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A B S T R A C T

This paper presents a method that can be used to obtain the motion transfer functions of a ship when the
detailed hull geometry is not available. In the method, any parameterised transfer function can be optimised
from a data-driven approach that compares a measured response spectrum and the corresponding theoretical
spectrum based on the combination of transfer function and wave spectrum. The established method facilitates
association of 95% confidence bands which are useful to indicate a level of trust. The proposed method is
evaluated on a conceptual level using both simulated and in-service measurements, and promising results are
obtained.
1. Introduction

The seakeeping performance of ships is often evaluated by use of
transfer functions, describing how waves translate into motions and
other derived responses for a given frequency (or wave length) and
wave encounter angle. In general, transfer functions are estimated from
the knowledge of the ship geometry, and additionally they depend
on the loading condition and forward speed. They can be computed
by solving the equations of motions for the ship, often on the basis
of potential flow theory by formulating radiation-diffraction codes via
3D panel methods or strip theory (Salvesen et al., 1970), typically
with little, if any, degradation in accuracy by application of strip
theory (Parunov et al., 2022). Notwithstanding, in either case, the
details of the geometry are required which means that the hull lines
must be available. However, in early stages of ship design projects, the
lines are not available and, in case of existing, in-service ships, the
hull lines are not necessarily to the disposition of the ship operator
or, say, third-party performance optimisation companies. With this
argument, the tuning of semi-analytical transfer functions, so-called
closed-form expressions (Jensen et al., 2004), was proposed by Nielsen
et al. (2021), noticing that the closed-form expressions take as basic
input only the main dimensions (length, breadth, draught) of the ship.
In the method, a correction coefficient was established through spectral
analysis, thus leading to a correction coefficient explicitly depending
on wave frequency and encounter angle for given operational con-
ditions (draught, forward speed, etc.). It was shown that the use of
the correction coefficient could improve predictions of the particular
response that was initially ‘‘tuned’’. One concern, however, evident
from the application to data, was a nonphysical saw-toothed behaviour

∗ Corresponding author at: DTU Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
E-mail address: udn@mek.dtu.dk (U.D. Nielsen).

considering the correction coefficient’s variation with frequency, also
observed by Mounet et al. (2022b). This spurious behaviour can be mit-
igated to some extent by averaging over appropriately large amounts
of data/samples via elaborate postprocessing, compromising the very
idea to have a simple and practical method offering reliable response
predictions based on semi-analytical, closed-form transfer functions.

1.1. Scope and novelty

The present study continues along the lines of Nielsen et al. (2021),
but herein it is suggested to optimise directly the governing parame-
ters of the closed-form transfer functions developed by Jensen et al.
(2004). In the original work, the set of closed-form expressions apply
to a box-shaped vessel, and the ship’s physical counterparts of length
(𝐿𝑝𝑝), breadth (𝐵), draught (𝑇 ), etc. constitute the fundamental input
parameters. Qualitatively, the closed-form transfer functions prescribe
the wave-induced motions in reasonable agreement with linear strip
theory (Jensen et al., 2004), but quantitatively they are not neces-
sarily a good match in their original form, as the transfer functions’
amplitude drops to zero too early when comparing to potential flow
codes (Mounet et al., 2022a; Nielsen et al., 2021). Rather than relying
on the true physical dimensions of the ship, this study considers the
parameterised transfer functions (Jensen et al., 2004) to depend on a
set of parameters with no (true) physical resemblance considering the
real ship. Thus, the values of the basic input parameters are computed
from an optimisation established from spectral analysis equating the
measured response spectrum with the corresponding theoretical spec-
trum, in a manner similar to the earlier study (Nielsen et al., 2021). It is
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believed, however, that the present study carries the inherent simplicity
all the way through, also in the postprocessing. In addition, the study
proposes the inclusion of the 95% confidence bands on the computed
transfer functions.

