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Abstract—Infrared small target detection is a research hotspot
in computer vision technology that plays an important role in
infrared early warning systems. Specifically, infrared images with
strong background clutter and noise pose a challenge to target
detection technology. In this paper, we propose a method for
infrared small target detection based on the double nuclear
norm and ring structural elements over a generalized tensor
framework. We use the double nuclear norm instead of the
traditional single nuclear norm as the relaxation of the rank
function, which solves the problem that the suboptimal solution
deviates from the original solution and better approaches the
rank minimization. In addition, we use weighted ring structural
elements instead of traditional structural elements to make better
use of the target information and its surrounding background.
Experiments on six sequences of real images show that the
proposed method can enhance the target and suppress the
background effectively and ensure a high detection probability
and a low false alarm rate.

Index Terms—Multi-frame infrared image, small target detec-
tion, double nuclear norm, ring Top-Hat regularization.

I. INTRODUCTION

INFRARED small target detection plays a critical role in
signal processing and is widely used in many fields such as

remote sensing [1], [2], medical imaging [3], target detection
and tracking [4], and aerospace technology [5]. However,
in a complex background environment, infrared targets have
their own characteristics, making detection very difficult. First,
the target imaging distance is generally far, and the target
occupies only a few pixels in the image. Second, the noise
and background clutter interference in the imaging system are
strong, making the target signal relatively weak and easily
submerged by a strong noise background. Finally, because
the target lacks effective shape and texture features, there is
little information that can be provided to the detection and
tracking system. Currently, with the development of the tensor
completion [6] [7] [8], top-hat filter [5], and matrix operations
[9], more and more researchers are paying attention to the
problem of infrared small target detection, which remains a
challenging problem.
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Since mathematical morphology was proposed by Matheron
[18] and Serra [19], it has become an important tool for
solving image processing problems. Mathematical morphology
is a powerful non-linear image processing framework that
provides useful tools for many tasks. It can be used to remove
unnecessary parts [20] in an image, to segment the useful parts
of an image [21], or to perform interpolation to fill in missing
parts [22]. Morphological theory has recently been applied to
the detection of small targets in infrared images. Specifically,
the top-hat transform is widely used in image segmentation
[24], [25], target detection [5], [23], image enhancement
[26], [27], etc. These applications can be regarded as the
application of the top-hat transform in point extraction. [28]
proposed a detection method for small targets based on the
top-hat transform, but because the infrared target is small, the
image contains, the target has no obvious features, and the
performance of speckle extraction is not ideal. If the SNR of
the image is large, the top-hat transform can be applied to
small target detection directly [23], the infrared target easily
becomes submerged in the background with low SNR. [31],
[32] proposed a method to enhance dim targets and suppress
noise by introducing target attributes. However, this method
needs prior knowledge, and the suppression effect is not obvi-
ous for bright interference. [35], [36] introduced two different
structural elements for infrared small target detection. They
constructed a circular structure factor to apply the difference
information between the target region and the surrounding
background directly to the structure elements, which yielded
better detection results than the traditional top-hat transform.
However, applying the top-hat transform alone is limited to
enhancing the target and suppressing the background. The
transform is not ideal for images with considerable clutter and
blurred boundaries. In [33], the suspicious target region was
extracted by a top-hat filter, and the effective local contrast
measure was defined. They introduced their approach to the
local self similarity calculation to determine the target. This
method can accurately extract the target, but the background
suppression effect remains limited [30] [29].

In infrared images, most of the area is occupied by the
background, while the target occupies only a few pixels.
Moreover, the local background and its adjacent area have
strong correlation, and the target is sparse. In other words, the
background is low rank and the target is sparse. Therefore,
recovery of the low-rank matrix can be used to segment
the target from the background. Low-rank matrix restoration
has a wide range of applications in image restoration, signal
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processing, computer vision, image processing, artificial intel-
ligence and machine learning and promotes the development
of signal sparse representation in compressed sensing. In the
low-rank matrix recovery model, the problem of minimum
rank optimization must be solved, but because the matrix
rank is a non-convex discontinuous function, an NP problem
is encountered. To solve this problem, we typically use the
kernel norm [5] to replace the rank function because compared
with the L1 and L2 norms, the structure error representation
criterion based on the kernel norm is more effective. [37]
constructed local patches to transform the traditional infrared
small target detection problem into a low-rank sparse matrix
recovery problem. [38] proposed an infrared patch tensor
model based on the weighted tensor kernel norm, which uses
the tensor kernel norm to recover the background and target.
[39] extended the high-dimensional data clustering method
based on non-Euclidean geometry to the traditional LRR
method based on Grassmann manifold and achieved good
performance. However, the low-rank subproblem based on
the traditional kernel specification tends to over-express the
rank components in the expression matrix, and when choosing
low-rank constraints, these methods all use the traditional
kernel specification, which will lead to the final result not
being optimal but suboptimal [40], [41]. Therefore, some
researchers use non-convex relaxation as a low-rank constraint
to obtain a better solution. [42] used the Schatten-p norm of
the non-convex rank relaxation function to recover the low-
rank matrix. This approach achieved accurate solutions under
the condition of only a weakly limiting isometric property.
However, both the Schatten-p norm and kernel norm involve
singular value decomposition of large-scale matrices to solve
low-rank problems, which leads to considerable computational
complexity when solving large-scale problems. In addition, the
singular value components have different meanings, and the
Schatten-p norm does not make a differentiated selection based
on their importance. [43] proposed a double nuclear norm-
based low-rank model on the Grassmann manifold (G-DNLR);
they decomposed the matrix into a product of two low-rank
matrices and used the decomposition matrix constraint to
represent the double nuclear norm for the original matrix.The
G-DNLR successfully exploited the local geometrical structure
of the data space. Therefore, the double nuclear norm could
effectively standardize the different low-rank components of
tensor data and reduce the computational complexity,and solve
the problem of background images.

