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Abstract—Multimodal image fusion is the process of combing
relevant biological information that can be used for automated
industrial application. In this paper, we present a novel frame-
work combining fractal constraint with group sparsity to achieve
the optimal fusion quality. Firstly, we adopt the idea of patch
division and component-wise separation to perceive the fractal
characteristics across multi-modality sources. Then, to preserve
the spatial information against the redundancy of component-
entanglement, the group sparsity is proposed. A dual variable
weighting rule is inherently embedded to mitigate the overfitting
across the component penalty. Furthermore, the Alternating
Direction Method of Multipliers (ADMM) is conducted to the
proposed model optimization. The experiments show that our
model has a better performance in quantitative visual quality
and qualitative evaluation analysis. Finally, a real segmentation
application of PET/CT image fusion proves the effectiveness of
our algorithm.

Index Terms—medical image fusion, fractal component-wise,
structural patch prior, group sparsity, ADMM algorithm

I. INTRODUCTION

N the fast development medical image devices, secure

of data storage of medical image becomes crucial for
efficient real industrial application like biometric verification
or clinical diagnosis. Sensor fusion today [I], [2] has de-
veloped rapidly for verification and treatments. Fusion for
fingerprint verification [3], biometric-based efficient medical
image watermarking [4], these schemes have applied to real
application. Medical image and biometric are inseparable, like
magnetic resonance imaging (MRI) for biological fingerprint
in patient verification [5]. However, how to preserve the
important biological information efficiently has becoming a
main challenge. Single modal source provides limited informa-
tion and cannot meet the requirements of patient verification,
disease diagnosis, health monitoring, surgery, and radiation
therapy [6]. In Industrial 4.0 era [7], [8], keeping the data
with secure and enhancing its usage in operative environment
are both important. Heterogeneous data [9] has also attracted
a lot attention in many real application. It is necessary to
fuse different sources into one image to obtain complementary
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information to assist aided-diagnosis frameworks [10], [11].
With the growing appeal of image fusion, various fusion
algorithms have been developed [12]. The goal of image fusion
is to leverage dominated features from multi-modal sources
and synthesize the common-unique content together.

Currently, a multimodal biometric system is inevitably
based on the fusion techniques to solve the entanglement of
multiple biometric traits, to make the recognition more robust
and distinctive. Like biometric technologies in MRI, it can
be treated as the verification and authentication subsystem.
However it is hard to ensure the completeness of information
about the dynamics of the state of the whole body. It is im-
perative to complete the accuracy depended on the multimodal
source. To deal with the multi-modal information interactions,
various strategies have developed with success from many
perspectives [13], [14]. From the general description of image
fusion development, the feature extraction strategy and feature
fusion rule are the main processing alternatives. We further
extend the direction of image fusion from our summarized
view: The insights of pixel-level image fusion are obtained
from feature extraction and redundancy removal.

In recent years, some works have gradually sought decom-
position methods for feature extraction, but they ignored the
explicit redundancy removal of the whole framework. The neu-
ral network driven medical image fusion methods have become
a popular research subject. Liu et al. [15] used convolutional
neural network (CNN) to perform medical image fusion by
calculating activity level measurement through weight map
distribution. However, the overfitting problem would produce
the undesirable artifacts in the fusion result with respect to
multi-scale representation. Recently, Xia et al. [16] proposed
a CNN fusion method that removed the deep stacking of sub-
sampling layers, which could obtain output results of the same
size as the input. However, since the input of the training
network is the entire image, the inherent local similarity of
the image may be ignored. Hermessi et al. [17] leveraged the
multi-stream CNN to learn the similarity between MRI/CT
patches for image fusion in the proposed shearlet domain,
but its fusion ability required a large amount of training data
to ensure. Furthermore, different strategies of network design
over relevant feature extraction emerged later for medical
image fusion like generative adversarial network. Although
their algorithm has achieved good performance, it is still
not flexible enough. Because, the selection of depth features
relies on manual design rules to achieve superior ‘“feature
extraction”. The deficiency of paired and large scale datasets
setbacks the improvement of medical image fusion and is hard
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The image fusion process of our FCFusion model. It includes four steps: patch cropping, sparse coding, fusion of sparse cofficient maps and

reconstruction. In step 2, the sourceimages are divided into two components: basic B and detail D, and then process them in the parallel way.

to meet the requirement of Industrial 4.0.