1.2. Composition

In addition to the introduction, the paper contains five sections:
Section 2 outlines the necessary theory and explains the methodology
used in the study. Section 3 presents the first set of results obtained
from a case study considering simulated data, whereas Section 4 shows
the potential of the developed method when it is applied to full-scale,
in-service data. The two sections dealing with the results include spe-
cific discussions, while more general discussions and suggested further
work are presented in Section 5. Finally, Section 6 makes concluding
remarks.

2. Theory and methodology

2.1. Basic information and fundamental assumptions

The experienced seaway is the result of a short-crested wave system,
and resulting processes are assumed to be stationary and ergodic.
Although changing environmental and operational conditions compro-
mise this assumption, a limitation to, say, 30 min time windows means
that the assumption can be met for many practical purposes.

The directional wave spectrum 𝐸(𝜔0, 𝜇) fully characterises the en-
ergy density of the wave system; 𝜔0 is the circular wave frequency
[rad/s] and 𝜇 [deg] is the direction where the energy comes from.
The index 0 on 𝜔0 is used to emphasise that the wave spectrum is a
function of the intrinsic, and absolute, frequency. In the analysis of in-
service data (Section 4), the directional wave spectra obtained from the
ERA5 database (Hersbach et al., 2021) are used, but, in principle, 2D
wave spectra obtained from any available source could be considered;
obviously with the requirement that the source must be reliable both
in terms of accuracy and in terms of availability and accessibility at the
actual geographical position, in time and space, of the studied ship.

In principle, any global wave-induced ship response 𝑅 can be con-
sidered; for instance, one of the 6 DOF motion components. The cor-
responding transfer function is 𝛷𝑅(𝜔0, 𝛽); 𝛽 [deg] is wave encounter
angle, i.e. the angle between the direction of the incident wave and
the ship’s longitudinal axis where 𝛽 = 180 deg corresponds to head
sea. Onwards, 𝛽 will also be termed the relative wave direction. The
transfer function depends implicitly on operational parameters such as
the ship’s forward speed 𝑈 and the loading condition represented by
draught 𝑇 .

Various numerical methods (closed-form expressions, strip theory,
D panel codes, . . . ) can be used to compute estimates of transfer
unctions, noticing that irrespectively of the method, the use of transfer
unctions assumes a linear relationship between waves and the induced
esponses.

.2. Parameterised transfer functions

In this study, the closed-form transfer functions derived by Jensen
t al. (2004) are considered; noticing that herein they are referred to by
arameterised transfer functions, in many cases simply abbreviated PTF.
n the original work, heave, pitch, and roll are studied, but the present
ork focuses on pitch exclusively although the developed method is
eneric and can easily be applied to the other responses. The following
erivation is comparable to the original study (Jensen et al., 2004)
nd is included here to illustrate how the transfer function of pitch
s parameterised. Note that, in a complete and general form, transfer
unctions are complex-valued, or equivalently with two parts being the
odulus and the argument. Jensen et al. (2004) considers only the

‘frequency response function’’, i.e. the modulus of the transfer function,
ut (Mansour et al., 2004) derive also the argument for some of the
esponses although this is not studied in the following.
2

2.2.1. Modulus of pitch
The ship hull is approximated by a rectangular box with dimensions

𝐿×𝐵×𝑇 for length, breadth, and draught, respectively; hence, there is
no coupling between heave and pitch. The equation of motion for pitch
𝜃 is,

2
𝑘𝑤𝑇
𝜔2
0

𝜃̈ + 𝐴2

𝑘𝑤𝐵𝛼3𝜔0
𝜃̇ + 𝜃 = 𝑎𝐺 sin(𝜔𝑒𝑡) (1)

Here 𝑎 is the wave amplitude, 𝑘𝑤 =
𝜔20
𝑔 is the wave number, assuming

deep water, 𝑔 is the acceleration of gravity, and 𝑡 is time. Differentiation
with respect to time is denoted by a dot. The Doppler shift is introduced
through the parameter 𝛼 defined by,

𝛼 = 1 − 𝐹𝑛
√

𝑘𝑤𝐿 cos 𝛽 (2)

and thus 𝜔𝑒 = 𝛼𝜔0 is the frequency of encounter, where the Froude
number 𝐹𝑛 = 𝑈∕

√

𝑔𝐿.
The shape effect of the hull geometry is accounted for alone by the

block coefficient 𝐶𝑏. It can be included most appropriately by simply
taking the breadth as:

𝐵 = 𝐵0𝐶𝑏 (3)

where 𝐵0 is the maximum waterline breadth. Thus, the ship is repre-
sented by a homogeneously loaded box-shaped barge with the beam
modified so that the total mass of the ship equals the buoyancy of the
ship.

