrey’s prior
(Jeffreys, 1998) and the ones resulting from reference approach proposed by
Bernardo (1979). Jeffrey’s prior is based on the Fisher information matrix and
is invariant to parametric transformations. Reference priors are based on ex-
pected discrepancy measures of information. Given the chance of getting an
improper posterior, it is recommended to pick carefully non-informative priors
(Carlin and Louis, 2008; Gamerman and Lopes, 2006). When little prior in-
formation is available, it is also usual to propose priors with known functional
forms, but with large prior variance so that this distribution has little or null
influence on the construction of the posterior distribution.

Recently, Simpson et al. (2017) proposed the Penalized Complexity (PC) pri-
ors. These prior distributions are the result of penalizing models that deviate
from a simple base model. The construction of a PC prior distribution relies
on four principles. First, the base model is preferred over more complex mod-
els. Second, complexity is measured by the Kullback-Leibler Divergence (KLD)
(Kullback and Leibler, 1951), which is a measure of the information lost when
a complex model is approximated by the base model and used as a measure of
distance between two models. Third, the penalization to more distant models
according to KLD measure is made using a constant decay-rate so that devi-
ations from the base model are equally penalized across the whole parameter
space. Finally, the user has an idea about values of the parameter of interest.
This idea can be expressed through a probabilistic statement of the form:

Prob(Q(&) > U) = «

with Q(€) an interpretable transformation of the parameter of interest, U an
user-defined upper bound that defines a tail event and « € (0,1) the weight
assigned to this event. Say, for example, we want to construct a PC prior for
the precision of a Gaussian random effect z ~ N(0,771) (Simpson et al., 2017).
The PC prior for 7 is then given by:

A
w(T) = 57'73/2 exp (7/\7_71/2) , T>0,A>0 (1.10)

where A determines the magnitude of the penalty for deviating from the base
model. A can be determined by specifying (U, «) so that Prob(1/y/7 > U) = a.
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Hence, A = —In(a)/U. In this way a simple probabilistic statement about the
standard deviation 1/+/7 in terms of U and « can construct the prior distribu-
tion of 7.

Within spatial statistics, Fuglstad et al. (2019) constructed PC priors for both
the spatial range, p, and the marginal standard deviation, o, of a Gaussian
Random Field with Matérn covariance function (see Eq. (1.3)). As previously
presented, the joint prior distribution of p and ¢ can be obtained from simple
probabilistic statements about (functions of) the parameters of interest. In this
case, the user has to specify the pairs of quantiles and probabilities (pg, 1) and
(O’O7 042) in:

P(p < p()) = o1 P((T > 0’0) = Q9 (].].].)

Even though major advances have been made in the definition of prior distri-
butions this is still an open research topic, especially in the definition of the
prior distributions of the parameters of the GRFs. Sgrbye et al. (2019) point
out the relevance of appropriate, careful prior specification of the spatial hyper-
parameters in Log-Gaussian Cox Processes and suggest the necessity of having
clear interpretation and communication of the prior choices of the spatial hy-
perparameters, which is facilitated by clear probabilistic statements made for
PC priors.

PC priors in Fuglstad et al. (2019) will be used for the parameters of the GRFs
of the models proposed along this thesis. As little is known about the fixed ef-
fects that are part of the model, non-informative prior distributions are defined
for them.

1.2.2 Latent Gaussian Models

Now, assume the prior distribution 7(0) depends on a parameter 1. Then, the
posterior distribution of 8 can be expressed as:

J 7 (y18, )7 (8]p)m(vp)dap
m(y)

w(6ly) = (112)

This adds a new stage represented by the distribution (%) which is a prior
distribution for the so called hyperparameter v). Usually 1) is not known and
the posterior distribution 7(t|y) becomes interesting for inferential purposes.
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An alternative is to estimate @ as a maximizer, '(2), for the marginal distribution
n(y|y) = [ 7(y|0)$(0|1)dO (Banerjee et al., 2015) and then treat ¢ as known,
this is known as Empirical Bayes analysis (Carlin and Louis, 2008). Note that
plugging % into Eq. (1.12) implies not accounting for the uncertainty of t in
the updating process described by Eq. (1.8). This modelling is called hierar-
chical because the addition of the hyperparameter 1 and its prior distribution
(1) represent a new layer in the hierarchy.

Latent Gaussian Models (LGMs) (Rue et al., 2009) have a hierarchical struc-
ture. These models are a subclass of the class of Bayesian additive models with
a response variable y; whose distribution belongs to the exponential family and
has a mean p; which is linked to a linear predictor 7; as follows:

nyf ng
glps) =mi =+ D)+ > Brzwi + & (1.13)

j=1 k=1

with ¢ a link function, a an intercept, fU)(-) unknown functions of u;; that can
be used to model, among others, spatial correlation structures, SBi; the linear
effects of covariates z, and e; unstructured terms (Rue et al., 2009). LGMs
assign Gaussian prior distributions to a,{fU)(-)},{Bx} and {e;}. We define
x = (a,{f9()},{Br},{e:}) as the latent Gaussian field. Associated to each
element of x there are hyperparameters 6 which do not have to be Gaussian.
In LGMs the density w(x|601) is Gaussian with zero mean and precision matrix
Q(01). The response variables y; have distribution 7(y|x, 62) and are assumed
conditionally independent given x and 5. Based on this hierarchical structure
the posterior distribution is computed as

m(x,0]y) x 7r(0)7r(x|6)H7T(yi|xi,0) (1.14)

i€l

x 7(0)QO)? exp |3 x"QO)x + 3 log{n(yli, )} (115)
i€l

with @ = (61,03). Our aim is now to estimate 7 (z;]y), 7(@]y) and 7(0;|y).
1.2.3 Computational methods in Bayesian statistics

Bayesian methods are most frequently used to compute the posterior distribu-
tion 7w(0ly) (see Eq. (1.12)). In most of the cases this is a complex task as
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conjugacy is difficult to achieve, or computing 7(y) = [ 7(y|0)7(0)d6 involves
an integral over a large parametric space. In such situations, simulation methods
offer an appealing alternative to learn about 7 (0|y). These methods include, for
example, Monte Carlo (MC) techniques, which involve the simulation of inde-
pendent samples of the posterior distribution (Blangiardo and Cameletti, 2015;
Gamerman and Lopes, 2006; Givens and Hoeting, 2012). When the posterior
distribution does not have a standard functional form, or the parameter space
is large, Markov Chain Monte Carlo (MCMC) methods offer an alternative
based on the simulation of a Markov Chain whose stationary distribution is the
posterior distribution (Blangiardo and Cameletti, 2015; Gamerman and Lopes,
2006; Givens and Hoeting, 2012). Some of the most used MCMC techniques
include among others, the Gibbs sampler (Casella and George, 1992) and the
Metropolis-Hastings algorithm (Gamerman and Lopes, 2006). For more details
of MCMC methods see (Gamerman and Lopes, 2006; Robert et al., 1999).

In particular, spatial models have proven to demand many computational re-
sources as the dimensions of the parameter space for these models is usually
large (Moraga et al., 2021), which results in long computation times. Approxi-
mate methods offer an efficient alternative to MCMC. Example of approximate
methods include Approximate Bayesian Computation (ABC) (Beaumont et al.,
2009; Grazian and Fan, 2020), variational methods (Jaakkola and Jordan, 2000)
and empirical likelihood (Owen, 2001). As we deal with LGMs in this thesis,
then an approximated method such as the Integrated Nested Laplace Approxi-
mation (INLA) (Rue et al., 2009) offers an efficient, yet accurate, approach to
estimate 7w (@|y).

1.2.3.1 The Integrated Nested Laplace Approximation (INLA)

As previously mentioned one of the most relevant and demanding tasks when
fitting Bayesian models is to estimate the posterior distributions «(8]y). Tra-
ditionally inference for LGMs was made using Markov Chain Monte Carlo
(MCMC) methods. As mentioned in Rue et al. (2009), Bayesian inference for
LGMs using MCMC has performance issues due to the the high correlation
among the elements of the latent Gaussian field x, and the high correlation
between the elements of x and the hyperparameters 8. A joint proposal based
on a Gaussian approximation of the full conditional of x has been made by
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Gamerman (1997); Knorr-Held et al. (2002); Rue et al. (2004) to overcome the
problems caused by the strong dependence between the elements of x. To deal
with the strong correlation between x and @ a block update of x and 6 from
0 and x|0 is proposed in Knorr-Held et al. (2002). Despite these solutions to
the poor performance of MCMC methods for LGMs, these techniques are still
computationally slow.

The Integrated Nested Laplace Appproxiation (INLA), introduced by Rue et al.
(2009), is a deterministic algorithm based on Gaussian approximations to the
posterior densities, which is reasonable given the prior specification of the latent
field for LGMs. We are interested in the posterior marginal distributions:

w(aily) = [ #(l0.y)n(01y)d0
w(6,ly) = [ m(ely)de. (110
with x the latent field (see Section 1.2.2) and 6 the hyperparameters of the

model. The INLA approach proposes the next approximations to posteriors in
Eq. (1.16):

#(ily) = / #(2:10,y)7(8ly)d8
#(8]y) = / #(6ly)d6_, (1.17)

These approximations to the posterior distributions rely on the Laplace approx-
imation of 7(x|€,y) which is used to approximate 7(x|0,y). Hence,

m(ylx, 0)n(x|0)m(0) _ 7(y|x,0)7(x|60)(6)
7T(X‘07y) ﬁ'(x|9,y) x=x*(0)

m(0ly) x (1.18)

with x*(0) the mode of m(x|0,y) for a given 6. 7(x|0,y) is a reasonable ap-
proximation as 7(x|0,y) is almost Gaussian (Rue et al., 2009). The other ap-
proximation we need to compute is 7(z;|0,y). Computing this approximation is
more complex than approximating m(6|y) because the dimension of x is larger
than the dimension of 8. Three ways of solving this task are proposed by Rue
and Held (2005). The first one is to use Gaussian approximations 7(z;|0,y)
as the marginals of 7(x|0,y) in Eq. (1.18). However, this approach can lead
to inaccurate approximations (Blangiardo and Cameletti, 2015). The second
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approach is to use Laplace approximations to compute:

n(x.0ly) __ m(x0ly)
x,i|xi,0,y) ﬁ'(X,i‘CL‘Z‘,B,}O

m(2;]0,y) x p (1.19)

X*i:xti(w_ae)

with 7(x_;|x;,0,y) the Laplace Gaussian approximation to mw(x_;|z;,8,y) and
x*,(z—,0) its mode. Despite the good quality of this approach, this strategy
can become computationally expensive as 7(x_;|z;, 0,y) needs to be computed
for each value of x and @ (Blangiardo and Cameletti, 2015). The third approach
is the simplified Laplace approximation, which is based on a Taylor’s series ex-
pansion of the Laplace approximation 7(z;|0,y) in Eq. (1.19). This approach
is good enough in many applications and computationally is more efficient than
the other two approaches (Blangiardo and Cameletti, 2015).

After 7(z;]0,y) and 7(x|0,y) have been computed, the marginal posteriors
7(z;]y) in Eq. (1.16) are approximated as the finite weighted sum:

#aily) = 37 (169, y) 7 (69ly) A,

for integration points {O(j )} with weights {A}. Finding the integration points

{O(j )} is a demanding task as this requires an exploration of the joint posterior

distribution 7 (@]y) . Two exploration schemes were proposed by Rue et al.
(2009), the grid strategy and the central composite design. The grid strategy is
computationally expensive and its cost increases exponentially with the number
of hyperparameters. Hence, it is recommended to have at most 4 hyperpa-
rameters. The central composite design uses the mode 8 and the Hessian to
determine the integration points @ to perform a second-order approximation
to a response variable. For more details about INLA, see Rue et al. (2009);
Blangiardo and Cameletti (2015).

1.2.4 The Stochastic Partial Differential Equation (SPDE)
approach

The models we propose along this thesis explain spatial autocorrelation through
Gaussian Random Fields. Factorizing the n x n (n =number of observations)
dense covariance matrix of a GRF requires performing O(n?) operations, this is
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known as the big n problem. Solutions to this problem include, among others,
approaches that approximate the likelihood through a sequential representation
(Vecchia, 1988; Stein et al., 2004), doing exact computations on a simplified
Gaussian model of low rank (Banerjee et al., 2008; Eidsvik et al., 2012) or ap-
plying covariance tapering to make covariance matrices sparse (Furrer et al.,
2006). Lindgren et al. (2011) propose the representation of a continuous spa-
tial process (e.g. a Gaussian Random Field) as a discretely indexed spatial
random process by making use of the Stochastic Partial Differential Equation
(SPDE) approach. This approach substitutes a GRF with a GMRF in order to
achieve a sparse representation of the covariance matrix and thus reach higher
computational efficiency. The SPDE approach starts from the definition of the
SPDE:

(K2 — A)*2(7w(s)) = W(s), s e R, k>0 (1.20)

whose stationary solution is the GRF w(s) with Matérn covariance function (see
Eq. (1.3)). Eq. (1.20) also includes & the scale parameter of the Matérn covari-
ance function, A the Laplacian, « the parameter that controls the smoothness,
7 which controls the variance, W(s) a Gaussian spatial white noise process,
and d the dimension of the spatial domain. The parameters in the SPDE in
Eq. (1.20) are related to the parameters of the Matérn covariance function (the
marginal variance 0% and the smoothness parameter v) through:

o2 — L)
) (4772 g2v 12
T(a)(dn) o
v=oa-—d/2

The solution to the SPDE in Eq. (1.20), w(s), can be approximated using the
finite element method (Ciarlet, 2002; Brenner et al., 2008; Quarteroni and Valli,
2008) through the basis representation:

w(s) = dr(s)ws (1.22)

k=1

In this representation m is the total number of vertices in a triangulation of the
spatial domain D (see Fig. 1.1), ¢(s) represents a set of deterministic basis
functions and wy, are weights which are normally distributed with zero mean.
In order to achieve computational efficiency, the basis functions are chosen to
be piecewise linear in each triangle and to have local support. That is, ¢ (s) is
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1 at vertex k and 0 elsewhere. In the case o = 2, the precision matrix Q for
the vector w = {wy, ..., wp,} is given by:

Q =7*(k'C +2+*G + GC'G) (1.23)

with C a matrix with generic element C;; = f ¢i(s)ds and G with generic ele-
ment G;; = [ V¢;(s)Ve;(s)ds. As the precision matrix Q is sparse, then w is
a GMRF with Gaussian distribution A'(0, Q@'). The sparsity of the matrix
boldsymbolmathcal(@ makes the SPDE approach specially useful for fitting spa-
tial models efficiently. Thus, the SPDE approach and INLA have been used in
the models of this thesis to estimate their parameters.

1.2.4.1 The SPDE approach and Log-Gaussian Cox Processes

Log-Gaussian Cox Processes (LGCPs) (see Sec. 1.1.2) are a function of a GRF.
Hence, estimating their parameters can be computationally expensive. The like-
lihood of a LGCP, presented in Eq. (1.6), is intractable as it depends on an
integral over the whole study area. Little has been written on model fitting
and model comparison of LGCP models (Illian et al., 2012). MCMC methods
have been proposed to fit LGCPs, but given their iterative nature they can be-
come computationally expensive (Moller and Waagepetersen, 2003; Mgller and
Waagepetersen, 2007). As LGCPs are part of the family of LGMs, they can
be fitted using the INLA-SPDE approach as introduced by Illian et al. (2012).
This approach is based on a discretization of the spatial domain in grid cells and
the definition of a Poisson random variable which approximates the true LGCP
likelihood. The quality of the inferences produced by this technique depends
on the resolution of the grid cells, and can be computationally wasteful if the
process intensity is high or the observation window is large or oddly shaped
(Simpson et al., 2016).

Simpson et al. (2016) propose a new method for developing computational in-
ference on LGCPs. As mentioned before, the likelihood of a LGCP contains an
integral over the whole spatial domain of the point process, which makes this
likelihood hard to handle. Instead of defining the GRF over a lattice as in Illian
et al. (2012), it is defined as:

n

w(s) =Y z,(s) (1.24)

j=1
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where z = (21,...,2,)7 is a multivariate Gaussian vector and {¢;(s)},_, is a

set of deterministic basis functions. The expression in Eq. (1.24) resembles
Eq.(1.22) with m = n and z = w. The integral in Eq.(1.6) can be written as:

/D)\(s)ds:/ exp {w(s) }dSNZalexp{w( O} (1.25)

i=1

Based on the Equations (1.24) and (1.25), the log-likelihood in Eq. (1.6) can be
expressed as:

n

P
log(m(y|2)) Z Zz]qﬁj 3:) JrZszqﬁj ) (1.26)

j=1 =1 j=1
which can be rewritten in matrix form as:
log(m(y|2)) = —a exp(Aiz) + 1T Az (1.27)

with [A1];; = ¢,(5;) a matrix that contains the values of the basis functions
in Eq. (1.24) at the integration nodes §; and [As];; = ¢;(s;) that contains the
basis functions in Eq. (1.24), evaluated at the observation points.

Let logn = (2T AT, 2" AT o = (&",0T)T and y = (07,17)7 a vector of
pseudo-observations. Then, the likelihood in (1.27) can be expressed as:

N+p

w(ylz) ~ [] n¥* exp(—aim:) (1.28)
i=1

which is similar to a likelihood for N 4 p conditionally independent Poisson
random variables with means «;n; and observed values y;.

In practice, the integration points §; and the weights &; are based on a dual
mesh constructed from the mesh of the SPDE approach (Lindgren et al., 2011)
(see Figure 1.1). The centroids of the dual mesh are selected as the integration
points and the area of each polygon as the weights &; (Simpson et al., 2016).
This approximation has optimal convergence as the mesh in Figure 1.1 is refined.
Furthermore, as this approximation can be framed within the INLA-SPDE ap-
proach, the whole fitting process of a LGCP can be done efficiently.
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1.2.5 Nonlinear functions in the linear predictor: the in-
labru approach

As stated in the introduction of this thesis, one of our contributions is to ac-
count for biases inherent to Citizen Science data by regarding these data as a
thinned point pattern. Each possible source of bias acts as a thinning opera-
tion on the actual point pattern. Modelling these biases imply the inclusion
of nonlinear functions into the linear predictor of a traditional Log-Gaussian
Cox Process. In order to fit such models, Bachl et al. (2019) have proposed
an iterative approach for linearizing these terms, which is ready to use in the
R-package inlabru (Bachl et al., 2019). In this section we present in detail the
iterative approach introduced in Bachl et al. (2019) and used, for example, to
model thinned points patterns affected by distance sampling (Yuan et al., 2017).

The idea of inlabru is to add a linearization step to the traditional INLA-SPDE
approach for fitting LGMs. Let 77(u) be a non-linear predictor. In the inlabru
approach it is approximated by the first order Taylor approximation at ug, 77(u),
given by:

N(u) = 7(uo) + B(u — o) = [/(uo) — B(ug)] + B(u) (1.29)

with B the derivative matrix evaluated at ug. Once the approximation 7j(u) has
been computed, the non-linear observation model p (y| g [n(u, 0)]) is approx-
imated by p (y\ g A, 0)]) Furthermore, as the non-linear model posterior
is factorized as:

p(0,uly) = p(6]y)p(uly, 0) (1.30)
the linear approximation is analogously factorized as:
p(0,uly) = p(6]y)p(uly, 0) (1.31)

A relevant part of this approach is determining the linearization point ug. This
is done through the fixed point iteration method (Burden et al., 2015). Let
f(Py) be a function of the posterior distribution linearized at v, this method
seeks a point ug, such that ug = f(pu,). The function f can be either the
posterior expectation E(uly) or the joint conditional mode

f(py) = argm&xﬁv(u|y,9) (1.32)

with 6 = arg maxg Pv(8]y). The next steps summarize the algorithm to find the
point ug:
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1. Let ug be an initial linearization point

2. Compute the predictor linearization at ug

w

Compute the linearized INLA posterior p(0]y)

=

Let uy = f(Pu,) be the initial candidate for the linearization point
5. Let u, = (1 — a)ug + auy, and find « that minimizes ||7(u,) — 7(uy)]

6. Set the linearization point as u, and repeat from step 1 until convergence
is reached

How fast the point wg is found and how accurate the approximation is depends
on the function that is linearized. Further information on this method is avail-
able on https://inlabru-org.github.io /inlabru/articles/.

1.2.6 Bayesian data integration

Ecological and biodiversity phenomena are a constant source of information as
they occur on a permanent basis. However, observing these processes requires
effort in terms of time and economic resources. Depending on the phenomenon
or the research question to be addressed, different data types, sampling proto-
cols and observers are used to collect information. The increase in access to
technology has made it easier to observe ecological processes. Hence, one eco-
logical question can be addressed by using one of the many available datasets.
Nevertheless, as ecological processes occur over vast extensions of space and
on very fine time resolution, combining multiple datasets that inform on the
same process is a sensible, though technically complex, idea. Combination of
more than one data type has been used in research to model variables such as
anual runoff in hidrology (Roksvag et al., 2021), abundance of birds (Sicacha-
Parada et al., 2022), concentration of fine particular matter (Moraga et al.,
2017), spatial distribution of species (Gelfand and Shirota, 2019),among others.
In all these cases improved predictive performance was achieved when multiple
datasets were combined, with respect to models that used only one data type
at a time.

The most known models for combining multiple datasets are the Linear Mod-
els of Coregionalization (LMC) (Wackernagel, 2003; Banerjee et al., 2008), the
spatial factor model (Wang and Wall, 2003) and the shared component model
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(Knorr-Held and Best, 2001). LMCs are a class of multivariate spatial models
that intend to model measurements that covary jointly. These models are suited
for combining data collected at point level. These models can be specified as:

Z(s) = AY(s) (1.33)

with Z(s) a px 1 random vector, Y (s) a m x 1 random vector of orthogonal latent
spatial effects and A a matrix of coeflicients, which have to be estimated.These
models can be either fitted using MCMC techniques (Banerjee et al., 2015),
or using the INLA-SPDE approach (Blangiardo and Cameletti, 2015; Krainski
et al., 2018), which makes it convenient to jointly model observations collected
at different spatial locations.

Spatial factor model (Wang and Wall, 2003) assume the existence of a random
p % 1 vector Z observed at n spatial units (either points or areas). Each Z;; is
assumed to have a distribution F' in the exponential family with mean param-
eter 0;; and variance parameter af. This model assumes Z;; are conditionally
independent given 6,; and 0]2-. The parameter 6;; is specified as:

g(@l]):aJJr)\jfz, ’L:L,Tl, jil,,p (134)

with g an appropriate link function, o; the intercept, A; the slope parameter
and f a common Gaussian Random Field that affects all the p random variables.
Depending on the structure of the covariance matrix of the spatial random ef-
fect, f, the model can be either a geostatistical model or an areal data model.

Knorr-Held and Best (2001) proposed the shared component model for com-
bining data observed at the areal level. This model is motivated by the exis-
tence of common risk factors that affect multiple diseases. This model assumes
two Poisson random variables y;; and y;o for ¢ = {1,...,n} areal units. These
random variables are specified as follows:

Yi1 ~ Poisson(eliﬂf(bu) (1.35)

. 1/5
Yio ~ Pozsson(eglﬂ/ ®h2i) (1.36)
with expected counts ej; and eq;, a shared component 6; and disease specific
components ¢1; and ¢o;. The term § acts as a scaling parameter to quantify the
contribution of the shared component to the overall risk. This model assumes:

i) that y;; and y;o are conditionally independent given 6;, ¢1; and ¢o;, and ii)
that 6;,¢1; and ¢9; are independent. This model becomes especially relevant
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for the literature of data integration models as it defines a common random
effect to each data type and two dataset-specific effects that can be thought
of as “residuals” of the common structure (Knorr-Held and Best, 2001), or as
“idiosyncratic” components for each data type (Miiller et al., 2004).

Integrating multiple data types implies a trade-off between model flexibility
and computational complexity (Wang et al., 2021). A considerable part of
the Bayesian models for data integration are implemented through MCMC
techniques such as Gibbs sampler(Wang and Wall, 2003), Metropolis-Hastings
(Banerjee et al., 2015), reversible jump MCMC (Knorr-Held and Best, 2001),
among others. The INLA-SPDE approach offers a more computationally-efficient
alternative when these models are specified as Latent Gaussian Models (Rue
et al., 2009).

The models we propose along this thesis are based on the existing literature on
Bayesian data integration, and integrate multiple data types to serve two pur-
poses: i) borrow strength from each data type by integrating data types with
higher spatial coverage as CS data, and high-quality data obtained through
standardized sampling protocols, and ii) tackle eventual identifiability issues
that could appear when biases in the collection of each data type are accounted
for as more and more parameters become part of the model.

1.3 Established methods for ecological and bio-
diversity data

Multiple research questions are constantly formulated by ecologists as there is
an increasing concern about topics such as conservation of species and assess-
ment of impacts of human activity on biodiversity. These questions have been
addressed in literature by making use of Species Distribution Models (SDMs).
As the amount of research questions increase, the amount of data collected in
biodiversity also does. The constant evolution of technological solutions for ob-
serving ecological variables and reporting the occurrence of events in real time
have contributed to collect more data in a cost-efficient way. Hence, more va-
riety of data types is available to fit SDMs and knowing how to handle these
data types has become a considerable area of research. The available types of
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data for constructing SDMs include, but are not limited to presence/absence
data, presence-only data and count data. In this subsection we will go through
some of the most frequently used statistical methods in ecology and biodiversity
conservation.

1.3.1 Presence/absence data

Site-occupancy models were first proposed by MacKenzie and Kendall (2002)
and Tyre et al. (2003) to model available presence/absence data y. These models
rely on the concept of hierarchical models (see Section 1.2.2) as they model
simultaneously the actual process, so called state process z, and the observation
process y|z. The state process, which generates the presences/absences at n
sites is specified as:

z; ~ Bernoulli(v) (1.37)

with 1 the occupancy probability. The observation process is specified as:
yilzi ~ Bernoulli(z;p) (1.38)

with p the detection probability. These models have a simple structure and are
suitable for data collected through repeated surveys that report whether or not a
given species was present at a site so that detection error can be estimated. For
a wider perspective of methods available for modeling presence/absence data,
see (Kéry and Royle, 2015).

1.3.2 Count data

Abundance is defined as the number of individuals at some place and time. The
concept of abundance is very relevant to ecologists as it provides better infor-
mation about regions with high density of individuals (Johnston et al., 2015),
which is of paramount importance in conservation (Massimino et al., 2017). For
example, estimating abundance hotspots can inform and help authorities to se-
lect sites that may qualify to be included in the network of protected areas.
Despite its relevance, this data are hard to collect. Some common measurement
errors that are made in the collection of abundance data are detection errors
and counting multiple times the same individual. N-mixture models (Royle,
2004) are proposed as a natural way to account for detection error to produce
improved estimates of abundance. These models utilize counts of unmarked
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individuals (so double-counting is a possibility) as the collection of this data is
much more convenient and less expensive in terms of effort compared to, for
example, capture-recapture data, which in some cases require the actual cap-
ture of the marked individuals. As site-occupancy models, N-mixture models
are hierarchical models, with one layer explaining the underlying process for
abundance, and a second layer built to explain the observation process of the
counts. The first layer of the N-mixture model is then, the underlying process
of counts N; at m sites, specified as:

N; ~ Poisson(A), i={l,...,m} (1.39)

and an observation process, with counts Cj;;, product of p repeated surveys,
which are specified as:

Cij|N; ~ Binomial(N;, p) (1.40)

with p the per-individual detection probability. For a more detailed review on
N-mixture models see (Kéry and Royle, 2015).

These are very established methods among ecologists, and have proven to work
efficiently to solve a handful of research questions. However, as mentioned be-
fore, the evolution of technology and the increasing access to technology for
millions of people have fostered the existence of more data types as Citizen
Science data.

1.3.3 Citizen Science data

Citizen Science (CS) is defined as the open engagement of the public in sci-
entific tasks. This is a convenient way of collecting data as the participants
of CS projects are voluntary. Specifically in biodiversity, CS data is captured
through mobile applications or websites such as iNaturalist, GBIF and Art-
sobsevasjoner. Hence, these data contain large amount of records, cover vast
areas and represent a considerable amount of species. Despite the advantages of
these data, they are the result of non-standardized sampling designs as people
collect observation in accessible places, or areas where they expect to see more
occurrences, citizen scientists have different skills for detecting species, and have
differences in sampling effort. In addition to these factors, CS data are affected
by differences in activity of citizen scientists in different moments of the year as
well as preference for reporting certain group of species.
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Given these characteristics of the sampling process of CS data, modeling these
data should account for these characteristics. Otherwise, the inference produced
without accounting for these flaws could be heavily biased towards characteris-
tics of the sampled areas (Isaac et al., 2014; Sicacha-Parada et al., 2021). An
open question between the users of CS data is how to properly use them. In
fact, among the ecological community, there is still skepticism with respect to
these data because their poor quality could affect their research (Fischer et al.,
2021). We now introduce two of the most frequently used methods for modeling
CS data, creating pseudo-absences (Ferrier et al., 2002) and MaxEnt (Phillips
et al., 2006, 2009).

Pseudo-absences for modeling Citizen Science data

Citizen Science data in biodiversity are tipically collected in the form of presence-
only data as they often are the product of opportunistic detections. That is,
an observer reports only the occurrences she/he detected, but do not provide
further information about the locations visited and the effort made there to ob-
serve occurrences. Hence, a typical CS dataset is a large collection of points in
space (i.e. a spatial point pattern of presences) without any additional informa-
tion about these points. As an attempt to provide a methodological framework
to utilize these data, Ferrier et al. (2002) proposed to create background ze-
roes so that these data could be handled aftewards as typical presence/absence
data. The question of how, where and how many zeroes should be added to
the original dataset has been broadly approached in ecology literature (Barbet-
Massin et al., 2012). Some of the strategies proposed include, for example
adding pseudo-absences beyond a minimum distance from the observed pres-
ences (Zaniewski et al., 2002; Lobo et al., 2010) or placing zeroes where other
species have been reported as present (Phillips et al., 2009). Barbet-Massin
et al. (2012) make recommendations about how many and how to select the
pseudo-absences depending on the modeling technique used, while Pearce and
Boyce (2006) and Ward et al. (2009) have made efforts to adjust the logistic re-
gression for the resulting presence/pseudo-absence data to account for the bias
induced by the selection of the background zeroes. Even though this approach
has enabled many researchers to use CS data, this is still based on an arbitrary
selection of background locations and do not recognize the random nature of
the amount of reports and their location (Gelfand and Shirota, 2019).
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Maximum entropy approach

The maximum entropy (MaxEnt) approach (Phillips et al., 2006, 2009) is ar-
guably one of the most popular methodological tools to model CS data among
ecologists as this is offers a simple way of analyzing large volumes of data through
an open source software (Merow et al., 2013). This method takes a gridded ver-
sion of the space as starting point. The first input of MaxEnt is a list of presence
location (i.e. presence-only data), then background locations are extracted to
be constrasted against the presence locations. MaxEnt takes the explanatory
variables Z at spatial locations z;, i.e. Z(x;) as inputs to maximize a gain
function defined as:

M N J
gain = 12 3 2(eA-log 3 Q) exp{a(e)N - D N1 By/52 5] /M (1.41)

where the first term represents the likelihood of the presence data, and de-
pends on coefficients A\ which act as weights for the sum of the covariates at the
M presence locations. The second term is a sum, in log-scale, of exp{z(z;)A}
weighted by prior information in @Q(z;), and finally the last term represents a
regularization penalty on the coefficients A, so that the most relevant covariates
are retained. The strength of the regularization is determined by the param-
eters B and s?[z;] are the variances of the covariates. The definition of this
gain has a positive relation with z(z;) at the presence locations, while it seeks
to downweight the relevance of places where the species is expected to occur
through the weights Q(z;) and avoid overfitting through the last term. The
optimization of this gain function is constrained so that the moments of the
prediction match the empirical moments of the data. Hence, Maxent through
the optimization of the gain function subject to the constraints in equation aims
to find the species density that matches more closely the prior belief, usually a
uniform distribution in geographic space (i.e. @Q(z;) = 1/N meaning all the cells
are equally likely to contain an individual). MaxEnt, thus produces a surface of
relative occurrence rate, which describes the relative probability that a cell is
contained in a collection of presence samples. Gelfand and Shirota (2019) point
out that the algorithmic nature of MaxFEnt impedes quantifying the uncertainty
of the estimates produced. For further details about MaxEnt see Phillips et al.
(2006, 2009); Gelfand and Shirota (2019)
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(a) ®)

Figure 1.1: (a)Typical discretization of the space using the SPDE approach,
and (b) Dual mesh for approximating the likelihood of a LGCP. The red points

represent the locations §; and the areas of the polygons the weights &; in Equation
(1.28)
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Chapter 2

Scientific papers

In this section we present each of the papers that are part of this thesis. The
topics presented in the introduction are used to develop the statistical methods
proposed in each paper. Hence, in addition to the presentation of each paper, we
link them with the topics in the previous section, making a brief description of
the innovations and methods proposed, and identifying the fundamental aspects
that make them relevant as methodological tools for modeling biodiversity data.