As discussed earlier, feature extraction driven methods have
demonstrated that this explicit fusion guideline (extensions
of feature extraction capacity only) leads to several issues
for medical image fusion. The major problems of these al-
gorithms are that the information is over-completed. Thus,
adapting the appropriate balance between feature extraction
and redundancy removal is the main solution. In this paper,
the fusion quality is determined by the feature extraction and
redundancy removal in our proposed fractal component-wise
prior and group sparsity model termed as FCFusion. The main
flowchart algorithm is shown in Fig. 1. In general, we design
the patch division with component-wise separation to perceive
the fractal characteristics across the different components in
multi-modality. Different from the traditional patch sparse
representation (SR) based image fusion [18], [19] in sliding
windows manner, they performed feature extraction directly
for each patch. Our motivation relies on the proposed fractal
constraint for feature extraction. To keep up with the redun-
dancy removal for mitigating the over-smoothing problem,
preserving the characteristic information by a group sparsity
model is exploited in our proposed model. Unlike the model
proposed in [20], to better promote the detail preservation
and remove redundancy, we use a fractal variable weighting
coefficient strategy to select the features of each patch over
the decomposed components. The saliency is reflected from
the group weighted sparse coefficient here for medical image
fusion to achieve few artifacts. Overall, our designed patch-
level component feature extraction and group sparsity mainly
focus on how to avoid the over-smoothing from noise inter-
ference, color distortion, and artifacts.

The main contributions of our FCFusion model include:

e A new medical image fusion algorithm based on “frac-
tals” is proposed, which intuitively imposes the patch-
level component-wise separation to perceive the fractal
characteristic across the different components in multi-
modality sources.

e A new strategy of group sparsity for components is
proposed to strengthen the detail preservation for medical
image fusion, and the dual variable weighting is utilized

to mitigate over-smoothing and remove redundancy for
characterizing detailed structure and fine components.

The rest of this paper is organized as follows. In Section
II, some related work and the motivation of this work are
presented. Section III describes the proposed fusion methods in
detail. The experimental results and discussions are provided
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK
A. Feature Extraction

No matter in the traditional spatial domain or transform
domain methods, which totally design the main two pro-
cesses: image decomposition and reconstruction. Based on
the above summarized points, the multi-scale transforma-
tion or multi-scale geometric analysis are conducted from
the feature extraction view, as do several transformation-
based and pyramid-structured methods [21]. For example,
discrete wavelet transformation (DWT) is able to separate
high frequency to low frequency information through image
decomposition. These decomposition methods suffer from the
directional feature distortion and shift invariance property.
The non-subsampling paradigm is a popular representative
modeling example to solve degeneration of multiple scale
features, like non-subsampling contour transformation (NSCT)
and non-subsampling shearlet transformation (NSST) [22].
Hybrid schemes are investigated from the perspective of
enhancing the “feature extraction” like different extensions of
pulse coupled neural network [23].

B. Redundancy Removal

Over the years, the sparse representation (SR) has attracted
a lot attention from the natural sparsity of signals in medical
image fusion. Thus, the SR with multi-scale transformation
[24] and SR with pulse coupled neural network [25] were
constructed for mitigating the fixed feature extraction capacity.
Jiang et al. [26] proposed a novel multi-component SR-based
fusion method via morphological component analysis (MCA)
[27], which can obtain the sparse representations of cartoon
and texture components of each source image. Sadly, it would
bring a significant amount of noise in. The CS-MCA model



[28] integrated the advantages of MCA and convolutional SR
(CSR), achieving multi-component and global sparse repre-
sentation of the source image. However, the over-smoothed
issues inevitably would lead to color distortion and weaken the
root of SR based medical image fusion. Our analysis indicates
that the feature extraction with redundancy removal for the
preservation of fine details still remains a critical challenge.

III. THE PROPOSED FCFUSION METHOD

A. Problem Statement of Fractal Component-wise Modeling

A component separation model can simultaneously estimate
the extracted components: basic B and detail D of the input
image I, which is conducted with a consistent CSR based
optimization framework.
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The component separation model uses convolutional sparse
coding to achieve the fusion of multiple images, where the
W1 and W5 denote two sets of given dictionary filters. The D
and B are the corresponding sparse coefficient maps. « and /3
are coefficients that control the degree of significance of the
different terms. Unlike the standard SR model which is based
on multiple overlapping patches, many component separation
based methods [29], [30] have been proposed to grasp multi-
component representations of source images. In this paper, we
uphold the two principles of feature extraction and redundancy
removal. Motivated by [3 1], we extend the model in Eq. (1) by
learning a decoupled P to preserve the convolutional nature
of the problem without other circular boundary conditions.
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For simplicity, we take D € REXNXN a5 an example.