In the following, note that all parameters depend explicitly on the
absolute frequency 𝜔0 introduced via the Doppler shift, although this
is not necessarily specified.

The sectional hydrodynamic damping 𝐴 is modelled by the dimen-
sionless ratio between the incoming and the diffracted wave amplitudes
through the following approximation, Yamamoto et al. (1986):

𝐴 = 2 sin
( 1
2
𝑘𝑤𝐵𝛼

2
)

exp(−𝑘𝑤𝑇𝛼2) (4)

The forcing function 𝐺 is given by,

𝐺 = 𝜅𝑓 24
(𝑘𝑒𝐿)2𝐿

(

sin
(

𝑘𝑒𝐿
2

)

−
𝑘𝑒𝐿
2

cos
(

𝑘𝑒𝐿
2

))

(5)

where

𝑘𝑒 = |𝑘𝑤 cos 𝛽| (6)

𝑓 =

√

(1 − 𝑘𝑤𝑇 )2 +
(

𝐴2

𝑘𝑤𝐵𝛼3

)2
(7)

The Smith correction factor 𝜅 is approximated by

= exp(−𝑘𝑤𝑇 ) (8)

Finally, the solution to Eq. (1), in terms of the modulus of the pitch
transfer functions, is

𝛷𝜃(𝜔0) = 𝜂|𝐺| (9)

where

𝜂 = 𝐶1

⎛

⎜

⎜

⎝

√

(

1 − 2𝑘𝑤𝑇𝛼2
)2 +

(

𝐴2

𝑘𝑤𝐵𝛼2

)2⎞
⎟

⎟

⎠

−1

(10)

emphasising that the factor 𝐶1 is introduced exclusively in the present
study, as the factor does not appear in the original formulas (Jensen
et al., 2004).

It is realised that the forcing function of pitch, and thus pitch itself,
approaches zero when the encounter angle between ship and waves
becomes 90 deg, equivalently 270 deg, in line with the hydrodynamics
of a box-shaped vessel. In reality, normal ships do not have fore-aft
symmetry and, although little, pitching will occur while sailing in
(long-crested) beam waves. In contrast to the original work (Jensen
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et al., 2004), this has been accounted for in the present study by
assuming

𝛷𝜃(𝜔0|𝛽 = 90 deg) = 𝛷𝜃(𝜔0|𝛽 = 270 deg) ≡ 0.1 ⋅𝛷𝜃(𝜔0|𝛽 = 80 deg) (11)

he value 0.1 is reflecting a somewhat arbitrary choice, as the point is
hat, while the pitch transfer function is small for heading 90 deg., it is
ot zero. The exact value is not so important, as an optimisation will
e performed anyway.

.3. Spectral analysis

From measurements of the response 𝑅, the response spectrum can
e estimated as 𝑆𝑅(𝜔𝑒); for instance, it can be computed by FFT or
imilar methods. Note that the (encountered) spectrum is an explicit
unction of the encounter frequency 𝜔𝑒 [rad/s]. A theoretical estimate
𝑅̂(𝜔𝑒) of the response spectrum can be obtained by the combined use
f the wave spectrum and the transfer function of the given response
n question. In this case,

𝑅̂(𝜔𝑒) = ∫

2𝜋

0
|𝛷𝑅(𝜔𝑒, 𝛽)|

2𝐸𝑒(𝜔𝑒, 𝜇)𝑑𝜇 (12)

= 180 − (𝜒 − 𝜇) (13)

𝑒 = 𝜔0 − 𝜔2
0𝜓, 𝜓 = 𝑈

𝑔
cos 𝛽 (14)