Most of the above methods are implemented based on
matrix factorization. In addition to it, some scholars have
proposed methods based on tensor decomposition to solve low-
rank models. Here we also do some introduction.It is not easy
to directly extend from a matrix to a tensor, because there does
not seem to be a unique definition of the rank of a tensor.
The more commonly used definition are the CANDECOM-
P/PARAFAC (CP)-rank [48] [49] and the Tucker- rank [50]
[51] (or denoted as “n-rank” in [52]). The CP-rank is based
on the CP decomposition, while the Tucker rank is based on
the Tucker decomposition. Braman et al. [53] and Kilmer et
al. [54] proposed tensor singular value decomposition (t-SVD)
on the basis of tensor-tensor product (t-prod). The overall

operation avoids the distortion of tensor matrixization.Jiang et
al. [55] summarized the tensor singular value decomposition
(t-SVD) and proposed tensor multi-rank and the tensor tubal-
rank. Recently, Based on the CP decomposition of tensors,
Xue et al. [56] proposed a new tensor decomposition measure
based on multi-layer sparsity for the multi-layer progressive
regularization of tensor sparsity information. Meanwhile, in
order to solve the shortcoming of Tucker decomposition, Bu
et al. [57] have integrated the graph Laplacian regularizations
imposed on factor matrices in the multilinear space and Tucker
decomposition into a unified fusion framework.

Some other small target detection methods exist, but they all
have some defects. The 3D matched filter [10], multiscan adap-
tive matched filter [13], max-mean/max-median filter [11], and
improved 3D filter [12] are early detection methods for small
targets. These methods require considerable prior knowledge,
and their performance is poor for images with large clutter.
These methods strongly rely on local prior assumptions be-
tween the background and the target. For example, the target
can be detected by comparing only one pixel or area with
its neighboring pixels, i.e., weighted local difference measure
[14], local contrast method [1] and multiscale patch-based
contrast measure [15]. However, if the image has strong edges
or other interference components, these local difference-based
methods may no longer be suitable. Therefore, some fuzzy
measurement methods, such as multichannel kernel fuzzy
correlogram [16] and the multiscale fuzzy metric [17], have
been proposed, but these methods also need prior information
about the size of the target and have high computational
complexity.

To overcome the drawbacks of these methods, in this paper,
we propose a generalized low-rank double-tensor nuclear norm
completion framework to detect small targets in infrared
images. We focus on target enhancement and background
recovery from the perspective of low-rank matrix recovery
and local differences. We conduct a number of experiments
to verify the accuracy of this method. The contributions of
this paper are the following:

1): We propose to use the ring top-hat regularization term
to reduce noise and clutter. In addition, to fully and locally
utilize the structure between the low-rank background area
and the target area, in contrast to the traditional morphological
structure, we design a weighted ring structural element to
detect small infrared targets.

2): To avoid destruction of the tensor data structure and
internal correlation by data vectorization that occurs in tra-
ditional regularization, we introduce the Grassmann manifold
low-rank model based on the double nuclear norm into the
tensor model. The integrity of the structural features of the
low-rank tensor is preserved, and the computational complex-
ity is reduced.

3): We use the alternating direction multiplier method
(ADMM) to solve the proposed infrared small target detection
tensor model. And the experiment proves that our proposed
method is superior to the comparison methods.

The rest of this paper is organized as follows. We introduce
some preliminaries for tensors and the definition of morpho-
logical regularization in Section 2. We present and analyze
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our model in Section 3. Then, we introduce the concrete
solution steps of our model in Section 4. Finally, we conduct
many experiments from various aspects and prove the superior
performance of our model in Section 5.

II. PRELIMINARIES

The pixels in infrared images are highly correlated, and
the background is represented in a continuous manner. Com-
pared with the low-rank surrounding background, the target is
prominent and sparse, which destroys the local correlation of
the infrared image. Therefore, we can separate the target from
the surrounding background via matrix completion, and tensor
information can be explored to further highlight the targets and
the complex background as much as possible. Low-rank tensor
recovery belongs to the spatial domain and is easy to realize.

A. Low-Rank-Based Small Target Detection

To characterize our model, we denote the original infrared
image as GD. Clearly, GD consists of the target (GT ),
background (GB) and noise (GN ), so our infrared model is
expressed as follows:

GD = GT +GB +GN (1)

From the inherent spatial correlation between the pixels
in infrared images, it can be seen that the background (GB

is expressed in a continuous manner and has strong local
correlation, but the characteristic target (GT ) is the object
that breaks this correlation. To segment the target (GT ),
background (GB), and noise (GN ) from the input infrared
image (GD), we can apply low-rank matrix completion to
the continuous background [34]. The completion is performed
according to the low-rank correlation characteristics of the
background and the sparsity of the target . Although the rank
minimization problem is NP-hard, we can still easily find an
alternative method for the rank function and the kernel norm,
for example, sparse representation of the low-rank matrix.

B. Notation and Definition of Tensor Nuclear Norm

Before introduce low-rank tensor recovery in detail, we first
define some mathematical notations in Table I.

In the frequency domain, Ĝ can be represented by block-
diagonal matrix form Ḡ,then:

Ḡ , blockdiag
(
Ĝ
)
,


Ĝ(1)

Ĝ(2)
. . .

Ĝ(n3)

 (2)

where Ĝ ∈ Rn1n3×n2n3 ,and Ĝ(k) is the k-th frontal slice of
Ĝ.

Then we have the nature:

A ∗ B = C ⇔ Ā · B̄ = C̄

where · is the matrix product.
Now, we can introduce the tensor-nuclear-norm [38](TNN)

‖·‖TNN

TABLE I
NOTATION AND DEFINITION

Notation Definition

G Matrix

G ∈ RI1×I2×...×IN

N-dimensional tensors with the
size I1, I2, , ..., IN ∈ N in each
dimension

gi1×i2×...×iN

The (i1, i2, ..., iN )th element of
the tensor G

〈GD · GB〉 =
I1∑

i1=1
...

IN∑
iN=1

gd(i1,...,iN )gb(i1,...,iN )

The inner product of tensors
GDand GB

∥∥GD∥∥
F

=
√
〈GD · GD〉 Frobenius norm of tensor GD

G(1, ..., i, ..., In)
The mode-n fibre of tensor G,
where 1 ≤ i ≤ In

G(n)
The mode-n unfolding matrix of
tensor G, where 1 ≤ n ≤ N

G(n) = unfoldn(Gn) The mode-n unfolding of tensor G

G = foldn(G(n)) The inverse operator of unfold()

‖G‖TNN ,
∥∥Ḡ∥∥∗ =

n3∑
i=1

∥∥∥Ĝ(i)∥∥∥
∗

(3)

where ‖·‖∗ is matrix nuclear norm.