Wy € RMXNXN means an over-complete dictionary and M is
the number of filters. Matrix P € R™*F is the factorized con-
volution operator, which acts as a projection matrix from the
sparse expression to the original image information. Moreover,
FE is the number of sparse matrices that can effectively express
the image after dictionary learning. I € R™V*Y denotes the
whole image. (P, D) can be regarded as a matrix multiplica-
tion in different dimensions. And the three-dimensional matrix
elements in (P, D), ; j) are expressed as follows:

(P.D)msiyy = > Pom.eyDiesing) 3)

According to the operation rule in Eq. (3), we have

(P,D)*W = (PT W)* D 4)

To mitigate the over-smoothing issues of the CSR based
method, we leverage the fractal analysis to further control the
amplified noise. Then, we construct the fractal constraint over

the components to realize better image structure information.
Eq. (6) is the minimization problem of our fusion model:
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Our proposed fractal constraint defines the range of spatial
effects and it also essentially confines which pixels would
be used to constraint the components. In terms of the spatial
effects, the more clear-cut distinction between base and detail
would lead to better fusion quality. Instead of using a small
local window, the fractal constraint considers a larger window
with size [ x [. To address the noise variance for accurate
noise characterization, we use the group sparsity [32] model
to retain feature information of the sparse coefficient map.
Further, to leverage the global weighted mechanism, the matrix
P is refined into P; and P,. ©; and ©4 are fractal structure
factors used to better promote the group sparsity. The global
group variable weighting strategy is exploited in our model:
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where Bij: = (BijlaBij27' e ,BijE)T , and «, 6, Y, and

A are the coefficients that control the degree of significance
of the different terms. ® denotes element-wise multiplication.
Then ||-||» denotes the Frobenius norm of the matrix, and
the symbol * is the convolution operator. V; and V, are
fractal structure factors used to better promote the [y sparsity,
respectively. Eq. (6) is so complex that it is hard to find
the general optimization, from the perspective of division in
components, the optimization can be easily conduced in the
parallel way between components and source images.

B. Optimization of Example Detail Component based on
ADMM Algorithm

Considering that the component separation are independent
of each other, optimal iteration of the minimization problem
is achieved by alternately solving two subproblems. Eq. (6) is
divided into the following objective function. We will discuss
the two parts separately and introduce J = (P, W) to get
the our final objective function of detail component as an
example, another base component is following the same way.

IS SR S LR

N N
ZZ 1016 Dyl + YZHV1®D||1 ™

p

2

L(D,Y,P,,U) =

VTFDy + UkH2 + AP



Here, we introduce auxiliary variables Yk \/TFDk,
where F' represents the Fourier transform operation of the
matrix D. Then we get the augmented Lagrangian function
as follows. The * denotes Discrete Fourier Transform (DFT),
and Uy, represent the slack variables. Therefore, Eq. (7) can
be broken down into the following sub-problems. In here, the
parameter J = (J17J2,--~ Jg), Y = (Y1,Ya, -, YE)T,
U (U17U2,' UE) al’ldD:(Dl,Dg,--- ,DE)T.

1) solution of Yl+1. The function to be optimized for Y +1
from Eq. (7) is:
|72, + § ¥ - vErD+ 0],
®)

where ||| ;. stands for our proposed fractal regularizer and ©
represents element-wise multiplication. Obviously, the update
of Y+ involves a set of small image patches based on fractal
analysis.