𝐸𝑒(𝜔𝑒, 𝜇) =
⟨

𝐸(𝜔0, 𝜇)
𝑑𝜔0
𝑑𝜔𝑒

⟩

𝜔𝑒
(15)

𝛷𝑅(𝜔𝑒, 𝛽) = ⟨𝛷𝑅(𝜔0, 𝛽)⟩𝜔𝑒 (16)

𝜀(𝜔𝑒) = 𝑆𝑅(𝜔𝑒) − 𝑆𝑅(𝜔𝑒) (17)

where 𝜒 is the compass heading of the ship. The frequency conversion
introduced in Eqs. (15) and (16) via Eq. (14) is necessary since the
wave spectrum per se is given as a function of the intrinsic, and thus
absolute, frequency 𝜔0. For the same reason, the straight-line brackets
⟨⋯⟩𝜔𝑒 with 𝜔𝑒 as index is used to emphasise that evaluation happens
for a given frequency of encounter 𝜔𝑒; this is discussed in more details
below. The error 𝜀(𝜔𝑒) between the theoretical estimate 𝑆𝑅(𝜔𝑒) and
he measured response spectrum 𝑆𝑅(𝜔𝑒) is assumed to be normally

distributed. Note also that, in general, the ship’s compass course and
heading (= orientation of longitudinal axis) are different but herein
they are assumed identical, since no side-way drift is assumed.

In Section 2.2, the parameterised transfer function of pitch was out-
lined. Similar expressions exist for other motion components (Jensen
et al., 2004) and, generally, the transfer functions depend on a set of
parameters, such as 𝐿 (length), 𝐵 (breadth), 𝑇 (draught), that can be
organised in a vector 𝐘. Hence,

𝑅(𝜔0, 𝛽) ≡ 𝛷𝑅(𝜔0, 𝛽|𝐘) (18)

Strictly speaking, the vector, say, 𝐘 = [𝐿,𝐵, 𝑇 , 𝐶1] is fixed when a
pecific ship in a particular operational scenario is given since, in the
riginal derivation (Jensen et al., 2004), the parameters all represent
hysical quantities describing the actual ship in question. On the other
and, this viewpoint can be relaxed by simply assuming the parameters
o be ‘‘fitting parameters’’ without any (true) physical meaning. In this
ase, the parameters in 𝐘 can be optimised by minimising the error
(𝜔𝑒), cf. Eq. (17). Thus, consideration of the entire range of relevant
ncounter frequencies leads to the following nonlinear problem with
east squares objective function,

min
𝐘

𝐽
∑

𝑗=1

|

|

|

|

|

|

𝑆𝑅(𝜔𝑒,𝑗 ) − ∫

2𝜋

0

⟨

|𝛷𝑅(𝜔0, 𝛽|𝐘)|2𝐸(𝜔0, 𝜇)
𝑑𝜔0
𝑑𝜔𝑒

⟩

𝜔𝑒,𝑗
𝑑𝜇

|

|

|

|

|

|

2

(19)

It is noted that the interval of encounter frequencies is discretised
as {𝜔𝑒,1, 𝜔𝑒,2,… , 𝜔𝑒,𝐽 }, and emphasising that the integrand must be
omputed for given 𝜔𝑒, as introduced above and further outlined in
3

he following. c
Fig. 1. The relationship between the encountered frequencies and the absolute (wave)
frequencies is governed by the Doppler Shift. If 𝜔0 is expressed in terms of 𝜔𝑒, three
olutions exist when the ship is in following sea and 𝜔𝑒 <

1
4𝜓

. This is indicated with
ndices 1, 2, and 3. Note that 𝜓 = 𝑈∕𝑔 cos 𝛽.