C. Definition of Morphological Regularization

At present, morphological detection is widely used in the
detection of small targets in infrared images. In classic mor-
phological theories, corrosion and expansion are the most basic
operators. Structural elements are equivalent to those involved
in filtering a template; that is, a matrix of a given pixel can
be of any shape, generally square or circular. The design of
the operators and structural elements is crucial in infrared
small target detection based on morphology. Currently, the top-
hat operator is popular for detecting small targets in infrared
images.

We first introduce relevant knowledge about the two basic
operations of expansion and corrosion, which use original
images and structural elements. Let I represent a grayscale
image and S represent a structural element. We define dilation
as I ⊕ S and define erosion as IΘS of I(x, y) by S(a, b):

(I ⊕ S)(x, y) = max
a,b

(I(x− a, y − b) + S(a, b)) (4)

(IΘS)(x, y) = min
a,b

(I (x+ a, y + b)− S(a, b)) (5)

where the domains of I ⊕ S and IΘS are the dilation and
erosion of the domain of I with the domain of S. The
opening and closing operations represented by I and S can
be expressed as:

(I ◦ S)(x, y) = (IΘS)⊕ S (6)

(I • S)(x, y) = (I ⊕ S)ΘS (7)

where the opening operation and the closing operation are
represented by (I ◦ S) and (I • S), respectively; (I ◦ S) (or
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(I •S)) is often used to smooth images with noise. The classic
top-hat transformations, namely, white top-hat transformation
(WTHT) and black top-hat transformation (BTHT), are defined
by Eq.8 and Eq.9.

WTHT (x, y) = I(x, y)− (I ◦ S)(x, y) (8)

BTHT (x, y) = (I • S)(x, y)− I(x, y) (9)

The structural element is an important concept in mathe-
matical morphology, and it is a basic unit used to corrode and
expand images. In an infrared image, the object to be detected
usually differs substantially from the surrounding background
area, and there are strong edge differences. Therefore, the
different information provided by the small target and the
background can be used to distinguish the background and
the target. The basis of using the top-hat transform for small
target detection is to use this different information to detect
the target.

III. THE PROPOSED METHOD

To solve the problem of minimizing convex optimization
for Gaussian noise, we propose a target detection task using
morphological operators and the low-rank background as
constraints, in which we superimpose continuous multiple
frames of images as input images (GD) into the tensor.
First, we introduce morphological operators with ring structure
elements. Then, we introduce the entire method of object
detection. In the next section, we discuss our optimization
process and algorithm flow in detail.

A. The Ring Structural Element for Top-Hat Regularization
Transformation

Two identical structural elements are typically used in
classical morphological theories, which ignore the difference
between the target and the surrounding background. Simi-
larly to the transformation of the classic top-hat operator,
it performs the opening operation or the closing operation
using two identical structural elements. The existing difference
information is not appropriately considered in the structural
elements, which may reduce the efficiency and accuracy, while
the classic top-hat transformation distinguishes the target and
the background. In our model, the difference areas between
the target and the surrounding background are considered; we
build a ring structural element composed of two structural
elements with the same shape but different sizes to highlight
the small targets, which is shown in detail in Figure 1.

Corrosion and expansion are the two basic operations in
mathematical morphology. They work with the original image
and the structural element. Here, let rEi

and rEo
represent the

sizes of structural elements Ei and Eo, respectively, where rEi

is smaller than rEo
. Then, we define the difference between the

two structural elements as the ring structural element, named
RE, and set rRE = rEo − rEi . rRE is the radial distance
of ring structure element RE. Additionally, we define the
Em as the ring structural element, which is larger than rEi

and smaller than rEo
. Thus, we can define the ring opening

operation as I < S and the closing operation as I > S:

(I < S)(x, y) = (I ⊕RE)ΘEm (10)

Fig. 1. Relationship of the structural elements

(I > S)(x, y) = (IΘRE)⊕ Em (11)

Then, we define the top-hat regularization transformation as
follows:

M(x, y) = I(x, y)− (I < Eguide)(x, y) (12)

where Eguide is the structural elements. For the model of the
tensor, we describe the top-hat regularization transformation
as:

M(GT ) = GT (x, y)− (GT < Eguide)(x, y) (13)

B. Infrared Small Target Detection Model Based on Low-Rank
Double-Tensor Nuclear Norm

Due to the linearly correlation with each patches, we further
exploit the low rank property of background. From the Fig.
2, we can explicitly find the truth that the singular value
of corresponding background decrease rapidly to the zero.
According to the related discussion, the background image
(GB) can be considered a low-rank matrix, and we can assume
the Eq.14.

rank(GB) < k (14)

Fig. 2. The low rank illustration of background (left) can be explicit shown
by the singular value in sub-figure (right).

Parameter k is determined by the sparsity of the input image.
The more sparse the image is or the more uniform the image
is, the smaller the value of k is. However, due to the existence
of the target, the value of k is always larger than the value of
the rank under a completely uniform background. Moreover,
rank minimization is always an NP-hard problem, and low-
rank tensors are more complicated.
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The data to be processed here is a high-order sparse tensor.
For the rank minimization problem, the single kernel norm is
usually used to relax the rank function. Gao et al. constructed
a local patch to transform the traditional infrared small target
detection problem into a low-rank sparse matrix recovery
problem [37]. Sun et al. proposed an infrared patch tensor
model based on the weighted tensor kernel norm [38], which
used the tensor kernel norm to restore the background to
isolate the target. However, the low rank subproblem based
on kernel norm will make the rank components over relax
from the representation matrix, resulting in the suboptimal
solution deviating from the original solution. Schatten-p norm
is often used to deal with the rank minimization problem
of high-order sparse tensors [58] [59]. Which is formally
more flexible than the nuclear norm and can better deal
with many low-rank problems. If 0 < p < 1, schatten-p
norm can weaken the proportion of larger singular values
in the objective function compared with kernel norm, which
makes schatten-p norm more suitable for describing the rank
minimization problem. However, the calculation of schatten-p
norm is complex and takes a long time. Piao et al. proposed a
Grassmann manifold low-rank model based on the dual-core
norm [43]. They decomposed the matrix into the product of
two low-rank matrices, and used the decomposition matrix
as a constraint. The kernel norm is used to approximate the
minimized rank of the original matrix. Experiments show
that the low-rank Grassmann manifold model based on the
Double-Tensor Nuclear norm can make better use of the local
geometric structure of the data space. Therefore, in order to
seek the balance between efficiency and accuracy, we use
the double nuclear norm, a kind of schatten-p-quasi-norm, to
approximate rank minimization.