The papers

Paper I Sicacha-Parada, J., Steinsland, I., Cretois, B., Borgelt, J. (2021). Ac-
counting for spatial varying sampling effort due to accessibility in Citizen
Science data: A case study of moose in Norway. Spatial Statistics, 42,
100446.

Paper II Sicacha-Parada, J., Pavon-Jordan, D., Steinsland, I., May, R., Stokke,
B., Qien, 1. J. (2022). A Spatial Modeling Framework for Monitoring
Surveys with Different Sampling Protocols with a Case Study for Bird
Abundance in Mid-Scandinavia. Journal of Agricultural, Biological and
Environmental Statistics, 27(3), 562-591.

Paper III Sicacha-Parada, J., Pavon-Jordan, D., Steinsland, I., May, R., Stokke,
B. (2022) New spatial models for integrating standardized detection-nondetection
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and opportunistic presence-only data: application to estimating bird mor-
tality hotspots linked to powerlines. In preparation.

Paper IV Cretois, B., Linnell, J. D., Van Moorter, B., Kaczensky, P., Nilsen,
E. B,, Parada, J., Red, J. K. (2021). Coexistence of large mammals and
humans is possible in Europe’s anthropogenic landscapes. Iscience, 24(9),
103083.

Paper V Borgelt, J., Sicacha-Parada, J., Skarpaas, O., Verones, F. (2022).
Native range estimates for red-listed vascular plants. Scientific Data, 9(1),
1-12.

The overall goal of thesis is to propose novel modeling methods that con-
tribute to make better use of biodiversity data, in particular of Citizen Science
data. This data type is continuously growing since citizen scientist have more
technical tools to report what they observe. It means these data cover large
portions of space and are reported at very fine temporal resolution. With the
papers we demonstrate how Citizen Science data can be efficiently used to ad-
dress multiple research questions in ecology by providing methods to efficiently
account for biases in their collection process when only CS data are available,
or when multiple datasets are available.

Documentation

Paper I: “Accounting for spatial varying sampling effort
due to accessibility in Citizen Science data: A case study
of moose in Norway”

Some research questions in ecology can be addressed by making use of CS data
as these are open, massive data. However, many scientists are still reluctant to
the idea of using data collected through non-standardized sampling protocols
and reported by observers with diverse levels of knowledge of biodiversity. This
paper serves as a way to raise awareness on the potential CS data have by mak-
ing proper use of them.
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Several factors affect the collection of CS data in reality and represent a risk
of producing biased statistical inference (Isaac et al., 2014). To address the
demand of methods that make proper use of CS data, we proposed a simple
modeling framework to account for differences in accessibility, as this is a factor
that yields varying sampling effort in CS data. This model is built upon the
conceptualization of CS data as thinned point pattern (Chakraborty et al., 2011;
Fithian et al., 2015). In this particular case, accessibility was the factor that de-
termined the thinning of the true point pattern (see Section 1.1.2). This factor
has a particular relation with the activity of scientists as it is well-known that
the activity of citizen scientists is focused in areas of easy accessibility (Fithian
et al., 2015; Monsarrat et al., 2019), hence chances of having locations nearby
roads visited are larger (i.e. lower thinning probabilities) than for the most
inaccessible places . With this information in mind, two functional forms were
utilized to account for accessibility as a factor that produces the observed point
pattern: i) a parametric form that made use of the half-normal detection in
distance sampling (Yuan et al., 2017), and ii) a semi-parametric functional form
based on I-spline basis functions (Ramsay, 1988). These models were specified
as Log-Gaussian Cox Processes (LGCPs; Mgller and Waagepetersen (2007))
and fitted through the INLA-SPDE approach (Rue et al., 2009; Lindgren et al.,
2011), using the ideas in Simpson et al. (2016).

This paper shows through simulation studies and a real-data application us-
ing data from CS projects that it is possible to make efficient use of CS data,
but some extra work needs to be done. A first step is to figure out which factors
are behind the degeneration of the true unobserved point pattern and then try-
ing to account for them based on existing covariates (e.g. distance to roads), or
through functional forms (e.g. I-splines), which may not provide interpretable
estimates of the thinning of the point pattern, but contribute to obtain more
accurate estimates of the parameters involved in the ecological process that is
being investigated.

This paper is an useful tool for both statisticians and practitioners to use CS
data because is based on a simple Bayesian specification and is reproducible as
code for fitting the proposed model is readily available.
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Paper II: “A Spatial Modeling Framework for Monitor-
ing Surveys with Different Sampling Protocols with a Case
Study for Bird Abundance in Mid-Scandinavia”

One of the most relevant questions for ecologists is about the amount of indi-
viduals that inhabit an area. Abundance (see Section 1.3.2) has proven to be
beneficial to support the resolution of several research questions. However, the
collection of these data requires repeated sampling, expertise and usually struc-
tured sampling designs (Kéry and Royle, 2015). The observed abundance data
are usually the result of long periods of observations where lack of detection or
double counting are influential factors. The effort necessary to count individuals
makes the collection of these data expensive, and thus their spatial coverage is
large, but their spatial and temporal resolution is coarse as a site is not visited
every year and the sampling sites are placed in a cost-efficient way so that a
considerable portion of the space can be covered.

In many countries data on abundance are collected through professional sur-
veys as part of monitoring programs. These surveys hardly ever follow the
same sampling protocols, so the resulting count data can be measured in dif-
ferent units and be the product of different sampling efforts. For this reason,
producing abundance maps for more than one country is a challenging task.
This paper contributes to the existing literature by building Bayesian spatial
models that jointly model data from multiple professional surveys which cover
disjoint portions of the space and have different sampling protocols. The models
proposed in this paper take elements from existing spatial fusion models (see
Section 1.2.6) by assuming that the observed counts have a common ecological
process underlying. This ecological process is determined by a group of random
effects and a Gaussian Random Field. Conditional on these effects, the observed
counts are assumed independent. Through these models, it is also possible to
quantify the effect of the design of each sampling protocol through the inclusion
of covariates or random effects that explain particular characteristics of each
sampling protocol.

The proposed models were fitted for both simulation studies and real-data ap-
plication for monitoring programs of Norway and Sweden. The results show
improvement in the predictive performance of the models when data of all the
protocols are integrated. In the real-data application, a model that used the
idea of an ‘idyosincratic” GRF (i.e. specific to one of the sampling protocols, see
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Knorr-Held and Best (2001)) produced improved predictions both in terms of
accuracy and precision. The methods proposed in this paper open the possibil-
ity for ecologists to construct abundance maps that cover larger spatial extents
since the differences in the observed counts are properly accounted for.

Paper III: “New spatial models for integrating standardized
detection-nondetection and opportunistic presence-only data:
application to estimating bird mortality hotspots linked to
powerlines”

As mentioned in section 1.3, more datasets are available for addressing research
questions in ecology. In particular, the applied research question we address in
this paper is where the riskier locations for powerline-induced deaths of birds
are located, and which factors drive this process. To solve this research question
two datasets are available, professional surveys data from the Norwegian Insti-
tute for Nature Research (NINA) and Citizen Science data. Both data types
are regarded as thinned point patterns.

In this paper we proposed Bayesian spatial models to fusion both data types.
As done in spatial fusion literature (Wackernagel, 2003; Knorr-Held and Best,
2001; Wang and Wall, 2003; Wang et al., 2021), we assume both observed point
patterns are generated from a common underlying point process and what dif-
fers from dataset to dataset is how the observation process is performed. The
observed data from professional surveys is the result of preferential sampling
since the experts use their prior knowledge to determine which powerlines to
visit. To account for this, we have assumed the selection of sites to sample
by experts begins by selecting which powerline should be visited. That is, the
modeling of the preferential sampling occurs at the areal level. The thinning
of the true point pattern that generates the observed CS data is explained as a
multi-stage thinning process that is associated to factors such as accessibility,
detectability and willingness to report an occurrence. Unlike the process that
generates professional survey data, we assume that the thinning process that
produces CS data occur at the point level.

The contribution of this paper is to propose flexible models to fusion two or
more data types that report the same ecological process, but following different
sampling process, while accounting for the factors that bias the collection of
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the data types fusioned. Fitting the proposed models implies in this case the
integration of point-level data and areal data as done in, for example, Roksvag
et al. (2021) and Wang et al. (2021). Producing fusion models with improved
predictive performance requires to account for the factors linked to biases in
the collection of each data set (Simmonds et al., 2020). In this paper we have
also proposed techniques for explicitly accounting for preferential sampling and
biases in CS data collection with aid of the linearization techinque in the inlabru
R-package (Bachl et al., 2019).

This flexible framework offers a methodology for efficiently fusioning data col-
lected by professionals and citizen scientists. The benefits of these models were
analyzed in a simulation study and real data of powerline-induce deaths. The
simulation studies showed the importance of integrating both data sets as accu-
racy in parameter estimates improved. The results of the case study highlighted
the relevance of the proposed models as the effect of the amount of exposed birds
on the risk of powerline-induced deaths had considerable differences between
models.

Paper 1IV: “Coexistence of large mammals and humans is
possible in Europe’s anthropogenic landscapes”

Spatial distribution of species is a major concern for the ecological community
because knowing which factors determine the spatial distribution and size of
species’ niche is of paramount importance for supporting conservation policies.
This paper aims to determine the influence of human populations on the spatial
distribution of large mammal species across Europe as a way to support existing
conservation programs.

The data for solving this question was collected from existing literature about
mammal populations and was aggregated into 10km x 10km presence/absence
cells. Hence, the proposed model was a typical areal data model with binary
response. A spatial random effect with intrinsic Conditional Autoregressive
(iCAR) structure was specified as a way to account for the spatial autocor-
relation not accounted for by the fixed effects included in the model. The
fixed effects of the model included anthropogenic factors considered as the Hu-
man Footprint Index, and the spatial coverage of protected areas within each
10km x 10km (i.e. the number of 1km x lkm cells within each 10km x 10km
cell that corresponded to protected areas). The anthropogenic factors were con-
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trasted against biophysical drivers of big mammals distribution such as Terrain
Ruggedness Index, Potential Evapotranspiration of the Warmest Quarter and
Snow Cover Duration. Given that the proposed model was specified as a Latent
Gaussian Model (LGM, Rue et al. (2009)), it was fitted using the INLA-SPDE
approach (Rue et al., 2009; Lindgren et al., 2011).

The results of the model showed that for most of the studied species, the pres-
ence of human populations does not represent the main driver of their spatial
distribution. The spatial location of these species was instead determined by
the biophysical factors. Hence, coexistence between human populations and big
mammals seems a possibility that does not harm populations of big mammals.
This paper showed how simple statistical techniques can support large-scale
studies in ecology and have impact on decision making for species conservation.

Paper V: “Native range estimates for red-listed vascular
plants”

Conservation policies for biodiversity around the globe rely on information
about the spatial distribution of species. However, comprehensive ready-to-
use datasets are only available for few vertebrate groups. The necessity of more
information regarding the spatial distribution of fundamental species for assess-
ing anthropogenic impact and define conservation policies is not available. CS
data offers the opportunity of producing range maps for thousands of species
around the globe, given the massive amount of georeferenced occurrences that
are available in CS databases.

This paper contributes to the development of conservation policies for terres-
trial vascular plants listed at the global IUCN red list by providing accessible
datasets for about 47,675 species. These data include pre-defined native re-
gions for all the aforementioned species, the spatial density of CS reports in the
Global Biodiversity Information Facility (GBIF) for above 30,000 species and
predicted suitable areas within species’ native regions for about 27,000 species.
These predictions were made using MaxEnt (see Section 1.3.3) while using the
available CS data and a group of environmental covariates. As known, CS data
is the result, in many cases, of biased sampling protocols. As a way to deal
with the potential biases, the data from CS databases, available in 30 arc min.
cells, were filtered out in three different levels: no filter, presence cells (i.e. re-
moving duplicated cells) and thinned presence cells (i.e. cells within two-cell
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from a presence cell were removed). The predicted maps for 4,257 species were
validated by comparing them against expert-drawn range maps from IUCN.

This paper and the resulting datasets and maps offer an innovative tool to
access information of thousands of plant species while making efficient use of
millions of CS reports. Not only supports this tool ongoing and new conser-
vation initiatives, but also encourages citizen scientists to keep contributing as
their work has actual value for science and biodiversity.
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not accounting for varying sampling effort due to accessibility
are studied through a simulation study based on the case study.
Considerable biases are found in estimates for the effect of radi-
ation on moose occurrence when accessibility is not considered
in the model.
© 2020 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the expansion of technology, information and data have become readily available not only
for the scientific community, but also for society in general. Citizen Science (CS), i.e. the engagement
of the public in activities formerly exclusive of trained people in scientific projects, has emerged as a
consequence, (Newman et al., 2012). The convenience offered by technology has encouraged people
to contribute to different fields of scientific research ranging from social sciences (www.ancientliv
es.org, www.oldweather.org) or astronomy (www.galaxyzoo.org) to biodiversity (e.g. www.artsobs
ervasjoner.no, www.eBird.org and www.iNaturalist.org).

According to the typology of Citizen Science introduced in Strasser et al. (2019), CS projects in
biodiversity are regarded as “sensing” projects. It means that the role of volunteers is to collect
information and submit it to a large database. These projects take advantage of the participants
local knowledge on their environment and reach high spatial coverage. The impact of these projects
can be measured in the amount of observations that are stored in their databases. For example,
by September 2019, about 1.3 billion of occurrences had been reported in the global biodiversity
information facility (GBIF). The Norwegian biodiversity information centre (Artsdatabanken) has
about 21 million of occurrences reported. Despite being cost-efficient, easy to retrieve and its
massive amount, CS data have some drawbacks. Given their “open” nature, there is no systematic
sampling design to collect data, meaning citizens record observations at convenient sampling
locations and times. Additionally, no scientific background is required to be part of a CS project,
which implies that some species may get misidentified, (Kelling et al., 2015).

The differences in knowledge and expertise of participants in CS projects is only one of the
potential sources of bias. As described in Isaac et al. (2014), the biases in the sampling processes
can be classified in four groups: temporal bias, understood as varying activity of observation and
reporting across time; geographical bias, meaning more reports in more convenient locations, (Mair
and Ruete, 2016); uneven sampling effort per visit and differences in detectability. Preference for
reporting a specific type of species constitutes another typical bias in CS sampling designs. All these
biases yield in uneven sampling effort across space and time. Moreover the sampling process is not
always independent of the variable intended to be measured or observed, known as preferential
sampling, (Diggle et al., 2010). An issue that is not exclusive to CS records and that needs to be
considered when uncertain about the independence between observation and sampling design.

Furthermore, ideally citizens record both locations where species have been observed and
locations where species have been absent. This type of data is known as presence-absence data.
In this case the locations are fixed and presence or absence of a species is recorded. However, CS
databases in biodiversity contain mostly presence-only data. Hence, the only information given is
the presence of a species in random locations whereas the rest of the landscape remains unknown.
They can be actual absences or locations that have not been sampled yet. Then, there is an evident
necessity of modeling CS data in a way that acknowledges the randomness of the number and
the location of the observations and that accounts for different biases in the underlying sampling
process.

The focus of this paper is on presence-only data and geographical bias due to accessibility. A
common approach to model this data is turning some of the unobserved locations into pseudo-
absences, then the available observations could be modeled as presence-absence data, (Ferrier et al.,
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2002) and (Barbet-Massin et al., 2012) However, it does not account for the spatial autocorrelation
for presences and absences across space, (Gelfand and Shirota, 2019). Arguably the most common
approach for modeling presence-only data is Maxent, Phillips et al. (2009, 2006). This is an
algorithmic strategy that aims to find an optimal species density subject to some constraint. Given
its nature, Maxent does not account for the uncertainty of the predictions. Furthermore, it provides
the relative chance of finding a species in comparison to other locations rather than a probability
of presence or absence at each location. In Chakraborty et al. (2011) presence-only data is regarded
as a realization of a spatial point process which, for the particular case of CS data, is subject to
degradation. This approach was proven to perform better than Maxent in terms of goodness-of-fit
statistics in a scenario with biased sampling.

The source of variation in sampling effort targeted in this paper is spatial bias due to differences
in accessibility. It has been discussed in Gelfand and Shirota (2019) and addressed in Monsarrat et al.
(2019) that studies historical large mammal records in South Africa where accessibility depends on
proximity to freshwater and European settlements. There, an accessibility index is computed as the
average of two functions defined as the half-normal function, characteristic of distance sampling.
This functional form is also mentioned in Yuan et al. (2017) as an approach to model the probability
of detection as a function of the perpendicular distance to a transect line segment.

In this paper we aim to emphasize the importance of accounting for differences in accessibility
when CS data is modeled. We do it by making use of the Bayesian spatial approach proposed
in Chakraborty et al. (2011) and Gelfand and Shirota (2019) to model the intensity of the point
process associated to the distribution of a species. It means the observed point process is understood
as the resulting process after the potential point process has been degraded by the probability of
having access to each location. Our working hypothesis is that the distance to the road system is a
good indicator of accessibility. Thus, we account for accessibility by making use of two functional
forms introduced in Yuan et al. (2017): (a) the half-normal function that assumes an exponential
decay of the probability of accessing a location as the distance to the closest road increases and
(b) a semi-parametric approach that explains the decay of this probability as a function of a linear
combination of I-spline basis functions, (Ramsay, 1988). These functional forms are then included
as part of the models that explain the observed intensity. We refer to these models as the Varying
Sampling Effort (VSE) model and the Extended Varying Sampling Effort (EVSE) model. A common
goal of ecological studies is to explore the importance of geographical, climatic or biological
quantities that drive the distribution of a species. Hence, we also aim to see how accounting for
accessibility impacts the parameters estimates in a Bayesian spatial model, changing then the
way the dynamics of a species is understood. Gelfand and Shirota (2019) uses a Markov chain
Monte Carlo (MCMC) sampling for inference, which is computationally expensive. The Integrated
Nested Laplace Approximation (INLA), (Rue et al., 2009) is a non-sampling approach to full Bayesian
inference. INLA can also be used for spatial models based on Gaussian Matern Processes using the
stochastic partial differential equation (SPDE) approach, (Lindgren et al., 2011), also in point process
modeling, (Simpson et al., 2016). We use INLA for inference, and its computational efficiency enable
us to do a simulation study.

We consider an illustrative case study of CS presence data of moose (Alces alces) in the county of
Hedmark, Norway. Moose is a large ungulate distributed across most of the Norwegian landscape.
It utilizes a wide variety of environments, including forests, wetlands and farmland, (Hundertmark,
2016). The species contributes to ecosystem health parameters by providing key ecological pro-
cesses such as browsing on both broad-leaved and needle-leaved trees as well as shrubs (for a
review see Shipley (2010)). Moose survival and fitness are highly determined by competition for
food, e.g. Messier (1991). Hence, moose tend to avoid areas dominated by steep slopes, deep and
enduring snow cover as well as poor food availability. In order to proxy this knowledge , we use two
explanatory variables: solar radiation (RAD) and terrain ruggedness index (TRI). Solar radiation has
been shown to influence fine scale movement of moose due to its effects on air temperature, snow
cover and plant phenology, (Pomeroy et al., 1998). Moose are more likely to select areas receiving
higher levels of solar energy as snow cover is shallow and plant productivity higher. Ruggedness,
or terrain heterogeneity also has a major role in moose distribution as a high ruggedness increase
their energy expenditure, (Leblond et al., 2010).
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Fig. 1. Moose observations (red points) and road system (lines) in the county of Hedmark, Norway. Bold lines indicate
main roads.

This paper is organized as follows: In Section 2, the dataset of the case study is introduced and
explored. In Section 3, models are presented, as well as the inference method and measures for
evaluating and comparing them. In Section 4, we perform a simulation study comparing the models
that account for variation in sampling effort and a model not accounting for it. In Section 5 results
of both the simulation study and the moose case study are shown. The paper finishes in Section 6
with the discussion of the results and concluding remarks.

2. Case study: Moose in Hedmark and exploratory analysis

In this paper we study moose distribution using locations recorded by citizen scientists and
retrieved from GBIF (https://gbif.org). It corresponds to 472 observations product of human ob-
servation from 2000 to 2019, NBIC (2019b,a), Blindheim (2019) and iNaturalist.org (2019). These
observations correspond to locations of moose in the county of Hedmark, Norway, see Fig. 1.
Further, we have two explanatory variables available: RAD and TRI. RAD is computed as the yearly
average of the monthly solar radiation retrieved from WorldClim (http://worldclim.org/version2
), Fick and Hijmans (2017). TRI was obtained from the ENVIREM dataset (https://envirem.github.io
). Both variables are available at approximately 1 km x 1 km resolution, Title and Bemmels (2018).

Our working hypothesis is that spatial variation in sampling effort can be partly explained by
accessibility due to distance to roads. In order to determine whether or not it happens, we used
the road system of Hedmark retrieved from the spatial crowd-sourcing project OpenStreetMap (ht
tps://www.openstreetmap.org). This dataset includes a detailed network of roads that ranges from
highways to footways. Fig. 1 shows the roads as well as reported moose presences in Hedmark.
Most of the observations are made in southern Hedmark and near populated zones of the region,
such as Hamar, Elverum and Kongsvinger, or in zones with many roads.

To explore if the observed locations are more accessible than the mass of locations in the region,
we compare the citizen science dataset that contains the 472 observed points with a grid of about
400 thousand evenly distributed points. We computed the closest distance to the road network for
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Fig. 2. (a) Boxplots of distance to the road system. Left: Dense grid of about 400 thousand points. Right: 472 reports of
moose in Hedmark (b) Relationship between the observed ratio q(sy) and the distances to closest road, sq.

both datasets. The boxplots of these distances for each set of points are displayed in Fig. 2a. 91%
of the observations reported are located less than 500 m away from a road. On the other hand,
the grid has points that are more distant from the road system. The boxplots show that locations
further away than 1 km are not represented in the observed point pattern. A Kolmogorov-Smirnov
test was performed on the two sets of distances in order determine if these two sets of distances
follow the same distribution or not. The result (p — value < 2.2e — 16) let us conclude that, as
suspected, the sets of distances do not follow the same distribution. This is an indication of a non-
random sampling process. Following our working hypothesis we explore the relationship between
the distance to the closest road, d(s) and q(s), the probability of retaining a point located at distance
d(s) (i.e. not thinning) in the observed pattern. To proxy q(s), we grouped both sets of distances into
bins, sy, of width 0.25 and for each of them we computed:

(A](Sd) _ ?obs(sd)

Pgria(Sa)
with Pops(Sa) and Pgrig(sq), the proportion of points that are part of the bin sy in the observed
pattern and the dense grid, respectively. In Fig. 2b we observe a considerable decrease of G(sq)
from s; = [0,0.25] to s; = (1.5, 1.75]. After this distance, g(sy) becomes 0, except for s; =
{(2,2.25]; (2.5, 2.75]; (5.5, 5.75]} where few observations were reported.

According to the shape of g(s;) obtained from our sample, an exponential decay function as the
one introduced in Yuan et al. (2017) arguably describes well the relationship between d(s) and q(s,).
In addition to it, a semi-parametric approach also presented in Yuan et al. (2017) could be used.
Both approaches are explained in more detail in Sections 3.1.2 and 3.1.3.

3. Modeling and inference approach

In this section we introduce three models that will be fitted and compared. They are based on
the specification of a Log-Gaussian Cox Process. The first of them, the naive model, does not account
for any difference in accessibility, while the second and third model account for accessibility as a
potential source of variation in sampling effort. Then, we briefly describe the inference methods we
will use. Finally, we introduce the criteria to assess and compare these models.
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Fig. 3. (a) Solar Radiation (RAD) and (b) Terrain Ruggedness Index (TRI) in the county of Hedmark, Norway.

3.1. Models

3.1.1. Naive model

The observed data are regarded as a realization of a point process. It means both the number of
points and their locations are random. The intensity measure, understood as the mean number of
points per area unit, is the variable we are interested in modeling. In what follows, we will assume
the observed point pattern is a realization of an inhomogeneous Poisson Process (NHPP), Illian et al.
(2008), over the region D C R2. Thus, the number of points in D is assumed to be random and to
have a Poisson distribution with mean fD A(x)dx. We assume the point process is a Log-Gaussian
Cox Process (LGCP). Hence, A(s), s € D can be expressed as:

log(A(s)) = X' () + w(s) (1)

with x(s) a set of spatially-referenced covariates and w(s) a zero-mean Gaussian process that
accounts for residual spatial autocorrelation between locations in D. For our case study the set of
spatial covariates x(s) are: TRI and RAD, displayed in Fig. 3. A flexible family of covariance functions
is the Matérn class:

2

W(K lIsi — sil1)"Ky (ke lIsi — s;l) (2)

with ||s; — s;|| the Euclidean distance between two locations s;, s; € D. o2 stands for the marginal
variance, and K, represents the modified Bessel function of the second kind and order v > 0. v is
the parameter that determines the degree of smoothness of the process, while ¥ > 0 is a scaling
parameter.
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3.1.2. Variation in sampling effort (VSE) model

Degeneration of the point process has to be considered in the model. We associate it to a thinned
intensity. That is, we now assume that the intensity of the observed point process is A(s)q(s) with
A(s) the intensity modeled in the naive model, named in Chakraborty et al. (2011) as the potential
intensity and q(s) the thinning factor which ranges between 0 and 1, with 0 representing total
degradation and 1 no degradation. In our application, the degradation is associated to accessibility
based on distances to a road network. Thus, as d(s) approaches 0, g(d(s)) approaches 1.

The way q(s) can be specified is still an open question, and several alternatives are available,
depending on the sources of variation in sampling effort that are considered in the model. For
example, in the case of moose distribution in Hedmark, q(s) could be associated to accessibility to
the road system, (Gelfand and Shirota, 2019), to populated areas and freshwater, (Monsarrat et al.,
2019), or land transformation, (Chakraborty et al., 2011). As pointed out in Yuan et al. (2017), in
case ¢(s) is not log-linear, the estimation of the parameters is not part of the latent Gaussian model
framework of INLA. Thus, following the half normal detection function in distance sampling, (Yuan
et al., 2017), we aim to account for differences in accessibility by making use of the functional form:

q(s) = exp(—¢ - d(s)*/2); ¢ >0 (3)

where ¢ is a scale parameter and d(s) is the closest distance from location s to the road system.
Thus, the model we propose, which accounts for differences in accessibility is:

log((s)q(s)) = X' (s)B + e(s) + log(q(s)) (4)

This model requires that the variables that are used to explain g(s), in our application distance to
the road system, are available at every s € D.

3.1.3. Extended variation in sampling effort model (EVSE)

Even if the VSE model accounts for variation in sampling effort, the functional form of q(s) does
not offer enough flexibility in situations with thinning processes that do not follow an exponential
functional form. A natural, convenient way of overcoming this issue and still keeping a log-linear
relationship between d(s) and q(s), is by means of a non-parametric approach. We can specify
—log(q(s)) as a linear combination of basis functions as proposed in Yuan et al. (2017). In order to
guarantee the monotonicity of —log(q(s)), we should use a basis of monotone functions, By(s), k =
1, ..., p in the linear combination:

p
—log(q(s)) = Y _ tBi(s) (5)

k=1

with ¢ a set of parameters constrained to be positive, (Yuan et al., 2017) and (Ramsay, 1988). Since
this specification of g(s) is only implemented in INLA for independent ¢, p should not be more than
2 or 3. Otherwise the resulting q(s) would not be smooth, (Yuan et al., 2017). A graphical overview
of the relationship between the basis function Bi(s) and q(s) is available in Appendix A.

3.1.4. Prior specification

The parameter v in the Matérn covariance function (2) is fixed to be 1. On the other hand, the
interest is put on the spatial range p and on o, with p related to « in (2) through p = \/§/K.
These two parameters are specified by making use of PC priors, (Fuglstad et al., 2019). In this case
we set P(p < 15) = 0.05 and P(c > 1) = 0.05. It means that under this prior specification
a standard deviation greater than 1 is regarded as large, while a spatial range less than 15 is
considered unlikely. The parameters in 8 have Normal prior with mean 0 and precision 0.01. Finally,
let ¢ = exp(@). For the hyperparameter # a Normal prior distribution with mean 1 and precision
0.05 is specified. In (5), let ¢, = exp(6k), k = 1, ..., p. Each 6; has a normal prior with mean 1 and
precision 0.05.
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3.2. Inference and computational approach

The models introduced in Section 3.1 will be fitted making use of the Integrated Nested Laplace
Approximation (INLA), (Rue et al., 2009), the SPDE approach, (Lindgren et al., 2011), and the
approach introduced in Simpson et al. (2016) for fitting spatial point processes.

3.2.1. The Integrated Nested Laplace Approximation (INLA)

The traditional approach for performing Bayesian inference for latent Gaussian models is Monte
Carlo Markov Chains (MCMC). However, the Integrated Nested Laplace Approximation (INLA), (Rue
et al,, 2009), has emerged as a reliable alternative, (Illian et al., 2013; Humphreys et al., 2017) and
(Sadykova et al.,, 2017). While MCMC requires considerable time to perform Bayesian inference for
complex structures such as those inherent to spatial models, INLA requires less time to do the same
task since, unlike MCMC which is simulation based, INLA is a deterministic algorithm, (Blangiardo
and Cameletti, 2015). The aim of INLA is to produce a numerical approximation of the marginal
posterior distribution of the parameters and hyperparameters of the model. In addition to its
computational benefits, implementing INLA is simple by making use of the R-INLA library.

3.2.2. The SPDE approach

A useful and efficient way to represent a continuous spatial process based on a discretely indexed
spatial random process is the Stochastic Partial Differential Equation (SPDE) approach, (Lindgren
et al., 2011). This is based on the solution to the SPDE:

(k? — A)2(z&(s)) = W(s) (6)

where s is a vector of locations in R?, A is the Laplacian. v, « > 0 and v > 0 are parameters that
represent a control for the smoothness, scale and variance, respectively. W(s) is a Gaussian spatial
white noise process. The solution for this equation, £(s), is a stationary Gaussian Field with Matérn
covariance function (2). This solution can be approximated through a basis function representation
defined on a triangulation of the spatial domain D:

G
HOEDIXAO (7)
g=1
where G is the total number of vertices of the triangulation, {¢.} is the set of basis functions, and
{§g} are zero-mean Gaussian distributed weights. This way of representing the Gaussian Random
Field has been proven to make more efficient the fitting process. Fig. 4a displays the triangulation
for the moose distribution example.

3.2.3. Approach for modeling LGCPs

The traditional way of fitting point process models is by gridding the space and then modeling
the intensity on a discrete number of cells. However, this approach becomes unfeasible and
computationally expensive as the number of grids increases. Given that gridding the space also
implies approximating the location of the observations, it also represents a waste in information
in contexts such as Citizen Science where the locations of the observations are collected with
considerable precision. Since a better approximation of the continuous random field is achieved
by making the size of the cells as small as possible, lattice-based methods become unfeasible as
stressed in Simpson et al. (2016). The approach there introduced is especially useful in situations
with uneven sampling effort since the resolution of the approximation can be locally adapted in
those regions with low sampling. Some additional details of this approach are now presented.

Let w(s) be a finite-dimensional continuously specified random field defined as:

w(s) =Y wigi(s) 8)
i=1
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Fig. 4. (a) Triangulation of Hedmark according to the SPDE approach (b) Dual mesh for approximating the likelihood of
the LGCP associated to moose distribution in Hedmark. The points are the locations §; in Eq. (10) and the areas of the
polygons are the weights a; in Eq. (10).

Based on this specification, the likelihood of a LGCP conditional on a realization of w:

N
log(n(A()l®)) = |w| — / exp((s))ds + Y _ w(si) (9)
@ i=1
can be approximated by :
p n N n
log(m(A()|@)) ~ C = Y " & exp{z ay@@)} + ) w(s) (10)
i=1 j=1 i=1 j=1

with @; and §; a set of deterministic weights and locations that can be obtained from a dual mesh
with polygons centered at each node of the mesh. Then, s = {5;,...,5,} are the nodes of the
mesh and a = {ay, ..., a,} the areas of the polygons linked to each centroid. These polygons are
constructed by making use of the midpoint rule, (Simpson et al., 2016). The dual mesh for our
application is shown in Fig. 4b.