According to the Sherman-Morrison formulation [
solution of the linear equation is:
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2) solution of D'*': Here, we introduce the auxiliary
variable Z = D and the penalty sparse p. the optimization
function of D is presented as follows.
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According to the Half Quadratic Splitting algorithm [34],
solving the Eq. (10) is equivalent to minimizing the following
objective function:
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Based on the derivation of Z in Eq. (11), we can get the
preliminary solution of Z:

pT(Y +U)+ uD — 6,
pT +1-p
To improve the noise removal ability of the model and increase

the fusion quality, the threshold selection operator is used to
update Z, as shown below:

7= (12)
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where 7 = W and @1(Z,j,m) = m’

where ¢ is a small constant for avoiding the appearance of
singularities. The operation of the threshold selection operator
is as follows.
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n is the set threshold. Similarly, differentiating D in Eq. (11),
we can get

D=2z-21v, (15)
!
And then, D is further updated to get the final solution:
DI ) = shrinke, (D(i. J,:), V1 9)] - 2) - (16)

where D = Z*1 and V1 (4, j,:) = W,
(i2d:9) || €
The operation of the threshold selection on’D is as follows.
[1Dfl; —
||D||2

0 otherwise

D if n<|D

shrink, 1 (D, 1) = Iz A7)

3) solution of P;: The problems discussed above do not
consider the norm of P;. To achieve the solution of P;, we first
obtain the minimization loss function in the Fourier domain
of P, Here the base component is taken as an example.

P = min > HI (P, D W1H FAIPE as)
This loss function is similar to a matrix factorization prob-
lem,thus we can employ Gauss-Newton to linearizing the
residuals and use the conjugate gradient descent method to
obtain the optimal solution:
PN o112
min HI _DHY(P 4+ AP)WH FA|P+AP|A (19)
2
where AP is the matrix increment of P, then the solution of
the quadratic problem in Eq. (19) can be can be expressed as:

WHWPD+WAPD—I)DT +\AP=—XP  (20)

In the deduction above, we use the simplified form to obtain
the solution of the minimization problem. Then the complete
form of Eq. (20) can be defined as follows:

G(W-(P,D))+\, AP+ G(W-(AP, D))=
G(A)=WH o (A-DH)

G(I)—=A\P

2y
where G(A) is an operator produced by derivation.
Let A(AP) = G(W (P, D))+ AP+ G(W-(AP, D)),
b = G(I)— \P. Eq. (21) can be written as, A(AP) =
Conjugate gradient descent is used to optimize AP. And then,
the update of P can be obtained as, PU*+1) = P() 4 AP,

IV. EXPERIMENTS
A. Experimental Settings and Metrics

1) Experimental setting: Experiments are carried out by
MATLAB R2016b on a computer with Dual-Core Intel Core
i5 processor (1.8GHz) and 8GB 1600 MHz DDR3. For a
fair comparison, for both basic B and detail D, we adopt
the same fusion strategy as the CSR-based model [29] .We
experimentally fix o = 1.5, 5 =4 x 1077, A = 5 x 1078,
p = 50 x v+ 1, the patch size is 16 x 16 and the iteration
number is 3. We selecte seven metrics including Average Gra-
dient (AG), Correlation Coefficient (CC), Entropy (EN), Mean
Square Error (MSE), Root Mean Squared Error (RMSE),