Based on the above analysis, we rewrite the objective
function of Eq.14, then represent the double nuclear norm-
based low-rank model as below:

min
X,A,B

‖A‖∗ + ‖B‖∗

s.t. X = AB
(15)

where ‖A‖∗ + ‖B‖∗ is the double nuclear norm of X and
A ∈ Rm×r, B ∈ Rr×n. r is the expected rank of X , and r <
min(m,n). Since it is difficult for a two-dimensional infrared
image matrix to retain all the priors between the background
and the target, to make full use of this prior, we use continuous
frames of pictures as the input image tensor to preserve the
structural features as much as possible, which can improve
the accuracy of infrared small target detection. According to
the definition of a tensor, a tensor composed of a plurality
of continuous two-dimensional matrices can be represented
by the unfolding matrix (GB(i)) of each mode. These mode-
expanded matrices are considered low-rank matrices defined
as:

rank(GB(i)) < k(i) (16)

where GB(i) is the i-th mode expansion of tensor GB , k(i)
are constants determined by the matrix, which represent the

unfolding of the tensor. Applying the double nuclear norm to
the tensor model, Eq.15 can be written as:

min
GB ,A,B

3∑
i=1

(‖Ai‖∗ + ‖Bi‖∗)

s.t. GB(i) = AiBi,

(17)

C. The Noise GN

In our model, we assume that the noise is random, and∥∥GN∥∥
F
≤ δ, δ > 0. Thus, we can obtain:∥∥GD −GT −GB∥∥

F
≤ δ (18)

where ‖g‖F is the Frobenius norm and
∥∥GN∥∥

F
=√∑

ij

(GN )
2
ij . In this tensor model, we can write the noise

estimate as: ∥∥GD − GT − GB∥∥
F
≤ δ (19)

The process of our model is shown in Fig. 3. First, we
construct a tensor based on the original input infrared images.
Second, to restore the target image, we enforce the top-
hat regularization on the input images. Third, to restore the
background image, we apply a double nuclear norm to the
low-rank matrix model. Our model can be efficiently solved by
ADMM. We present the details of our algorithm in Algorithm
1.

IV. THE ALGORITHM FOR SMALL TARGET DETECTION

A. Model Formulation

In this part, we introduce our infrared small target detection
model. We assume that the noise in the images is random.
Therefore, the model can be written as:

min
GB ,GT

α

3∑
i=1

ui (‖Ai‖∗ + ‖Bi‖∗) + βM
(
GT
)

s.t. GB(i) = AiBi,
∥∥GD − GT − GB∥∥

F
≤ ε

(20)

where GD, GN , GB , and GT are the original infrared image,
the noise image, the background image, and the target image,
ui is the weight of i-th dimension in the tensor, α, β and ε
are constants, and Ai and Bi represent the expected rank of
the background image. M

(
GT
)

is the morphological regular-
ization term.

Model (20) can be transformed into:

min
GN ,GB ,GT

1

2

∥∥GN∥∥2
F

+ α

3∑
i=1

ui (‖Ai‖∗ + ‖Bi‖∗) + βM
(
GT
)

s.t. GT + GB + GN = GD,GB = Yi,Yi(i) = AiBi
(21)
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Fig. 3. The algorithm of our proposed model

We solve the eq.21 by the alternating direction multiplier
method (ADMM); the model can be written as:

L
(
GN ,GB ,GT , Ai, Bi

)
=

1

2

∥∥GN∥∥2
F

+α

3∑
i=1

ui (‖A‖∗ + ‖B‖∗) + βM
(
GT
)

−
〈
GZ ,GT + GB + GN − GD

〉
−

3∑
i=1

〈
Si,GB − Yi

〉
−

3∑
i=1

〈
Li, AiBi − Yi(i)

〉
+

3∑
i=1

ρi
2

∥∥GB − Yi∥∥2F
+
a

2

∥∥GT + GB + GN − GD
∥∥2
F

+

3∑
i=1

σi
2

∥∥AiBi − Yi(i)∥∥2F

(22)

where Li and Si are Laplace factors and ρi and σi are penalty
factors.

B. Optimization

In this section, we adopt ADMM to solve the problem in
detail.

1) Update noise

We assume that other variables are fixed, and the noise
solution is described below:

min
GN

1

2

∥∥GN∥∥2
F
−
〈
GZ ,GT + GB + GN − GD

〉
+
a

2

∥∥GT + GB + GN − GD
∥∥2
F

(23)

(23) can be rewritten as:

min
GN

1

2

∥∥GN∥∥2
F

+
a

2

∥∥∥∥GT + GB + GN − GD − G
Z

a

∥∥∥∥2
F

(24)

We update the noise by:

GN =
1

a+ 1

(
GZ − a

(
GT + GB − GD

))
(25)

2) Update Target

We assume that other variables are fixed, and the solution
of the target can be described below:

min
GT

βM
(
GT
)
+
a

2

∥∥∥∥GT + GB + GN − GD − G
Z

a

∥∥∥∥2
F

(26)

Here, we write the corresponding iteration as:

GT (n+1) =GD(n+1) +
GZ

a
− GN(n+1) − GB(n+1)

− β

a

(
δ

δ (GT )
M
(
GT
))
GT (n)

(27)

where
(

δ

δ (GT )
M
(
GT
))

is the subgradient of the structural

element operator. We use the ring top-hat operator, so this
subgradient can be written as follows:

δ

δ (GT )
M
(
GT
)

=G − δ

δ (GT )
EEm

(
DRE

(
GT
))

=G −
δDRE

(
GT
)

δ (GT )

δEEm

(
DRE

(
GT
))

δDRE (GT )

(28)

We define the subgradient of the dilated and eroded oper-
ations as δDRE,j/δti and δEEm,j/δti, respectively, and the
subgradient of the j-th element of the i-th column can be
calculated as:

δDRE,j

δpi
=

{
1, if pi = maxg∈(REguide )(j) {pg}
0, if pi < maxg∈(REguide )(j) {pg}

(29)

δEEm,j

δpi
=

{
1, if pi = ming∈(Emguide )(j) {pg}
0, if pi > ming∈(Emguide )(j) {pg}

(30)

where RE and Em store the pixel values of the coverage area
in REguide (j) and Emguide (j), respectively.