3.3. Model assessment

In order to assess and compare competing models such as the ones we are fitting in upcoming
sections, we employ the Deviance Information Criterion (DIC), (Spiegelhalter et al., 2002), the
Watanabe-Akaike Information Criterion (WAIC), Watanabe (2010), and the logarithm of the pseudo
marginal likelihood (LPML). DIC makes use of the deviance of the model

D(0) = —2log(p(y|0))

to compute the posterior mean deviance D = Egy(D(6)). In order to penalize the complexity of the
model, the effective number of parameters,

Pp = Egy(D(8)) — D(Egyy(6)) = D — D(8)
is added to D. Thus,
DIC =D + pp.
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The Watanabe-Akaike Information Criterion is based on the posterior predictive density, which
makes it preferable to the Akaike and the deviance information criteria, since according to Gelman
et al. (2014) it averages over the posterior distribution rather than conditioning on a point estimate.
It is empirically computed as

n 1 S n
—2[;: log<§ ;p(mes)) + ; vjzl(logp(y,w‘))}

with 6° a sample of the posterior distribution and VZ_, the sample variance
Another criterion to compare the models is LMPL,defined as:

n
LPML = Z log(CPO;)
i=1
It depends on CPO;, the Conditional Predictive Ordinate at location i, (Pettit, 1990), a measure that
assesses the model performance by means of leave-one-out cross validation. It is defined as:

CPO; = p(y; lyr)
with y} the prediction of y at location i and yy = y_;.

4. Simulation studies

Our simulation studies aim to show: (i) the implications of not accounting for variations on
sampling effort when CS data is modeled, (ii) how accounting for at least one source of variation in
sampling effort can contribute to improve the inference made about the point process underlying
the spatial distribution of a species and (iii) see how misspecification of g(s) in the VSE model
can affect the quality of the inference. In order to do it, we make use of the same region map,
the road system in the application, the covariate Solar Radiation (RAD), given its association with
the sampling process (82% of the reports are made in locations whose solar radiation is above the
median solar radiation of the entire region) and its negative correlation, (—0.43), with the distance
to the road system. Then a zero-mean Gaussian random field with Matérn covariance function is
simulated.

A point pattern whose intensity depends on RAD is simulated. This is specified as a Log-Gaussian
Cox Process, Y(s), with log-intensity given by:

log(A(s)) = Bo + B1RAD(s) + w(s) (11)

It is simulated with 8y = —4.25 and 8; = 0.82. The parameters of the Matérn covariance associated
to the zero-mean Gaussian field, w(s), are assumed to be v = 1, k ~ +/8/p = /8/34, (Lindgren
et al,, 2011), with p the practical range, and ¢ = 0.7.

After simulating the LGCP, we thin the point pattern using two functional forms. For the first of
them a point located at a distance d(s) from the nearest road is retained with probability given by
the half-normal function in (3). We create 4 scenarios based on the value of ¢: scenario 0, when
¢ = 0; scenario 1, when ¢ = 1; scenario 2, when ¢ = 8 and scenario 3, when ¢ = 16.¢ = 0
corresponds to the case with no thinning. The other three values of ¢ represent increasing levels of
thinning that result in about 13%, 39% and 50% of observations removed, respectively.

The second functional form is a mix between the half-normal function and a constant probability
of retention. In this case the probability of retaining a point follows the same functional form as in
(3) until a distance dy. After this, the probability becomes constant. That is,

. 0) = exp( 5 205) 00 9 + exp( ~ S 1, el (12)

With d; = 0.5, three simulation scenarios were created: scenario 4, when ¢{ = 1; scenario 5, when
¢ = 8 and scenario 6, when ¢ = 16.
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Fig. 5. (a) Relationship between d(s) and q(s) for the simulation scenarios 0,1,2 and 3 (b) Relationship between d(s) and
q(s) for the simulation scenarios 0,4,5 and 6.

Table 1
Simulation scenarios.
Scenario Thinning ¢ dq
0 No thinning 0 -
1 Half-normal 1 -
2 Half-normal 8 -
3 Half-normal 16 -
4 Mixed 1 0,5
5 Mixed 8 0,5
6 Mixed 16 0,5

Fig. 5a displays how the functional form of q(s) in Eq. (3) varies as ¢ increases, while Fig. 5b shows
q(s) as a function of d(s) in each of the proposed scenarios when the functional form associated to
the thinning is (12) . The process of simulating a LGCP and thinning it according to ¢ and d; was
made for 100 different simulated point patterns. All the simulation scenarios are summarized in
Table 1.

To assess the performance of each model for each scenario, we simulate 10000 realizations
{Gﬁd},j =,1...,10000, from the posterior distribution of each parameter 6 for point pattern
k = 1,...,100 in scenario | = 0, 1, 2, 3, 4,5, 6. Then, the bias and the Root Mean Square Error
(RMSE) for point pattern k in scenario | are computed as:

bias = b 1%0(9." —?))
= 10000 f ikl
1 10000 -
RMSEy = | <o ; (65— 0)

with @ the actual value of parameter 6.



12 J. Sicacha-Parada, 1. Steinsland, B. Cretois et al. / Spatial Statistics 42 (2021) 100446

2 ]
= E P « ° Model
. .
§ e | . 8 ES Naive
o
= = s e BE vse
e ! o o BS evse
o '] ¢
0.04 [ ] g o

0.5

0 1 2 3 0 1 2 3
Scenario Scenario

Fig. 6. Boxplots of mean bias (left) and mean RMSE (right) of g for all datasets in each scenario (scenarios 0,1,2,3) and
for each model.

5. Results
5.1. Simulation study

5.1.1. Results for half-normal form of q(s)

The point patterns obtained for each of the 100 simulations in each scenario described in
Section 4 were fitted using the naive, the VSE and the EVSE model with p = 3 as suggested in
Section 3. The chosen basis functions are plotted in Appendix B. The results are summarized by
using measures of performance such as bias, RMSE, already introduced in Section 4, and frequentist
coverage.

The parameter B; is the parameter of our interest. Fig. 6 presents both the mean bias and the
mean RMSE at all simulated datasets for each scenario and model for this parameter. We first notice
that when there is no thinning (scenario 0) the models perform similarly according to their mean
bias and RMSE. However, as the original process becomes thinned (scenarios 1,2 and 3), the naive
model shows poorer results than the models that account for variation in sampling effort. In scenario
3, for example, for 50% of the simulated datasets the mean RMSE for the naive model exceeds 0.5,
while for less than 10% of the simulated datasets the mean RMSE is greater than 0.5 for the VSE
and the EVSE models.

Table 2 introduces the mean bias and RMSE of parameters S, 81, p and o for the three models.
The only parameters for which the bias and RMSE are not considerably different between the naive
and the other two models are p and o. However, p is clearly overestimated by all the models. The
spatial variance and the range are the most difficult parameters to estimate and prior distributions
that provide more information about these parameters may be useful to improve the accuracy of
their estimates, (Cameletti et al., 2019) and (Bakar et al., 2015).

As an additional comparison measure we used the frequentist coverage of the equal-tailed
100(1—a )% Bayesian credible intervals for each parameter. Table 3 presents the frequentist coverage
of the parameter B; for the three models, the results for the other parameters are available in
Appendix B. The coverage of the spatial parameters does not differ between models and scenarios.
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Table 2
Mean bias and RMSE for the parameters of the naive, VSE and EVSE models in the 4 scenarios simulated. In parenthesis
the standard deviation of each measure.

Scenario Approach Bo B 0 o
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Naive 0,132 0,265 0,109 0,223 13,698 17,437 —0,055 0,160
(0,150) (0,083) (0,186) (0,112) (7,994) (7,698) (0,113) (0,054)
0 VSE 0,187 0,309 0,089 0,223 13,507 17,410 0,349 0,559
(0,357) (0,322) (0,199) (0,114) (8,272) (7,672) (4,016) (3,994)
EVSE 0,192 0,300 0,082 0,213 13,849 17,590 —0,051 0,159
(0,158) (0,099) (0,184) (0,103) (8,019) (7,705) (0,112) (0,053)
Naive —0,157 0,285 0,310 0,352 14,480 18,594 —0,033 0,170
(0,154) (0,096) (0,179) (0,154) (8,754) (8,475) (0,127) (0,058)
1 VSE 0,125 0,277 0,168 0,258 14,420 18,641 —0,049 0,169
(0,165) (0,084) (0,188) (0,128) (8,190) (7,701) (0,121) (0,054)
EVSE 0,121 0,277 0,169 0,258 14,302 18,401 —0,047 0,167
(0,168) (0,081) (0,187) (0,128) (8,394) (7,914) (0,121) (0,056)
Naive —0,648 0,685 0,463 0,494 15,187 20,263 —0,022 0,179
(0,166) (0,162) (0,187) (0,177) (9,211) (9,121) (0,129) (0,057)
2 VSE 0,025 0,253 0,179 0,276 15,593 21,463 —0,075 0,190
(0,163) (0,075) (0,196) (0,137) (10,625) (12,145) (0,131) (0,058)
EVSE —0,007 0,254 0,182 0,278 14,803 20,063 —0,074 0,193
(0,166) (0,076) (0,196) (0,138) (12,403) (13,296) (0,149) (0,069)
Naive —0,890 0,918 0,503 0,534 14,856 20,600 —0,016 0,183
(0,168) (0,167) (0,181) (0,174) (10,104) (10,055) (0,129) (0,055)
3 VSE —0,025 0,252 0,161 0,271 15,371 22,397 —0,094 0,203
(0,158) (0,067) (0,193) (0,130) (10,847) (11,051) (0,135) (0,064)
EVSE —0,068 0,259 0,164 0,272 15,174 20,900 —0,087 0,195

(0,160)  (0,079)  (0,194)  (0,131)  (14,158)  (13,.846)  (0,151)  (0,077)

Table 3
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for B;. In
parenthesis, mean length of the intervals.

Scenario Model

Naive VSE EVSE
0 0,76 (0,49) 0,76 (0,48) 0,79 (0,49)
1 0,43 (0,55) 0,73 (0,54) 0,72 (0,54)
2 0,19 (0,63) 0,81 (0,61) 0,79 (0,61)
3 0,16 (0,67) 0,81 (0,64) 0,81 (0,64)

It is worth noting that smaller coverages are obtained for 8, for the naive model in comparison to
the other two models as the parameter ¢ increases.

The model comparison methods based on the deviance and on the predictive distribution as the
ones introduced in Section 3 are used to compare the results of the three models. In the scenario
with ¢ = 0 the naive model is the true model and, as expected, it performed better than the other
two models in about 40% of the simulated point patterns. This situation changes as the thinning
parameter increases, the models that account for variation in sampling effort perform better than
the naive one for all the simulated datasets.

5.1.2. Results for mixed functional form of q(s)

As explained in Section 4, we now thin differently the simulated point processes. The function
q(s) is now half-normal up to a distance d;, where it becomes constant. We fit the resulting
observations using the same three models. Fig. 7 displays the mean bias and RMSE for the three
models in each scenario.

In scenarios with low values of the thinning parameter (¢ = 0, 1), there are not large differences
in terms of bias and RMSE for the posterior median of 8; for the three approaches. On the other



14 J. Sicacha-Parada, 1. Steinsland, B. Cretois et al. / Spatial Statistics 42 (2021) 100446

.
.
.
. .
% 10
.
. .
.
. Model
o ! B3 Naive
BE vse
B3 evse
¢ .
. .
0.0 . s . .
05 e |
. s .

Scenario Scenario

Mean Bias
Mean RMSE

we o
-ee o
.

Fig. 7. Boxplots of mean bias (left) and mean RMSE (right) of B; for all datasets in each scenario (scenarios 0,4,5,6) and
for each model.

hand, as ¢ increases the differences between the three models become evident. While the EVSE
model produces mean bias and RMSE consistent with scenarios of low thinning, the mean bias and
RMSE of the VSE model increase, but not as much as for the naive model. Table 4 has the mean bias
and RMSE of the parameters g, 81, p and o.

The same pattern described for the bias and RMSE of the parameter 8; occurs for the intercept
Bo. In contrast, for the spatial hyperparameters, p and o, there are not considerable differences in
mean bias or RMSE between the three models. As made for scenarios 0,1,2 and 3, the frequentist
coverage of each parameter in each scenario was computed. In Table 5, the frequentist coverage of
B is reported. The frequentist coverage for the other parameters is available in Appendix B.

The frequentist coverage of B; is very similar between the three models when the thinning is
moderate, i.e. scenarios 0 and 1. However, as more observations are removed from the original point
pattern, the differences between the models become larger, with the EVSE model having about 80%
of coverage, while the VSE model has less than 70% and the naive model less than 60%. Finally, in
terms of DIC, WAIC and CPO, the EVSE model outperforms the other two models when the thinning
of the model is high.

5.2. Results for moose distribution in Hedmark application

The models introduced in Section 3 are fitted for the dataset introduced in Section 2 . Table 6
reports the posterior mean and standard deviation of the parameters for each of these models.
Terrain Ruggedness Index (TRI) is negatively related to the intensity, while Solar Radiation (RAD)
has positive association with it for all the models. This suggests, as expected, that moose occurrences
are more likely found in locations with higher solar radiation and where the terrain is less rough .
The variability and range of the Gaussian field have right skewed posterior distributions based on
their posterior medians and means. There is a difference in the posterior mean of RAD coefficient
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Table 4
Mean bias and RMSE for the parameters of the naive and the VSE model under the 3 scenarios simulated with mixed
thinning. In parenthesis the standard deviation of each measure.

Scenario Approach Bo B 0 o
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Naive 0,059 0,244 0,132 0,235 13,749 17,640 —0,056 0,163
(0,151) (0,068) (0,188) (0,117) (8,344) (8,035) (0,115) (0,054)
4 VSE 0,088 0,255 0,117 0,229 13,793 17,696 —0,057 0,163
(0,157) (0,073) (0,188) (0,112) (8,311) (7,952) (0,114) (0,054)
EVSE 0,142 0,277 0,097 0,221 14,045 17,923 —0,051 0,161
(0,162) (0,086) (0,187) (0,107) (8,377) (8,050) (0,115) (0,054)
Naive —0,369 0,427 0,265 0,321 14,110 18,823 —0,062 0,172
(0,158) (0,137) (0,191) (0,155) (8,378) (8,040) (0,118) (0,055)
5 VSE —0,264 0,348 0,207 0,284 14,344 19,049 —0,067 0,172
(0,167) (0,128) (0,190) (0,139) (8,121) (7,772) (0,116) (0,053)
EVSE —0,047 0,248 0,132 0,245 14,403 19,027 —0,068 0,172
(0,162) (0,077) (0,191) (0,119) (8,134) (7,758) (0,117) (0,055)
Naive —0,733 0,763 0,391 0,428 13,587 19,145 —0,044 0,177
(0,169) (0,167) (0,184) (0,171) (9,549) (9,338) (0,124) (0,055)
6 VSE —0,465 0514 0,247 0,315 14,155 19,905 —0,071 0,181
(0,184) (0,167) (0,184) (0,145) (9,629) (9,432) (0,120) (0,056)
EVSE —0,147 0,281 0,145 0,258 14,607 20,545 —0,085 0,189

(0,164)  (0,103)  (0,191)  (0,126)  (9,920)  (9,546)  (0,126)  (0,063)

Table 5
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for B;. In
parenthesis, mean length of the intervals.

Scenario Model

Naive VSE EVSE
0 0,76 (0,49) 0,76 (0,48) 0,79 (0,49)
4 0,72 (0,50) 0,76 (0,50) 0,77 (0,50)
5 0,53 (0,56) 0,66 (0,56) 0,81 (0,56)
6 0,36 (0,62) 0,63 (0,62) 0,82 (0,61)

between the models. It is larger when differences in accessibility are not considered in the model.
In addition to it, both parameters associated to the Matérn Gaussian field have lower posterior
medians for the models that account for variation in sampling effort.

RAD is the most influential parameter for the three models. We see from Fig. 8 and Table 6 that
the posteriors of this parameter shift considerably between the models. While the naive model has
the largest posterior mean for RAD, the EVSE model has the smallest posterior mean.

The parameter ¢ in the VSE model with posterior median 0.87 indicates that the observed point
pattern is a thinned version of the real one, while the posterior medians of ¢1, ¢; and ¢3 seem to give
more weight to the first basis function. The basis functions used for modeling g(s) are presented in
Appendix C. Fig. 9 shows the estimated relationship between distance (in kilometers) to the road
system and q(s) for the VSE and the EVSE models. According to the results of the VSE model a point
located more than 3 km away from the road system can be regarded as inaccessible for citizen
scientists. On the other hand, the EVSE model does not consider any location as inaccessible for
citizen scientists. Instead, it assigns constant g(s) ~ 0.05 for locations more than 1.5 km away from
the nearest road.

Fig. 10 displays the map of differences in posterior median and standard error of the logarithm
of the intensity between the EVSE and the naive model. The maps with the differences in posterior
median and standard error between all the models are available in Appendix C. The largest
differences occur in zones that are distant to the nearest road and that have no occurrences of moose
recorded. These places have lower solar radiation than the rest of the region and have considerable
elevation in some locations. For the zones that are more observed, accounting for differences in
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Fig. 8. Posterior density of RAD for the three models.
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Fig. 9. Estimated relation between distance to the road system, in kilometers, and the probability of having access to
location s.

accessibility does not affect the posterior median intensity and the uncertainty. The uncertainty is
smaller for the EVSE model in most of the locations, except for some that include bodies of water
such as lakes Mjgsa and Femun and national parks like Forollhogna national park.
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Fig. 10. (a) Differences in posterior median intensity and (b) differences in standard error of the posterior median intensity
obtained through the VSE model and the naive model. In (a) the two squares represent the zones that are focused in
Fig. 11 (south of Hedmark) and 12 (north of Hedmark).

Table 7
Comparison criteria for the naive and VSE model fitted to moose location reports.
Model
Naive VSE EVSE
DIC 4377,51 4344,90 4265,77
WAIC 4505,36 4471,39 440091
LPML —2467,61 —2446,98 —2428,182

The magnitude of the differences in the posterior median intensity between the VSE and the
naive model is lower than between the EVSE and the naive model. The places with the highest
differences in intensity and uncertainty are the same as between the EVSE and the naive model.
The differences between the VSE and the EVSE model are considerably small. The three models are
compared by making use of the DIC, the WAIC and the LPML. Table 7 introduces the value of each
criterion for each model.

For the case of moose in Hedmark the results in Table 7 indicate that accounting for variation
in sampling effort represents an improvement in terms of goodness of fit since both the DIC and
WAIC are smaller, and the LPML is larger for the VSE and the EVSE model, with the latter showing
better results in this sense than the former model.

Now we will focus on two specific zones of Hedmark to see with more detail how the posterior
median and its associated uncertainty vary between the models. The two zones are bounded by a
30 km x 30 km square and are highlighted in Fig. 10. The first zone is located on the southern half
of Hedmark between Kongsvinger and Hamar. It is accessible only through service roads, which are
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Fig. 11. Posterior median intensity (top) and associated standard error (bottom) for the naive model (left), the VSE model
(middle) and the EVSE model (right) in zone 1.

not as visited as the main roads of the region, while the second square corresponds to one of the
most distant zones of the region, which is located on the northern border of Hedmark. For zone
1 the posterior median intensity and its associated standard error for all the models are displayed
in Fig. 11. The posterior median intensity is similar for the three models as well as the associated
uncertainties. Given that the zone is regarded as highly accessible, considerable differences are not
expected. In contrast, for zone 2 the EVSE model increases the intensity in most locations compared
to the other two models. In terms of uncertainty the three models produce similar results. However,
it becomes larger in some few zones under the VSE model, see Fig. 12.

6. Discussion and conclusions

The main goal of this paper was to highlight the importance of accounting for sources of variation
in sampling effort for CS data. Bayesian spatial models that account for variation in sampling effort
by including proxies for external processes that degrade the intensity of the point process have
been introduced.

This paper focused on differences in accessibility across space. In the simulation studies per-
formed in Section 4, we created scenarios where the only source of degradation for the actual point
pattern was the distance to the nearest road. Two of the functional forms presented in Yuan et al.
(2017) were used to link it to the intensity of the point pattern. The first of them is the half-normal
function, characteristic of distance sampling. The second one is a function of a linear combination of
a set of monotone functions with strictly positive coefficients. The aim of ecological studies is often
to learn about the effect of covariates. The results of both the simulation study and the real data
application suggest that in situations with some evidence of uneven sampling effort accounting
for differences in accessibility improves performance indices, such as bias and RMSE, and model
selection indices, such as DIC, WAIC and LMPL. In the scenario with no thinning on the point pattern
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Fig. 12. Posterior median intensity (top) and associated standard error (bottom) for the naive model (left), the VSE model
(middle) and the EVSE model (right) in zone 2.

due to variation in sampling effort, we found that including a term that accounts for it does not affect
the quality of the inference. Furthermore, differences in the covariates posterior summaries in the
simulation study showed that in cases with sampling biases the effect of an explanatory variable
may be incorrectly estimated if they are not considered in the model. It is also important to note
that the VSE model was proved not robust to misspecification of the relationship between d(s) and
q(s) in scenarios with considerable thinning.

In our case study we focused on two zones of Hedmark. The large difference in intensity between
the naive and the other two models in Zone 2 shows how the models that account for variation
in sampling effort regard some locations on the west of this zone as possibly thinned given that
they are located above 2 km away from a road and their geographical characteristics make them
suitable for moose presences. The differences and the uncertainty on the north side indicate a
need for increased sampling effort in this region, marking the area around Forollhogna national
park. This area is one of the few mountainous areas in Norway with relatively gentle slopes and is
therefore called the “friendly mountains”. Moose occasionally passes through this area, however,
only few CS observations have been made so far which might partly be due to a low accessibility
and therefore low CS activity. In contrast, the road network in zone 1 is rather dense. Therefore, the
values of q(s) are estimated to be relatively high and the model assumes high CS activity in this area.
However, the road network here is mainly composed of service roads and small tracks. Therefore,
no CS observations of moose in this area might be a result of a low visiting rate of people rather
than moose being absent. However, we only accounted for differences in accessibility of sampling
locations in space, therefore, the habitat is predicted to be not suitable, which seems to be wrong
from an ecological perspective. Accounting for differences in visits of sampling locations in time,
for instance by using spatially refined information on type of road or population data could further
increase modeling performance. The results highlight, that not only accessibility (e.g. roads) are
important features for quantifying preferential sampling in CS data, but also how frequent sampling
sites are being visited. Small service roads and hiking tracks are likely to have a lower turnover of
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Fig. A.13. Illustration of the relationship between the basis functions and q(s) in the EVSE model. Left, basis functions
Bi(s), k =1, ...,5. Middle, weighted basis functions by the coefficients ¢, k = 1,...,5 (gray); linear combination of the

weighted basis functions (solid, blue). Right, estimated q(s) computed as Eq. (A.1).

visiting people than larger roads, and hence, CS more frequently register observations close to larger
roads than close to small and remote roads.

An important part of the VSE and the EVSE models are the parameters ¢ and &, k= 1,...,3,
which are necessary to determine to what extent the differences in accessibility affect the observed
process. Interpreting and including them in the model is more difficult for the EVSE model given
that the basis functions need to be chosen. The prior specification of the parameters that are part
of the spatial Gaussian field w(s) is a complex task in spatial statistics. In this paper PC priors were
used as a way to incorporate prior knowledge about these parameters in a straightforward way.
Alternative prior specifications using PC priors are introduced in Sarbye et al. (2019).

The VSE and EVSE models are a first step for modeling CS data in a way that accounts for its
inherent sources of bias. More effort is required for e.g. extending the sampling effort model to more
quantities (e.g. cell phone coverage or geographical parameters). Extending the VSE and the EVSE
to more spices would be an interesting approach for learning more about citizen science sampling

effort in general.
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Appendix A. Illustration of the EVSE model

In the EVSE model we assume

p
q(s) = exp(— > ngk(s)) (A1)
k=1
That is, g(s) is assumed as a function of a linear combination of p basis functions Bi(s), k =
1,...,p. As mentioned in Section 3, Bi(s),k = 1,...,p are a set of monotone nondecreasing

functions . In addition to it, the coefficients ¢, k = 1, ..., p are constrained to be positive in order
to guarantee monotonicity, (Yuan et al., 2017) and (Ramsay, 1988). Fig. A.13 illustrates, similarly as
made in Yuan et al. (2017), how the relationship between these basis functions and q(s) works .
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Fig. B.14. Basis functions used to fit the EVSE model in the simulation study.

Table B.8
Frequentist coverage of the equal-tailed 95% Bayesian credible interval for all the
parameters in the simulations. In parenthesis, mean length of the intervals.

Parameter Scenario Model
Naive VSE EVSE
0 0,93 (0,74) 0,91 (0,74) 0,85 (0,75)
1 0,92 (0,79) 0,92 (0,78) 0,94 (0,77)
2 0,09 (0,83) 0,99 (0,8) 0,99 (0,8)
Bo 3 0 (0,85) 0,99 (0,8) 0,99 (0,8)
4 0,97 (0,75) 0,95 (0,75) 0,92 (0,75)
5 0,53 (0,77) 0,73 (0,77) 0,98 (0,76)
6 0,01 (0,8) 0,35 (0,79) 0,94 (0,78)
0 0,76 (0,49) 0,76 (0,49) 0,79 (0,49)
1 0,43 (0,55) 0,73 (0,54) 0,72 (0,54)
2 0,19 (0,63) 0,79 (0,61) 0,79 (0,61)
B 3 0,16 (0,67) 0,81 (0,64) 0,81 (0,64)
4 0,72 (0,5) 0,76 (0,5) 0,77 (0,5)
5 0,53 (0,56) 0,66 (0,57) 0,81 (0,56)
6 0,36 (0,62) 0,63 (0,62) 0,82 (0,61)
0 0,75 (39,88) 0,73 (39,56) 0,7 (39,96)
1 0,72 (42,94) 0,75 (43,23) 0,72 (42,21)
2 0,79 (49,35) 0,74 (47,08) 0,74 (47,08)
P 3 0,87 (52,19) 0,73 (47,15) 0,73 (47,15)
4 0,75 (40,67) 0,75 (40,75) 0,72 (40,88)
5 0,8 (45,67) 0,79 (46,15) 0,7 (45,57)
6 0,88 (49,07) 0,87 (50,96) 0,68 (52,26)
0 0,87 (0,43) 0,86 (0,43) 0,88 (0,43)
1 0,92 (0,47) 0,9 (0,46) 0,89 (0,45)
2 0,92 (0,51) 0,73 (0,44) 0,73 (0,44)
o 3 0,94 (0,54) 0,74 (0,43) 0,74 (0,43)
4 0,87 (0,44) 0,87 (0,44) 0,87 (0,44)
5 0,88 (0,46) 0,88 (0,46) 0,82 (0,46)
6 0,91 (0,5) 0,88 (0,49) 0,76 (0,5)

Appendix B. Simulation study: Extra tables and figures

See Fig. B.14 and Table B.8.
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Fig. C.15. Distance to the nearest road for all locations in Hedmark.
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Fig. C.16. Basis functions used to fit the EVSE model for the real dataset application.

Appendix C. Moose in Hedmark application: Extra figures

See Figs. C.15-C.17.
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Fig. C.17. Differences in posterior median (top) and standard deviation (bottom), in log-scale, between the naive and the
VSE model (left) and between the VSE and the EVSE model (right).
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Quantifying the total number of individuals (abundance) of species is the basis for spa-
tial ecology and biodiversity conservation. Abundance data are mostly collected through
professional surveys as part of monitoring programs, often at a national level. These
surveys rarely follow exactly the same sampling protocol in different countries, which
represents a challenge for producing biogeographical abundance maps based on the
transboundary information available covering more than one country. Moreover, not all
species are properly covered by a single monitoring scheme, and countries typically col-
lect abundance data for target species through different monitoring schemes. We present
a new methodology to model total abundance by merging count data information from
surveys with different sampling protocols. The proposed methods are used for data from
national breeding bird monitoring programs in Norway and Sweden. Each census collects
abundance data following two different sampling protocols in each country, i.e., these
protocols provide data from four different sampling processes. The modeling frame-
work assumes a common Gaussian Random Field shared by both the observed and true
abundance with either a linear or a relaxed linear association between them. The models
account for particularities of each sampling protocol by including terms that affect each
observation process, i.e., accounting for differences in observation units and detectabil-
ity. Bayesian inference is performed using the Integrated Nested Laplace Approximation
(INLA) and the Stochastic Partial Differential Equation (SPDE) approach for spatial
modeling. We also present the results of a simulation study based on the empirical cen-
sus data from mid-Scandinavia to assess the performance of the models under model
misspecification. Finally, maps of the expected abundance of birds in our study region in
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mid-Scandinavia are presented with uncertainty estimates. We found that the framework

allows for consistent integration of data from surveys with different sampling protocols.

Further, the simulation study showed that models with a relaxed linear specification are

less sensitive to misspecification, compared to the model that assumes linear association

between counts. Relaxed linear specifications of total bird abundance in mid-Scandinavia

improved both goodness of fit and the predictive performance of the models.
Supplementary materials accompanying this paper appear on-line.

Key Words: Data integration; Joint species distribution models; Bayesian statistics;
Latent Gaussian Models; Gaussian Random Fields.

1. INTRODUCTION

Understanding why organisms are where they are and what drives changes in their abun-
dances is one of the main pillars of spatial ecology (Brodie et al. 2020) and is critical
to propose effective measures to preserve biodiversity. In this regard, species distribution
models (SDMs) have typically been used to gain a better understanding of species—habitat
relationships (Brodie et al. 2020; Bradter et al. 2021) and to guide conservation practition-
ers and policy makers (Araujo et al. 2019). Previous SDMs using abundance data have
revealed higher predictive performance in comparison with those using occurrence data
(Howard et al. 2014; Johnston et al. 2015). Yet, the majority of SDMs published to date
used presence/absence (i.e., occurrence) data (Araujo et al. 2019; Yu et al. 2020), rather than
abundance data (count of individuals), especially in large-scale studies (Miller et al. 2019).
This limits our ability to robustly infer, for example, regions with high density of individ-
uals (Johnston et al. 2015), which is of paramount importance in conservation (Massimino
et al. 2017). For example, estimating abundance hotspots can inform and help authorities
to select sites that may qualify to be included in the network of protected areas. Indeed,
one of the main criteria to identify important areas for conservation under the European
Union’s Bird Directive (i.e., Special Protection Areas; SPA) is that a site accommodates
regularly 1% of the total biogeographical population of a species of conservation concern or
more than 20,000 individuals of wetland birds (EU’s Birds Directive, 2009/147/EC 2009).
Moreover, this Directive states that ”The measures to be taken must apply to various factors
which may affect the numbers of birds, namely the repercussions of man’s activities and
in particular the destruction and pollution of their habitats/...]”. Abundance data can also
be useful to detect and predict areas where human-wildlife conflicts may arise (e.g., May
et al. 2020), informing the corresponding authorities that infrastructure and further human
development such as siting of powerlines and wind farms must be planned carefully (e.g.,
De Lucas et al. 2008; May et al. 2020). Information about abundance is ultimately requested
by national (e.g., Directorates, Environmental Agencies) and international (e.g. European
Commission) authorities as basis to propose biodiversity conservation policies at different
scales. This information should be based on all available count data.

Most countries have monitoring programs following national law and as signatories of
international biodiversity conservation Directives and Conventions. These different national
monitoring schemes may cover the same taxon (e.g., most countries have a national mon-
itoring scheme for breeding birds) but can differ in the species recorded (different set
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of species may occur in different countries and at different densities) and, most impor-
tantly, they usually follow different sampling protocols, which makes the information
obtained by different schemes not directly comparable. Furthermore, not all species are
well represented in the data gathered within a single ‘general’ protocol. For this reason,
many countries have, for example, additional targeted monitoring schemes that comple-
ment the information for species that are considered poorly represented in the more general
monitoring scheme, for example, colonial birds such as herons in Greece, raptors and water-
birds in Finland, nocturnal birds in Spain; see also Buckland and Johnston (2017). National
common bird monitoring schemes and those targeting particular (groups of) species provide
together the largest datasets known on species abundance in time and space. However, at
the (sub)national level, these datasets have mainly been used independently (Kalas 2010;
Bevanger et al. 2014; Kéry and Royle 2009; Soykan et al. 2016) and multi-country stud-
ies have mostly analyzed these data either independently for each country to later draw
common conclusions from the country-specific estimates (Lehikoinen et al. 2019) or com-
bining the raw data with limited account for sampling differences (e.g., total abundance of
waders; Lindstrom et al. 2019). Thus, overlooking the potential of integrating such a large
amount of standardized data seems like an under usage of the effort and resources spent
in collecting these data, especially when the taxa included in such monitoring schemes are
very diverse, allowing not only to carry out species-specific analyses but also, potentially,
community-level studies. This study was motivated by the need for estimates of the total
abundance of birds in mid-Scandinavia based on high quality (i.e., standardized surveys)
localized data on bird abundances from the common breeding bird monitoring programs in
Norway (TOV-E) and Sweden (BBS). An estimate of the total abundance of birds can be
used as an input for models that inform on the risk of infrastructure development (e.g., new
powerlines and wind farms) for birds. The TOV-E and the BBS both provide standardized
count data, but they differ in their sampling protocols. Both countries collect observations
in point counts and transect surveys. In Norway, the main point counts (all species recorded)
are complemented with line transects (only a subset of ‘rare’ species also included in point
counts are recorded—see further details in Sect. 2). However, in Sweden, the line transects
and the point counts can be regarded as two different censuses (i.e., all species are counted
in both census methods). These differences present the challenge of integrating the four
sources of spatial information (points and transects in both Norway and Sweden) with dif-
ferent sampling protocols into one estimate for the spatial distribution of bird abundance
for the entire region of interest (Brodie et al. 2020; Gruss and Thorson 2019).