TABLE I
Objective performance of the fusion methods in 5 modalities. The best each metrics are marked in red.
AG 1T cC EN T MSE | RMSE | MI| SF 1 Frank 4
NSST_PAPCNN | 0.0233£0.0090  0.8465£0.0379  4.4089£0.9834  0.0337£0.0070  0.1768£0.0164  8.8177£1.9668  -0.2773£0.0718 5.1
NSCT_PCDC | 0.0248+0.0082  0.8068=£0.0460  4.4811£0.8200  0.0309+£0.0057  0.1698+0.0161  8.9622+1.6401  -0.1635+ 0.0310 4.0
NSCT_RPCNN | 0.0239+0.0092  0.8372+0.0384  3.7843 £0.9456  0.0358£0.0080  0.1772 £0.0170  7.5686+ 1.8911  -0.1525+0.0768 55
MRI-CT LP_SR 0.023440.0089  0.8248+0.0504  3.5007+0.8534  0.0341+0.0097  0.1666+0.0174  7.0015+1.7068  -0.116940.0677 5.6
GFF 0.021540.0075  0.8309+0.0469  3.8041+0.9386  0.0287+0.0036  0.1611£0.0089  7.6082+1.8773  -0.2447+ 0.0622 4.8
CSMCA 0.021540.0080  0.8360+0.0422  3.9825 £1.0957  0.0269+0.0049  0.1594 £0.0130  7.964942.1914  -0.1770% 0.0251 43
IFCNN 0.0250+0.0091  0.8485+0.0379  3.7312 £0.8941  0.0272+0.0056  0.1575+0.0142  7.4624+1.7882  -0.1280% 0.0422 36
FCFusion 0.0236+0.0084  0.8388+0.0406  4.5543+1.0752  0.0265+0.0046  0.1592+0.0146  9.108542.1504  -0.190420.0440 3.1
NSST_PAPCNN | 0.0264£0.0096  0.8798+ 0.0540  4.7225+0.5682  0.02114 0.0090  0.1377+£ 0.0322  9.4451+1.1364 -0.235640.0763 5.1
NSCT_PCDC | 0.0287+0.0097  0.8596+0.0650  4.5128+0.6284  0.0189+0.0077  0.1321+ 0.0292  9.0255 £1.2568  -0.11340.0276 4.6
NSCT_RPCNN 0.02844-0.0092 0.873840.0505 4.110240.6200  0.02260.0093 0.141640.0321 8.2203+ 1.2401 -0.130640.0175 55
TI1-T2 LP_SR 0.02944-0.0098 0.859940.0726 3.9162+0.6122  0.022040.0096 0.1356+0.0288  7.8325+ 1.2243  -0.085510.0188 5.1
GFF 0.02604-0.0093 0.8667+0.0718 4.034740.6632  0.0184+0.0085 0.123440.0276  8.0693+ 1.3263  -0.184740.0372 5.0
CSMCA 0.02724-0.0097 0.877140.0642 3.9033+0.6247 0.01704+0.0072  0.1248 +0.0269  7.8066+1.2494 -0.140640.0355 4.7
IFCNN 0.02931-0.0098 0.889340.0526 3.9086+0.6095 0.01644-0.0069 0.122240.0271 7.8172£1.1437 -0.062240.0494 3.4
FCFusion 0.0295£0.0088  0.8754+0.0621  4.822740.5718  0.0172£0.0071  0.1260+0.0280  9.6455+1.2189  -0.106140.0230 2.6
NSST_PAPCNN | 0.0226£0.0046  0.9596£0.0112  5.1315£0.7274  0.0055£0.0026  0.0709£ 0.0159  10.2631£1.4547  -0.1779£0.0631 52
NSCT_PCDC | 0.0246+0.0058  0.9563+0.0134  4.7843+£0.6040  0.0053+£0.0025  0.0704£0.0152  9.5685+1.2080  -0.0720+£0.0214 4.0
NSCT_RPCNN | 0.0240+0.0054  0.9521+0.0119  4.6876+0.7318  0.0061£0.0029  0.0747£0.0167 ~ 9.3753 £1.4637  -0.1160+0.0272 55
T2-PD LP_SR 0.024740.0057  0.9540+0.0143  4.3775+0.6522  0.0058+0.0028  0.0723+£0.0147  8.7549+1.3044  -0.0614= 0.0160 5.6
GFF 0.023440.0055  0.9559+0.0135  4.51524+0.7216  0.0054+0.0026  0.0663+0.0138  9.0303 +£1.4432  -0.115140.0296 4.8
CSMCA 0.02384+0.0055  0.9599+0.0108  4.5190+0.6238  0.0050+0.0022  0.0685+0.0137  9.0379 +£1.2476  -0.0889+0.0219 43
IFCNN 0.0256+0.0063  0.9649+0.0095  4,4285+0.6970  0.0048+0.0021  0.0674+0.0133  8.8569+1.3939  -0.0089+0.0318 36
FCFusion 0.025740.0049  0.9581+0.0106  5.1398+0.5203  0.0052+0.0022  0.0698+0.0131  10.2796+1.0406  -0.048040.0579 3.1
NSST_PAPCNN | 0.0177£0.0054  0.8700£0.0540  4.4683£0.9984  0.0150£0.0063  0.117120.0248  8.9366=1.9968  -0.0747%0.0260 41
NSCT_PCDC | 0.0173+0.0055  0.8401£0.0639  4.4677£0.8855  0.0114£0.0053  0.0995+0.0211  8.9355+1.7710  -0.0857+0.0239 4.0
MRLPET | NSCT_RPCNN | 00181£0.0057  0.8628:£0.0533 42220+ 1.0236  0.0155:+ 0.0065  0.1186:0.0254  8.4440:£2.0472  -0.0615::0.0243 4.6
LP_SR 0.0165+0.0053  0.8660+0.0546  4.0162+0.9691  0.0117+0.0052  0.1040+0.0236  8.0325+1.9381  -0.099440.0364 5.1
GFF 0.0165+£0.0059  0.8343+0.0987  4.0384+1.0383  0.0123£0.0076  0.0912+0.0187  8.0768+2.0766  -0.1209+0.0760 4.8
IFCNN 0.0177+£0.0056  0.8743+0.0572  4.0480+0.9321  0.0104£0.0047  0.0976+0.0217  8.0961+£1.8641  -0.0465+0.0195 3.0
FCFusion 0.0182:£0.0051  0.8634+0.0553  4.648840.6528  0.0103+£0.0045  0.0983+0.0217  9.2975+1.3057  -0.0548+0.0478 24
NSST_PAPCNN | 0.0213£0.0070 ~ 0.8883+0.0899  4.96821+0.7964  0.0202+ 0.0232  0.1123+0.0431 9.936411.5928 -0.052840.0191 42
NSCT_PCDC | 0.0213£0.0071  0.8766£0.0963  4.9421£0.7735  0.0161£0.0214  0.1017£0.0485  9.8843+1.5471  -0.0561=£0.0168 4.1
MRLSPECT | NSCT_RPCNN | 0.0218+0.0073  0.8755+0.0863 ~ 4703507574  0.0210 0.0233  0.1141:£0.0422 9407015148 -0.043620.0193 4.6
LP_SR 0.0210£0.0072  0.8931+ 0.0873  4.5611£0.7461  0.0169+ 0.0227  0.1017£0.0447  9.12214£1.4922  -0.054630.0180 4.6
GFF 0.0209£0.0076  0.8781+ 0.0931  4.6561+0.7458  0.0169+0.0225  0.0933+0.0463  9.3122+1.4915  -0.0703+0.0379 45
IFCNN 0.0213% 0.0075  0.8977+ 0.0927  4.6111£0.7720  0.0136£0.0165  0.0956:£0.0451  9.2222+1.5439  -0.0464£0.0311 3.6
FCFusion 0.021840.0062  0.8949+0.0746  5.05214+0.5337  0.0131£0.0128  0.10142£0.0430  10.1043£1.0674  -0.034740.0589 24