We first dilate the image and then erode the
dilated image. We define the dilated image as
DS1

(X) = [ds1,1, ds1,2, L, ds1,mn]. Additionally,
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(δEEm

(
DRE

(
GT
))

)/(δDRE

(
GT
)
) can be defined as

follows:

δEEm

(
DRE

(
GT
))

δDRE (GT )
=
δEEm,j

δdRE,i

=

{
1, if dRE,i = min r ∈ (Emguide ) (j) {ds1,r}
0, if dRE,i > min r ∈ (Emguide ) (j) {ds1,r}

(31)

With (28), (29), (30) and (31), we can calculate GT (n+1).

3) Update Background

If the other variables are fixed, the solution of the back-
ground can be written as follows:

min
GB

a

2

∥∥∥∥GT + GB + GN − GD − G
Z

a

∥∥∥∥2
F

+

3∑
i=1

ρi
2

∥∥∥∥GB − Yi − Siρi
∥∥∥∥2
F

(32)

We update the background by:

GB =
a
(
GD − GT − GN

)
+ GZ +

∑3
i=1 (ρiYi + Si)

a+ ρ1 + ρ2 + ρ3
i = 1, 2, 3

(33)

4) Update others

If GD, GT , GB , GN are fixed, the solution of the double
nuclear norm in eq.(22) can be described below:

min
Ai,Bi,Yi

αui (‖Ai‖∗ + ‖Bi‖∗)−
〈
Si,GB − Yi

〉
+
ρi
2

∥∥GB − Yi∥∥2F − 〈Li, AiBi − Yi(i)〉
+
σi
2

∥∥AiBi − Yi(i)∥∥2F
(34)

We can solve (34) by ADMM. First, we introduce two
auxiliary variables Ai = Âi and Bi = B̂i; then, (34) can
be rewritten as:

min
Ai,Bi,Yi

αui (‖Ai‖∗ + ‖Bi‖∗)−
〈
Si,GB − Yi

〉
+
ρi
2

∥∥GB − Yi∥∥2F − 〈Li, AiBi − Yi(i)〉
+
σi
2

∥∥AiBi − Yi(i)∥∥2F
s.t. Ai = Âi, Bi = B̂i, i = 1, 2, 3

(35)

We use the augmented Lagrangian method as follows:

La
(
Ai, Bi, Âi, B̂i,Yi

)
=αui

(
‖Âi‖∗ + ‖B̂i‖∗

)
−
〈
Si,GB − Yi

〉
+
ρi
2

∥∥GB − Yi∥∥2F
−
〈
Li, AiBi − Yi(i)

〉
−
〈
λi, Âi −Ai

〉
−
〈
βi, B̂i −Bi

〉
+
σi
2

∥∥AiBi − Yi(i)∥∥2F +
ωi
2

∥∥∥Âi −Ai∥∥∥2
F

+
ηi
2

∥∥∥B̂i −Bi∥∥∥2
F

(36)
where i = 1, 2, 3, λ and β are Lagrangian multipliers, and ω
and η are penalty parameters. In this section, Yi, Ai, Âi, Bi,
B̂i can be solved by the following alternating iterations, and
n denotes the current iteration step.

4.1) Update Âi:

min
Âi

αui

∥∥∥Âi∥∥∥
∗

+
ωi
2

∥∥∥∥Âi − (Ai +
λi
ωi

)∥∥∥∥2
F

i = 1, 2, 3

(37)

Âi
n+1

= U
(n)
1 max

{
Σ

(n)
1 − αu

(n)
i

ω
(n)
i

, 0

}
V

(n)T

1 (38)

The parameters U (n)
1 ,

∑(n)
1 , and V

(n)
1 are generated from

the singular value decomposition (SVD) of Ai + λi

ωi
.

4.2) Update B̂i:

min
B̂i

αui

∥∥∥B̂i∥∥∥
∗

+
ηi
2

∥∥∥∥B̂i − (Bi +
βi
ηi

)∥∥∥∥2
F

i = 1, 2, 3

(39)

The minimizer:

B̂i
n+1

= U
(n)
2 max

{
Σ

(n)
2 − αu

(n)
i

η
(n)
i

, 0

}
V

(n)T

2 (40)

where U
(n)
2 ,

∑(n)
2 and V

(n)
2 are obtained via the SVD of

Bi + βi

ηi
.

4.3) Update Ai:

ωi
2

∥∥∥∥Ai − Âi +
λi
ωi

∥∥∥∥2
F

+
σi
2

∥∥∥∥AiBi − Yi(i) +
1

σi
Li

∥∥∥∥2
F

i = 1, 2, 3

(41)

The minimizer:

A
(n+1)
i =

1

σiωi

(
P

(n)
1 + P

(n)
2 B

(n)T
i

)(
I1 +B

(n)
i B

(n)T
i

)−1
(42)

Here, P (n)
1 = Âi

(n)
− λ(n)i ω

(n)
i , P (n)

2 = Yi(i)(n) +
1

σi
L
(n)
i ,

and I1 ∈ Rr×r is the identity matrix.
4.4) Update Bi:

min
Bi

ηi
2

∥∥∥∥Bi − B̂i +
βi
ηi

∥∥∥∥2
F

+
σi
2

∥∥AiBi − Yi(i) + Li
∥∥2
F

i = 1, 2, 3

(43)

The minimizer:

B
(n+1)
i =

1

σiηi

(
A

(n)T
i A

(n)
i + I1

)−1(
A

(n)T
i P

(n)
2 + P

(n)
3

)
(44)

Similarly, P (n)
3 = B̂i

(n)
− β

(n)
i

η
(n)
i

4.5) Update Yi:

min
Yi

ρi
2

∥∥∥∥Yi − (GB − Siρi
)∥∥∥∥2

F

+
σi
2

∥∥∥∥Yi(i) − (AiBi − Li
σi

)∥∥∥∥2
F

i = 1, 2, 3
(45)