The scarcity of studies applying large-scale abundance SDMs is likely related to (i)
the generally lower availability of abundance data compared to occurrence data for most
species (Miller et al. 2019; Buckland and Johnston 2017 and references therein) and (ii)
statistical and computational challenges of modeling abundance data. Great methodolog-
ical advancements to overcome some of these problems have been developed in the past
decade, especially for integrating different data types, see Miller et al. (2019) and refer-
ences therein. Most of these efforts have focused on enabling the use of casually collected
(non-standardized) presence-only data to increase spatial coverage and data points of certain
species (see also Buckland and Johnston 2017). The possibility of improving SDMs by inte-
grating abundance (count) data collected under different standardized monitoring schemes
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is most often neglected. Thus, in addition to the integration of data from different countries,
merging data from different schemes (from one or several countries) can thus improve the
estimates of abundance obtained from all available count data.

Given the existing gap in methodology for proper integration of standardized count data,
we here propose a generic modeling framework that integrates standardized count data
from various monitoring schemes (i.e., designed surveys) with different sampling protocols.
The models can ultimately produce one single estimate of abundance (total abundance of
birds in our case study) and its uncertainty based in data from different sampling protocols.
In addition, it also gives interpretable estimates of the ecological parameters driving this
abundance. Our methodology, thus, analyzes these data in a unique, single framework to
produce models that account for different sampling processes, and describe and predict the
spatial distribution of abundance.

Spatial modeling of multiple data sources has been approached for example in the context
of coregionalization models (Banerjee et al. 2015; Blangiardo and Cameletti 2015; Krainski
2019) and recently reviewed in Miller et al. (2019). These are multivariate models for
measurements that vary jointly over a region and have been defined through a hierarchical
structure and fitted using Markov Chain Monte Carlo (MCMC) techniques (Banerjee et al.
2015). For the family of Spatial Latent Gaussian Models (Rue and Held 2005), the INLA-
SPDE approach (Rue et al. 2009; Lindgren et al. 2011) and its easy implementation in the
INLA library of R have emerged as a faster alternative to jointly model multiple sources of
information. Such method has been applied to multivariate models related with, for example,
air pollution data (Cameletti et al. 2019), and hydrology (Roksvag et al. 2020). The proposed
framework framework assumes the existence of a latent process, underlying all the observed
abundances, that represents the true expected abundances. The true expected abundance
varies in space through spatial covariates as well as a spatial random effect. Given the true
expected abundance, we assume that the observed abundances follow Poisson distributions.
For each observation process a linear relation between the expected counts and the true
expected abundances is assumed. Further, we assume the existence of a common spatial
random effect that drives the observed counts (cf. Miller et al. 2019) for all the observation
processes. Given that the linear assumption may not depict the true relationship between
the expected counts and the true expected abundances, we also propose models that allow
deviations from this assumption. The proposed models are suitable doing computational
fast inference using the INLA-SPDE approach, which approximates the posterior densities
of parameters and hyperparameters.

To the best of our knowledge, methodologies for jointly modeling spatial abundance
using data from multi-country standardized biodiversity monitoring programs with differ-
ent sampling protocols have not been published before. By properly integrating data from
different monitoring schemes, our method can be part of solving some of the issues inherent
to monitoring data raised in Buckland and Johnston (2017), such as the scarcity of data,
low representability, and small geographical scale. This opens new possibilities for more
robust international assessments of species distributions and abundance using count data
from diverse national monitoring programs, which is of paramount importance for under-
standing global change impacts on biodiversity (Buckland and Johnston 2017; Massimino
et al. 2017). We validate this framework with a case study aiming at estimating total bird
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abundance in mid-Scandinavia and a simulation study that explores the effects of misspec-
ification on the proposed models.

This paper is organized as follows: In Sect. 2, we describe the data from the Norwegian and
Swedish monitoring programs in detail. Moreover, we explain how we preprocessed these
census data, present an exploratory analysis and introduce the set of candidate explanatory
variables for our models. In Sect. 3, models as well as inference methodology and measures
for evaluating and comparing models are presented. In Sect. 4, we set up a simulation study
to explore how the proposed models perform in scenarios with different relation between
the observed and the true abundances. In Sect. 5, results of both the simulation study and
the case study using bird counts in mid-Scandinavia are presented. The paper finishes in
Sect. 6 with the discussion of the results and concluding remarks.

2. BIRD MONITORING SURVEYS DATA

2.1. TOV-E AND BBS DATA

The Norwegian common bird monitoring scheme (TOV-E), coordinated by the Nor-
wegian Institute for Nature Research (NINA) and the Norwegian Ornithological Society
(NOF) since 2006, was established to monitor population variation for common breeding
terrestrial birds on a national scale in a representative way. Surveys (i.e., count of pairs of
birds of all observed species) are carried out by experienced ornithologists that follow a
standardized protocol (Kalas 2002). Each census route (n = 492) contains between 12 and
20 (average = 18.8) point counts 300 m apart describing a square (see Fig. 1) with side =
1.5km (deviation of this shape are allowed and recorded when the geographic/topographic
conditions do not allow the observer to walk, e.g., sea/lakes, glaciers, rough mountainous
terrain). A total of 229 species are heard or seen at the entirety of the point counts of TOV-E
during 5 minutes. Approximately 121 of the species are less abundant and/or difficult to
detect, so observers are asked to record these species during a line transect between point
counts (see Fig. 1—figure with the configuration of a census site with the twenty points).
A random selection of 370 census routes (out of a total of 492 routes across Norway) is
visited once a year during the period 20th May to 10th June. TOV-E is designed to cover all
relevant habitats throughout the altitudinal and latitudinal gradient in Norway and reports
‘pairs of individuals’ as sampling unit. The Swedish breeding bird survey (hereafter BBS)
has been coordinated by Lund University since 1996 and consists of 716 fixed sites across
Sweden within a 25-km grid (one route per grid cell, see Lindstrom et al. 2013). These sites
are surveyed once a year between mid-May and mid-June (the breeding period for most
bird species in Sweden) though not all sites are surveyed every year (mean = 353 sites per
year). The 25-km grid makes sure that the habitats of Sweden are monitored in proportion to
their abundance in the country as well as the entire altitudinal and latitudinal gradient where
birds are present. At each site, the observer walks an 8-km transect describing a 2 x 2km
square and records all bird species heard and/or seen within 8 h. In addition, the observer
has eight 5-min point counts where all birds seen or heard must also be recorded. The point
counts take place at each of the corners of the square and at the middle point of the transect
(see Fig. 1). Of the circa 250 species breeding in Sweden, 244 are reported in BBS, thus



A SPATIAL MODELING FRAMEWORK FOR MONITORING SURVEYS 567

TOVE - Norway
12-20 points per site
Size: 1.5kmx1.5km

BBS - Sweden
8 points per site
Size: 2kmx2km

Figure 1. Spatial location of census sites and sampling points and line transects according to each sampling
protocol. Left: graphical display of sampling protocol of TOV-E census. Blue points: 20 locations for point counts
(the number of points vary between 12 and 20 in different sites). Red lines: line transects. Yellow point: centroid
associated with each census site (see Sect. 2.2). Center: spatial distribution of census sites across Norway (blue
sites) and Sweden (green sites). The red polygon represents the study area described in Sect. 2.1. Right: graphical
display of sampling protocol of BBS census. Green points: 8 locations for point counts. Red lines: line transects.
Yellow point: centroid associated with each census site (see Sect. 2.2).

ensuring a good coverage of the breeding birds (Lindstrom et al. 2013). The BBS reports
‘individuals’ as sampling unit, which differs from TOV-E’s reporting unit (pairs; see above).

Although these monitoring programs are designed to cover a large part of both countries
(Fig. 1), for our case study, we only selected census sites that lie within a polygon defined
to produce an approximation of a Gaussian Random Field and make inference about a
point pattern in Trgndelag Country, central Norway (see red polygon in Fig. 1, (Lindgren
et al. 2011; Simpson et al. 2016)). This polygon covers a total area of 173.634 km? and
contains 113 census sites in Norway and 70 in Sweden. The main motivation to reduce the
study region from the entire country to a smaller area (defined by the polygon) was strictly
computational and for an easier compilation of covariate information. In addition, this region,
which is basically within Trgndelag County in central Norway, is largely representative of
habitat types, topography and biodiversity found elsewhere in Norway.

2.2. EXPLORATORY ANALYSIS

Our main goal was to develop and validate a new modeling framework to integrate abun-
dance data from standardized monitoring schemes with different sampling protocols. Such
a framework can ultimately be used, for example, to detect hotspots of abundance of birds,
as in the case we illustrate here (note: we are not interested in the distribution of particular
species, but in the distribution of total abundance of birds regardless of the species). In other
words, we apply our modeling framework to produce maps of total abundance of birds based
on count data from multiple sources—information gathered as part of standardized national
bird monitoring schemes in Norway and Sweden that differ in the sampling protocols. The
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data preparation consisted in averaging across all years (2006-2019) the total count of all
individuals (regardless of the species) found at each survey site. That is, we first added
up the counts of all individual birds recorded in the points or lines of a given census site
and assigned this total count of individuals (regardless of the species present) to the site’s
centroid (see Fig. 1) so that each census site will have one single value of total abundance
of birds per year. Next, for each site, we averaged the yearly total abundance of birds across
all years that the site was sampled (note: not all sites are censused every year) in the period
between 2006 and 2019, so that we ended up with one single value of total abundance of birds
per site (temporal average). Although estimating single-species abundance and distribution
maps are commonly used to inform about species of conservation concern, here we wanted
to report the total abundance of birds across the region (note: our methodology can also
be used to estimate single-species abundances). Estimating total abundance of individuals
across a region (as opposed to single-species abundance) has clear implications in spatial
conservation planning and prioritization (Lehtomiki and Moilanen 2013). For example, De
Lucas et al. (2008) estimated the total abundance of raptors in a region to assess the impacts
of wind farms on this group of birds. Lindstrom et al. (2019) attempted to estimate total den-
sity of wading birds across Fennoscandia by combining count data from Norway, Sweden
and Finland. However, they did not account for many differences in the sampling proto-
cols. Our modeling framework thus can be applied to account for such differences. Another
example of potential use of our method is to get more robust estimates of total abundance
of birds to inform authorities and stakeholders where powerlines (Bevanger et al. 2014)
or wind farms (De Lucas et al. 2008) may cause large mortality rates. Although here we
present a simplified and more generic analysis (all species have weight = 1, and thus their
abundance has the same influence in the resulting map), each species abundance can be
multiplied (weighted) by a factor relative to their sensitivity to e.g., powerlines (D’ Amico
et al. 2019) so that the resulting map will highlight total abundance hotspots in relation to
their sensitivity to the particular issue. Since we include data from both Norway and Swe-

Line vs Point Counts: Norway Line vs Point Counts: Sweden
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Figure2. Scatterplots of line vs point counts in Norway (number of pairs, left) and Sweden (number of individuals,
right) .
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den, we explore how the relation of point and line counts differ between surveys from both
countries. In Fig. 2, we display a scatterplot with the points and line counts at each of the
TOV-E (n=113) and BBS (n=70) sites.

These scatterplots show a linear relation between point and line counts in Sweden,
whereas in Norway there is no clear linear association between the counts in points and
lines. This is somehow expected due to the census design in Norway, where the line counts
are meant to record a reduced subset of species compared to the point counts. This is a
common issue highlighted by Buckland and Johnston (2017) and is often found in many
countries when certain species are monitored with special censuses in addition to the general
monitoring scheme. Therefore, this is not only an issue when integrating between-countries
datasets (e.g., to increase the geographical extent), but also within-country datasets (to
increase the representability and number of data points).

2.3. EXPLANATORY VARIABLES

In our case study, we want to apply our new methodology not only to estimate total
abundance of birds, but also to produce interpretable estimates of ecological factors asso-
ciated with it across the region. We have selected three candidate ecological factors that
are commonly used in SDMs to explain distribution of birds (e.g. Bradter et al. 2021;
Lissovsky et al. 2021; Soultan et al. 2022): (i) climatic variables—temperature (average
daily temperature from April to July over 2006-2019, downloaded from seNorge.no) and
precipitation (average daily precipitation from April to July over 2006-2019, downloaded
from seNorge.no), (ii) topography - elevation (Digital Elevation Model at a 10m resolution,
DEM10, downloaded from https://kartkatalog.geonorge.no/), and (iii) the land cover sur-
rounding each location expressed as the percentage of each of the following six land covers
(urban, mountains, rocky area, water body, forest, and open area) in a square neighborhood
of 2km x 2km. Land cover information was depicted from the N50 layer (downloaded
from https://kartkatalog.geonorge.no/). All rasters files have resolution of 1km x 1km (the
elevation data from DEM 10 was aggregated to this resolution prior analysis) and are shown
in the Supplementary Information. As a first stage of model selection, we computed the
correlation coefficient between all the candidate covariates on a fine grid of about 600.000
points. Only one variable in those pairs with [p| > 0.7 was left as a candidate. Those pairs
with high correlation were: 1) elevation and temperature (p = —0.81). Temperature was
discarded; 2) % of open area and % of forest (0 = —0.83). % of open area was discarded.

3. MODELING AND INFERENCE APPROACH

The specification of our models relies on the assumption that our four sources of obser-
vations are obtained from a common underlying ecological process (Miller et al. 2019). This
assumption arguably makes sense if we consider the fact that national borders of neighbor-
ing countries are not, in general, a key factor for natural changes in biodiversity, although
there might be slight differences in conservation policies and governance. Hence, we can
assume that a common nonzero mean Gaussian Random Field (GRF) is involved in the
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generation of the number of individuals at each census site. However, the two different
sampling protocols (points and lines), which also differ between the two countries (com-
plementary surveys in Norway and independent surveys in Sweden), result in four groups
of counts observed. Moreover, TOV-E counts (Norway) are reported as ‘number of pairs’
of each species, whereas BBS counts (Sweden) are reported as ‘number of individuals’
of each species. Therefore, direct inference and comparisons between these four response
variables should be made with caution. The true total bird counts random variable, Yy (S)
with's € D C R2, is assumed to follow a Poisson distribution with expected value Agye(S),
expressed as

102(Airue (8)) = X7 (8)B + w1 (s) (1

with X7 (s) a set of spatial covariates and w (s) a zero-mean GRF that aims at accounting
for residual spatial dependency. Both X T (s) and w (s) can include well-established factors
that influence variation in the total abundance of birds; in our case study these factors are
precipitation and elevation. We assume a Matérn covariance function for wi (s)

2

o %
W(Klln —s;lD Ky (xllsi — ;1) 2

with ||s; — s;|| the Euclidean distance between two locations s;, s; € D. o2 stands for
the marginal variance, and K, represents the modified Bessel function of the second kind
and order v > 0. v is the parameter that determines the degree of smoothness of the process,
while ¥ > 0 is a scaling parameter. For w (s), let « = k1,v = v; and o= 012. We assume
that the observed counts for each sampling protocol are realizations of four random variables
conditionally independent given the true abundance, Aqye(s). That is, we assume the four
groups of observed counts are realizations of the Poisson random variables:

Yi(s) ~ Poisson(A;(s)) (Point counts in Norway)
Y>(s) ~ Poisson(A2(s)) (Line counts in Norway)
Y3(s) ~ Poisson(A3(s)) (Point counts in Sweden)

Y4(s) ~ Poisson(A4(S)) (Line counts in Sweden)

where 1;(s), j = {1, 2, 3,4} are the expected values of the random variables Y (s).
Additionally, we assume Y7 (s) + Y2(s) & Yno(s) as a proxy for total abundance since the
line transects are complementary to the point counts in Norway. This assumption does not
hold for Sweden since, as mentioned in Sect. 1, line transects and point counts are regarded
as two different independent censuses. In case we wanted to suggest a proxy for the total
abundance in Sweden using Y3 (s) and Y4 (s), we would need to account for a potential overlap
(double counting) between the counts observed in points and line transects. Given that we
assume a common latent process underlying all the observed abundances, Y (s) + Y2(s)
works also as a proxy for total abundance of birds in Sweden. This variable is used to
produce the predicted total abundance of birds in Sect. 3. Our final assumption is that there
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are no differences in observer skills between countries since the census are performed by
experienced ornithologists.

3.1. MODELS

In this section, we introduce three model specifications for integrating data from the four
sampling protocols introduced in Sect. 2. Model 1 (see Sect. 3.1.1) is a model that assumes a
linear relation between the expected counts of the four sampling protocols. This is achieved
by the introduction of a unique intercept for each sampling scheme. In Sect. 3.1.2, model 2
is presented. This model allows for a relaxation of the assumption of linear relation between
expected counts by incorporating terms that allow to explain any deviation from this assump-
tion through the GRF w (s). Finally, model 3 (see Sect. 3.1.3) is introduced. This model adds
a second GRF, w;(s), which aims to account for spatial sources of variation not accounted
for in the other parts of the model and not explained by known covariates, (Simmonds et al.
2020; Selle et al. 2020). It is worth noting that as each of the models proposed depend on
Atrue (8), they explicitly account for the factors that influence the variation in abundance.

3.1.1. Model 1

Based on our exploratory analysis and the four sampling processes present in our dataset,
in model 1 we assumed a linear relation between the expected values of the four random
variables representing each sampling protocol and Aye(s). That is,

A(S) = ¢f - Arue(8); log(¢f) ~ N (O, 1)
22(8) = &5 - Mrue(8);  log(63) ~ N(0, 3)
A3(8) = ¢3 - Arue(8); log(¢3) ~ N(O, 73)
ra(s) = ¢4 - Mrue(8);  log(y) ~ N (O, ) 3)

with {}‘ >0,j =1,...,4thefactors that determine the association between the observed
and the true counts for each protocol. In real-life problems, ;;‘ can explain multiple sources
of variation that are common to sampling of bird species such as observer differences,
observed units, differences in detection probability, among others. The inclusion of this
term is also useful to deal with overdispersion (Gomez-Rubio 2020), a common issue when
working with count data. In order to avoid identifiability issues, we restate the model in (3)
in terms of A1 (s). That is,

A(s) = o - Ai(s); log(s2) ~ N(0, 12)
A3(8) = &3 - A1(s);  log(g3) ~ N(O, t3)

Aa(s) = &a - A1(s); log(La) ~ N(0, 74) “)
where {; > O and ¢; = %’j ={2,3,4}.



572 J. SICACHA- PARADA ET AL.

3.1.2. Model 2

In model 2, we relax the assumption of linear relation between the expected value of
the number of observed individuals with protocol j, A ;(s), and the true intensity, Agye(S),
by including spatial varying terms (w;‘ — 1D -wi(s), j = {1,2,3,4}. These terms aim to
explain any deviation from a linear relation between expected values as a function of a GRF
w1(s). Itis worth noting that model 1 (see above) is a special case of model 2 with 1/f;.k =1.
We define model 2 as:

A(S) =41 hirue(s) - exp{(¥] — 1) - wi(s)}: log(¢)) ~ N(O, 7})
A2(8) = &3 Mrue(s) - exp{(¥y — 1) - w1(9)}; log(57) ~ N(0, 73)
A3(8) = &3 Mrue(s) - exp{(¥3 — 1) - w1(9)}; log(g3) ~ N (0, 73)
Aa(8) = &g Mrue(s) -exp{(y — 1) - w1(9)}; log(gy) ~ N(0, 1) ®)

Again, to avoid identifiability issues, we restate the model in (5) in terms of 11 (s) as:

2a(s) = &0 - Ar(s) -exp{(¥2 — 1) - wi(s)};  log(£r) ~ N(0, 1)
A3(8) =3 - A1(s) -exp{(Y¥3 — 1) - w1 (s)};  log(¢3) ~ N(O, 13)
ra(s) =84 - A1(s) -exp{(Ys — 1) - w1(8)};  log(gs) ~ N(O, 14) ©)

In the scales of the linear predictors in (5) , ¥; = 1//}k -y +1,j =(2,3, 4} are scaling
coefficients for the common GRF, wj (s), in each likelihood. They quantify to what extent
the departure of the assumption of linearity is explained by (w;‘ — 1) - wi(s). In real-life
scenarios, this departure can be related with sources of variation with spatial structure such
as differences in detectability, among others. Therefore, we would expect posterior densities
for 3 and ¥4 to be around 1 in our case study, while for 1, we expect different results
because line and point counts in Norway do not seem to follow a linear relation (see Sect. 2;
Fig. 2). Due to different characteristics of line transect surveys in Norway, we propose
model 3.

3.1.3. Model 3

In addition to causing departure from a linear relation between true and observed counts,
species detectability may also change with the census technique used (i.e., one of our data
sources, the line transects in TOV-E, targeted only a subset of species as it is regarded as a
complementary survey to the point counts). Hence, in model 3 we included a second GRF,
w2 (s) to try to account for the characteristics of this observation process. In case that no
explanatory variable that explains the particular characteristics of the sampling protocol is
available, a second GRF can be added as a way to account for them, (Simmonds et al. 2020).
This is included as an additive term in the linear predictor, as follows:

Aa(8) = &2 - A1(s) - exp{(Y¥2 — Dwi(s)} - explwa(s)}
A3(8) = 83 - A1(8) - exp{(¥3 — Dw1(s)}
Aa(s) = &4 - A1 (s) - exp{(¥4 — D1 (s)} (7
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We assume a Matérn covariance function as in (2) for w;(s), with parameters x = k3,

v:vgandaz:oz2

3.1.4. Prior Specification

For the GRFs wy (s), k = {1, 2}, the parameters v in the Matérn covariance function are
fixed to be 1. The interest is put on the spatial ranges p, and on the standard deviation of
the GRFs, oy. px are related to ki through py = NG /kk. The prior distributions of these
two parameters are specified by making use of Penalized Complexity (PC) priors, (Fuglstad
et al. 2019). In this case, we set P(p; < 20000) = 0.1 and P(o; > 1) = 0.1 for w;(s),
while P(p> < 2000) = 0.1 and P (02 > 3) = 0.1 for w(s). This means, for example, that
under this prior specification, a standard deviation greater than 1 is regarded as large, while
a spatial range below 20 kilometers is considered unlikely for w;(s). The parameters in 8
have Normal prior with mean 0 and precision 0.01. Let log(¢;) ~ N(0, 7;), j = {2, 3,4},
where the logarithm of each 7; has a log-Gamma prior with parameters 1 and 0.00005. For
the parameters ¥/, j = 2, 3,4 in models 2 and 3, we set a normal prior with mean 1 and
precision 0.1. We have now defined a group of three candidate models. In the upcoming
subsections, we introduce the methodological approach for fitting them and for selecting a
model that suits best for our problem.

3.2. INFERENCE AND COMPUTATIONAL APPROACH

The models introduced in Sect. 3.1 were fitted making use of the Integrated Nested
Laplace Approximation (INLA), (Rue et al. 2009) and the Stochastic Partial Differential
Equation (SPDE) approach (Lindgrenetal. 2011). INLA is a faster alternative to Monte Carlo
Markov Chains (MCMC) for performing Bayesian inference for latent Gaussian models.
INLA aims at producing a numerical approximation of the marginal posterior distribution
of the parameters and hyperparameters of the model. Further details can be found in Rue
et al. (2009) and Blangiardo and Cameletti (2015). Since we deal with continuous spatial
processes in our models, the SPDE approach emerges as an efficient representation of wi (s)
and wy (s). It is based on the solution of a SPDE which can be approximated through a basis
function representation defined on a triangulation of the spatial domain. More details are
available in Lindgren et al. (2011) and Blangiardo and Cameletti (2015).

3.3. ASSUMPTIONS AND POSSIBLE EXTENSIONS

This new modeling framework is developed to integrate count data collected in designed
surveys that follow different standardized protocols. Particularly, in the case study presented
here, the bird surveys introduced in Sect. 2 are designed to minimize biases due to variation
in the time of sampling or observer expertise. For this reason, the models presented in our
case study assume, in principle, that these external sources of variation that could affect
the observation process are constant across sites or negligible. However, these models are
flexible enough to explicitly account for factors that may affect the observation process
of each sampling protocol, and can thus be accounted for. There may be, however, other
potential sources of variation when working with monitoring data, which also depend on the
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taxon being surveyed. Hence, as mentioned in Sect. 3, our method includes relevant terms
for quantifying the effect of potential sources of noise in the observation process. Our models
incorporate the terms ¢ to explain what proportion of the true abundance is explained by
each of the observation processes. That is, ¢; quantifies the effect of each sampling protocol
on the observed abundances. This effect comprises sources of variation such as differences
in the observed units, differences in detectability, and potential differences in the expertise of
the observers. In many real-life scenarios, these terms do not provide enough quantification
of the effect of the sampling protocols as there are sources of variation in the sampling
process that have spatial variation that cannot be summarized in one term. Therefore, the
Gaussian Random Field that drives the true abundance (in our case study, the total abundance
of birds) or a second GRF is also used to account for sources of variation that have a spatial
behavior. This modeling framework also allows to explicitly account for factors that affect
the observation process of each sampling protocol. To show how this can be done, we take
model 2 as our reference to explicitly account for a factor that influences the observed
number of individuals. We now assume that unlike our case study, there are several factors
affecting the observed total abundance of birds. As seen in equation (6) in Sect. 3.1.2, the

term ;- expq (¥ — l)a)l(s)} accounts for the effect the sampling protocol j has on the

observed abundance. In addition to the spatial effect driven by w1 (s), the term ¢; can be
further explained, for example, by a fixed effect z as follows:

{j=aoj +ayz (8)

This is a straightforward way to explicitly account for multiple factors that may influence
the observation process of the sampling protocol j. Factors with a spatial or temporal
structure can be accounted for through random effects with these structures. Given the
additional parameters to be estimated and the increased complexity of the model when the
effect of these factors is accounted for explicitly, structural identifiability issues may arise.
Therefore, in order to overcome these issues, it is recommended to constrain the parameters
in (8). This can be achieved by either having additional data that inform on these factors or
informative prior information of the parameters involved in (8). Acquiring additional data
to account for factors that affect the observation process of each sampling protocol might be
possible by integrating data, for example, from schemes with sampling protocols designed
to gather information on species detection probabilities through repeated visits to the sites
or distance sampling (Jarvinen and Viisdnen 1983; Miller et al. 2019). In our case study, the
temporal variation in birds is not considered to compute the total abundance of birds across
the study region. Rather, this temporal variation is removed by averaging the total count of
birds at each site over the 14 years (2006-2019). This is also a convenient assumption as
we do not have information (counts) at every census site every year (i.e., not all sites are
surveyed every year). Furthermore, we believe that the overall state of important sites for
birds has remained similar in the past 14 years (i.e. bird-rich areas in 2006, at the beginning
of the monitoring scheme are still bird-rich areas in 2019, even if the species composition
might have changed slightly).
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3.4. MODEL ASSESSMENT

In order to assess and compare competing models such as the ones we are fitting in
upcoming sections, we employed the Deviance Information Criterion (DIC), (Spiegelhalter
et al. 2002), the Watanabe—Akaike Information Criterion (WAIC), (Watanabe 2010), the
logarithm of the pseudo marginal likelihood (LPML) (Blangiardo and Cameletti 2015) and
the Continuous Rank Probability Score (CRPS) (Gneiting and Raftery 2007).

DIC makes use of the deviance of the model

D(©) = —2log(p(yl9))

to compute the posterior mean deviance D = Egiy(D(#)). In order to penalize the
complexity of the model, the effective number of parameters

pp = Egy(D(8)) — D(Egy(8)) = D — D(9)
is added to D. Thus,
DIC = D + pp.

The Watanabe—Akaike Information Criterion is based on the posterior predictive den-
sity, which makes it preferable to the Akaike and the deviance information criteria, since
according to Gelman et al. (2014) it averages over the posterior distribution rather than
conditioning on a point estimate. It is empirically computed as

n 1 S n
—2[ > log (E > p(yin)) + ) Vi og p(yi |95>>}
i=1 s=1 i=1

with 6° a sample of the posterior distribution and VSSZ | the sample variance. Another
criterion to compare the models is LMPL,defined as:

n
LPML = Zlog(CPOi )

i=1

It depends on CPO;, the Conditional Predictive Ordinate at location s;, (Pettit 1990), a
measure that assesses the model performance by means of leave-one-out cross validation.
It is defined as:

CPO; = p(y/lys)

with y* the prediction of y at location s; and yy = y_;. Lastly, we will compare the
predictive performance of our models using the Continuous Rank Probability Score (CRPS).
It makes possible to compare the estimated posterior mean and our observed values while
accounting for the uncertainty of the estimation, (Gneiting and Raftery 2007; Selle et al.
2019). It is defined as:
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o0
CRPS(F, y) = / (F(u) — 1y < uh)?du
—00
with F, the cumulative distribution of the estimated posterior mean, and y is the observed
value. The smaller CRPS is, the closer the estimated value is to the observed one.

4. SIMULATION STUDIES

We set up three simulation studies based on the case study of total abundance of birds
in mid-Scandinavia that allow us to assess the performance of the models proposed in
Sect. 3, when the true data generating model either assume linear relation between the counts
(Scenario 1), deviate from this assumption due to some spatial factor explained by a GRF
(Scenario 2) or when one group of observed counts is considerably affected by additional
spatial sources of variation (Scenario 3). We used the same sites as the observations in the
TOV-E and BBS surveys (Fig. 1). To start, we simulated the true intensity, Ay (S) as:

log(Arue(8)) = Bo + BIPREC(s) + i (s)

with PREC(s), the precipitation at location s in the study region (see Figure S.1.), and
w1 (s) a GRF with range p = 15km and o2 = 0.14. Further, we specified By = 4.70 and
B1 = —0.20. These values were chosen based on the posterior marginal distribution of these
parameters in the real-data application. Next, we simulated observations representing the sur-
veys, i.e., using four different Poisson models with parameters A ;(s), j = {1, ..., 4}.Table
1 summarizes the two simulation scenarios proposed for A ; (s)

For each scenario, we simulated 100 datasets with ¢ = 0.91, ¢ = 0.04, zJ = 0.57
and ¢ = 1.72. While we assume a linear relation between A (s) and A, (s) in Scenario
1, in Scenarios 2 and 3 the relation between A (s) and A;ry.(S) is assumed to follow (5)
with ¢ = 1, ¥ = 1.57, ¥§ = 1.09 and y; = 1.21. These settings are based on the
posterior marginal distribution of the parameters in the real data case study (presented in
Sect. 5.2). The three simulation scenarios closely mimicked real data application by making
two of the simulated counts only observed in Norway and the other two only observed
in Sweden. For each simulated dataset, we fitted the three models proposed in Sect. 3. A
second group of simulation scenarios was proposed by taking more extreme values of the
posterior marginal distributions. The results and more details on this simulation scenario
are discussed in Sect. 5.1 and the supplementary information.

Table 1. Simulation scenarios

Scenario Simulated A (s)
1 )»j(s) = CJ* Mrue(s)
1j(5) = CF - harue(s) - exp((WF = 1) - 01(9)
3 1j(5) = &5 - Mrue(s) - exp((WF — D) - 01(); j = {1,3,4)

22(8) = &5 Mrue(s) - exp((Y5 — 1) - 01 () + w2(s))
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To assess the performance of each model in each scenario, we simulated 10000 real-
izations {8]1.7 w)J = 1...,10000, from the posterior distribution of each parameter 6 for
dataset k = 1, ..., 100 in scenario [ = 1, 2, 3. Thus, the mean bias and the Root Mean
Square Error (RMSE) for dataset k in scenario / are computed as:

1 10000 ~
biasy = o Z (05, —0)
=1

RMSEy = |——— Y (67, —6)
with 6 the true value of the parameter 6.

S. RESULTS

5.1. SIMULATION STUDIES

The 100 datasets generated in each of the proposed scenarios were fitted using the three
proposed models in Sect. 3 and the results summarized here using the measures of perfor-
mance introduced in Sect. 4. We only show the mean bias and RMSE for the parameters ¢,
¢3 and ¢ as they are key to understand how different response variables interact with each
other (Fig. 3).