Mutual Information (MI), Spatial Frequency (SF) in [35].We
also calculate the average rank of these 7 indicators, which is
F-rank. Our experiments take use of five different modalities of
fusion (magnetic resonance imaging (MRI), positron emission
tomography (PET), computed tomography (CT) and single
photon emission computed tomography (SPECT) images),
including MRI-CT, MRI-PET, MRI-SPECT and T1-T2, T2-
PD, where T1, T2 and PD are MRI images based on different
weights. The source images used in the experiment are all from
the Whole Brain Atlas [36] established by Harvard Medical
School.

2) Comparison Methods : Our FCFusion model compares
with 7 existing medical image fusion methods, including
NSST-PAPCNN [22], NSCT-PCDC [37], NSCT-RPCNN [23],
GFF [38], CS-MCA [29], LP-SR [24] and IFCNN [39], where
IFCNN is a deep learning based fusion method. It should be
noted that in the fusion of color images, the CS-MCA method
is not included in the comparison. All parameters in these
methods are set to the default values for unbiased comparison.

B. Fusion Results and Analysis

1) Qualitative Analysis: The comparative experiment is
mainly based on the five modalities mentioned above. Fig. 2
shows the fusion results of three randomly selected modalities,
MRI-CT, T1-T2 and MRI-PET. And below we conduct a
detailed analysis.

Fusion visual effect based on MRI-CT: The experiment
based on 8 methods to fuse CT and MRI images is conducted.
The comparison results are shown in the first row. It can
be seen that the fused image generated by NSST-PAPCNN
(cl) is blurred at the boundary. The structure and detail
features at the boundary are not preserved. Although the

fused images of NSCT-RPCNN (el) and IFCNN (il) retain
structural similarity, there are deficiencies in the extraction
of detail information compared with our FCFusion method.
In addition, NSCT-PCDC (d1) has serious energy loss, which
reduces the contrast of the fusion image. Finally, our FCFusion
has excellent performance in detail and structural information
retention and shows a good fusion performance.