.3.1. Mapping between absolute and encounter domain
When a ship sails with non-zero forward speed relative to propagat-

ng waves, the mapping between the two frequency domains, absolute
omain vs. encounter domain, is controlled by the Doppler shift as
iven by Eq. (14). In head sea conditions with 90 deg ≤ 𝛽 ≤ 270 deg,

this is trivial. On the other hand, in following seas with 𝛽 < 90 deg
and 𝛽 > 270 deg, and for non-zero forward speed, a given 𝜔𝑒 can be
the result of up to three absolute frequencies. This is shown in Fig. 1,
which is a graphical illustration of the Doppler shift for the particular
condition of following sea and non-zero forward speed. It is recognised
that if, and only if, 𝜔𝑒 >

1
4𝜓 there is a 1-to −1 relationship between

the encountered and the absolute frequency; otherwise there is a 1-
to −3 relationship. Mathematically, the triple-valued relationship is an
elementary fact that must hold in the response spectrum estimation in
Eq. (12). In practical computations, this is rather delicate (Beck et al.,
1989; Lindgren et al., 1999; Nielsen, 2017, 2018), but in a situation
where the wave spectrum is known/given, like considered herein, the
solution to the problem at hand is unique after all, in contrast to the
case when the wave spectrum is unknown and is sought through an
inverse problem (Iseki and Ohtsu, 2000; Nielsen, 2006).

The physical inference from Fig. 1 is that three distinct energy
densities from the wave spectrum at 𝜔0,1, 𝜔0,2, and 𝜔0,3 contribute to
the encounter-response spectrum at 𝜔𝑒, when a ship sails in following
sea if 𝜔𝑒 <

1
4𝜓 . In general, for any given 𝜔𝑒 and following sea, the

theoretical response spectrum should therefore be computed by,

𝑆𝑅(𝜔𝑒) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

3
∑

𝑖=1

[

∫

2𝜋

0

⟨

|𝛷𝑅(𝜔0,𝑖, 𝛽|𝐘)|2𝐸(𝜔0,𝑖, 𝜇)
𝑑𝜔0,𝑖

𝑑𝜔𝑒

⟩

𝜔𝑒

𝑑𝜇

]

, 𝜔𝑒 <
1
4𝜓

3
∑

𝑖=2

[

∫

2𝜋

0

⟨

|𝛷𝑅(𝜔0,𝑖, 𝛽|𝐘)|2𝐸(𝜔0,𝑖, 𝜇)
𝑑𝜔0,𝑖

𝑑𝜔𝑒

⟩

𝜔𝑒

𝑑𝜇

]

, 𝜔𝑒 =
1
4𝜓

∫

2𝜋

0

⟨

|𝛷𝑅(𝜔0,3, 𝛽|𝐘)|2𝐸(𝜔0,3, 𝜇)
𝑑𝜔0,3

𝑑𝜔𝑒

⟩

𝜔𝑒

𝑑𝜇 , 𝜔𝑒 >
1
4𝜓

(20)

underlining again that the straight-line brackets with 𝜔𝑒 as index indi-
ate that the integrand must be computed for given 𝜔 . The result shows
𝑒
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how to map frequency components of a theoretical response spectrum
in the encounter domain. The central point about the mapping in
Eq. (20) is to allow a comparison with a measured response spectrum,
cf. Eqs. (12) and (19). On the other hand, from a theoretical point of
view, it could be a choice to map the other way; that is, rather than
mapping the theoretical response spectrum to the encounter domain,
the measured spectrum could, in principle, be mapped to the absolute
domain. In this case, however, the measured spectrum becomes heav-
ily distorted and, from a practical point of view, the computational
complications increase (Beck et al., 1989; Nielsen, 2017). The details
of the mapping from absolute domain to encounter domain of the
theoretical response spectrum are not dealt with any further herein, but
it is noteworthy that the details are illustrated by Nielsen et al. (2021)
via a pseudo code for the calculation of Eq. (20).

2.4. Optimisation of parameters

2.4.1. Sample-specific optimisation
The measured response spectrum 𝑆𝑅(𝜔𝑒) corresponding to a time

series sequence of length, say, 30 min is considered, and this constitutes
a sample. The prerequisite for the optimisation of 𝐘 corresponding to
the considered sample is the availability of the (ground true) wave
spectrum. On a sidenote it should be mentioned that a conceptual
study has been made by Mounet et al. (2022b) in which multiple,
geographically-adjacent ships are considered simultaneously as intro-
duced and discussed by, e.g., Nielsen et al. (2019) and Long et al.
(2019). Although the particular research and applications are still in
a developing phase, potentially, such a situation considering multiple
ships can be used to combine sea state estimation and transfer function
calibration via a leave-one-out principle (Mounet et al., 2022b).