Mean bias for 'C2 RMSE for €,
.
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Figure 3. Mean bias (left) and RMSE (right) for parameters g“i" (upper panels), {5" (central panels) and {i“ (lower
panels) for each model in simulation scenario 1 (assumption of linear relationship between expected abundances),
scenario 2 (non-linear relation between expected abundances explained by w1 (s)) and scenario 3 (an extra spatial
source of variation affecting only one of the groups of observed counts).
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Table 2. Mean bias and RMSE for parameters S, 81, p and o in simulation scenario 1 (assumption of linear
relationship between expected abundances), scenario 2 (non-linear relation between expected abundances
explained by w1 (s)) and scenario 3 (an extra spatial source of variation affecting only one of the groups
of observed counts)

Scenario  Model Sy B1 p (km) o
Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE
1 1 —0.112  0.120 1.62-1073 0.040 —1.567 4.729 0.076 0.097
(0.037)  (0.035) (0.028) (0.011) (3.982) (1.946) (0.080) (0.076)
2 —0.116  0.125 2741073 0.043 —1.380 4.812 0.115 0.129
(0.036)  (0.034) (0.028) (0.011) (43300 (2.267) (0.096) (0.099)
3 —0.120 0.129 1481074 0.044 —1.497 4762 0.122 0.135
(0.038)  (0.035) (0.030) (0.011) (3.978) (2.021) (0.088) (0.093)
2 1 —0.112 0.119 1.37-1073 0.040 —1.132  4.681 0.066 0.089
(0.037)  (0.035) (0.028) (0.011) (4.152)  (2.057) (0.070) (0.065)
2 —0.111  0.120 1.05-107% 0.038 —0.880 4.704 0.069 0.091
(0.036)  (0.034) (0.024) (0.009) (4.160) (2.148) (0.070)  (0.065)
3 —0.104 0.113 —1.92-1073  0.048 —0.952 4.629 0.058 0.082
(0.038)  (0.035) (0.049) (0.025) (4.013) (1.981) (0.067) (0.060)
3 1 —0.112  0.120 1.42-1073 0.040 —1.056 4.652 0.063 0.087
(0.037)  (0.035) (0.028) (0.011) (3.927) (1.972) (0.069) (0.065)
2 —0.111  0.120 5.06- 107 0.038 —0.596 4.783 0.069 0.089
(0.036)  (0.034) (0.024) (0.009) (4.288) (2.139) (0.070) (0.065)
3 —0.112 0.119 —2.05-107%  0.040 —1.837 5.024 0.088 0.107
(0.037)  (0.035) (0.028) (0.011) (4.240) (2.064) (0.079) (0.076)

In parentheses, the standard error of each performance measurement

Figure 3 shows that the estimation of the proportional relation between the four likeli-
hoods performed similarly for the three models when the truth is that the four likelihoods
are linearly related (Scenario 1). Model 1 (which assumes linear relationship between the
expected counts) performed, as expected, slightly better than the other two models as this is
the model that generated the datasets. However, when we introduced some deviation from
the assumption of linearity in our data generating process (Scenario 2), model 1 underper-
formed relative to the other two models. This is true for the three parameters of interest
(Fig. 3). Models 2 and 3 performed better in terms of bias and RMSE, whereas the estimates
produced by model 1 were biased and showed higher variability. Lastly, when an additional
source of variation affected only one of the likelihoods (Scenario 3), the three models per-
formed similarly as in Scenario 2, except for the hyperparameter ¢35, which is part of the
likelihood affected by the extra source of variation. For this hyperparameter, the differences
in performance between the three models increased considerably as model 3 produced less
biased and variable estimates of this hyperparameter.

Our results show that there are only marginal differences in the fixed effects 8y and S
between the three models in all the scenarios. However, larger differences are observed for
the hyperparameters of w; (s). For example, in the three scenarios the bias of p was smaller
for model 2 compared to the other two models, but at the same time it produced estimates
of p with larger RMSE than the other two models. In this simulation study, we have also
explored the selection of the best model according to the comparison criteria DIC, WAIC
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Figure 4. Differences in DIC, WAIC and LMPL between the model that generated the observed counts in each
simulation scenario (Scenario 1, generated according to model 1; scenario 2, generated according to model 2 and
scenario 3, generated according to model 3) and the other two models proposed in Sect. 3.

and LMPL (See Sect. 3.4). For each scenario, we computed the differences in each criterion
between the model that generated the 100 datasets of the scenario and the other two models.
The summaries of these differences are displayed in Fig. 4.

Figure 4 shows small differences in DIC and WAIC between the three models when
model 1 generates the observed counts (Scenario 1). In Scenario 1, the predictive perfor-
mance, measured by LMPL, was similar for model 1 (the one that generated that data) and
model 2, while model 3 underperformed. In Scenario 2, model 2 (generating model) and
model 3 performed similarly based on all performance comparisons, but model 1 underper-
formed considerably. In scenario 3, where the observed counts are generated according to a
more complex specification (i.e., one sampling protocol is affected by an additional source
of variation), model 3 had better goodness of fit and predictive performance with large dif-
ferences in DIC, WAIC and LMPL with respect to the other two models. The difference
in performance between models increases as the complexity of the data generating process
increases (Fig. 4).

The results for the second group of simulations can be found in the Supplementary
Information. Results match those obtained with the first group of simulations above. In
Scenario 1, all three models perform similarly. As in the first simulation study, when the
complexity of the model that generates the data increases, models 2 and 3 outperform
model 1. Nevertheless, unlike in the first simulation study, model 2 outperformed model 3
in Scenario 3 (generated by model 3) for ¢3 as it produced less biased estimates.
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5.2. RESULTS OF THE CASE STUDY ON TOTAL ABUNDANCE OF BIRDS IN
MID-SCANDINAVIA

We fitted our three models (see Sect. 3) to count data from the common bird monitoring
schemes in Norway and Sweden (see Sect. 2) to estimate total abundance of birds across
mid-Scandinavia with precipitation and elevation as explanatory variables. These two were
selected from all the variables considered a priori, as it was the subset of candidate variables
that produced the best results in terms of goodness of fit (see Supplementary Information for
an overview of the performance of other competing models). The most demanding model
in terms of computation time was model 3, which run in 60 seconds. In Table 3, we report
the posterior mean, standard deviation and quartiles of the most relevant parameters from
the three models.

Table 3 shows the associations between precipitation (PREC) and elevation (ELEV) with
the expected counts are negative for all the models. The posterior means of the parameters
of these two variables have small differences, model 2 estimated stronger association of the
explanatory variables (precipitation and elevation) and the response variable (total abun-
dance of birds). The posterior summarizes of PREC and ELEV suggest that those locations
with higher levels of precipitation and high elevation are expected to have lower total bird
counts. The variability and range of the Gaussian field have right skewed posterior distribu-
tions based on their posterior medians and means.

Figure 5 and Table 3 show that the posterior densities of ¢, are different between models,
with higher posterior mean for model 1 compared to the other models. This result agrees
with the exploratory analysis of Sect. 2, which suggested the necessity of specifying a
relaxed linear relationship between the line and point counts in Norway (linearity was met
in Sweden, but not in Norway, see Fig. 2). However, the posterior densities of {3 and ¢4 are
almost identical for models 1 and 3, whereas model 2 estimated posterior distributions for
{3 and ¢4 that are shifted toward lower values (Fig. 5). Large differences in the posterior
mean of v, in models 2 and 3 are observed when w;(s) is introduced to account for the
particularities of the sampling protocol of the line counts in Norway (i.e., in general terms,
to account for added complexity due to one of the data collecting protocols considered).
While model 2 gives high prevalence to wj (s) (posterior mean of ¥, = 1.90) as determinant
of the departure from linear association, model 3 reduces this prevalence (posterior mean
of ¥» = 0.63). It arguably means that w (s) accounts for what is particular of this sampling
protocol (the added complexity) and what at the same time reduces the leverage of what is
shared between this sampling protocol (the line transect in Norway in this case study) and the
other protocols. We expect these differences in contribution of w1 (s) across models to impact
their predictive performance. In Figure S.2, we show the posterior mean of Y (s) + Y2(s),
understood as a proxy for the total abundance of birds in our study region (see Sect. 3).
Given the high similarity across mid-Scandinavia, hereafter, we explore the differences
in the predicted mean of Y;(s) + Y2(s) between the three models in a smaller sub-region
(highlighted with a red square in Fig. 6), which encompasses the locations surrounding
Trondheimsfjorden and the Norwegian Sea.

Our three models predicted high total bird counts along the eastern coast of Trondheims-
fjorden and on the islands of Hitra and Frgya (Fig. S.9) and low counts at higher elevations
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Table 3. Posterior mean, standard deviation and quartiles of the most relevant parameters of the models proposed

in Sect. 3
Model
Model 1
Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.69 0.04 4.61 4.69 4.77
PREC —0.12 0.04 —-0.19 —-0.12 —0.04
ELEV —0.29 0.04 —0.38 —-0.29 —0.21
o) 0.05 0.00 0.04 0.05 0.05
3 0.51 0.03 0.45 0.51 0.57
4 1.50 0.09 1.33 1.50 1.68
1)
v3
V4
o(m) 1.80 - 104 4.00 - 103 1.11- 104 1.77 - 104 2.68 - 104
o 0.36 0.02 0.32 0.36 0.41
Model
Model 2
Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.68 0.03 462 4.68 475
PREC —0.20 0.03 —0.26 —0.20 —0.14
ELEV —0.39 0.04 —0.46 —0.39 —0.32
1) 0.04 0.00 0.04 0.04 0.05
23 0.48 0.03 0.43 0.48 0.54
4 1.42 0.08 1.27 1.42 1.58
v 1.86 0.14 1.59 1.86 2.13
V3 1.26 0.13 1.00 1.26 1.52
o 1.30 0.12 1.07 1.30 1.54
p(m) 1.80 - 104 3.88 - 103 1.17 - 104 1.75 - 104 2.69-10%
o 0.31 0.02 0.27 0.31 0.36
Model
Model 3
Parameter Mean SD 0.025q 0.50q 0.975q
Intercept 4.69 0.04 4.61 4.69 4.77
PREC —0.11 0.04 —0.18 —0.11 —0.04
ELEV —0.27 0.04 —0.35 —0.27 —0.19
o 0.04 0.00 0.04 0.04 0.05
e 0.51 0.03 0.45 0.51 0.57
4 1.50 0.09 1.32 1.49 1.69
V) 0.61 0.16 0.30 0.61 0.91
V3 1.09 0.12 0.86 1.09 134
Va 1.18 0.12 0.96 1.18 1.42
p(m) 2.01- 104 4.12-10° 1.29- 104 1.98 - 104 2.90 - 104

o 0.34 0.03 0.29 0.34 0.39
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Figure 6. Top(small): Study region with the red square that encloses the zone chosen for analyzing differences
between models. Bottom: differences in the posterior mean of Y7 (s) + Y2 (s) (i.e. total abundance of birds) between:
model 1 - model 2 (left), model 3 - model 2 (center) and model 1 - model 3 (right).

such as in the mountainous in the southwest and the north of the study region (Fig S.9.).
Model 2 estimates higher counts compared to the other two models along the fjord’s coast
(dark blue) and lower abundance inland (mainly in the mountains; light brown; Fig. 6).
The differences in predicted counts between model 1 and model 3 are smaller (Fig. 6, right
panel) compared to those with model 2. However, larger predicted counts are produced by
model 3 around the island of Linesgya. Our modeling framework allows for computing
the uncertainty of our predictions. Here, we assess this by computing the standard error of
Y1(s) + Ya(s) (see Fig. 7 for the standard error of the sub-region highlighted in Fig. 6, and
see Fig. S.10 for the standard errors across the entire study region).

The standard error of model 1 is larger than the other two models in most regions (see
brown colors, left and right panels in Fig. 7). In the zones with higher predicted counts
(the coast on the Norwegian Sea and Trondheimsfjorden), model 2 produced predictions
with higher uncertainty (dark blue in the central panel), while on the mountains the uncer-
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Figure 7. Differences in the posterior standard error of Y1 (s) + Y>(s) for: model 1 and model 2 (left), model 3
and model 2 (center) and model 1 and model 3 (right).

tainty produced by model 3 was larger (light brown in the central panel). As a way to
better appreciate the numerical differences between models, we explored the total predicted
counts at the 113 sampling sites in Norway by comparing them against the observed counts
(Fig. 8).

Figure 8 shows the comparison between the predicted and the observed values of total
abundance of birds (Y1 (s) + Y2(s)). Model 1 and model 3 predict very similar values, and
thus, we also compared the observed and predicted values of the counts gathered via point
counts Y1 (s) and line transects Y»(s) separately. Although model 1 and model 3 produce
very similar predictions of total abundance of birds, model 3 predicted Y; and Y, separately
more accurately. This is due to the inclusion of the GRF w»(s), as it makes it possible to
better distribute the abundance between likelihoods and is flexible enough to capture more
complex relationships between the census processes. We have highlighted the predicted and
observed counts of the site located in the island of Linesgya (in red in Fig. 8) as this is a site
where big discrepancies are observed between all the models. Model 1 and model 2 are not

True vs Predicted values for Y1+Y2, Y1 and Y2

Total abundance Total abundance Total abundance
Model 1 Model 2 Model 3
400 .- % | 400 ~. %1400 PTId
004 T - -
300 m— 200 — 300 —
200 o~ 200 Tl 200 zvi
100 _'M 100 .’..»“"' 100
100 200 300 400 100 200 300 400 100 200 300 400
Y1 ¥4 Y1
Model 1 Model 2 Model 3
-  _ ¥ 1300 e
£ 300 e T 7 | 300 st
o | g e M) 200 a P
5200 " 200 P Caa M»
& 1007, PP 100 M 1001
100 200 300 100 200 300 100 200 300
Y2 Y2 Y2
Model 1 Model 2 Model 3
- | 40 . . d
5 30 - -
3 - o
104 ¢* 4o 20— " 50 . o
5 3 10 < 25
g‘ 0 ﬂ: () L’
0 25 50 75 0 25 50 75 0 25 50 75

Truth

Figure 8. Comparison of observed vs predicted counts for: total abundance(Y(s) + Y2(s); top row), counts
produced via point counts Yj(s) (middle row) and counts produced via line transect counts Y5 (s) (bottom row).
The performance of model 1, model 2 and model 3 is displayed in the first, second and third columns, respectively.
A particular site with high total abundance of birds due to presence of gregarious species (in this case) that is only
captured by one (the line transect in Norway) of the four census protocols is highlighted in red to allow for a quick
assessment of discrepancies between the three models.
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able to accurately predict the counts reported in this site by the line transect survey in Norway.
This site is a special location where gregarious geese belonging to several species aggregate
and form large gaggles (similar examples elsewhere might be sites with (multi-species)
colonies, roosting sites or wetlands hosting thousands of waterbirds). Such information is
only available if data from several census protocols are combined and properly analyzed—
our new modeling framework can account for these differences, as our model 3 does in
comparison with model 1 that assumes a linear relation.

Figure 9 shows the posterior mean of wi(s) for the three models, as well as w;(s) for
model 3. w; (s) is, in general, similar for the three models. The largest difference occurs in
wi (s) for model 2, which has a shorter spatial range in comparison to the other two models.
In addition, the highest contribution of w> (s) occurs in Lines@ya, an island where high total
abundance of birds can be recorded during the line transects, due to high concentrations
of geese from several species (see above). Such species form large groups of individuals
(so called, gaggles) in some of the islands along the Norwegian coast. Lastly, we compared
our three models in terms of goodness of fit and predictive performance (Table 4) using the
measures of performance introduced in Sect. 3.4 and out-of-sample predictive performance
measures such as RMSE after brute-force Leave-One-Out Cross Validation (CV), (Vehtari
et al. 2016) and Leave-One-Site-Out CV. In the former CV scheme, we removed one data
point at a time, while for the other we removed both the point and line transect counts. This
procedures were computationally demanding, but feasible for our problem as it took 1.76
hours for model 1, 4.2 hours for model 2 and 4.1 hours for model 3.
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Figure 9. Posterior mean of w;(s) for model 1 (upper left), model 2 (upper right) and model 3 (bottom left).
Posterior mean of w;(s) for model 3 (bottom right).
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Table 4. Measures of performance (see Sect. 3.3) for models 1, 2 and 3

Measure of performance Model 1 Model 2 Model 3
DIC 2728.79 2751.04 2603.82
WAIC 2876.19 2876.96 2593.69
RMSE 165.60 145.00 38.63
LMPL —1673.50 —1656.35 —1425.04
Mean CRPS 27.21 25.93 20.95
RMSE (Leave-one-site-out CV) 45.70 46.39 45.88

In bold, the model with the best performance

The results show a considerable improvement in the goodness of fit when a second GRF
to account for the particular characteristics in one of the observed data sources (line transects
in Norway) is added. Moreover, the improvement in predictive performance of model 3 is
exemplified by its low values of RMSE for the point count surveys in Norway, its high
value of LMPL and its low CRPS for the point transect counts in Norway. The result of
the leave-on-site-out CV shows small differences, but model 1 outperformed the other two
models.

6. DISCUSSION AND CONCLUSIONS

The main goal of this paper was to introduce a modeling framework that allows us to
model jointly multiple sources of information (count data) that are collected under different
sampling protocols. We also presented a simple case study where we used this new method-
ology to estimate the total abundance of birds in mid-Scandinavia using bird counts in
Norway and Sweden. These two countries have well-established bird monitoring programs,
but differ in the sampling protocols. Therefore, we proposed a set of models that assumed
the same coefficients for the fixed effects in each likelihood and a common GRF. The only
difference between the different likelihoods is random intercepts in the linear predictor that
aim at accounting for differences in the sampling protocols. For example, while the observed
point counts in Norway have pairs of birds as the unit reported, Sweden reports individu-
als. Having different random intercepts makes possible to establish a proportional relation
between the observed counts in the data sources. This is arguably a sensible choice since the
biological processes that determine the abundance of species do not generally depend on
national borders. Although the assumption of linear relation is reasonable for this case, it is
also true that when working with real data allowing for some flexibility with respect to this
assumption may correspond better to reality in most cases. This is why, we proposed a model
that has a common GREF, but with a coefficient that explains how far we are from a linear
relation. As seen in the exploratory analysis (Sect. 2), one of our data sources did not seem to
follow the assumption of linear association with the other likelihoods. Hence, we suggested
the inclusion of a second GRF to account for the differences of this likelihood. The inclusion
of the second GRF, w» (s), was especially useful in our case as we do not have variables at
the spatial point level that explicitly inform on the differences of the line count surveys in
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Norway with respect to the other likelihoods. Simmonds et al. (2020) show the benefits of
including an extra GRF to account for sources of bias in the sampling process of Citizen
Science data. We assessed the performance of the three models when the key assumptions
in the specification of each of them were not met in two simulation studies. The results of
these simulations showed that a flexible specification performed similarly to the model that
assumed a linear relation (model 1) when the latter model was used to generate the data.
On the other hand, when the linear assumption was not met by the data generating model,
the gap in performance between models became more evident. This suggests that using the
models with flexible specification is always advised, regardless of the nature of the data. The
estimates of the parameters in model 1 (the model assuming a linear relation between the
observed counts) were biased and more uncertain than the estimates of the same parameters
in the other two models. When a more complex scenario was proposed, model 3 (the model
with two GRFs) clearly outperformed model 1 and model 2 in every comparison criteria.
From the two simulation studies, we can conclude that model 3 is more robust than the
other two models to misspecification of the functional form of the model. The parameters
that showed higher differences in terms of bias and mean RMSE in the simulation study
were the hyperparameters ¢ ;. This might be caused by caused by the fact that these param-
eters are the only ones that are not constrained to be the same for all the likelihoods, and
therefore, they are more sensitive to misspecification. A biased estimate of these hyperpa-
rameters might have an impact on the predictions of our models (total abundance of birds,
in our case study) as these coefficients can be used as weighting of different likelihoods
when computing the total abundance. The data of the simulation studies were also used to
show why integrating the four sources of information is better for predicting the total counts
of birds in more than one country (See Section S.1.2. of the Supplementary Information).
We compared the predictive performance of a set of models that include (i) only one of
the four sources of information, (ii) two sources of information (from the same country to
predict abundance in a given location within the corresponding country—e.g., points and
lines from Norway to predict within Norway), and (iii) the four sources of information
(points and lines from both countries) (see Table S.2.). The results show that if the goal of
the study is to produce predictions in more than one country, then integrating sources of
information from both countries is recommended. If the goal of the study is to only produce
within-country predictions, then integrating information for more than one country would
not provide any additional benefit as the models with two sources of information performs
as well as the models with the four sampling protocols. When we applied this methodology
to the case study of estimating total bird abundance in mid-Scandinavia, we found some
very high counts on the island of Linesgya (compared to elsewhere in the region). This
count was recorded during a line transect sampling, which model 1 and model 2 failed
to explicitly account for. This is arguably why the differences in goodness of fit between
model 1 and model 2 were negligible. The inclusion of a second GRF in model 3 to explain
extra complexity (in this case, the line counts in Norway that may produce large number
of birds) made sense for our research problem since it was able to explain the large counts
in Linesgya, when a large number of geese congregate around these islands. Adding GRFs
to the likelihoods in order to account for particularities of each observed response seemed
useful and practical in other cases when researchers need to account for complexity that
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can not be explained with available covariate information. However, this addition should
have a clear justification and be applied with caution since giving an ecological interpreta-
tion to this random effect may not be a trivial task. Our modeling framework offers, thus,
advantages to integrate data from surveys with different sampling protocols and disjoint
spatial locations. In its most simple parametrization, it does not explicitly account for any
factor that affects the observed total abundance (i.e., detection). For example, in our case
study, we have assumed these factors are negligible. However, this modeling framework
is flexible enough to explicitly account for factors that influence the observed abundance.
As shown in Sect. 3, these factors can be accounted for by explaining each of the terms
¢; in the models proposed as a function of fixed and random effects that affect the obser-
vation process. Given the complexity of the models, identifiability issues may arise if the
parameters that explain the effect of the factors related to the observation process are not
constrained. This issue can be overcome by integrating data that inform on these parameters,
or informative prior knowledge about them. The proposed framework does not explicitly
accommodate species-specific characteristics. In our case study, it was not necessary as we
assumed all the species have the same weight on the estimated total abundance. However,
this modeling framework can work for a broader range of goals. For example, if one or a
group of species are of interest when studying anthropogenic impacts on birds (e.g., total
raptor counts (De Lucas et al. 2008)), the raw data can be preprocessed according to the
purpose of the study. If the goal is to model one species of concern, then getting the subset of
the raw data that belong to this species would suffice to apply our methodology and obtain
satisfactory results. If, in another case, the question we want to solve is linked to the risk
of collision of birds with powerlines (e.g., D’ Amico et al. 2019) or rotor blades in wind
farms (see De Lucas et al. 2008), we can account for the differences in sensitivity between
species (for example soaring raptors, which are proportionally scarce in common bird moni-
toring schemes, are more sensitive than other bird species). Thus, one would multiply (apply
weights) the count of each species in the dataset by a ’species-specific sensitivity factor’
to that particular human impact (in this case, counts of raptor species would have a larger
weight than other species). Then, one would proceed by summing up the new weighted
counts to obtain a "total weighted abundance of birds’ at each census site. Our methodology,
thus, can provide estimates of such a total weighted abundance across the entire region of
interest and maps of ’sensitivity-adjusted hotspots.” An open question would be then, how
to decide the values of these weights, which might be decided based on, for example, expert
opinion, traits databases (Tobias et al. 2022) and published literature (D’ Amico et al. 2019).
A limitation of this modeling framework is that it lies in the category of purely spatial
SDMs and thus it is not possible to explicitly account for any potential temporal variation
at small (e.g., within a day) or large (e.g., across years) scale. In our case study, this was
not a major concern as the temporal span of our data (14 years) is not considered a period
in which the distribution of the total abundance of birds has varied a lot in the study region.
The ultimate goal of developing this methodology is to integrate the different sources of
bird count data to predict total abundance of birds across Norway, information that will be
used in further studies of human impact on biodiversity, including predicting bird mortality
hotspots due to powerlines and wind farms (Bernardino et al. 2018; Bevanger 1995, 2001;
Serrano et al. 2020). Therefore, achieving a good predictive performance of our models is
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of paramount importance to properly assess the vulnerability of different regions to human
development based on the total local abundance of birds. Although we found differences in
goodness of fit between the three models, the differences in predictive performance were
small. However, a flexible model specification seemed the best choice for ensuring good
predictions. For example, model 3 (which included w;(s) to account for particularities of
the line counts in Norway) yields the most accurate predictions at the observed locations
in Norway. This is associated with the extra complexity found between line transects and
point counts in Norway, which unlike the two sampling protocols in Sweden did not have
a clear linear relation, as they are only complementary to one another. In conclusion, in
this paper we propose models to integrate multiple professional surveys with differences in
their sampling protocols. These differences are usually determined by the country of origin
of the data (sampling protocol) or by the specific targets of each monitoring scheme. The
INLA-SPDE approach implemented in the R-INLA package makes it straightforward to
perform full Bayesian inference for models that integrate multiple sources of information,
even if they are not standardized or report the observed counts in different units. A natu-
ral extension of this work is the application of the proposed modeling framework to solve
a broader range of ecological questions at larger geographical scales or for species with
poor data (Buckland and Johnston) that incorporate more sources of information given its
convenience and simple implementation.
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Abstract

The constant increase in energy consumption has created the necessity of extending the energy trans-
mission and distribution network. Placement of powerlines represent a risk for bird population. Hence,
better understanding of deaths induced by powerlines, and the factors behind them are of paramount
importance to reduce the impact of powerlines. To address this concern, professional surveys and citizen
science data are available. While the former data type is observed in small portions of the space by
experts through expensive standardized sampling protocols, the latter is opportunistically collected over
large extensions by citizen scientists.

In this paper we set up full Bayesian spatial models that 1) fusion both professional surveys and
citizen science data and 2) explicitly account for preferential sampling that affects professional surveys
data and for factors that affect the quality of citizen science data. The proposed models are part of the
family of latent Gaussian models as both data types are interpreted as thinned spatial point patterns
and modeled as log-Gaussian Cox processes. The specification of these models assume the existence of a
common latent spatial process underlying the observation of both data types.

The proposed models are used both on simulated data and on real-data of powerline-induced death
of birds in the Trgndelag county in Norway. The simulation studies clearly show increased accuracy in
parameter estimates when both data types are fusioned and factors that bias their collection processes
are properly accounted for. The study of powerline-induced deaths shows a clear association between
the density of the powerline network and the risk that powerlines represent for bird populations. The
choice of model is relevant for the conclusions that could be drawn from this case study as different
models estimated the association between risk of powerline-induced deaths and the amount of exposed
birds differently.
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1 Introduction

Energy consumption is anticipated to rise by ca. 50% by 2050 (Conti et al., 2016) and hence the global
network for energy transmission must also be extended, particularly to meet the UN’s Sustainable Develop-
ment Goal (SDG) 7 “universal access to affordable, reliable, and modern energy services” (United Nations,
2018). In addition to the high expenditure that this implies (Bernardino et al., 2018), such a development
in infrastructure and land sparing will have an enormous environmental cost (Biasotto and Kindel, 2018).
Accumulating evidence shows that powerlines are an important threat for many avian species (Martin, 2011),
with overhead wires fragmenting the airspace used by birds, increasing mortality risk by collision (Bernardino
et al., 2018) and with masts used by many species as perching structures, causing increased death rates by
electrocution (Herndndez-Lambrano et al., 2018). Davis (2002) estimated that the deaths caused by power-
lines easily reach a billion birds per year. Since then, the network of powerlines has increased by 5% annually
(Jenkins et al., 2010), and the number of deaths has most likely increased despite the success of effective
local risk mitigation actions (Pavén-Jorddn et al., 2020; Barrientos et al., 2012).

From the conservation point of view and in line to the SDG 9 “build resilient and sustainable infrastructure”,
SDG 11 “make cities and human settlements sustainable”, SDG 12, “ensure sustainable consumption and
production patterns”, SDG 15 “protect, restore and promote sustainable use of terrestrial ecosystems and
halt biodiversity loss” (United Nations, 2018), it is of paramount importance to gain a better understanding
of under which circumstances (i.e. how, where and when) powerlines suppose a high death hazard. This can
target mitigation actions and plan new power lines such that their ecological impact is reduced.

Until now studies of mortality impact of powerlines have been based on standardised detection-nondetection
data (sensu Miller et al. (2019)), are often carried out at specific locations and relatively small spatial scale
(e.g. Bevanger (1995); Bevanger and Brgseth (2001)) and/or focus on target species of concern (e.g. JANSS
and FERRER (2001); Lépez-Lépez et al. (2011)). This hinders our ability to draw broader conclusions about
the factors involved in this recognised human-wildlife conflict. One way to increase the range of species and
habitats as well as the geographical extent represented in such datasets is to use the vast information con-
tained in Citizen Science (CS) portals (e.g. https://ebird.org, www.artsobservasjoner.no). Some of these CS
platforms allow citizen scientists to report additional information on their observations, including whether
the finding was a dead animal and even the potential cause of death (e.g. electrocution, collision with
powerline wires, collision with fences, roadkill). These two sources of information (standardised detection-
nondetection and opportunistic presence-only data), however, are not directly comparable as they come with
different inherent biases, especially regarding survey effort (Botella et al., 2021).

Aware of the potential benefits the integration of multiple data types has to offer, much research has in
the past years attempted to overcome the challenges of integrating more than one data source (Koshkina
et al., 2017; Pacifici et al., 2017; Miller et al., 2019; Gelfand and Shirota, 2019; Zipkin et al., 2021; Wang
et al., 2021). Evidence of the benefits in inferential and predictive performance when multiple data types
are integrated is accumulating (Simmonds et al., 2020; Gelfand and Shirota, 2019). These benefits include,
inter alia, reduction in the uncertainty of the predicted variable in comparison to the results when each
data type is modelled separately and increased accuracy in parameter estimation. Nevertheless, accounting
for potential biases in the collection process is of paramount importance for fusion models to perform as
expected (Simmonds et al., 2020).

This paper is motivated for a case study whose aim is to determine which factors are associated to high
risk of powerline-induced death of birds, and hence highlight riskier areas within the powerline network of
Trendelag, Norway. Two data types are available to address this question, data collected through profes-
sional surveys performed by the Norwegian Institute for Nature Research (NINA) and opportunistic records
collected from two sources: i) Artsobservasjoner, a database of the Norwegian Biodiversity Information Cen-
ter (NIBC), and ii) the Norwegian Bird Ringing Centre. Extensive research in this field show that factors
such as visibility, land use, the density of the powerlines and the amount of bird that are exposed to collide
with the powerlines are associated to the risk of powerline-induced deaths (Bevanger et al., 2014; Drewitt
and Langston, 2008; Martin and Shaw, 2010).



Detection-nondetection data collected in professional surveys for ecological research are often analysed using
site-occupancy models (MacKenzie and Kendall, 2002) and geostatistical spatial models (Banerjee et al.,
2015) as the data locations are fixed and defined during the sampling design. For our case study, the data
collected by NINA contains exact locations of where powerline-induced deaths have occurred. As a census
is performed in the area around a powerline once it has been selected to be sampled, we regard these data
as a thinned point pattern (Illian et al., 2008) with thinning probability depending on the area to which the
points belong. If the removal of points from the original point pattern is driven by Missing Not At Random
(MNAR) mechanisms (Little and Rubin, 2019) that depend on our ecological process, we have thinning
caused by a preferential sampling design (Diggle et al., 2010). Otherwise, the removal of points is assumed
to occur randomly.

CS data are also regarded as a thinned point pattern, but due to a MNAR mechanism (Little and Ru-
bin, 2019) that depends on factors such as differences in the sampling effort, detectability, reporting effort
and/or misclassification. A general flexible framework for generating CS data has been proposed by Peprah,
Sicacha-Parada, 2022. This framework links thinning operations for point patterns (Illian et al., 2008)
with the biases in CS data and provides a novel perspective for modeling CS data. This framework relies
on the idea of a shared process model for modeling data generated through MNAR mechanisms (Little and
Rubin, 2019). Hence, this model assumes a common latent effect that drives multiple observed data. In
our case, we assume this common latent effect affects both the observed data and the missingness process.
For our case study CS data is obtained from two sources, both of them share biases, such as uneven sam-
pling effort, which can be affected by factors such as accessibility and/or land use (Monsarrat et al., 2019;
Sicacha-Parada et al., 2021), differences in detectability, which can be explained by land use, habitat type,
the size of the dead bird and/or moment of the observation (Dominguez del Valle et al., 2020), and uneven
reporting effort (August et al., 2020).