The minimizer:

Yi =

σi

(
GB − Si

ρi

)
+ ρifoldi

(
AiBi −

Li
σi

)
ρi + σi

(46)

The mode-i unfolding matrix TD(i) of tensor TD can be
transformed back to the tensor by TD = foldi

(
TD(i)

)
, here

i = 1, 2, 3.
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Algorithm 1 solution for proposed model
1: Step 1: Input: GD
2: Step 2: Initialize: GB = GD,Yi = GB ,GN = 0,GT = 0,GZ = 1
3: Step 3: Do ring top-hat transformation on GD to achieve the δDRE,j

δpi
and δEEm,j

δdRE,i

4: Step 4: While

∣∣∣∣GT (n)
∣∣∣∣
F∣∣∣∣GT (n+1)
∣∣∣∣
F

< 1 (not converge) or iter < maxiter do

Step 4.1: GN(n+1) =
1

a+ 1

(
GZ − a

(
GT + GB − GD

))
Step 4.2: GT (n+1) = GD(n+1) +

GZ

a
− GN(n+1) − GB(n+1) − β

a

(
δ

δ (GT )
M
(
GT
))
GT (n)

Step 4.3: GB(n+1) =
a
(
GD − GT − GN

)
+ GZ +

∑3
i=1 (ρiYi + Si)

a+ ρ1 + ρ2 + ρ3
for i = 1 to 3 do

Step 4.4: Âi
(n+1)

= U
(n)
1 max

{
Σ

(n)
1 − αu

(n)
i

ω
(n)
i

, 0

}
V

(n)T

1

Step 4.5: B̂i
(n+1)

= U
(n)
2 max

{
Σ

(n)
2 − αu

(n)
i

η
(n)
i

, 0

}
V

(n)T

2

Step 4.6: A
(n+1)
i = 1

σiωi

(
P

(n)
1 + P

(n)
2 B

(n)T
i

)(
I1 +B

(n)
i B

(n)T
i

)−1
Step 4.7: B

(n+1)
i = 1

σiηi

(
A

(n)T
i A

(n)
i + I1

)−1(
A

(n)T
i P

(n)
2 + P

(n)
3

)
Step 4.8: Y(n+1)

i =

σi

(
GB − Si

ρi

)
+ ρifoldi

(
AiBi −

Li
σi

)
ρi + σi

end for
Step 4.9: GZ(n+1) = GZ(n) − a

(
GN(n+1) + GB(n+1) + GT (n+1) − GD(n+1)

)
5: Step 5: Output: GB , GT

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the performance of our method
with that of other baseline methods. First, we introduce the
datasets and weighted structural element we used. Then, we
discuss the baseline methods and the evaluation metrics used
for comparison in this paper. Finally, we demonstrate the
performance on real image sequences.

A. Datasets and Parameters

In this section, we analyse the characteristics of six real
image sequences and discuss the sharpness of the selected
structural elements. Then, we compare the detection perfor-
mance of the traditional structural elements and our structural
elements in these six image sequences.

Datasets: Considering the diversity of targets and the com-
plexity of the background in practical applications, we select
six groups of sequences for the experiment, each of which
is composed of multiple images. In sequence 1, the target to
be detected is a regular-shaped ship travelling far away under
a blurred sea-sky background. In sequence 2, the target is a
helicopter with a regular shape flying in a complex sky. In
sequence 3, the detected target is a stationary aircraft with a
constantly changing shape surrounded by clouds. In sequence
4, the target to be detected is a ship with a regular shape at
close range, sailing in a fuzzy sea and sky background. In
sequence 5, the target is a regular-shaped truck, driving on
a long bridge, and the edges of the body are almost blurred.
In Sequence 6, the target is a ship moving rapidly against a

background of mixed sea and sky, with its shape constantly
changing. More information about each sequence is presented
in Table II.

To observe the real image sequence intuitively, we select
a frame from each sequence and display it, its 3D map and
the detection results for six original images obtained by our
method in Fig.4.

TABLE II
THE INFORMATION OF REAL IMAGE SEQUENCES

Frames Image size Target size
seq1 997 320× 196 4× 4 ∼ 5× 5
seq2 598 320× 196 4× 6 ∼ 5× 6
seq3 372 128× 128 5× 6 ∼ 5× 8
seq4 998 128× 128 4× 4 ∼ 5× 5
seq5 69 320× 240 3× 4 ∼ 4× 5
seq6 787 128× 128 6× 10 ∼ 17× 43

Parameter Settings: In this paper, RE is the ring structural
element, which is determined by EO and Ei. To balance the
goal and the background, EO is one or two pixels larger than
the target, and Ei is one or two pixels smaller than the target.
For sequences with targets that change in size, we select the
structural element based on the smallest target.

To facilitate the construction of structural elements, we
select rectangular rather than circular structural elements, as
shown in Fig.5. The value of the structural element is defined
as:

vij =
(pij − E)(C − E)

D + eps
+ 1 (47)
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Fig. 4. Real images and detected results. (a1)-(a6) are the infrared images of each sequence, (b1)-(b6) are the corresponding three-dimensional gray distributions,
and (c1)-(c6) are the corresponding detection results of our method.

Fig. 5. Our proposed structural elements.

where vij is the value of each pixel in the structural element.
We define y as a small image that belongs to GD to be
processed by the current structural element. pij is the value
of each pixel in y, E is the mathematical expectation of y, C
is the value of the centre pixel in y, and D is the variance of
y. We define the size of the structural elements as m× n, so
1 ≤ i ≤ m, and 1 ≤ j ≤ n.

B. Evaluation Metrics and Baseline Methods

Evaluation Metrics. To illustrate the superiority of our
method, we choose five metrics: background suppression fac-
tor (BSF), signal-to-clutter ratio gain (SCRG), probability of
detection (Pd), false alarm rate (Fa) and area under the curve
(AUC).