It has been seen, cf. Section 2.2, that the combined effects of
mass, damping, restoring, and excitation in the parameterised transfer
function of pitch are controlled solely by the ship main dimensions
length 𝐿, breadth 𝐵, draught 𝑇 , and the introduced scaling factor 𝐶1.
n other words, all of these parameters have the ability to manipulate
he shape of the transfer function, and consequently they should all be
lements in the vector 𝐘 to optimise.

The very set of parameter values leading to the minimisation of
q. (19) is denoted by 𝐘∗, and this set forms the solution of the sample-
specific optimisation. It should be noticed that a reasonable starting
guess of the minimisation of Eq. (19) is expected to be the values of
𝐘 equal to the values of the physical counterparts (length, breadth,
draught, etc.) of the real ship. The practical implementation of the op-
timisation is made in MATLAB® using the function fmincon that can
e applied to find the minimum of constrained nonlinear multivariable
unctions. The constraints are imposed by specifying bounds on the
arameters in 𝐘. Later, additional remarks are given about this.

.4.2. Mean of sample-specific optimised parameterised transfer functions
As a result of the inherent randomness of ocean waves, and thus

he seaway, it is unlikely that two identical operational situations,
haracterised by the exact same wave spectrum, speed, course, etc.,
ead to two exactly identical response spectra for the same measured
esponse. In other words, although two sets of measurements of a given
esponse (say, pitch) may be taken under seemingly identical conditions
uring two, say, 30-minutes periods, denoted by ℘1 and ℘2, it is not
ikely that the two corresponding optimised sets of parameters 𝐘∗

℘1
nd 𝐘∗

℘2
will be exactly the same. To account for this randomness, an

verage value of the optimised parameters are computed, emphasising
hat the averaging is made element-wise, that is, separately for each
lement in 𝐘. This means that the final value is defined by,

̃ = mean(𝐘∗
℘), ∀ ℘ (21)

here ℘ characterises any given time series sequence from which
4

he parameterised transfer function has been optimised. In principle,
Fig. 2. Generating wave spectrum used for time series simulations. Note that the
contour plot shows where the energy comes from.

the averaging could be made for all available data, as indicated by
Eq. (21), with no account to the operational conditions, including sea
state. On the other hand, it is reasonable to assume that 𝐘 shows
ependency, notably, on significant wave height (reflecting a nonlinear
elationship between wave and response) and relative wave direction
reflecting that the original, i.e. not-optimised, parameterised transfer
unction matches reality better for some encounter angles than others).
n the numerical investigations in Sections 3 and 4 this discussion is
ontinued.

As a practical remark, the derived ‘‘mean transfer function’’, as
ased on all sample-specific optimised parameterised transfer func-
ions, is onwards referred to by mean-optimised parameterised transfer
unction, or just mean-optimised PTF.

.5. Confidence bands

Confidence bands can be drawn around the predicted response spec-
rum as computed using the mean-optimised parameterised transfer
unction. The confidence bands would be obtained as the result of
sing all the different sample-specific sets 𝐘∗

℘, ℘ = 1, 2, 3,… , 𝑁℘ to
compute the transfer function; thus leading to 𝑁℘ indicative transfer
functions, which all have (slightly) different dependency and behaviour
with frequency in accordance with the formulas in Section 2.2. The
results of all sample-specific optimised parameterised transfer functions
at a given frequency can be used to compute the standard deviation
of the transfer functions at that given frequency. In turn, this leads
directly to the 95% confidence interval at the particular frequency,
as this is obtained by, respectively, adding and subtracting two (1.96)
standard deviations to/from the mean-optimised parameterised transfer
function.
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3. Case study based on simulated data