Fusion visual effect based on T1-T2: The second row
shows the fused comparative experiments. NSST-PAPCNN
(c2) and LP-SR (f2) still have the problem of blurred bound-
aries. The fusion images of NSCT-RPCNN (e2) , GFF (h2) and
IFCNN (i2) are insufficient in extracting detailed information.
In contrast, the fused image of our method retains the texture
and detail features of the source image well and maintains
a high image. The enlarged part of the picture shows that
our method can well show the gaps and differences between
different tissue structures, however other fused images have
neutralized this difference and cannot highlight the changes in
soft tissue.

Fusion visual effect based on MRI-PET: The results
of the fusion are shown in the third row. Since CSMCA
cannot perform the fusion of color images, there are only
6 comparison methods in color image fusion. Clearly, the
fused image of GFF (g3) is almost the same as the MRI
source image. There is no extraction and fusion of PET image
information during the fusion process. And the fused images of
NSCT-PCDC (d3) have serious color distortion, even affecting
the resolution of the image. The symptom of NSST-PAPCNN
(c3) is slightly lighter than the other methods, but there is still
obvious discoloration. The fusion of IFCNN (h3) has energy
loss, and the contrast of the fused image is reduced. The fused
images of NSCT-RPCNN (e3) and LP-SR (f3) retain the color
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Fig. 2. The fusion performance of various methods, followed by MRI-CT, T1-T2 and MRI-PET. Here, (al-a3) sourceimagel; (b1-b3) sourceimage2; (cl-
c3) NSST-PAPCNN; (d1-d3) NSCT-PCDC; (el-e3) NSCT-RPCNN; (f1-f3) LP-SR; (gl-g3) GFF; (h1-h3) CSMCA; (il-i3) IFCNN and (j1-j3) FCFusion.

Particularly, CSMCA cannot be used for MRI-PET fusion.

image information, and retain the edge and detail texture of
the MRI images.

2) Quantitative Analysis: The comparative analysis of the
image fusion effect described above may not be objective
enough, then the quantitative analysis of the experiment is
added. And the average values to be compared are obtained
from the multi-group image fusion index of 5 modalities,
including 10 groups of MRI-CT image pairs, 35 groups of T1-
T2 image pairs, 46 groups of T2-PD image pairs, 25 groups of
MRI-PET and 25 groups of MRI-SPECT. All results are listed
in the table I, where the top for each metric is marked with
red. The first three groups in the table I are gray-scale fusion
modalities, namely MRI-CT, T1-T2 and T2-PD, and the latter
two are color fusion modalities, namely MRI-PET and MRI-
SPECT. In general, the performance on color fusion modalities
is better than that on the grayscale fusion modalities. In MRI-
CT and T2-PD, our fusion model ranks first on 4 different
metrics. Although there are only 3 best metrics in T1-T2,
MSE and RMSE metrics for different methods are very close.
In color fusion, almost all indicators of FCFusion model are
among the top three. Additionally, we notice that whether it
is grayscale or color image fusion, the ranking of our model
on EN and MI are the first, which proves that our model can
retain the feature information of the source image as much
as possible during the fusion process, and maintain a good
image structure similarity degree. And our model also leads
on AG metric, except for MRI-CT modalities, indicating that

our image clarity is better than other methods.

Overall, based on the above analysis results, obviously our
model achieves excellent fusion effects in various modalities,
both visually and objectively. This means our model can be
used for medical image fusion in a variety of situations without
being restricted by the modality. Therefore, it can be safely
assumed that our proposed method has a good robustness.

Ablation Analysis on whether to
perform block matching
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Fig. 3. Ablation study on performing the specific block matching

3) Configuration Analysis: Our model introduces two vari-
able weighted coefficient matrices © and V to improve the
group sparseness and spatial sparseness of model features. To
verify the improvement effect of © and V on the fusion effect,
we conducted a corrosion comparison experiment. The model
does not have the effect of © and V is obtained by setting all
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Fig. 4. The comparison result images with or without matching.

matrix elements of ® and V to 1. The experimental results
are shown in Table II. The first row of data of FCFusion-
1 corresponds to the model with © and V, and the second
row of data of FCFusion-2 corresponds to the model without
© and V. The better results between the two are marked in
red. According to Table II, the model with ® and V has better
results in most metrics, it is believable that the variable weight
coefficient matrices © and V are helpful to the fusion effect
to a certain extent. According to the model construction and
solution introduced above, our model uses the idea of dividing
patches to maintain the structural similarity of the images. It
can be seen from the Fig. 3 the results of our model, in most
instances, are better than those doing matches (that is ,the non-
local model) except for PSNR and SSIM, which proves that
our method is helpful for the fusion effect.The comparison
image of the fusion is shown in Fig. 4 below.