Hence, the aim of this paper is to introduce a modeling framework that integrates professional surveys
and CS data while accounting for the biases in the collection of each of the data types as suggested in
Simmonds et al. (2020). As a natural result of the modeling framework proposed, we also expect to highlight
riskier areas for powerline-induced deaths. This framework extends the state of the art of data integration
models as it simultaneously models CS data and their biases and professional surveys data and their sampling
process, which might be preferential (Diggle et al., 2010). This modeling framework is specified as a group
of Bayesian models that depend on shared spatial random effects and lies within the class Latent Gaussian
Models (LGMs, Rue et al. (2009)). As these models belong to the family of LGMs, they are suitable for
being fitted using both the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009) and the
Stochastic Partial Differential Equation (SPDE) (Lindgren et al., 2011) which offer efficient approximation
of both the posterior distribution of the parameters of the models and the Gaussian Random Fields (GRF)
involved in the specification of the models (Simpson et al., 2016). This is a flexible framework for integrating
the two available data types and accounting for multiple sources of bias in both professional surveys and
CS data. Hence, the models we present can be applied directly in assessments not only of the impacts of
powerlines on animal mortality (our case study), but also in those of other human infrastructures such as
roads and windfarms. Such assessments are critical in times where the rapid increase of new projects linked
to renewable energy development are adding mortality to that of the traditional roadkills (Barrientos et al.,
2021) and powerlines (Bernardino et al., 2018) and are facing strong public rejection (Serrano et al., 2020).

We show the performance of the models we propose for both simulated data and our case study. Through
the simulation study we show the relevance, potential benefits for parameter estimation and challenges of
integrating both data types. In the case study, despite not knowing the ground truth, we expect to find
riskier areas for powerline-induced deaths, which factors determine this risk, as well as comparing each of
the models proposed.

This paper is organized as follows. In Section 2 we present the two available data types for our case study as
well as details of their collection process that are relevant for the specification of our modeling framework.
This framework is introduced in Section 3, technical details regarding the models for integrating the two data



types and accounting for their biases are also presented in this section. In Section 4, the simulation studies
to assess the properties of our models as well as the necessity of accounting for biases and of integrating
both data types are presented. Section 5 contains the analysis of powerline-induced death of birds and the
results. Finally, in Section 6 we discuss the proposed framework and propose future extensions of it.

2 Data and case study: Death of birds caused by powerlines in
Trgndelag, Norway

Here we use two different datasets on bird casualties due to powerlines. First, we use standardised data
from professional surveys conducted by the Norwegian Institute for Nature Research (NINA) aiming at
finding all bird carcasses under a specific section of a powerline (Bevanger et al., 2014). Second, we use two
opportunistic presence-only CS data: 1) records found at the Norwegian CS portal www.artsobservasjoner.no
and reported as “dead bird by a powerline” since 2016 and 2) Records of dead birds reported to the Norwegian
Bird Ringing Centre. Figure 1 displays the occurrence of both types of data. Since the detection of birds can
occur up to about 100m away from a powerline, and for computational convenience, the spatial domain of
the case study is a buffered version (100m on each side) of the networks of powerlines. In this study we use
data from Trendelag, in central Norway. The large variation in environmental conditions of this county and
the existence of areas with high abundance of birds (Sicacha-Parada et al., 2022) makes this region suitable
for our case study.

@® NINA Surveys @ Artsobservasjoner Ring recoveries

Figure 1: Data sources considered for studying the risk of powerline-induced bird mortality and their spatial
distribution. In blue: Spatial distribution of observations collected by NINA. In red: Opportunistic records
reported by citizen scientists in Artsobservasjoner. In green: Opportunistic records reported through the
Norwegian Bird Ringing Centre.

2.1 Professional surveys of bird mortality

The data of professional surveys on bird mortality caused by powerlines were collected within the OPTIPOL
project (Bevanger et al., 2014). Carcasses were searched for using a trained dog (wachtel) under a 7.1 km-
long section of a high-voltage powerline (300 kV transmission line) during 2011-2014. Every year, the same
dog patrolled the same section following the same protocol - crisscrossing under the powerline in the clearcut
area (see Bevanger et al. (2014) for further details and study design). Found carcasses were removed to avoid
double-counting. For this study we used 147 observations of carcasses collected at point level as the exact
geographic location is available for each observation.



2.2 Opportunistic records of bird mortality

We retrieved opportunistic (presence-only) records from two sources. First, Artsobservasjoner, a database
of the Norwegian Biodiversity Information Center (NBIC;www.artsobservasjoner.no) where everyone, volun-
teers and professionals, can report the occurrence of any species alongside the location, date/time and addi-
tional information that the observer deems important to be linked to the observation. For example, observers
can report if the observed occurrence was dead and the cause of death if it is straightforward (e.g. electrocuted
bird, broken wing due to collision). The second source of opportunistic records is the Norwegian Bird Ringing
Centre, run by the Natural History Museum in Stavanger (https://www.museumstavanger.no/en/forskning/den-
norske-ringmerkingssentralen-1), whose database registers more than 8 million entries, including ringing data
(i.e. tagging birds with metal rings with a unique identifier) and ring-recovery data. The recovery data (i.e.
when a bird with a metal ring is found dead and reported to the national ringing office) allows us to, inter
alia, gather information on location and causes of death (provided that the observer reports the cause of
death, which may not always be the case). As precise geographic information is available for each report of
this data type are available, these data are handled as point-level data.

In total, for our case-study in Trgndelag County, we used 98 observations from ring recoveries (dead birds
found with a metal ring and were reported to the ringing center) and 46 observations of dead birds killed by
a powerline from the CS portal Arts Observasjoner (n = 144).

2.3 Explanatory variables

Two groups of explanatory variables are required to fit the models proposed in the upcoming sections. The
first group of candidate variables aim to explain the ecological process underlying the powerline-induced
deaths and the second group explain the sampling process of both the professional surveys and the oppor-
tunistic records.

In the group of candidate variables for explaining the ecological process, we include elevation (Digital
Elevation Model; DEM), mean temperature and precipitation (Norwegian Meteorological Institute), bird
abundance estimated from the Norwegian common bird monitoring scheme (https://tov-e.nina.no; see also
Sicacha-Parada et al. (2022)), powerline density (The Norwegian Water Resources and Energy Directorate;
NVE) cloud cover (https://www.earthenv.org/cloud) and land cover (AR50, https://www.nibio.no/tema/jord /arealressurser/
All covariate information was rasterized to a scale of 1 x 1 kilometers. The second group of variables explain
the sampling process of the professional surveys and the CS data. The candidate covariates to explain the
sampling process include distance to the closest (tertiary) road (road network obtained from OpenStreetMap
https://www.openstreetmap.org), as well as the distance to the nearest water body (where citizen scientists
frequently go for birdwatching due to high bird abundance). To explain the sampling process that yield the
observed professional surveys data, we use elevation gradient.

2.4 Exploratory analysis

Despite the standard sampling effort made in NINA’s professional surveys, these data have some limitations.
First, their spatial coverage is small as carrying out these surveys is time-consuming and expensive. Second,
the selection of the survey sites (powerlines) is not completely random (Bevanger et al., 2014) as expert
knowledge is used to determine which powerlines should be visited. Now we explore the sampled locations
during the CS projects and determine whether or not there is indication of preferential sampling in these
data. To do it, we make two datasets, one with a 100mx100m grid of points along a 100-meter buffer of
the network of powerlines in Trgndelag and the other one with a 100mx100m grid of points defined over the
powerlines that have been visited by NINA. Our comparison focuses on two covariates, powerline density
and cloud cover. The results are presented in Figure 2. Note that both covariates are standardized based
on their values over Trgndelag.
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Figure 2: Density plot for powerline density and cloud cover for the two datasets previously defined. In red,
the density plot for the grid defined over the whole network of powerlines. In blue, the density plot defined
for the grid of points defined for the sampled powerlines.

Even though both densities seem similar for the powerline density, we notice that denser powerlines are
more frequent among the sampling locations chosen by the experts. On the other hand, the right panel of
Figure 2 shows that those powerlines selected by the experts are located where cloudcover is higher that
usual along the network of powerlines. It is known that both powerline density and visibility (proxied by
cloud cover) are factors associated with powerline-induced mortality (Drewitt and Langston, 2008). Hence,
there is apparently indication of preferential sampling in the sampling design performed by experts at NINA.

Both Artsobservasjoner data and ring recoveries can be regarded as CS data. Both of them share biases,
such as uneven sampling effort, differences in detectability and uneven reporting effort. The latter might be
regarded as an important source of bias as it is more common for rare occurrences, as in the case of dead
birds, which might not be as convenient to report as the occurrence of alive individuals. Now, we explore
the available CS data and determine if there is indication of a sampling design affected by factors such as
accessibility or land use. We define again two datasets in this case. The first one, a 100mx100m grid of
points defined over Trgndelag and the second one, the locations where powerline-induced bird death have
occurred. The results are displayed in Figure 3.
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Figure 3: Density plow for distance to (tertiary) roads and partition of land uses for the two datasets
previously defined. On the left panel: in blue, the density plot for the grid defined over the whole county of
Trondelag; in red, the density plot defined for the locations with opportunistic records. On the right panel:
left bar: partition of land use in the locations with opportunistic records; right bar: partition of land use over
the whole county of Trondelag

On the left panel of Figure 3 we notice that the locations where citizen scientists have reported occurrences
of dead birds are considerably closer to tertiary roads than all the other locations in the study area. Regarding
the land use, we see from the right panel of Figure 3 that the percentage of reports of dead birds that occur
in open areas is higher than the percentage of open areas in Trgndelag. On the other hand, the percentage of
reports made in forest areas is much smaller than the actual portion of Trgndelag that is covered by forest.
As it is known that accessibility has no association with the risk of powerline-induced mortality, there seems
to be an indication of bias due to accessibility in the sampling process of CS data, as previously mentioned
in Fithian et al. (2015); Monsarrat et al. (2019); Sicacha-Parada et al. (2021). Unlike accessibility, land use
might be associated with differences in the risk of death due to powerlines. However, it is a factor that is also
associated with higher or lower detectability. Therefore, in the upcoming sections we will examine whether
or not land use should be considered as a factor linked to differences in risk of powerline-induced death and
differences in detectability.

3 Models

The generating process of occurrence of dead birds related to the network of powerlines in Trgndelag is the
target model of this work. We model occurrence of dead birds along the network of powerlines P C R? as
a point pattern with intensity Agryue(s). This intensity is further modeled as a sum of a linear combination
of known environmental variables X (s) as, for example, powerline density and abundance of birds, and a
spatial Gaussian Random Field, wy(s):

10g(Atrue(s)) = X(8)8 + wi(s) 1)

This true intensity of birds dead due to powerlines and its components are the quantities of interest. In our
case study we have two data sources available, the citizen science (CS) data and the professional data as
described in Section 2. Each data type has two different observation processes which we propose models for
below.

3.1 Modelling data process of professional surveys

There are two aspects we want to include in our model of the professional surveys: 1) sampling locations
might be chosen preferentially, and 2) the sampling effort is very high and we assume that the process is
perfectly sampled. Therefore, we interpret the observed data by experts as a realization of the preferential



sampling process described by Diggle et al. (2010). Each of the m buffered powerlines (see Section 2) has a
probability ¢;(s);4 = {1,...,m} of being sampled. If the selection of the lines that are visited is completely
random we assume ¢1(s) = ... = ¢,,,(s). However, as in our case study, experts usually have prior knowledge
on where they can find what they want to investigate, we assume the probabilities in ® = [¢;(s), ..., dm ()]
are stochastically dependent on the latent process wi(s) (see Eq. 1) and eventually on some of the covariates
in X(s). In addition to wy(s), the probabilities in ® are explained by known variables Z(s), which might
include some of the covariates in X(s), as follows:

logit(¢i(F;)) = Z(P;)y + Cui(P) 2

The coefficient ( is relevant for this specification as it determines the extent of the dependence between the
sampling selection of power lines to be sampled and the true ecological process that defines hotspots for bird
collision or electrocution (Gelfand and Shirota, 2019).

Once the powerlines to be sampled have been selected, we assume, as stated at the beginning of this subsec-
tion, that within each selected area, a complete census with perfect detection of the dead birds is performed.
Hence, we observe a point pattern Pp4 with intensity Apa(s) = Atrue(8)@r(s), with k the powerline where
location s belongs. Figure S.1. explains graphically the observation process performed in professional surveys.

It is worth noting that as we work with a buffered version of the network P, the model in Eq. (2) is
an areal data model (Banerjee et al., 2015) and accounting for preferential sampling while avoiding identifi-
ability issues implies modelling jointly Ap4(s) and the selection probabilities ¢;(s). More details about this
part of this modelling framework are provided in Section 3.1.1.

3.1.1 Modelling preferential sampling

As previously stated, modelling preferential sampling for our case study implies the integration of a point
process and areal data. Both data types depend on the Gaussian Random Field w;(s). However, while a
continuous version of the GRF generates the point process, a discretized version of it produces the areal
data. Integration of two or more types of spatial data has been previously approached by Roksvag et al.
(2020) and Wang et al. (2021) with applications to hydrology and epidemiology, respectively. In general, a
GRF at the area A is expressed and approximated as:

wi(A) = ﬁ /UEA wr (w)du ~ %SQZAM(S) 3)

with s = {s1,...,sm} a set of sampling points in A. However, as wy(F;) is a nonlinear function of ¢;(P;) in
Eq. (2), we express and approximate wi(A) for our case study as:

(L[ o) Y (1 elals)
ont) =tosit (7 [ 5 ) = st (H PIE exp(m(s))) @

as presented in Wang et al. (2021) in order to avoid ecological bias (Greenland, 1992).

3.2 CS data process model

We assume CS data is the result of a thinning process of the true point pattern of dead birds with three
components: sampling effort, detectabilty and reporting effort. They can be sources of bias due to uneven
sampling effort understood as differences in the probability of location s being sampled by citizen scientists,
due to differences in detectability according to the location of the occurrence of the event and due to
differences in reporting probability amongst the observers. Based on this, we assume CS data follow a point
processs model, to be specific a log Gaussian Cox process (LGCP), Pcs with intensity Acs(s) given by:

)\CS(S) = )‘true(s) . T(S) . 7w/)(s) : 6(5) (5)

where Ay (s) is the intensity of the true occurrences of dead birds due to powerlines, 7(s) is the probability
of location s being part of the locations sampled by citizen scientists, ¥ (s) is the probability of detecting an



occurrence at location s given that it has been visited and §(s) is the probability of reporting an occurrence
at s given that the location has been visited by a citizen scientist and an occurrence has been detected.

We focus on accounting for three sources of bias: uneven sampling effort , detectability and reporting
effort. However, this modeling framework is flexible enough as to account for any other source of bias that
might need to be accounted for.

3.2.1 Sampling effort

The sampling process of CS data is not standardized (Isaac et al., 2014) and is often biased towards locations
with higher accessibility, or locations where observers expect to find more occurrences, i.e. locations that
are preferentially sampled, (Fithian et al., 2015; Monsarrat et al., 2019). Hence, we propose modeling the
term 7(s) as:

logit(7(s)) = Z(s)a + wa(s) (6)
where Z(s) are covariates that aim to explain which locations are most likely visited by citizen scientists and
wo(s) is a spatial random effect.

3.2.2 Differences in detectability

In many real-life scenarios the detection of an event of interest, (a dead bird in our case) can not be assumed
constant. For our case-study, a relevant factor that affects whether or not a dead bird can be detected is
the land use. As pointed out in previous studies (Dominguez del Valle et al., 2020), habitats such as open
areas allow for easier detection of such events. Hence, the differences in detectability are regarded as a
second thinning factor for the actual point pattern of dead birds. We define the probability of detecting the
occurrence of a dead bird at location s given that it has been visited as:

logit(i(s)) = W(s)v (7)

with W (s) the covariates that explain the factors that affect detectability, in our case land use or habitat
type.

3.2.3 Reporting effort

Estimating the reporting effort represented in §(s) requires information that is almost always unavailable.
However, we here propose two ways of accounting for the noise that the uneven reporting effort generates
on the observed point pattern of reports of dead birds.

Simple report effort model

This proposal assumes no structure in the random effect that drives the differences in reporting error.
Hence, §(s) is assumed to depend on a hyperparameter 6. The relation between d(s) and 6 is given by:

5(s) = exp(f)

T 1+exp(f) ®

where 6 has a normal prior m(§) = N(0,1).
Observer-specific report effort model

This is a more complex approach as we assume the probability of reporting associated to each occurrence
depends on its location and the observers whose citizen science activity occurs around it (i.e. how active
an observer is around the location of the occurrence based on her/his other reported observations). In this
case we express 0(s), the probability of reporting an occurrence at location s given that it was visited by a
citizen scientist and an occurrence was detected as:

3(s)= Y w;(s);(s) 9)

je{obs}



where 1;(s) is the probability that the observer of an occurrence that was sampled is observer j and x;(s) is
the probability that this occurrence that observer j has detected becomes finally reported. The expression in
(9) can be interpreted as a weighted average of the probabilities that each observer reported the occurrence
of a dead bird once they saw one. The weights 1;(s) depend on characteristics of the observers such as the
distance to s, or how active the observer (i.e. number of observations in the CS portal) is. In this modeling
framework, 1;(s) is taken as a deterministic input while the aim of the model is to estimate r;(s). A broader
explanation of how 1, could be estimated is available in the Supplementary Information.

3.3 Prior specification

The spatial GRFs wi(s) and wa(s) in Eq (1) and Eq (6) are assumed to follow a Matérn covariance function
given by:
o2

W(ﬁ”sifsju)v[(,,(n\\si — 55| (10)

with ||s; — s;|| the Euclidean distance between two locations s;, s; € D. o2 stands for the marginal variance,
and K, represents the modified Bessel function of the second kind and order v > 0. v is the parameter that
determines the degree of smoothness of the process, while k > 0 is a scaling parameter. The parameter v is
fixed to be 1. The spatial range p is expressed as p = v/8/k. The prior distribution of the parameters p and
o are specified by making use of Penalized Complexity (PC) priors, (Fuglstad et al., 2019). The parameter
vectors 3, v, a and v have Normal prior distribution with mean 0 and precision 0.01.

3.4 Fitting the models: inlabru R-package

As our modeling framework lies within the framework of the Latent Gaussian Models (LGMs; Rue et al.
(2009)), our models can be conveniently fitted using the INLA-SPDE approach (Rue et al., 2009; Lindgren
et al., 2011). INLA produces fast, reliable inference as it aims to produce a numerical approximation of the
marginal posterior distribution of the parameters and hyperparameters of the model. The SPDE approach is
based on the solution of a SPDE which can be approximated through a basis function representation defined
on a discretization of the spatial domain. Simpson et al. (2016) propose using the SPDE approach based on
a tesellation of the space to efficiently approximate the likelihood of a LGCP.

This modeling framework incorporates nonlinear terms in the linear predictor in order to account for the
biases in CS data. An alternative to deal with these non-linearities is to iteratively linearize them. This
is done using the inlabru R-package (Bachl et al., 2019), which makes an approximation by linearizing
the non-linear function at a so-called linearization point and then approximating the posterior distribution
through a Taylor series approximation of second order at this point. The fixed point iteration method (Bur-
den et al., 2015) is used to find the linearization point. Additional details and examples are available at
https:/ /inlabru-org.github.io /inlabru/articles /method. html.

4 Simulation Studies

In order to explore the importance of accounting for the sampling process of CS data as well as the uneven
reporting effort between citizen scientists, we conduct a simulation study based on the Trgndelag case study
with the powerlines of the region and some of the explanatory variables defined in Section 2.3. We set up for
simulation scenarios representing different selection schemes of the powerlines visited by the experts (random
or preferential sampling) and different willingness (low or high) to report dead birds once they have been
detected by citizen scientists. For each of these scenarios 100 datasets are generated and fitted to a group
of models that range from models that use each of the data sources separately to models that integrate
professional surveys and opportunistic records while account for some biases in the collection of both data
types.



4.1 Datasets simulation models
4.1.1 Simulation model of the true occurrence

To start our simulation study, we generated 100 spatial point patterns with intensity Arue(s) that represents
the true risk intensity as:

log(Airue(s)) = =2+ 0.75 CLOUDCOVER(s) + w1 (s) (11)

where represents each of the 100 realizations of the GRF wj (s) with range p; = 1 and variance o? = 0.3.

4.1.2 Citizen science simulation models

The points generated following the specification in Equation (11) were thinned with a thinning probability
that depends on the sampling process of citizen scientists (see Sec. 3). In this case the sampling process of
citizen scientists is represented through a point process with intensity Acs(s) specified as:

log(Acs(s)) = —4 — 2 DISTANCE(s) + wa(s) (12)

where DISTANCE represents the distance to the closest tertiary road and wo(s) a GRF with range pa = 100
and variance 03 = 1.3. As the coefficient of the covariate DISTANCE is negative, those occurrences located
at more accessible locations for citizen scientists have higher probability of being retained. The next stage
of thinning depended on the detection probability of an occurrence of a dead bird based on factors such as
land use, which affects how likely a dead bird is detected by an observer that has visited a location with an
occurrence. The probability of retaining an occurrence, ¢ (s), was expressed as:

logit(¢(s)) = 1 — 2MOUNTAIN(s) + 1.20PEN(s) + 1.AROCKY(s) + 1L.8URBAN(s) — 3WATER(s) (13)

Each of the covariates in this model are indicator variables for each land use as defined in Section 2.3. The
last stage of thinning depended on the probability of reporting the occurrence of a dead bird given that it
has been detected and an observer has reached the place where the dead body was located. 10 observers
were assumed as the population of citizen scientists and ¢;(s), as defined in Section 3.2.3, was modeled as:

logit(;(s)) = 10 — 0.3DISTTOOBS;(s) + CACTLEV EL; (14)

with DISTTOOBS;(s) the distance from the centroid of the citizen science activity of observer j =
{1,...,10} to location s and ACTLEV EL; a categorical ordinal variable with the activity level (in scale
1-5) of each observer. The vector ¢ = [0,0.5,1, 1.5, 2] determines the magnitude of the relation between each
activity level and ¢;(s). Two definitions were given for x;(s) depending of the willingness to report of the
population of citizen scientists. Low willingness to report was assumed when the values of x;(s) were gener-
ated using a Beta(2,5) distribution (i.e. mean ~ 0.29) and high willingness when a Beta(5, 1.5) distribution
(i.e. mean = 0.77) was used. A complete summary of the generation of each dataset is displayed in Figure
S.1. in the supplementary information.

4.1.3 Professional surveys simulation models

These data were simulated to resemble the professional surveys carried out by NINA. For each simulated
dataset we assume that the buffer around a powerline, P;, is sampled with probability ¢;(P;). This probability
is assumed the same (¢;(P;) = p) for all the buffers when random sampling is assumed and when preferential
sampling is assumed, it is given by:

logit(¢;(P;)) = —2.5 — 1.5ELEVGRADIENT(s) + 3.5CLOUDCOVER(s) (15)

In this case we assume wy (s) is not part of the preferential sampling model in order to reduce the computa-
tional complexity of the simulations. Once a segment has been selected, all the occurrences within the buffer
are assumed to be observed, detected and reported as the sampling effort in these surveys is high since the
sampling is performed with trained dogs. A graphical summary of this sampling is presented in Figure S1
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4.2 Simulation scenarios

For each simulation scenario 100 observed datasets were generated by thinning the 100 point patterns
generated in Section according to Equation (11). The way these point patterns are thinned define the four
simulation scenarios displayed in Figure 4.

Reporting 4 High
probability
Scenario 1 Scenario 2
Random Preferential
sampling sampling
Scenario 3 Scenario 4
1 Low

Figure 4: Scenarios for the simulation studies of Section 4.

Two factors define the four simulation scenarios: i) whether the probability of reporting a detected
occurrence is high or low (see Section 4.1.2), and ii) if the selection of the powerlines in the professional surveys
is completely random or preferential (see Section 4.1.3). In Scenarios 1 and 2 we assume the probabilities
of reporting occurrences that were detected by the observers are high, but in Scenario 1 the sampling of the
powerlines is assumed completely random whereas in Scenario 2 the sampling of the powerlines is preferential
as in Equation (15). A similar relation holds between Scenarios 3 and 4. However, the probability of reporting
for these scenarios are assumed low.

4.3 Model comparison

We want to compare the results of fitting different models (i.e. models that use only one data type and
models that fusion both data types) for the datasets generated in the different simulation scenarios previously
described. We defined the eight models in Table 1 and fitted them for each of the 400 generated datasets
(100 true occurrence point patterns X 4 simulation scenarios). Since models 7 and 8 are computationally
expensive and specifically deviced to for scenarios with low reporting probability (scenarios 3 and 4), they
were not fitted in Scenarios 1 and 2.
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Table 1: Description of the models fitted in the simulation study. In the data sources column: PS stands for
Professional Surveys and CS for Citizen Science.

Model Data sources Description
1 PS Only data from professional surveys
(Equation (1))
9 PS Only data from professional surveys accounting for preferential sampling
(Equations (1) and (2))
3 cs Only data with locations from CS reports
(Equation (1))
4 s Same as model 3, but accounting for sampling process of CS
(Equation (5) with §(s)=1)
5 cs Same as model 4, but also accounting for the detection process
(Equation (5) with §(s)=1)
Integration of models 2 and 5 accounting for sampling and detection process
6 PS + CS of CS and preferential sampling.
(Equations (1), (2), and (5) with d(s)=1)
Integration of models 2 and 5 accounting for sampling, detection and
7 PS + CS reporting process of CS and preferential sampling.
(Equations (1), (2), and (5) with d(s) as in Equation (8))
Integration of models 2 and 5 accounting for sampling, detection and
8 PS + CS reporting process of CS and preferential sampling.

(Equations (1), (2), and (5) with (s) as in Equation (9))

4.4 Results

The results of this simulation study are summarized for each of the parameters of the model using bias and
RMSE. The effect of the covariates on the ecological state is of paramount importance for use as decision
support. Hence, in Figure 5 we present the performance measures for the parameter (i, which in our
simulation study represents the effect of the covariate cloud cover on the risk of powerline-induced deaths.
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Figure 5: Mean bias and RMSE for ; for each of the eight models proposed.

We first observe that model 1 (based only on professional surveys and not accounting for preferential
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sampling) performs poorly in scenarios with preferential sampling (scenarios 2 and 4), but outperforms model
2 (based only on professional surveys and accounting for preferential sampling) in scenarios with random
sampling (Scenarios 1 and 3). Nevertheless, these two models were outperformed by all the models that are
based on CS data (models 3-8) in all the simulation scenarios. Models based only on CS data (models 3, 4
and 5) performed better in scenarios with random selection of the sampled powerlines (scenarios 1 and 3).
On the other hand, in the simulation scenario that assumed preferential selection of the powerlines and high
willingness to report (Scenario 2), model 6 (both data types while accounting for preferential sampling and
biases in CS data collection except reporting effort) performs much better than the other competing models
showing, in addition, consistently less variability in the posterior means of the parameter ;. Model 8 (both
data types while accounting for preferential sampling and all biases in CS data collection) performed better
than all the competing models in both bias and RMSE for the scenario with preferential sampling and low
willingness to report (scenario 4). In this scenario model 6 outperformed model 7 (both data types and
simple method to account for reporting effort) arguably due to the lack of structure of model 7 in the expla-
nation of the differences in reporting effort. Finally, note that the variability in the posterior means of ; is
much smaller in scenarios with high willingness to report (scenarios 1 and 2) for all the models, compared to
scenarios with low willingness to report (scenarios 3 and 4) as much more information is available in CS data.

The summaries for both the fixed effects and the spatial hyperparameters are presented in Table S1 of
the Supplementary Information. For fy we find out that models that do not account for any bias in the
collection process (models 1 and 3) underestimate its value for all the simulation scenarios, while model 5
(based only on CS data and accounting for accessibility and detectability) is the one that performs the best
for scenarios 1 and 2. Besides, in scenarios with high willingness to report (scenarios 3 and 4), models 6, 7
and 8 (models that fusion both data types) outperformed all the other competing models. Note that the esti-
mates of the spatial hyperparameters of the GRF wy (s) are inaccurate for the most complex models (models
2, 6, 7 and 8). To explore in more detail the effect of this bias, we have fixed the spatial hyperparameters
for one of the datasets of the simulation studies and have fitted models 6, 7 and 8. The marginal posterior
distributions of the fixed effects are displayed in the Supplementary Information. We arrive to similar results
regarding the accuracy of the marginal posterior distributions for parameters 3y and 3;. However, we noticed
that these posterior distributions are more precise than when the spatial hyperaparameters were not fixed.
Given the sensitivity of the posterior distributions of the spatial hyperparameters to the prior specification
of the spatial hyperparameters in models 6, 7 and 8, more informative prior information could contribute to
obtain more accurate posterior distributions for both the fixed effects and the spatial hyperparameters.

Our proposed framework does not only allow us to infer the posterior distribution of the parameters that
drive the ecological process, but also to learn about the processes that drive the biases in CS data and pro-
fesssional surveys. In Figures S.2.-S.15. and tables S.1.-S.4. in the supplementary information, we present
the comparison measures for the parameters involved in the thinning of the true point pattern to produce
both CS and professional surveys data. In these figures we find out that the parameters of the sampling
process model are similarly estimated by models 4 to 8, with small biases for both oy and ;. On the other
hand, the parameters associated with the detectability exhibit biases and large RMSE. This might be linked
to poor identifiability of these parameters, which could be remediated with informative prior information
or more information about the relation between land use and detectability. Finally, the parameters of the
preferential sampling model are accurately estimated in Scenarios 2 and 4 as expected. A particularity of
model 8 is that it allows for posterior inference about the willingness to report occurrences of powerline-
induced deaths for each observer. Figure S.16. shows the marginal posteriors for each of the observers in
the simulation study. Though inaccurate due to lack of information, the information in Figure S.16. has
potential for CS projects to target a group of observers.

Finally, we compare the proposed models in terms of predictive performance. We focus our comparison
on two aspects: the accuracy of the predictions and how uncertain these predictions are. These predictions
are only based on the fixed effects of the linear predictor. To compare the accuracy of the predictions pro-
duced, we computed the Root Mean Squared Error for the predicted probabilities by each model in each
simulation scenario on a dense grid along the powerline network of Trgndelag. The RMSE maps for each
model in each scenario are presented in Figures S.17., S.22, S.27 and S.32. The results show that in scenarios
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with high willingness to report (scenarios 1 and 2), model 5 (based only on CS data and accounting for
accessibility and detectability) outperforms all the other models. In scenarios with low willingness to report
(scenarios 3 and 4), model 5 was outperformed by models that fusion both data types (models 6-8) in vast
portions of the study region.

Regarding the uncertainty of the predictions produced in the different simulation scenarios, we computed
the average width of the 95% prediction intervals for each model over the dense grid mentioned above. The
maps with the length of the prediction intervals are displayed in Figures S.19., S.24, S.29 and S.34. Model 2
(using only professional surveys while accounting for preferential sampling) produces the larger uncertainties,
while the most complex models (models 6 to 8) have larger uncertainties than the models based only on CS
data (models 3-5).

5 Case study of bird mortality and power lines in Trgndelag, Nor-
way

Our real data application study aims to gain a better understanding of the role of the landscape (environ-
mental covariates) in creating riskier regions for powerline-induced deaths for birds. Based on the effect
of these on the risk of powerline-induced deaths, risk maps of powerline-induced deaths can be made to
inform electricity companies and the Water and Energy Directorate (NVE). To achieve this goal we have
two sources of information (see Section 2): 1) professional surveys performed by NINA and 2) opportunistic
records collected by citizen scientists. In this section we fit models 1 to 7, presented in Section 4, then show
model predictions on the risk of powerline-induced death of birds, and conclude by comparing the predictions
obtained with the proposed models.

The selection of the candidate variables to explain the processes behind both observed data types was
based on expert knowledge and the exploratory analysis performed in Section 2. As higher occurrences of
powerline-induced deaths are expected as more birds are exposed and the powerline network is dense, we
have considered the covariates powerline density (The Norwegian Water Resources and Energy Directorate;
NVE) and bird abundance (Sicacha-Parada et al., 2022) as the first candidate variables. Land use (AR50,
https://www.nibio.no/tema/jord /arealressurser/ar50), which explains the type of land around a powerline,
and cloud cover ((https://www.earthenv.org/cloud), which proxies the visibility the birds have as they fly,
were also considered as candidate variables, but were discarded as land use was correlated with the two cho-
sen covariates and adding cloud cover did not improved the existing models. As argued previously in Fithian
et al. (2015) and Monsarrat et al. (2019), accessibility is one of the main factors that determine where citizen
scientists are more prone to collect information on biodiversity. For this reason, the covariates distance to
(tertiary) roads and distance to water bodies (sea, lakes and rivers) were considered to explain where citizen
scientists collect their observations. Land use was not considered to explain where citizen scientists go to
collect observations as this covariate is also correlated with the distance variables. Another factor that needs
consideration is the detectability of a dead bird. This can be affected by the size of the bird (Borner et al.,
2017; Ponce et al., 2010), the time of the year the observation is made (Bevanger, 1995), the land use of
the place where the carcass is located (Philibert et al., 1993; Schutgens et al., 2014; Dominguez del Valle
et al., 2020) among other factors. In our case, we consider the different land uses as proxies for explaining
differences in detectability. Finally, whether or not citizen scientists are willing to report a dead bird is an
unsolved question. Hence, we have opted for considering this as another relevant factor that affects what is
observed in CS databases and account for it using Model 7.