3.1. Ship data and time series simulations

A Ro-Ro vessel is studied. The specific vessel is characterised by
main dimensions: Length 𝐿𝑝𝑝 = 232 m, breadth 𝐵 = 33 m, draught 𝑇
= 6.1 m, and block coefficient 𝐶𝐵 = 0.61. The wave-to-motion transfer
functions have been calculated by strip theory (Salvesen et al., 1970)
for all six degrees of freedom, considering the whole range of wave
encounter angles [0–360) deg., spaced by 10 deg., on a frequency inter-
val [0.2–1.6] rad/s using 80 discrete, equidistantly spaced frequencies.
The transfer functions have been computed for a speed 𝑈 = 18 knots,
equivalent to a Froude number 𝐹𝑛 = 0.19. Later, it will be apparent
that cases with following seas bring (expected) complexities resulting
in poorer performance with the given settings. For this reason, it can
be noted that the encounter frequencies, for which the triple-valued
problem is a concern, i.e. when 𝜔𝑒 <

1
4𝜓 , are in the range 0.04 Hz

(𝛽 = 0 deg) to infinity (𝛽 = 89.9999 deg).
Time series of the pitch motion have been simulated using the strip

theory transfer function and a Bretschneider wave spectrum (e.g. Lloyd,
1998) assuming short-crested waves with a cos-2𝑠 spreading function,
and vessel forward speed is 18 knots. The parameters used are: Sig-
nificant wave height 𝐻𝑠 = 3.0 m, peak period 𝑇𝑝 = 12 s, spreading
parameter 𝑠 = 4. The wave spectrum is shown in Fig. 2. Simulations
have been made for wave encounter angles 𝛽 = {0, 10, 20,… , 180} deg.,
and for each encounter angle 10 time series, all with different seeds but
with length 30 min, are simulated.

3.2. Results

This case study is used primarily to show that the sample-specific
solution of the optimisation indeed varies, despite similar operational
situations.

Arbitrarily selected outcomes (seed no. 3) of response spectra are
shown in Fig. 3 considering different relative wave directions, as indi-
cated by the title of the legend. In each plot, the measured spectrum
𝑆𝑅(𝜔𝑒) is shown together with three theoretical corresponding pre-
dictions 𝑆𝑅,𝑘(𝜔𝑒), 𝑘 = 1, 2, 3 obtained using the PTF in all cases: (1)
the red curve (𝑘 = 1) is the spectrum based on the original PTF
using the physical dimensions of the ship as input, (2) the cyan curve
(𝑘 = 2) is the spectrum based on the sample-specific optimisation,
(3) the blue curve (𝑘 = 3) is the spectrum based on the mean-
optimised PTF, cf. Eq. (21), embracing all sample-specific optima in all
wave directions. For each predicted spectrum, the legend presents the
normalised summed-absolute error 𝜖, computed using Eq. (17) relative
to the area under the measured spectrum. Specifically, the error is
defined by

𝜖𝑘 =

∑𝑁𝜔𝑒
𝑗=1 |𝑆𝑅,𝑘(𝜔𝑒,𝑗 ) − 𝑆𝑅(𝜔𝑒,𝑗 )|𝛥𝜔𝑒

𝑚̂0
⋅ 100, 𝑘 = 1, 2, 3 (22)

here 𝑁𝜔𝑒 is the number of discrete encounter frequencies spaced
y the distance 𝛥𝜔𝑒. The multiplication with 100 [%] is made for
onvenience. Note that the denominator, i.e. the area under the mea-
ured spectrum represented by the zeroth moment 𝑚̂0, is evaluated
umerically by 𝑚̂0 = ∫ 𝑆𝑅(𝜔𝑒)𝑑𝜔𝑒.