C. Ablation Analysis

1) Configuration Analysis: Our model introduces two vari-
able weighted coefficient matrices ® and V to improve the
group sparseness and spatial sparseness of model features.
To verify the improvement effect of © and V on the fusion
effect, we conduct an ablation comparison experiment. The
experimental results are shown in Table II. The first row of
data of FCFusion-1 corresponds to the model with ® and
V, and the second row of data of FCFusion-2 corresponds
to the model without ® and V. The better results between the
two are marked in red. According to Table II, the model with
® and V has better results in most metrics. It is believable
that the variable weight coefficient matrices ©® and V are
helpful to the fusion effect to a certain extent. According to the
model construction and solution introduced above, our model
uses the idea of dual variable weighting to maintain group
sparsity of images. It also can be seen from the Fig. 3 the
results of our model, in most instances, are better than those
doing block matching process (the non-local model commonly
applied [40]), which proves that our method is helpful for the
fusion effect. The comparison image of the fusion is shown
in Fig. 4.

2) Convergence Analysis: To ensure the fusion effect of the
model, we adopt ADMM and the conjugate gradient descent
method to achieve the optimal solution of the optimization.
As shown in Fig. 6, our fusion model has good convergence
in both gray-scale fusion and color fusion. After several

TABLE 11
The ablation analysis based on ® andV

FCFusion-1 ~ FCFusion-2
AG 0.02741 0.0289
CcC 0.8998 0.902
EN 4.375 4.3132
MSE 0.0143 0.0142
RMSE 0.1075 0.1076
MI 8.7501 8.6263
SF —0.1239 —0.1319
TIME 93.1117 85.2652

iterations, the result is very close to the optimal solution of
convergence, and the converged line graph does not show large
fluctuations, which means our fusion model has good stability.

D. Real Application Verification of Fusion Algorithm

PET can reflect the genetic, molecular, metabolic, and func-
tional status of the disease. The diseased part usually shows
greater 18F-flurodeoxyglucose (FDG) uptake than the normal
structure [41]. CT can provide information on the anatomical
structure of the part where FDG uptake is abnormal in PET
[42]. When performing lesion detection and lesion contour
delineation, it is inaccurate to segment PET and CT separately
for judgment. PET-CT integrates the metabolic information of
PET and the texture features of CT into one image. From the
above discussion, we can see that our method has obvious
advantages in the fusion of PET and CT. To demonstrate the
important value of this advantage, we collect several pairs
of PET and CT images obtained from patients suspected of
lung cancer for experiments. Our model and five other fusion
methods are used to obtain PET-CT images. Then, we segment
the PET, CT, and fused PET-CT images to determine the
lesion area of lung cancer patients. It can be seen from Fig.
5 that our fusion results can not only detect the disease parts
that show no abnormalities in the CT images, but also filter
out the non-pathological interference areas of PET based on
the knowledge of CT anatomical features, and obtain precise
anatomical positioning during segmentation. However, other
methods, such as NSCT-PCDC (f1-f3) and NSCT-RPCNN
(gl-g3), are disturbed by the high-level metabolism of non-
lesion areas in PET images. In their segmentation results,
either the location is wrong or the range is enlarged, thereby
affecting the patient’s follow-up treatment.

V. CONCLUSION

We propose a medical image fusion method based on fractal
prior of components and group sparsity. The proposed mecha-
nism strengthens the connection between different components
and improves the fusion performance. The main motivation
is the feature extraction and redundancy removal. The global
group weighting strategy is adopted in refining the over-
smoothing issue. The ADMM algorithm and conjugate gradi-
ent descent method are used to solve the model optimization
problem. Finally, we conducted a large number of comparative
experiments and extracted some results for visualization and
analysis. The experimental results in real applications prove
that our algorithm has advantages in the performance of fusion
and segmentation compared with other algorithms.
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Fig. 6. Convergence analysis of FCFusion in gray fusion and color fusion.

In this paper, we conduct experiments using images from
the Whole Brain Atlas, and perform a clinical segmentation
on PET and CT images. In our future work, we will try
more other datasets to fully demonstrate the robustness of the
model. And we also hope to explore more real applications of
other modalities, thus further illustrating the contribution of
our model in the industrial field.
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