Preferential sampling was also considered as a possible flaw in the collection process of the data from
professional surveys performed by NINA since the experts leading these projects have prior knowledge they
might use when determining where to collect observations. The results of Section 2 suggest powerline density
and cloud cover as possible drivers for preferential sampling. According to information provided by NINA,
elevation gradient was also relevant for choosing which lines to visit. Given its correlation with cloud cover
(Pearson correlation coefficient, p = 0.76), the variables chosen to explain the preferential sampling were the
elevation gradient and powerline density.
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In Section 3, we pointed out the potential identifiability issues that may arise when trying to account
for biases in CS data as the number of parameters to estimate increases considerably. Therefore, in addition
to the two observed data types, we have also included a point pattern with the locations of CS reports so
that the parameters of the sampling process can be identified. For the parameters that link the different
land uses and the detection of dead birds, we have proposed informative prior distributions based on expert
knowledge (Dominguez del Valle et al., 2020) as no studies that explain the relation between land use and
detectability for Norway are available. We fitted the seven proposed models while integrating the available
data types for each source of bias in the collection process. The posterior summaries for each of the fixed
effects involved in the ecological process are graphically presented in Figure 6.
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Figure 6: Posterior distributions for the fixed effects of the seven models fitted

For the effect of the covariate Exposed birds we observe considerable disagreement between the models
proposed. Models 1,2, 4 and 5 have marginal posterior distributions centered below 0, whereas for mod-
els 3,6 and 7 this distribution is located mostly above 0. The effect of the covariate powerline density is
more consistent for all the models proposed, with marginal posterior distributions centered around the same
values, except for models 1 and 2. It is worth noting that the posterior distributions of models 1 and 2
show much higher uncertainty than for the other models. The posterior summaries for these and the other
parameters in the model are presented in the supplementary information. Note that, as in the simulation
study, the spatial range parameter and the marginal variance took much higher values for models 2, 6 and
7 that for models 3, 4 and 5.

The risk of powerline-induced deaths was predicted along the powerline network in Trgndelag using each of
the seven models proposed. The posterior medians of the risk are presented in Figure 7
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Figure 7: Posterior median of the risk of powerline-induced deaths

As seen in Table S.5., the posterior means of the intercept in models 1, 2 and 3 make the posterior
median of the predicted risk to take low values, except for locations where sampling has been performed.
More realistic predictions are produced by models 4-7. Model 4 highlights very few spots in the study region,
while model 5 predicts larger risk all over the region after accounting for differences in detectability. Once
both data types have been integrated (models 6 and 7) fewer areas are highlighted as riskier for powerline-
induced deaths. Although similar, the probabilities predicted using model 7 are higher than using model 6
as the former accounts for differences in reporting effort. The uncertainty of the predictions was computed
through the standard deviation of the predicted risks and is presented in Figure 8.
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Figure 8: Standard deviation of the predicted risk of powerline-induced deaths

As expected, the predictions based only on professional surveys, which cover a small portion of the study
area, have higher uncertainty than those obtained using only opportunistic records in CS data. As seen in
Figure S.40., the uncertainty of the term ws (s) is considerable for models 6 and 7 across all the study area,
while the uncertainty of the fixed effects is larger for models 1 and 2. After transforming to the scale of the
risk of powerline-induced death, models 6 and 7 are the most uncertain.

These results are consistent with the predictions made for the simulated datasets in Section 4 as models
that use only CS data produce the less uncertain predictions. However, models 6 and 7, which use only data
from professional surveys, produce predictions with higher uncertainty than all the other models.

6 Discussion

In this paper we have proposed and evaluated a methodological framework for integrating multiple data types
to address questions in ecology and biodiversity. We focus on two types of data to integrate: professional
surveys and opportunistic records collected by citizen scientists. A fundamental assumption of this work is
that the observations in both data types have the same underlying ecological process as their origin, but
they have different observation and reporting processes, which generates observations with different spatial
coverages and different observation efforts. We approached the challenge of integrating these data types
in first place by modeling the factors that determine the generation of each data type. In particular, the
data collected by experts is affected by prior knowledge of the professionals that conduct these surveys,
thus a preferential sampling design that gives some powerlines higher chances of being visited than others is
assumed. On the other hand, CS data is affected by factors accessibility, detectability and uneven reporting
effort among citizen scientists. Both data types were managed as realizations of thinned point processes, but
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with different processes behind the thinning of the actual ecological process. While CS data was assumed
affected by processes that occur at point level, we assumed that data from professional surveys was affected
by selection probabilities occurring at areal level.

To account for the factors that affected the collection process of both data types and avoid identifiability
issues (Fithian et al., 2015), we used additional sources of information that provided knowledge of the pro-
cesses involved in the thinning. As no previous studies that inform about the link between land use/habitat
and detectability of dead birds was available for our study region, priors based on expert knowledge were
proposed. We proposed Bayesian spatial models that resemble the generation of each data type and lie
within the class of Latent Gaussian Models, hence they were fitted using the INLA-SPDE approach as this
is a computationally efficient approach for fitting this class of spatial Bayesian models. However, as seen
in Section 3, the terms of the linear predictor that explain the effect of biases in the collection process
on the generation of the observed point patterns do not follow the log-linear requirement underlying the
INLA methodology for log-Gaussian Cox processes. For this reason, as a complement to the traditional
INLA-SPDE approach, we used the approach in the inlabru R-package (Bachl et al., 2019), which is based
on an iterative linearization of the non-linear terms in the linear predictor. This extra step might represent
additional computational burden when a GRF is part of the nonlinear part of the linear predictor since the
sparsity induced by the SPDE approach and the approximation of the Gaussian Random Fields as Gaussian
Markov Random Fields might be reduced. For the most complex models (models 7 and 8 defined in Section
4), we experienced some numerical issues that might be related to this approximation as convergence was
not reached.

A simulation study and a case study were performed in order to study characteristics and properties of
the models proposed in Section 3. Models that used one or two data types and that accounted for biases
in the collection process to different extents were fitted for 100 different datasets in scenarios with profes-
sional surveys that select powerlines preferentially and randomly and with high and low willingness to report
powerline-induced deaths by citizen scientists. The results of the simulation studies show the relevance of
integrating both data types in scenarios with preferential sampling as model 6-8 produce more accurate
estimates for the fixed effects in Scenarios 2 and 4 (scenarios with preferential sampling), which are the
scenarios that more closely resemble what occurs in the case study. In Scenarios 1 and 3 (scenarios without
preferential sampling), models that account for preferential sampling do not perform as well as in the other
scenarios, probably due to lack of identifiability of the large amount of parameters these models introduce.

The assessment of the predictive performance of the proposed models show that models that integrate
both data types (models 6-8) performed better than those based on only one data type (models 1-5). Re-
garding the uncertainty of the predictions, those models based only on professional surveys (models 1 and
2) predicted with larger uncertainty than those models based on only CS data (models 3-5), likely due to
the larger area covered by CS data. Also the models that integrated both data types (models 6-8) produced
predictions with larger uncertainty than model based only on CS data (models 3-5). A similar pattern was
observed in our case study, where predictions using models 1, 2, 6 and 7 had higher uncertainty than the
predictions of models 3-5.

In the simulation studies we found that the posterior estimates of the spatial hyperparameters of the most
complex models (models 2 and 6-8) were considerably more biased compared to the estimates obtained using
only CS data. In particular, in both the simulation studies and the case study the spatial range of wy(s) was
much larger for these models. Arguably the choice of prior distribution is more influential on the models
based only on professional surveys (models 1 and 2) as the spatial coverage of the professional surveys is small.

Through the simulation studies we noticed that the proposed framework contributes to account for both
the fixed effects behind an ecological process and the spatial autocorrelation that determines it. Besides,
this framework has been proven useful as well to account for and quantify the factors that affect the collection
process of both CS data and professional surveys. Hence, the estimates of our models can be used to device
more informed sampling of CS data by focusing sampling efforts in areas with higher uncertainty or with low
sampling effort. The simulation studies also showed the importance of knowing more about the preferences
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of citizen scientists. If more is known about these preferences, more targeted activities for citizen scientists
can be launched in order to target specific research questions and the differences in reporting effort could be
accounted for better inference.

The case study of deaths caused by powerlines in Trgndelag, Norway motivated this paper. Through this
case study we showed the importance of proposing methods that combine more than one data type as we
showed how the effect of a factor like the amount of exposed birds varies amongst models. Moreover, the
prediction maps produced highlighted zones with higher risk of powerline-induced deaths. These maps could
be used by conservation programs to target mitigation measures for powerlines with higher risks.

The proposed methods in this paper are made available also through code such that practitioners in ecology
and biodiversity can use them to address many other questions using multiple sources of information while
accounting for other sources of bias given the flexible specification of the models for both professional surveys
and CS data.
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SUMMARY

A critical question in the conservation of large mammals in the Anthropocene is to
know the extent to which they can tolerate human disturbance. Surprisingly, little
quantitative data is available about large-scale effects of human activity and land
use on their broad scale distribution in Europe. In this study, we quantify the rela-
tive importance of human land use and protected areas as opposed to biophysical
constraints on large mammal distribution. We analyze data on large mammal dis-
tribution to quantify the relative effect of anthropogenic variables on species’
distribution as opposed to biophysical constraints. We finally assess the effect
of anthropogenic variables on the size of the species’ niche by simulating a sce-
nario where we assumed no anthropogenic pressure on the landscape. Results
show that large mammal distribution is primarily constrained by biophysical con-
straints rather than anthropogenic variables. This finding offers grounds for
cautious optimism concerning wildlife conservation in the Anthropocene.

INTRODUCTION

Even though most conservation actions have the primary objective of safeguarding the long-term persis-
tence of wildlife, there is substantial disagreement about the most effective strategies to achieve these
goals (e.g., land sparing vs land sharing, Phalan et al., 2011). Some conservationists advocate for imple-
menting a spatial dichotomy, where "wild areas” would be subject to minimal human intervention (land
sparing) acting as refugia for wildlife against human disturbance. Another paradigm consists of a diversity
of coexistence strategies (land sharing), which envisions the possibility of shared landscapes where human
and wildlife interactions are allowed, managed and sustained by effective institutions (Carter and Linnell,
2016; Linnell and Kaltenborn, 2019).

Adopting a land sharing strategy requires a mutual adaptation in behavior from both humans and wildlife
(Carter and Linnell, 2016). This may seem especially challenging for large animals as they are more likely to
be negatively impacted directly (e.g., through persecution and exploitation) and indirectly (loss and frag-
mentation of habitats) by human activities owing to their larger spatial and resource requirements and the
potential for human-wildlife conflicts (Redpath et al., 2013). Because of their size, large animals with wide-
ranging behavior and slow reproductive rates are frequently viewed as being at a disproportionately high
risk of extinction (Ripple et al., 2014, 2015).

Coexistence with large mammals has been a historical challenge in Europe. Large carnivores were exten-
sively persecuted in retaliation for killing livestock while large ungulates were overexploited for sport and
meat hunting and to minimize damage to crops and forests (Ripple et al., 2014, 2015). This resulted in pop-
ulations of both taxa being driven to the edge of a near continent-wide extinction in the 19" and early 20"
centuries (Chapron et al., 2014; Apollonio et al., 2010). Even though European landscapes are among the
most affected by humans (Venter et al., 2016), strict regulations, reintroduction programs, effective wildlife
management institutions, reforestation and agricultural abandonment have allowed most large mammal
species to recover. Nowadays, these species are again found across very large areas of the European land-
scape (Chapron et al., 2014; Linnell and Zachos, 2010; Linnell et al., 2020).

Another factor which could potentially have contributed to the re-establishment of these species and their

widespread distribution is the widespread protected area network created throughout Europe. However,
because of the diverse legislative framework and multiple goals (i.e., encouraging tourism and allowing
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Figure 1. Map of the distribution of human
disturbance levels in Europe
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Moderate human disturbance
High human disturbance
Very high human disturbance

hunting and different forms of traditional land use) and their small sizes, the conservation effectiveness of
protected areas in Europe has been widely disputed for highly mobile, large mammals (Linnell et al., 2015;
Gaston et al., 2008).

Although there is an increasing body of literature addressing the influence humans have on large mammals
(Tucker et al., 2018; Carter et al.,, 2012; Alexander et al., 2016), we are not aware of any attempts to quantify
the extent to which the contemporary recovering distributions of large predators and their prey in Europe
are constrained by the presence of humans’ modification in their habitat as opposed to underlying bio-
physical constraints. The issue is important to understand the factors limiting the potential for large-scale
land-sharing in a crowded and human-modified continent.

In this study we evaluate the relative effects of both the human footprint, a proxy for human disturbance
levels widely used in large-scale ecological studies (Belote et al., 2020; Tucker et al., 2018, 2021) and pro-
tected areas (i.e., to which extent human footprint and protected areas explain species distribution) after
accounting for natural heterogeneity. We compare the effect of these two human variables with the effects
of biophysical environmental variables such as climate and terrain on large mammal distribution at a con-
tinental scale. We use Bayesian hierarchical models to estimate the importance of these variables on spe-
cies’ distributions and compare the environmental niche of these species with and without accounting for
human variables by simulating a scenario where the European landscape is free of human influence.

RESULTS

For ease of interpretation, we consider five disturbance levels (Venter et al., 2016). A ‘no human distur-
bance’ area has a human footprint of 0; a ‘low disturbance’ area with a human footprint of 1-2; a ‘moderate
disturbance’ area a human footprint of 3-5; a 'high disturbance’ area; a human footprint of 6-11; and 'very
high disturbance’ area with a human footprint of 12-50, following the definition by Venter et al. (2016).

With a median human footprint of 12.2, summary statistics show that more than 50% of Europe’s area is in
an area of very high human disturbance, whereas less than 8% of Europe has no to low human footprints
(Figure 1). Protected areas are spread throughout Europe with the median area of protected areas per
100 km? (i.e. per 10 km x 10 km grid cell) being 9 km? (Q1 = 0 km?, Q3 = 41 km?). Grid cells containing
at least 50 km? of protected areas tended to have on average a slightly lower human footprint than grid
cells containing less than 50km? of protected areas (median = 10.04 and 12.98 respectively).

The seven large ungulates and four large carnivores demonstrate great variability in their presence across
the human footprint gradient (Figure 2). Roe deer (median of 12.8, Q1 = 8.2, Q3 = 18.2) and wild boar
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Figure 2. Ridge plot displaying the species’ distributions data across the human footprint gradient
From top to bottom: roe deer, red deer, moose, wild reindeer, chamois, ibex, wolf, lynx, bear, wolverine, and the
European human footprint distribution.

(median = 13.5, Q1 = 9.2, Q3 = 18.7) are the species present at the highest human footprints. These statis-
tics show that more than 50% of the roe deer and wild boar distribution occurs in areas of very high human
footprint. Wild reindeer (median = 3.9, Q1 = 2.1, Q3 = 4.8) and wolverines (median = 2.7, Q1 = 1.1,Q3=4.4)
are at the other end of the spectrum with distributions in places that are least impacted by human distur-
bance. Our data also shows that wolves are not restricted to “wild” remote places but live in areas where
human disturbance is high (median = 9.6, Q1 = 6.8, Q3 = 13). More than 25% of their distribution is in areas
where human disturbance is very high.

Results from the dominance analysis show that the distributions of all 11 species are largely explained by

the biophysical variables (Figure 3). In fact, biophysical variables consistently dominate the models (with a
relative importance close to 100%) and the influence of anthropogenic variables in our models is shown to
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Figure 3. Relative importance for model fit (in percentage) of anthropogenic variables (human footprint and
protected area coverage; in red) and biophysical variables (winter and summer severity and terrain ruggedness;
in green) to species distribution

Negative importance indicates a drop in the R? when the variable is included in the model. Points represent the median
value, thick lines represent the 50% credible interval, and thin lines represent the 95% credible interval.

be close to 0% or even negative (i.e., the R? of the model gets worse as we include these variables). Only for
red deer and wolf do anthropogenic variables increase the models’ R? values (median = 3.3% and median =
12%, respectively), although their effects were still considerably lower than those of the biophysical
variables.

Finally, in Figure 4 we show that human modifications on the landscape hardly influence the area of species’
potential distribution. The suitable area for most studied mammals (i.e., ibex, wild reindeer, bears, wolver-
ines, red deer, and moose) is weakly influenced by setting both human footprint and protected areas to
zero. Only in the case of chamois and roe deer, we did observe a strong decrease in predicted suitable
area when setting the anthropogenic variables to zero (median = —13,900 and —284,400 km?, respectively).
We also observed a decrease of the predicted suitable area for wolverine, wild reindeer, and ibex when
removing anthropogenic effects (median = —12,900 and —6,200 km?, respectively), because of the removal
of protected areas (see Figures ST and S2 in the Annexes). In contrast, the total predicted suitable
area available for wolf, lynx, and wild boar increases when anthropogenic effects are set to zero (median =
50,700, 133,400 and 131,200 km? respectively). These predicted gains represent 17%, 6%, and 4% of the
actual lynx, wolf, and wild boar distributions, respectively.

DISCUSSION

In this study we have demonstrated that the large-scale distributions of Europe’s main large mammalian
species include large areas of high to very high human disturbance. Even though there is a wide distribution
of high human disturbance combined with a rarity of wild places in the European landscape (Venter et al.,
2016) these results show that large mammals can maintain a presence in these heavily modified multi-use
landscapes. We have further shown that human disturbance and protected area coverage are only minor
drivers of large mammal distributions at the continental scale. Overall, for all large mammals, our results
show that the anthropogenic variables are poor predictors of species distribution compared to the other
biophysical environmental variables.

Large-scale studies (e.g., with a continental scope) and finer scale studies (e.g., with a sub-national scope)

do not answer the same questions, and their results can apparently be in contradiction. Failure to consider
scale can lead to misinterpretation of results (Johnson, 1980) and conservation scientists should be careful
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Avalue below the iso-line indicates an increase in potentially suitable area when removing anthropogenic variables. Thin
lines represent the 95% credible intervals. The stars represent the area of our study area, Europe. Species symbols,
from bottom left, are ibex, wild reindeer, chamois, wolverine, brown bear, Eurasian lynx, wolf, red deer, moose, wild boar,
roe deer.

about the scale used to answer their research questions. Although our models of first order habitat selec-
tion (distribution range) suggest that anthropogenic factors such as protected area coverage and human
disturbance are minor drivers of large ungulate and large carnivore distribution in Europe, results should
not be generalized to higher order habitat selection at finer spatial scales (sensu Johnson 1980). Indeed,
many fine scale studies find that the presence or habitat use of large mammals is mainly negatively affected
by their proximity to human infrastructure such as trails, roads, or cities (for red and roe deer see D'Amico
etal., 2016; Polfus et al., 2011 for moose, Lesmerises et al., 2013 for wolves, Gundersen et al., 2019 for wild
reindeer, May et al., 2006 for wolverines, Peksa and Ciach, 2018 for chamois, Basille et al., 2013 for lynx and
Steen et al.,, 2015 for bear). Furthermore, studies demonstrate that species are often forced to adapt to the
proximity of humans through temporal segregation (e.g., animals become primarily night active, Gaynor
etal., 2018). As different ecological processes drive distributions at different scales, it is therefore not sur-
prising that results will vary across studies at different scales. For instance, although mountain ungulates
forage on steep slopes, human settlements are usually located in the valley bottoms, allowing a vertical
coexistence in close proximity. Thus, topographic complexity can provide refuge areas that facilitate hu-
man-wildlife proximity (Richard and Cété, 2016). The Human Footprint Index is an aggregated metric of
human pressure appropriate for analysis of coarse scale data like ours. Finer scale analyses of other data-
sets would benefit from breaking down its component layers to explore mechanistic relationships between
the different aspects of human activity and land use.

The low effect of anthropogenic variables in our models also implies a weak effect of protected areas on large
mammal distributions in Europe. (for ungulates see Linnell et al., 2020, for carnivores Chapron et al., 2014). A
main reason is the small size of most European protected areas relative to the spatial requirements of large
mammals (for ungulates see Linnell et al., 2020, for carnivores Chapron et al., 2014). Moreover, although Eu-
ropean protected areas have on average a lower human footprint, they are not free of human disturbance. In
fact, most European protected areas permit harvesting or culling of large herbivores as well as livestock graz-
ing, extensive agriculture, and forestry (van Beeck Calkoen et al., 2020; Linnell et al., 2015), and they
encourage tourism. It should be noted that these disturbances are not captured by the Human Footprint In-
dex which focuses on infrastructure, implying that the actual disturbance level of protected areas might be
higher than the ones used in this analysis. Only in the case of the wolverine and the wild reindeer does
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protected area coverage increase the suitable area available because their actual distribution is largely
located within protected areas. The mechanistic relationship between the presence of these species and pro-
tected area management is however unclear, although for both species human activity and infrastructure has
been shown to have negative effects (Nellemann et al., 2000).

This demonstration of the weak effect of human footprint on species distribution compared to the effect of bio-
physical covariates indicates that most of the large mammals included in our study are flexible enough to adapt to
the dramatic anthropogenicimpacts which have occurred within their bioclimatic envelope in the European land-
scape during recent centuries. This is reflected by the overall generalist behavior of these species. For instance,
moose seem to adapt to road presence and associated forage in their proximity (Eldegard et al., 2012), whereas
agricultural landscapes help roe deer to supplement their diet (Abbas et al., 2011).

Limitation of the study

Similar to other large-scale studies such as Belote et al. (2020) or Pacifici et al. (2020), our analysis is also
limited to distributional data whose quality is highly variable and coarse, and we do not analyze effects
on density, behavior or demography. Therefore, while our results document the ability of populations of
ungulates and carnivores to persist and use areas in the general proximity to areas of high human footprint,
this does not mean these species are not influenced by humans in other ways and at finer spatiotemporal
scales. Another challenge is the lack of historical distribution data which makes inferences about causal re-
lationships between human activities and land uses with changes in distributions and population of ungu-
lates populations. Although some attempts to reconstruct large mammals’ historical distribution are made,
they generally rely on current distribution (Belote et al., 2020)

Conclusion

Our results contribute to advancing the science of human-wildlife coexistence in the heavily modified land-
scapes that are typical of the Anthropocene. Although several papers rightly point out that large mammals
are threatened by human impacts in many parts of the world (Ripple et al., 2014, 2015) we argue that the
European experience demonstrates that coexistence between humans and wild large mammals at broad
scales, and continental scale recovery, are both possible. We suggest that it is impossible for nature con-
servation authorities to rely on a land-sparing policy for large mammals because protected areas large
enough to support viable populations of these spaces demanding species don't exist. Ultimately, the chal-
lenge of coexistence may not be about whether species are able to cope with human modification to the
landscape but whether humans are willing to share their landscape and host wildlife in their backyards
(Title and Bemmels, 2018). Europe has multiple layers of formal and informal institutions at continental, na-
tional and local scales that effectively manage wildlife and human-wildlife interactions and which appear to
have an instrumental role in facilitating this coexistence (Linnell and Kaltenborn, 2019). Overall, the results
permit cautious optimism concerning the possibility for wildlife conservation in the Anthropocene.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Wild ungulates distribution data Linnell et al. 2020 https://doi.org/10.1016/j.biocon.2020.
108500

Large carnivores distribution data Chapron et al. 2014 https://doi.org/10.1126/science.1257553

Terrain Ruggedness Index Title & Bemmels 2018 https://doi.org/10.1111/ecog.02880

Potential Evapotranspiration Title & Bemmels 2018 https://doi.org/10.1111/ecog.02880

Snow Cover Duration Dietz et al. 2015 https://doi.org/10.1080/2150704X.2015.
1084551

Human Footprint Index Venter et al. 2016 https://doi.org/10.1038/ncomms12558

Protected Area World Database on Protected Areas https://protectedplanet.net/

Software and algorithms

R Statistical Software R Core Team, 2020 https://www.r-project.org/

ArcGIS Pro ESRI https://www.esri.com/

RESOURCE AVAILABILITY
Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Benjamin
Cretois (benjamin.cretois@nina.no).

Material availability
This study did not generate new materials.

Data and code availability

® The dataset and scripts used to conduct all analyses presented in this manuscript are fully available and
has been deposited on Open Science Framework (https://doi.org/10.17605/OSF.IO/XV8NH).

® Data concerning wild ungulates distribution are fully available and has been extracted from Linnell et al.
(2020) (https://doi.org/10.1016/j.biocon.2020.108500).

@ Data on large carnivores’ distribution are fully available and has been extracted from Chapron et al.
(2014) (https://doi.org/10.1126/science.1257553).

METHOD DETAILS

Distribution data

In this paper we focus on wild large mammals which are native to Europe and whose distribution is not
intensively managed (i.e. doesn't depends on intensive interventions such as the European bison Bison bo-
nasus, Linnell et al., 2020). This includes nine large ungulates: roe deer (Capreolus capreolus), red deer
(Cervus elaphus), moose (Alces alces), wild reindeer (Rangifer tarandus), Alpine chamois (Rupicapra rupi-
capra), Pyrenean chamois (Rupicapra pyrenaica), Alpine ibex (Capra ibex), Iberian ibex (Capra pyrenaica)
and wild boar (Sus scrofa). We extracted the distribution data provided in Linnell et al. (2020) for all these
species. Because the distribution of the mountain ungulates is restricted and because several species
belong to the same genus and have similar ecological requirements, we merged the distribution of the Ibe-
rian and Alpine ibex, and the distribution of the Alpine and Pyrenean chamois creating Capra spp. and Ru-
picapra spp. distributions, respectively. Data come from many sources spread across a period from c. 1990
to 2019. Distribution data for the four species of large carnivore present in Europe; wolves (Canis lupus),
Eurasian lynx (Lynx lynx), brown bears (Ursus arctos) and wolverines (Gulo gulo) were derived from pub-
lished data (Chapron et al., 2014), and are derived from the period 2008-2011. Distribution data for all
species had a spatial resolution of 10 km x 10 km and take the value 0 if the species is absent and 1 if
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the species is present. As the underlying distribution data is of widely varying quality and resolution, 10 km
x 10 km is the finest resolution we would advocate for large-scale studies as it erases uncertainty related to
the location of a species observation and is computationally manageable. In addition, the 10 km X 10 km
resolution allows the results of our analysis to be comparable to other large-scale studies such as Tucker
et al. (2018) or Chapron et al. (2014). We included data on both herbivore and carnivore distribution
from 31 countries, consisting of all EU countries (excluding Cyprus and Malta), plus Norway, Switzerland,
Serbia, Albania, Northern Macedonia and the United Kingdom.

Explanatory variables

We collected three abiotic covariates, two related to climate and one to terrain relief that are thought to be
influential biophysical drivers of species distribution (Aradjo and Peterson, 2012). In addition, we included
the two anthropogenic covariates human footprint (HF) and protected area. The biophysical drivers repre-
sent potential large-scale and long-term constraints on species’ potential distributions (i.e. bioclimatic
envelopes) operating through physiological tolerance, rather than fine-scaled and temporally variable
environmental factors that typically represent vegetation or habitat patch quality.

Terrain Ruggedness Index and the Potential Evapotranspiration for the Warmest Quarter (PETWQ) were
acquired from the ENVIREM dataset (Title & Bemmels 2018) at a spatial resolution of 2.5 arc minutes
(i.e. about 3 km x 3 km at 50°N). The mean snow cover duration (SCD) was derived from the Global
SnowPack, a 14-year average available at a 0.25 km x 0.25 km resolution (from 2000 to 2014, Dietz et al.,
2015). We used PETWQ and SCD as proxies for summer and winter severity respectively. Snow cover is
widely viewed as being a major limiting factor for species latitudinal and altitude distributions as it corre-
lates with cold winter temperatures, and the physically inhibition of animal movement and access to forage
(Leblond et al., 2010). Evapotranspiration serves as a proxy for hot, dry, unproductive summer conditions
that also limit species through thermal stress, and poor forage conditions (Tattersall et al., 2012). Terrain
ruggedness is widely viewed as being an important escape terrain for species (especially ibex and chamois,
and potentially wild reindeer) to avoid disturbance and predation (Nellemann et al., 2007). These three bio-
physical variables were all obtained as raster data.

As a measure of human disturbance, we chose the Human Footprint Index (HFI version 2009, Venter et al.,
2016). Ranging from 0 to 50, the HF! is a composite raster built from multiple variables related to human
disturbance (e.g. the extent of built environment, cropland, pasture lands, human population density,
nighttime lights, railways, roads and navigable waterways; Venter et al., 2016). The HFI has been recently
used in multiple continent-wide comparisons of mammal movement rates (e.g. Tucker et al., 2018, 2021).

Finally, we obtained the protected area coverage from the World Database on Protected Areas: https://
protectedplanet.net/). We included all protected areas whose status was listed as either “designated”,
"not reported”, "not applicable” or “assigned”. Data was available as vector data and was rasterized at
aresolution of Tkm? using ArcGIS Pro for ease of computation. We finally used aggregation to sum the total
number of 1 km X 1 km pixels of protected area within each 10 km x 10 km grid cell (i.e. the grid cell value
for protected area varied from 0 for a grid cell containing no protected area to 100 for a grid cell entirely
covered by a protected area). Although European protected areas are almost never wilderness areas (van
Beeck Calkoen et al., 2020; Linnell et al., 2015) they are expected to be associated with greater restrictions
on human activities that could potentially better limit human impacts on wildlife, and less intensive forms of
land use. However, we did not separate the different IUCN categories as previous studies show that there is
little difference in human footprint between categories (Leroux et al., 2010) and there is a high degree of
variation between European countries in how they manage protected areas of different IUCN categories
(Gaston et al., 2008).

We assessed the extent of collinearity between the covariates. Winter and summer severity were negatively
related (r = —0.71), as both display strong coastal-inland and north-south gradients. However, we opted to
include both as they reflect different mechanisms for species’ ecology. Following Dormann et al., 2013 we
made sure to carefully interpret the results of these two variables by interpreting the combined effects of all
environmental variables (More detailed explanations in Annexes). Other covariates were not significatively
correlated with each other (r < 0.70; Table S1in Annexes). We aggregated all the explanatory variables to
the same 10 km X 10 km grid cell resolution.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Model specification

Because the residuals of the non-spatial models were strongly spatially correlated, we fitted an intrinsic
conditional autoregression (iCAR) model using hierarchical Bayesian models for each of the 13 species.
The probability of presence () of a given species in a given grid cell was calculated using a Bernoulli dis-
tribution and the following model:

y; ~ Bernouilli(m;)
logit(m) = o+ xB+ u;

where x; is the vector of covariates for cell i, 8 the vector of parameters to be estimated and u; the spatially
correlated random effect whose prior is defined as:

2
S Wik U O
U ~ normal(—’*k bk Tk —”)

n; n;

Ui

where w;, = 1ifgrid cells iand k are neighbors and 0 otherwise. n; is the total number of neighbors of grid
cell i. We define two cells as being neighbors if they directly share a single boundary point. All models as-
sume a vague prior for the regression parameters 8 ~ normal(Mean =0, SD =1000) and we used a
penalized complexity prior on the spatial effect to avoid risks of overfitting.

As we expect species to have an optimal niche for environmental variables, we included linear and
quadratic terms for winter and summer severity and ruggedness (Svenning et al., 2011). We also included
linear and quadratic terms for human footprint as we suspected certain species to have an optimal niche in
the moderate human disturbance level. We only included a linear effect for protected area coverage as we
only expected a linear response.

To fit the spatial models, we used the Integrated Nested Laplace Approximation (INLA) approach with the
package R-INLA (Lindgren and Rue, 2015). INLA is a faster alternative to Markov Chain Monte Carlo ap-
proaches and yields similar, if not identical, results (Beguin et al., 2012). We standardized the covariates
to enable direct comparison between the regression coefficients. All analyses were conducted in R 3.6.1.

We validated the models by plotting residual values against covariates for each model. We also plotted
the leave-one out cross validation scores (conditional predictive ordinate CPO in our case) to estimate
model fit.

Evaluation of variables’ importance for species’ distribution

We estimated the relative importance of both environmental and anthropogenic variables using domi-
nance analysis (Azen and Budescu, 2003), which is a procedure to quantify the importance of a random var-
iable through examination of the R? values (or similar metrics) for all possible subset models of a predefined
full model. In a dominance analysis, the higher the dominance score the more useful is the random variable
in predicting the response variable. Because the number of models required to estimate the importance of
a single random variable grows exponentially with the total number of random variables, we did not quan-
tify the importance of each single variable, but rather the importance of the combined effect of summer and
winter severity and ruggedness (“environmental variables”) and human footprint and protected area
coverage (“anthropogenic variables”). Thus, we fitted 3 models for each of the 11 species: a full model con-
taining all variables, a model containing only the environmental variables and a model containing only the
anthropogenic variables. For all models we computed the Rzg\mm, amodified version of the classic R? which
is suitable for mixed models (Nakagawa and Schielzeth, 2013). We sampled 1,000 values from the posterior
distribution of the model parameters and bootstrapped the R29|mm 1,000 times. We finally rescaled the
dominance score for it to range from 0 to 100%.