BSF =
standard deviation of input image

standard deviation of output image
(48)

SCRG =

average value of the pixels in input image
standard deviation of input image

average value of the pixels in output image
standard deviation of output image

(49)

In small target detection performance evaluation, BSF and
SCRG are often used to evaluate the performance of suppres-
sion of the background and the enhancement effect on small
targets, respectively. A larger BSF indicates better suppres-
sion of the background, and a larger SCRG indicates better
enhancement of small targets.

Pd =
number of correctly detected targets

number of actual targets to be detected
(50)

Fa =
number of falsely detected targets
number of images to be detected

(51)

The key metrics used to evaluate the performance of small
target detection methods are Pd and Fa. A larger Pd and
smaller Fa indicate that the method can detect small targets
more accurately. In this paper, we compare the position of the
brightest pixel in the real target and the detected target. If the
distance does not exceed 5 pixels, we consider the target to
be detected.

Fig. 7. The BSF of different methods.
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Fig. 6. 3D gray distribution of detection results from different baseline methods. (a1)-(a6) WLDM, (b1)-(b6) DSBM, (c1)-(c6) IPM, (d1)-(d6) STSA, (e1)-(e6)
MPCM, (f1)-(f6) NTHT, (g1)-(g6) NVMD, (h1)-(h6) TCTHR and (i1)-(i6) our method.
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Fig. 8. The SCRG of different methods.

AUC, the area under the receiver operating characteristic
(ROC) curve, is used to compare different classification mod-
els. Its value is between 0-1. A larger AUC means the method
has better performance. The abscissa of the ROC curve is Fa,
and vertical coordinate is Pd.

Baseline Methods. Next, we introduce several baseline
methods that we use for comparison.

• Weighted local difference measure (WLDM) [14]:
WLDM detects small targets with a weighted local dif-
ference measure map.

• Directional saliency-based method (DSBM) [45]:
DSBM uses an SODD filter to decompose the original
image into two orthogonal direction groups. It uses PFT
to compute the directional saliency maps and obtains the
target-saliency map by saliency fusion.

• Infrared patch image model (IPM) [37]: IPM trans-
forms the input image into an infrared patch image model,
and realizes small target detection by solving the problem
of low-rank and sparse tensor recovery.

• Spatio-temporal saliency approach (STSA) [44]: STSA
obtains the saliency map in time and space by means of a
local adaptive contrast operation and combines the motion
consistency characteristic of the moving target to realize
small target detection.

• Multiscale patch-based contrast measure (MPCM)
[8]: MPCM divides the image into multiscale images,
and forms the final contrast image according to the
maximum value of the local contrast pixels between
different scales to enhance the contrast between the target
and background.

• New top-hat transform (NTHT) [36]: NTHT changes
the classic structural elements into two different but
related structural elements to compare the differences
between the surrounding area and the target.

• Non-negativity-constrained variational mode decom-
position (NVMD) [46]: TCTHR uses the idea of ten-
sor completion, adds morphological regularization con-
straints to the objective function, and uses schatten-p
norm approximate rank minimization to achieve small
target detection.

• Tensor Completion With Top-Hat Regularization (TC-
THR) [47]: TCTHR decomposes the input image into
several separate band-limited signals and uses the non-
negative constraint. The infrared target is extracted from
the corresponding target sub-region.

C. Detection Results

In this section, we present the 3D gray distribution of de-
tection results obtained through different methods to illustrate
the superior performance of our method.

We compare WLDB [14], DSBM [45], IPM [37], STSA
[44], MPCM [8], NTHT [36], NVMD [46], TCTHR [47]
and our method on six sequences of real images. To show
the experimental results of different methods intuitively, we
display these results in Fig.6, corresponding to the pictures
in Fig.4, in the form of 3D distributions. Our method has
the least clutter for all six real image sequences, especially
for seq5, which indicates that our method has a stronger
suppression effect on the background. Compared with NVMD,
which uses the top-hat transformation, our method greatly
enhances the background suppression effect, which indicates
that the recovery part of the low-rank tensor plays an important
role. Compared with IPM, which just uses low-rank matrix
recovery, our method is more effective on background suppres-
sion, which indicates that the morphological regularization and
double nuclear norm also enhance the detection performance.

D. Performance Analysis

In this section, we use several metrics, including SCRG,
BSF, Pd, Fa, ROC plot and AUC values, to compare the
performance of our method with that of other methods.

First, we compare the BSF and SCRG of different methods
as column charts in Fig.7 and Fig.8. The SCRG of our method
are the largest for all six sequences, and the BSF of our
method are not always the largest, but it is not much different
from the largest, which indicates that our method has a better
enhancement effect on the target and a stronger suppression
effect on the background. Therefore, from the perspective of
SCRG and BSF, our method performs the best on these six
real image sequences.

We also calculate the corresponding Pd and Fa in Table III,
and plot the ROC in Fig. 9. The corresponding AUC of each
method is recorded in Table IV. Our proposed method always
has the highest Pd and lowest Fa, except on seq4 and seq6,
and the AUC value of our method is always the largest, which
indicates that our method can detect the whole target better. By
using the weighted ring top-hat structural element regulization
and double nuclear norm, we take full advantage of the dif-
ferences between the target and surrounding background and
improve the rank minimization, so we achieve the maximum
Pd and AUC and the smallest Fa. In addition, other methods
cannot maintain a satisfactory detection rate and false alarm
rate for different sequences. Therefore, our method detects the
target most accurately and completely in these six sequences.

Finally, we compare the performance of traditional struc-
tural elements and weighted ring structural elements on six
sequences of real images and calculate the Pd and Fa values,
which are recorded in Table VI. Weighted ring structural
elements yield better detection performance, which proves that
weighted ring structural elements use the difference informa-
tion between the target and its surrounding background more
effectively.
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TABLE III
PD AND FA OF DIFFERENT METHODS