Quantifying the effect of anthropogenic variables on the size of the species’ suitable habitat

To further assess the results of the dominance analysis we assessed the relative extent to which anthropo-
genic variables influence the realized distribution of the studied large mammals we quantified the
geographic representation of the suitable habitat for each species (i.e. the potential suitable area
available due to environmental predictors only, Guisan and Thuiller, 2005). We predicted the probability
of a species’ occurrence within a grid cell both when anthropogenic variables were set at their minimum
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value (i.e. we simulated a landscape free of all human influence: no human footprint and no protected
areas) and when anthropogenic variables are set to their observed values. We summed these predicted
occurrences across Europe to estimate the expected number of occupied cells (i.e. the size of a species’
suitable area in Europe). A sum of predictions in a human-free landscape higher than a sum of prediction
for the full model implies that the species increase its range in absence of human influence in the land-
scape. We sampled 1,000 values from the posterior distribution of the model parameters and bootstrap-
ped the niche area 10,000 times.
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Jan Borgelt®'™, Jorge Sicacha-Parada?, Olav Skarpaas® & Francesca Verones!

Besides being central for understanding both global biodiversity patterns and associated anthropogenic
impacts, species range maps are currently only available for a small subset of global biodiversity. Here,
we provide a set of assembled spatial data for terrestrial vascular plants listed at the global IUCN red
list. The dataset consists of pre-defined native regions for 47,675 species, density of available native
occurrence records for 30,906 species, and standardized, large-scale Maxent predictions for 27,208
species, highlighting environmentally suitable areas within species’ native regions. The data was
generated in an automated approach consisting of data scraping and filtering, variable selection, model
calibration and model selection. Generated Maxent predictions were validated by comparing a subset
to available expert-drawn range maps from IUCN (n = 4,257), as well as by qualitatively inspecting
predictions for randomly selected species. We expect this data to serve as a substitute whenever expert-
drawn species range maps are not available for conducting large-scale analyses on biodiversity patterns
and associated anthropogenic impacts.

Background & Summary

Life on Earth is essential to human society as it forms the foundation of present welfare'. The growing human
population, modern lifestyles and associated pressures on the planet have already resulted in a significant loss
of natural habitat and are threatening biodiversity?-. Different initiatives promote the protection of biodiversity
and aim to halt its loss, such as the UN Sustainable Development Goals’, the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services® and the International Union for the Conservation of Nature
(IUCN). Different decision-support tools can contribute to this by assessing environmental performances of
products, strategies and policies>*!!. For the development of such tools, but also for the implementation of
global conservation strategies and policies itself, spatial data, e.g. in the form of distribution maps of individ-
ual species'?, are crucial. However, besides many species remaining undiscovered or undescribed, we still lack
spatial information for most of the ones we know"*. Consequently, comprehensive and ready-to-use datasets for
large-scale analyses are only available for a few vertebrate groups'*~'°. This is concerning, as global conservation
strategies and biodiversity impact assessments are limited to these groups, while some hyperdiverse species
groups, such as plants, are often not considered!”%.

Here, we provide spatial distribution data for a large fraction of red-listed terrestrial vascular plant species
at different levels of spatial detail (Fig. 1), i.e. native regions (n =47,675), occurrence records (n = 30,906) and
modelled range estimates (i.e. a predicted relative environmental suitability'® within native regions; n=27,208).
The workflow included data scraping and filtering, as well as variable selection, model calibration and model
selection, aiming for best practice?*-?? but within the constraints of data limitations and computational feasibility
at this scale. Species-specific native regions were retrieved from a scheme specifically developed to challenge the
lack of distributional knowledge for plant species?’. Available native occurrence records were retrieved from the
Global Biodiversity Information Facility (GBIF)** and subsequently filtered. Range estimates were generated
using maximum entropy modelling'®?*-%’, and show where environmentally suitable conditions exist within
each species’ native regions (Fig. 2a-d).

The underlying occurrence data is known to be highly spatiotemporally aggregated and variable across
administrative borders for some species?®-!. We aimed at counteracting a potential sampling bias by using
three differently treated occurrence data types (i.e. different degree of spatial filtering: no filter, presence cells,
thinned presence cells), and by dividing occurrence data in equally-sized bins during model calibration®. Up
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and Technology (NTNU), Trondheim, Norway. 2Department of Mathematical Sciences, Norwegian University of
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Fig. 1 Schematic summary of the dataset. Top: Native region extents were retrieved from Kew’s Plants of

the World online. Middle: Occurrence data was retrieved from the Global Biodiversity Information Facility
(GBIF)* and filtered into three different occurrence data types: raw data (blue), presence cells (grey) and
thinned data (yellow). Bottom: The different occurrence data types were used in Maxent models to predict
relative environmental suitability indices within native regions (i.e. range estimates). Differences between Model
0 and Model 1 to 3. Model 0 was trained to support variable selection using raw data in k-fold cross validated
Maxent models (one model for each combination of feature classes, i.e. linear (L), quadratic (Q), hinge (H),
product (P) and threshold (T)). The selected variables and each of the three occurrence data types were used to
train a set of separate k-fold cross validated Maxent models (one model for each possible combination of feature
classes, regularization multipliers and occurrence data type). The overall best performing model was selected for
each species based on performance metrics.

to 96 different models were fitted per species to find optimal variables, model settings and data type. The best
prediction was selected for each species based on common performance metrics (i.e. AUC and AUCpy).

However, some predictions will undoubtedly remain flawed by underlying biases. Based on comparisons to
expert-drawn range maps available from IUCN (n=4,257) and qualitative inspection of predictions for ran-
domly selected species, we expect this to mainly influence widespread and common species, and hence, only
affect the smallest proportion of global biodiversity®. In addition, the species most vital for assessing anthropo-
genic impacts or for defining conservation priorities, are more likely to be small-ranged and endemic. Although
validating each prediction was not feasible, we found most individually inspected predictions to either offer an
improvement compared to elsewhere available data or an acceptable substitute, although at a coarser spatial
resolution and less detailed.

We want to stress that the presented dataset is generated for the purpose of global spatial screening stud-
ies and for building a basis for future, global biodiversity impact assessment models. In concert with power-
ful, species-specific trait and conservation-related databases, the provided data can benefit future work, such
as assessing global extinction probabilities®, effects of terrestrial acidification®, drivers of invasion success*®,
progress towards reaching global conservation goals®” and act as pre-assessment prior to expert-based range
map generation and red list assessments**~*!. With a continuously increasing availability of species occurrence
records, the presented dataset can be updated frequently to illustrate the state of knowledge at any time. With
more data becoming available, precision is likely to increase in the future.

Methods

Taxonomic scope. A species list containing all terrestrial vascular plants (n =52,372) of the global IUCN
red list was retrieved from IUCN in April 2021, IUCN version 2021-1'¢. We retrieved each species” accepted
name from Plants of the World Online (POWO)* to facilitate communication to various data portals using the
package taxize* in R*. Plant family, order and class were retrieved from the Integrated Taxonomic Information
System* using the package taxize* in R. Only species outside the [IUCN threat categories “Extinct” and “Extinct
in the Wild” were kept, and all species considered as subspecies or varieties according to POWO removed. We
attempted to assemble spatial data for each of the remaining 48,144 species.

Native regions. Species-specific native regions (Fig. 1) were retrieved from POWO using a customized
web-scraper function (see section Code Availability) and the packages taxize** and rvest*® in R. The data follows
the World Geographical Scheme for Recording Plant Distributions (WGSRPD)? and includes a continental,
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Fig. 2 Data examples for randomly selected species and spatial coverage of the dataset. Best performing Maxent
prediction, highlighting environmentally suitable conditions within the species native regions (i.e. modelling
extent) along retrieved occurrence records (white points) for (a) Amomum pterocarpum, (b) Cedrus libani,

(c) Laburnum anagyroides, (d) Megistostegium nodulosum. Performance of the shown predictions indicated

by maximum F,-score and the area under the receiver operating characteristics curve for true vs. false positive
rate (AUC) and recall vs. precision (AUCpg). Bottom: number of (e) retrieved native regions, (f) retrieved
occurrence records, and (g) generated Maxent predictions across the globe.

country and regional level. Retrieved WGSRPD-regions were matched to its corresponding shapefile at level 4,
available from the Biodiversity Information Standards GitHub repository*” and rasterized at 30 arc minutes spa-
tial resolution (approximately 56 km at the equator).

Occurrence records.  For species with given native extents in POWO, the maximum number of most
recent occurrence points (i.e. 100,000) per native WGSRPD-country was retrieved from the GBIF application
programming interface (API) using the package rgbif*® in R (the equivalent full dataset* is available at https://
doi.org/10.15468/dl.uvd56q). The considered environmental variables have changed tremendously in the past
decades®**! and only cover a limited period of time, i.e. the years 1979-2013 and 2015 respectively (see section
Environmental data). Therefore, only records between the years 2000 and 2020 were considered to temporally
align occurrence data to both sets of environmental variables as best as possible. If less than 25 records were
available for a given species after the year 2000, no temporal filter was set to maximize data retrieval. GBIF
records without specified coordinates and with flagged geospatial issues* were not considered. As such, we expect
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inaccurate coordinate notations as well as records of specimens preserved in museums or other biodiversity
facilities to be typically detected. Only points inside reported native WGSRPD-regions were kept and duplicated
records were removed (hereafter: raw data). The number of raw data records was counted per cell (30 arc min.)
using the package raster” in R.

Maxent predictions. We generated spatial predictions within species’ native WGSRPD-regions at 30 arc
min. resolution (approximately 56 km at the equator) using maximum entropy modelling (Maxent)'*?*%, for all
species with at least 5 raw data records®>** that were distributed across at least 3 cells, and a native region extent of
atleast 9 cells. Although an arbitrary threshold, we attempted to allocate computational resources to more mean-
ingful predictions, modelled across larger extents. Maxent is a probability density estimation approach widely
used for predicting species distributions based on presence-only data®. Background information, required to
fit response curves®, was collected from each cell within each species’ native regions*. For generating models
we utilized a high-performance computing infrastructure® allowing for parallel computations using the Maxent
software® via R packages dismo* and ENMeval®.

Environmental data. 'We downloaded all CHELSA bioclimatic variables®®? (n =19, see Table 1 for full list)
in 30 arc seconds resolution and aggregated, for computational efficiency, to the chosen modelling resolution
(30 arc min.) by averaging. CHELSA bioclimatic variables are a set of modelled, biologically relevant, climatic
variables based on data collected during the years 1979-2013°". In addition, fractions for different natural land
cover types, including different types and mosaics of forest, shrubland, grassland and sparse vegetation, (n=17,
see Table 1 for full list) were calculated based on the European Space Agency’s land cover product for the year
2015 in 300 m resolution®. Each land cover class was transformed into a binary raster depicting presence (=1)
and absence (=0) of the land cover type. The binary raster was then aggregated to modelling resolution by aver-
aging, resulting in one raster for each land cover class, representing the proportion of land covered by that class
per pixel.

Occurrence data types. For some species, several raw data records can be in the same cell at the given spatial
resolution (30 arc min.). Although pseudo-replication can inflate model performance (here: during model cali-
bration) and, hence, increases the risk of overfitting, we argue that these occurrence points still contain valid
information if they are discrete observations and therefore kept this data. However, we henceforth applied two
filters to counteract potential spatial biases, as well as pseudo-replication (Fig. 1). We removed all cell-duplicates
from the raw data (hereafter: presence cells), and we applied spatial thinning with a minimum distance of two
cells on the presence cells (hereafter: thinned data). Occurrence data was spatially filtered using the R package
spThin®.

Model training. A set of Maxent models was fitted for each species using the differently treated occurrence data
types. All models were calibrated using k-fold cross validation. The employed occurrence data was partitioned
into training and testing bins. For species with only few data points (n < 25), we used k - 1 Jackknife partitioning
(k=n)**. For species with more data points (n > 25) we used block partitioning (k =4) to account for spatial
autocorrelation of occurrence points in larger datasets®. This partitioning splits the occurrence data at a longi-
tudinal and latitudinal line, resulting in approximately equally sized bins®.

An initial model (Fig. 1; Model 0) was trained to support the selection of uncorrelated environmental var-
iables using the raw data and all environmental variables (n = 36) for each species. Separate models, one for
each possible combination out of all included feature classes (i.e. environmental variables and transformations
thereof), were trained. We included linear (1), quadratic (q), product (p), hinge (h) and threshold (t) transfor-
mations, resulting in 6 possible combinations (i.e. ], 1q, h, Igh, Ighp, and lqhpt). The best performing model was
selected based on the corrected Akaike information criterion (AICc)**~%". However, if no model performed
best in terms of AICc, or if this metric was unavailable for 50% of fitted models, the average testing area under
the receiver operating characteristics curve (AUC; see section Technical Validation) during model calibration
was used instead. Permutation importance was retrieved for all variables in Model 0. Correlated variables were
identified using Spearman’s rank correlation coefficient (p) and defined as p > | £ 0.7|. In any set of correlated
variables, only the variable with the greatest permutation importance was kept.

The selected environmental variables were used to train separate models for each of the three differently
treated occurrence data types: raw data (Model 1), presence cells (Model 2), and thinned data (Model 3). Model
1 was trained if at least 5 raw data records were available, distributed across at least 3 cells (see above). Model
2 and Model 3 were trained if at least 3 records of the corresponding data type were available to avoid compu-
tational failure. Although a smaller sample size, we argue that if those models performed better than Model 1,
the threshold of 5 records becomes arbitrary and the assessed performance indicators (see section Technical
Validation) more valuable. The same model architecture as in Model 0 was utilized, including model calibration
and selection of the best performing model. However, this time, we added five different regularization multipli-
ers (RM; i.e. 1, 2, 3, 5 and 10; based on previous studies®*-"°) to counteract overfitting®»*® and for building sim-
pler, ecologically more relevant, models®. Hence, separate models for each possible combination out of feature
classes and RMs were trained (Fig. 1; Model 1-3), resulting in 30 trained models for each data type and up to 90
models per species.

Metadata. Metadata was assembled for all data and includes general information about species (taxonomy
and red list status), provided data type (native regions, occurrence records or Maxent prediction), bounding box
of native regions, and if relevant, information about the occurrence data (number of raw data records, Moran’s
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Variable Code

Annual Mean Temperature CHELSA_BIO1
Mean Diurnal Range CHELSA_BIO2
Isothermality CHELSA_BIO3
Temperature Seasonality CHELSA_BIO4
Max Temperature of Warmest Month CHELSA_BIO5
Min Temperature of Coldest Month CHELSA_BIO6
Temperature Annual Range CHELSA_BIO7
Mean Temperature of Wettest Quarter CHELSA_BIOS
Mean Temperature of Driest Quarter CHELSA_BIO9
Mean Temperature of Warmest Quarter CHELSA_BIO10
Mean Temperature of Coldest Quarter CHELSA_BIO11
Annual Precipitation CHELSA_BIO12
Precipitation of Wettest Month CHELSA_BIO13
Precipitation of Driest Month CHELSA_BIO14
Precipitation Seasonality CHELSA_BIO15
Precipitation of Wettest Quarter CHELSA_BIO16
Precipitation of Driest Quarter CHELSA_BIO17
Precipitation of Warmest Quarter CHELSA_BIO18
Precipitation of Coldest Quarter CHELSA_BIO19
Fraction of mosaic cropland/natural vegetation X30_ESA_CCI
Fraction of mosaic natural vegetation/cropland X40_ESA_CCI
Fraction of broadleaved evergreen, closed to open, tree cover X50_ESA_CCI
Fraction of broadleaved deciduous, closed to open, tree cover X60_ESA_CCI
Fraction of needleleaved evergreen, closed to open, tree cover X70_ESA_CCI
Fraction of needleleaved deciduous, closed to open, tree cover X80_ESA_CCI
Fraction of mixed leaf type tree cover X90_ESA_CCI
Fraction of mosaic tree and shrub/herbaceous cover X100_ESA_CCI
Fraction of mosaic herbaceous cover/tree and shrub X110_ESA_CCI
Fraction of shrubland X120_ESA_CCI
Fraction of grassland X130_ESA_CCI
Fraction of lichens and mosses X140_ESA_CCI
Fraction of sparse vegetation X150_ESA_CCI
Fraction of tree cover, flooded, fresh or brakish water X160_ESA_CCI
Fraction of tree cover, flooded, saline water X170_ESA_CCI
Fraction of shrub or herbaceous cover, flooded, fresh/saline/brakish water X180_ESA_CCI
Fraction of bare areas X200_ESA_CCI

Table 1. Environmental data used in this study. The layers (n = 36) are based on Karger et al.*> and the
European space agency’s land cover product®.

Index”!, calculated as a measure of spatial autocorrelation and based on the number of raw occurrence points
obtained per cell), and Maxent metadata: training data (filter treatment, number of training data points), thresh-
olds for converting the prediction into binary range maps®, model settings (features, parameters, transforma-
tions, regularization multiplier, variables) and out of the box® model performance, including degree of overfit
(DOO) quantified as the difference between calibration and testing AUC during k-fold cross validation’, as well
as self-assessed model performance metrics as described in the section Technical Validation.

Data Records

Dataset. The presented dataset is stored in a stable Dryad Digital Repository’? and can be explored at https://
plant-ranges.indecol.no. The dataset includes spatial information for 47,675 species at different levels of detail. In
total, range estimates (i.e. relative environmental suitability within native regions) have been predicted for 27,208
species using Maxent, for 30,906 species native occurrence records are provided, and for 47,675 species the spatial
extent of its native WGSRPD-regions is provided.

All gathered and generated data are stored in netCDF files and can be called by specifying a varname. Spatial
predictions are provided in Maxent’s raw as well as default output (i.e. complementary log-log (cloglog) trans-
formed, but see section Usage Notes)**>°. The suggested data is stored in folder basic. These netCDF files
(default output and raw output) assemble the best performing Maxent prediction (varname: Maxent predic-
tion) for each species selected based on the highest harmonic mean between AUC and AUCyy, (see Technical
Validation), along with number of occurrence records per cell (varname: Presence cells) and rasterized native
WGSRPD-regions (varname: Native region).
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Red list category

Reference DD LC NT vu EN CR Total
Mean 0.939 | 0.937 |0.95 0.96 0.971 | 0.957 | 0.945
Median | 0.961 | 0.951 |0.977 |0.985 |0.994 |[0.989 | 0.964

Presence - background

AUC
Mean 0.817 | 0.89 0.927 | 0.931 0.929 | 0.915 | 0.902
Reference range
Median | 0.852 | 0.925 |0.972 | 0.974 | 0.98 0.987 | 0.943
Mean 0.576 | 0.529 |0.656 | 0.69 0.749 | 0.7 0.589
Presence - background
Median | 0.603 | 0.535 |0.717 | 0.755 |0.833 |[0.797 | 0.617
AUCpy

Mean 0.516 | 0.664 |0.686 | 0.653 | 0.655 |0.592 | 0.658

Reference range
Median | 0.527 | 0.702 |0.737 0.712 | 0.699 |0.626 | 0.702

Table 2. Performance of Maxent predictions in the suggested dataset. Mean and median values of area under
the receiver operating characteristics curve for true vs. false positive rate (AUC) and recall vs. precision (AUCp)
for all species and across different IUCN threat categories (i.e. data-deficient (DD), least concern (LC), near-
threatened (NT), vulnerable (VU), endangered (EN) and critically endangered (CR)). Calculations are based on
presence-background data (n = 27,208) and on comparison to expert-based range maps retrieved from IUCN
(i.e. reference range, n = 4,257).

The netCDF files in folder advanced contain one Maxent prediction for each occurrence data type (varname:
Model 1, Model 2 or Model 3), instead of best performing Maxent prediction (i.e. varname Maxent predic-
tion is not applicable). Number of occurrence records per cell (varname: Presence cells) and rasterized native
WGSRPD-regions (varname: Native region) are identical in all netCDF files.

Each band in the netCDF files assembles the mentioned variables for one species. The corresponding bands
can be looked up in the metadata (i.e. speciesID). Furthermore, the metadata can be used to select appropriate
cut-off thresholds for generating binary range maps, filter models based on species, performance, or desired
datatypes, and to lookup the relevant study extent for masking individual predictions (see Usage Notes).

Technical Validation

Maxent predictions. We calculated performance metrics for model 1 to 3 for each species using its cor-
responding presence cells to validate the Maxent predictions. Receiver operating characteristic curves and the
corresponding area under the curve for recall (i.e. true positive rate, sensitivity) versus false positive rate (AUC)
as well as precision versus recall (AUCypy) were generated using the packages ROCR” and PRROC™ in R. Recall
was calculated as the fraction of correctly predicted presence cells compared to all presence cells of the reference
(Eq. 1), the false positive rate as the fraction of falsely assigned presence cells compared to all true absence cells
(Eq. 2), and precision as the fraction of correctly assigned presence cells compared to all predicted presence cells
(Eq. 3). In addition, F;-scores (Eq. 4) were calculated as harmonic mean between recall and precision at all pos-
sible cut-off thresholds to transform the Maxent prediction into a binary range map. The maximum obtained
F,-score indicates how well a potential binary range map performs at equal importance of recall and precision.

Recall — True Presence

True Presence + False Absence 1)

. False Presence
False positive rate =

False Presence + True Absence )
. True Presence
Precision =
True Presence + False Presence (3)
recision - recall
, = o Brecision - recall
precision + recall (4)

AUC and AUC;y, are threshold-independent performance measures for binary classifiers. An AUC value of 1
indicates a perfect model, an acceptable AUC value (>0.7)” indicates the ability to predict many true presences
at a low false positive rate, and an AUC value of 0.5 indicates the model performing as good as a random guess.
The average AUC obtained across the suggested dataset was 0.95 when comparing predictions to its correspond-
ing presence cells (Table 2), indicating well-performing models for the majority of species. For 26,977 species
(99%), at least one Maxent prediction had an AUC value above 0.77°.

AUC,y is not affected by true negatives (i.e. true absence) which often dominated our dataset. A higher
AUCy value indicates a relatively higher ability to correctly predict a high proportion of presumably true
range while maintaining a high precision compared to a lower AUCpy. However, the AUC and AUCyy, values,
as well as max. F,-score, described here were calculated based on presence-background data and are highly
influenced by class balances. Strictly speaking, both false presences and true absences cannot be determined
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Fig. 3 Performance metrics for the suggested Maxent predictions. (a) Number of reference range maps
available used for calculating performance metrics. Average values for species native to the corresponding
regions of area under the receiver operating characteristics curve for (b) true vs. false positive rate (AUC)
and (c) recall vs. precision (AUCpy). (d) Mean and standard deviation of AUC (blue) and AUCyy (yellow) per
rounded log-transformed number of raw occurrence data points (left) and for species in different TUCN red
list categories (right), i.e. data-deficient (DD), least concern (LC), near-threatened (NT), vulnerable (VU),
endangered (EN) and critically endangered (CR). Significant differences across IUCN categories in d are
indicated by different letters in bars for AUC (white text) and AUCpy (black text).

with presence-only data. Hence, the performance metrics described here can only be used to compare different
models for a given species, but not across different species’®””.

Therefore, we evaluated the Maxent predictions by comparison to available expert-based range maps, as an
additional evaluation dataset™. Expert-based range maps were retrieved from IUCN, if available (hereafter: ref-
erence ranges). Only reference ranges that were labelled as “native” and “extant (resident)” or “probably extant
(resident)” were considered. For 4,257 species of our Maxent predictions, range maps were available at TUCN.
These species were unevenly distributed in space (Fig. 3a), across IUCN red list categories (Fig. 3d) as well as the
plant classes dicots (Magnoliopsida, n = 3,480), monocots (Liliopsida, n =731), ferns (Polypodiopsida, n=27),
conifers (Pinopsida, n=17), and lycopods (Lycopodiopsida, n =2). Reference ranges were used to calculate the
above described performance measures (i.e. max. F;-score, AUC and AUCyy). However, this time we dealt, pre-
sumably, with actual presences and absences of the given species, making the performance metrics comparable
across species’®. Maxent predictions for species classified as “data-deficient” (DD) obtained the lowest, and pre-
dictions for species classified as “near-threatened” (NT), “vulnerable” (VU) and “endangered” (EN) the highest
AUC values (Fig. 3d). However, these differences were marginal and all average values consistently high across
different IUCN categories (mean AUC: 0.9; Table 2) and across the globe (Fig. 3b). Although AUC is a strong
indication of model performance”, the predictions seem to rarely accommodate both a high recall and a high
precision (represented in either max. F1-score or AUCpy value) when compared to reference ranges. However,
we found a large variation and no clear trend in AUCy, values for species across different threat-level categories
(Fig. 3d), and although the average AUCpy was lowest for species native to parts of central Africa, India and
south-eastern Asia (Fig. 3¢), we expect these values to be of little explanatory power due to the limited sample
sizes in these regions (Fig. 3a). Moreover, AUCyy seems to increase with increasing data availability (Fig. 3d).
We assume that low data coverage in sparsely populated areas influenced modelling performance for some, pri-
marily widespread, species, highlighting that sometimes more spatially distributed occurrence data is required
for making expert-alike range maps’®.

Furthermore, based on a qualitative assessment of predictions for twelve randomly selected species,
we expect uncertainties due to differences in data availability across administrative borders as well as for highly
naturalized species. For instance, the clustered occurrence records for Cedrus libani in Lebanon (Fig. 2b)
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resulted in less precise data than elsewhere available for this species’®, while the prediction for Laburnum anagy-
roides (Fig. 2c) was affected by naturalized occurrence records outside its native origin® but still within its native
WGSRPD-regions. However, this will be most problematic for abundant, widespread, and naturalized species,
and hence only relevant for the smallest fraction of global biodiversity*. In addition, the predictions for more
vulnerable species, presumably small-ranged or endemic, seem to perform better than species in the lowest red
list category (i.e. least concern (LC)) in terms of AUC when compared to reference ranges (Fig. 3d).

In fact, the remaining randomly selected predictions were either consistent with point data (e.g. Terminalia
macrostachya®"), reflected the current knowledge of elsewhere available data, although at a coarser spatial res-
olution and less detailed (e.g. Mammillaria grahamii®?), or offered an improvement compared to previously
unavailable spatial data (e.g. Eucalyptus elliptica®>, Megistostegium nodulosum®* (Fig. 2d), Memecylon elegantu-
lum®, Psidium salutare®®¥’, Siparuna conica®®®, Trisetaria dufourei®®). However, the prediction of Pyracantha
angustifolia was difficult to evaluate due to poorly understood range dynamics®’, highlighting the need for more
data for vascular plant species.

We want to stress that our predictions indicate environmentally suitable conditions even if isolated from
known species occurrence locations. For instance, Amomum pterocarpum seems to be restricted to southern
India and Sri Lanka®*?® while our prediction indicates environmentally suitable conditions in north-eastern
India (Fig. 2a), which in fact, supports a possible observation nearby®*. We further detected several expert-based
range maps with a substantial mismatch to our data, confirming that some of the expert-based data may be
too conservative®® (e.g. Magnolia pugana)®. However, we also found expert-based ranges being smaller (e.g.
Vallesia glabra or Tetraclinis articulata)®”*® than predicted environmental suitability indicates, or being incor-
rectly georeferenced (e.g. Corylus cornuta)®. Hence, besides highlighting mismatches to expert-based range
maps, we expect this dataset to be of sufficient quality to serve as time- and cost-efficient range map substitutes
and pre-assessed range estimates for currently unmapped species.

External data. The retrieved native WGSRPD-regions are provided by POWO under a CC BY 3.0 license
(https://creativecommons.org/licenses/by/3.0/) and have been checked for consistency to assure proper work-
flow of data retrieval from POWO and feature matching to the WGSRPD level 4 shapefile. However, the data
provider, POWO, cannot warrant the quality or accuracy of the WGSRPD data*?. In addition, other data (e.g.
ecoregions'"’) may ecologically be more relevant than administrative boundaries. However, WGSRPD offers the
most detailed data on species’ native origins available on a large-scale, to the best of our knowledge. An attempt
in matching native WGSRPD-regions to ecoregions was discontinued after loss of information due to incompat-
ible geographical boundaries. Hence, we consider the utilized WGSRPD-regions, currently, as the best compro-
mise between level of detail and availability of data on species’ native origins. Furthermore, spatial inaccuracies
and biases in the occurrence data retrieved from GBIF were counteracted by the implemented filtering steps,
the coarse spatial resolution, by avoiding non-native occurrence records and the model calibration techniques.
However, any unforeseen misclassified or misreported records may flaw predictions for individual species. In
addition, data retrieval via GBIF’s API was limited to 100,000 occurrence records per request. We extended this
limit by sending one request per native country for each species, and hence, expect this issue to be irrelevant for
our study. We further want to stress that most of the generated predictions have not been validated individually,
and that some predictions may be erroneous either due to data limitations or simply because digitally stored data
can contain minor but crucial blunders. For instance, in terms of nomenclature, the red-listed species Cotoneaster
cambricus is endemic to Wales!?!, but also seems to be a synonym for a widespread species according to POWO*.
Consequently, either our spatial prediction or the expert-based range for this species is incorrect.

Usage Notes

All data handling, modelling and visualization was done using R version 4.0.3** in RStudio version 1.4.110
Handling of all spatial data was done using the R packages raster, rgdal, maptools, rgeos and sp>>193-1%_ A show-
case for opening the different data types for individual species, is available at https://github.com/jannebor/plant_
range_estimates. Although functionality of the code may be given at newer, or older, versions, we expect the best
user-experience using the versions specified in this descriptor.

Maxent predictions are given as raw and cloglog transformed output. These outputs are related monoton-
ically, meaning that the performance metrics described in this study, as well as a potential binary range map
(excluding prevalence dependent thresholds), will be identical for both raw and cloglog output®. For users
mostly interested in qualitative analyses, both predictions can simply be interpreted as indices of environmental
suitability®. However, due to rescaling, the exact interpretation and appearance of each output differs. In gen-
eral, Maxent’s output interpretation depends on the underlying data, and differs, in our case between Model 1
(raw data including pseudo-replicates = abundance) compared to Model 2 and 3 (presence), but gives an esti-
mate of the abundance, or presence, of the species in relation to the true modelled quantity (either abundance or
presence). Maxent’s raw output reflects the exponential Maxent model itself, and can be interpreted as a relative
occurrence (or presence) rate summing up to 1°. The raw output does not rely on any assumptions®, however, it
may not perform well in visualizing actual differences in suitability'?”. Being rescaled on a more common range
from 0 to 1, the cloglog transformation compresses extreme values, and hence facilities visualization and com-
parison amongst predictions?. It can, arguably, be interpreted as a relative probability of presence under certain
assumptions®’. However, as these assumptions are rarely met, we strongly discourage users from this interpre-
tation and suggest interpreting the cloglog output values as an estimate of relative environmental suitability?
instead.

We further suggest using Maxent predictions with an AUC below 0.7 only in exceptions, and in large-scale
studies. In general, our predictions may overestimate true range extents of endemic species and underestimate
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ranges of widespread species. However, in worst case, the entire native WGSPRD-regions are outlined as being
environmentally suitable, which may be acceptable in some cases, but not in others.

In addition, Model 1 has been fitted with the suggested minimum number of records for generating mean-
ingful distributions models®**%, but Model 2 and 3 were in some cases trained with less records. Whether this
low sample size as well as its implied uncertainty is acceptable or not will differ between users and applications
and needs to be considered.

The full data, including Maxent predictions (cloglog transformed), underlying occurrence records, native
regions and corresponding metadata, can be explored at https://plant-ranges.indecol.no. Here, the predictions
based on individual models (Model 1 to 3) as well as a suggested (i.e. best performing) prediction highlight
environmentally suitable conditions, if available for the selected species. Predictions can potentially be trans-
formed into a map indicating where the species is most certainly found, as required for local management and
conservation actions®, or into a conservative range map, best suited for analysing global patterns'® and high-
lighting where a species is certainly absent'”. However, the choice of an appropriate cut-off threshold is highly
application specific. We outlined “potential range maps” in the data explorer for illustrational purposes only and
based on the best performing prediction. We applied different cut-off thresholds to represent different levels of
confidence using the R package dismo®. The threshold at which there was no omission (possibly suitable), the
threshold at which the F;-score is highest (probably suitable) and presence cells (presence).

Code availability

All data and code is available without restrictions under the terms of a Creative Commons Zero (CCO0) waiver
(https://creativecommons.org/share-your-work/public-domain/cc0/). R code for retrieving and filtering data
from POWO and GBIF, and for generating and evaluating Maxent models is available on GitHub (https://github.
com/jannebor/plant_range_estimates). Any further requests can be directed to the corresponding author.
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