WLDM IPM DSBM STSA MPCM NTHT NVMD TCTHR Our Method
Pd Fa Pd Fa Pd Fa Pd Fa Pd Fa Pd Fa Pd Fa Pd Fa Pd Fa

seq1 0.831 0.170 0.851 0.149 0.864 0.179 0.857 0.143 0.858 0.142 0.845 0.245 0.757 0.243 0.859 0.141 0.877 0.123
seq2 0.445 0.555 0.334 0.666 0.729 0.339 0.363 0.637 0.726 0.274 0.507 0.684 0.393 0.607 0.799 0.201 0.808 0.192
seq3 0.884 0.116 0.704 0.296 0.978 0.102 0.973 0.027 0.941 0.059 0.938 0.159 0.847 0.153 0.949 0.051 0.981 0.019
seq4 0.846 0.154 0.957 0.043 0.977 0.056 0.990 0.010 0.974 0.026 0.966 0.123 0.966 0.034 0.962 0.038 0.980 0.019
seq5 0.174 0.826 0.783 0.217 0.754 0.261 0.130 0.870 0.826 0.174 0.159 0.855 0.290 0.710 0.812 0.188 0.913 0.087
seq6 0.431 0.569 0.390 0.610 0.726 0.296 0.665 0.335 0.705 0.295 0.563 0.518 0.386 0.614 0.813 0.186 0.762 0.238

TABLE IV
THE VALUES OF AUC OBTAINED BY DIFFERENT METHODS

WLDM IPM DSBM STSA MPCM NTHT NVMD TCTHR Our
Method

seq1 0.9799 0.9775 0.9662 0.9778 0.9487 0.9818 0.9511 0.9687 0.9949
seq2 0.9752 0.9572 0.9815 0.9752 0.9626 0.9818 0.9599 0.9878 0.9976
seq3 0.9878 0.9701 0.9819 0.9846 0.9585 0.9919 0.9989 0.9998 0.9999
seq4 0.9945 0.9801 0.9925 0.9966 0.9633 0.9972 0.9875 0.9615 0.9998
seq5 0.9843 0.9979 0.9814 0.9897 0.9208 0.9915 0.9891 0.9429 0.9996
seq6 0.9871 0.9933 0.5678 0.9945 0.7681 0.9512 0.8537 0.9881 0.9998

TABLE V
THE VALUES OF SCRG AND BSF OBTAINED THROUGH USING DIFFERENT VALUE OF β .

Sequence β.=98 β.=95 β.=90 β.=85 β.=75 β.=65
BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG

seq1 2.631 3.676 4.234 13.233 12.427 23.471 6.366 16.471 1.401 3.839 0.532 2.890
seq2 5.429 7.083 7.026 18.631 5.572 4.049 2.548 1.275 2.259 1.125 2.059 1.037
seq3 7.939 6.041 6.621 3.762 7.914 6.014 8.736 15.367 5.268 2.473 1.563 1.371
seq4 3.265 6.598 5.596 10.763 10.325 14.286 6.482 16.291 2.514 4.865 2.123 2.563
seq5 1.241 9.542 6.417 10.596 9.524 17.634 3.258 2.537 2.014 1.897 1.009 1.569
seq6 5.653 11.253 8.634 18.210 3.278 6.261 2.479 3.569 1.230 3.541 1.084 3.294

Fig. 9. ROC curves of nine methods for the six sequences. (a) seq1. (b) seq2. (c) seq3. (d) seq4. (e) seq5. (f) seq6.
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TABLE VI
THE DETECTION RESULTS THROUGH DIFFERENT TOP-HAT ELEMENTS.

Sequence
Classical Weighted ring
top− hat top− hat
Pd Fa Pd Fa

seq1 0.461 0.540 0.877 0.123
seq2 0.406 0.594 0.808 0.192
seq3 0.957 0.043 0.981 0.019
seq4 0.701 0.299 0.981 0.019
seq5 0.029 0.971 0.913 0.087
seq6 0.733 0.267 0.762 0.238

E. Parameter analysis

In this paper, the parameter β is the coefficient of the
morphological regularization term in the objective function
we need to optimize. It represents the influence of the mor-
phological top hat transformation we use on the detection
effect of our algorithm. If β is large, the morphological
operation would have a larger weight for our detection, and
vice versa, the weight is smaller. Therefore, to achieve a better
target detection effect, we set different β values and conduct
comparative experiments if the values of β are taken as β=98,
95, 90, 85, 75 and 65. We have listed the specific indicators
in Table V.

Here, we can clearly see the values of BSF and SCRG
when using different β values for different sequences. For
sequence 1, sequence 4 and sequence 5, when the β value is
90, the values of BSF and SCRG tend to be the maximum, for
sequence 2 and sequence 6, when the β value is 95, the values
of BSF and SCRG tend to be the maximum, for Sequence 3,
the corresponding β value is 85.In the above we mentioned
that the larger the BSF, the better the background suppression
effect, and the larger the SCRG, the better the enhancement
effect of small targets.Therefore, for the overall effect of the
algorithm, we set the parameter β to 90.
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Fig. 10. The convergence analysis of our proposed algorithm.

F. Complexity and Convergence Analysis

The computational complexity and Convergence in our
experimental environment are discussed in this section. Ac-
cording to the optimization, the solution of the target and the
solution of the double nuclear norm constitute the majority of
the computational complexity of the model.

We define the size of the images as X × Y , and x and y
are the rows and columns of the mode-3 unfolding. The ring

structural element determines the solution of the target. The
structure element solution is computed in O(X × Y ), and the
dilation operation and erosion operation are both computed
in O(X × Y ). Therefore, the computational complexity of
the target solution is O(X × Y ). The complexity of the
double nuclear norm solution is composed mainly of SVD
decomposition with a complexity of O(x×y). Considering that
there are n iterations in the process of small target detection,
the computational complexity of our model is approximately
O(n×x×y). All the experiments in this paper are conducted
on a laptop computer with an Intel Core i5-6300 CPU and
12 GB RAM using MATLAB R2016a. Taking sequence 3 as
an example, approximately 2.77 s are required for a frame
picture to realize infrared small target detection. Furthermore,
the convergence analysis is shown in Fig. 10, after many
iterations, the value of the objective function tends to be stable,
indicating that our method can finally find an optimal solution.
Moreover, the number of iterations of the objective function
approaching the optimal value is not very large, which proves
that our model can easily achieve the convergence .

VI. CONCLUSION

In this paper, a model based on the double nuclear norm
and ring weighted structural elements is proposed to solve the
infrared small target detection problem. The model combines
the characteristics of the low-rank tensor and prior knowledge
of structural elements and achieves great performance in in-
frared small target detection. Experiments show that the model
can maintain a low false alarm rate and high accuracy for
different targets in different backgrounds, and it can improve
the background suppression and target enhancement.
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