Generally, the spectra computed from the sample-specific optimi-
ation match very well with the measured spectra; in many cases
ith nearly exact matches between the measured and theoretically
stimated results. The agreement reduces slightly when the mean-
ptimised PTF is used; notwithstanding, the agreement is significantly
etter compared to the case where the response spectra are obtained by
se of the original PTF, based on the physical dimensions of the ship.
n overall assessment can be seen in Fig. 4 that shows the statistics
f the errors for each theoretical prediction using boxplots. On each
ox, the central mark indicates the median, and the bottom and top
5

f

dges of the box indicate the 25th and 75th percentiles, respectively.
he whiskers extend to the most extreme data points not considered
utliers, and the outliers are plotted individually using the ‘+’ symbol.
t is seen that the improvement by the optimised PTF is only marginal
or following sea cases (𝛽 = 0–50 deg). The reduced performance by
he optimised PTF is a result of the computational complexities arising
or spectral calculations in following sea (Beck et al., 1989; Lindgren
t al., 1999), where very spiky spectra are obtained for the theoretical
redictions, see Fig. 3. It is beyond the scope herein but improved
esults can most likely be obtained by using different settings related to
he discretisation of the frequency vectors (encounter and absolute) in
he spectral calculation, represented by Eq. (20). Although not shown
erein, a few tests have been made in this direction. As will appear
ater, in Section 4, the problem with (very!) spiky theoretical spectra is
lso observed for the in-service data, and, for this case, a few alternative
esults are presented. Additional remarks will follow in Section 4, so
he point left here to note is that a dedicated sensitivity study could
ossibly indicate how the frequency settings optimally could be made,
epending on operational conditions.

Despite similar operational conditions, characterised by the same
enerating wave spectrum and even the same relative wave direction,
he variation in the sample-specific optimised solution 𝐘∗ is large;

as shown by Fig. 5. The figure shows the variation in the optimised
values of the elements of 𝐘∗ using boxplots, similar to Fig. 4, and
noticing that the first three elements are normalised. From this figure,
in combination with the fact that the mean-optimised PTF is obtained
by averaging over all available data, cf. Eq. (21), it can be easily
explained why the use of the mean-optimised PTF does not produce as
good results as the use of the sample-specific optimised PTF. The reason
is simply that the variation in the parameters 𝐘∗ is significant, empha-
sising that some variation occurs even for cases when the relative wave
direction is the same. It is interesting to note that the optimised values
for 𝑌 (1), 𝑌 (2), 𝑌 (3) are always smaller than the respective physical
imensions, corresponding to 𝐿,𝐵, 𝑇 , of the vessel. This is in agreement
ith the general observation that the original closed-form transfer

unctions (Jensen et al., 2004), for any given ship, always tend to drop
o zero too early, when compared to other numerical codes such as strip
heory or 3D panel codes. Another noteworthy point is that the solution
f the optimisation, i.e. the values in 𝐘∗, are constrained with lower and
pper bounds set as 0.5𝐘𝟎 and 1.25𝐘𝟎, respectively, where 𝑌0(1) = 𝐿,
0(2) = 𝐵, 𝑌0(3) = 𝑇 , 𝑌0(4) = 1 are the initial guess and with 𝐿,𝐵, 𝑇
eing the true physical main dimensions of the ship. The constraint
s introduced for computational efficiency, and due to the fact that the
riginal and non-optimised PTF (Jensen et al., 2004) qualitatively have
roved to give consistent results. As a practical remark, it is observed
hat the lower bound, in some cases, is actually violated. This is an
nherent problem of fmincon, which means that the function may
ccasionally produce values outside the specified range.1 About the
imitation to and below 1.0𝐘𝟎 for the physical dimensions (L,B,T) of
he ship, this is a direct consequence of the fact that the original PTF
y Jensen et al. (2004) yields a transfer function that drops to zero too
arly, as explained in the paper’s introduction. Therefore, there is a
eed, in the optimisation, to reduce the vessel size to make the ship
more) responsive to higher frequency wave components. The exact
eason why the maximum value is 1.0𝐘𝟎 is because this value is the
tarting guess of the optimisation, and, apparently, in some cases this
eads to the optimal solution.

The actual parameter values corresponding to the mean-optimised
TF are the following: 𝑌 (1) = 208 [m], 𝑌 (2) = 22.9 [m], 𝑌 (3) = 5.13 [m],
nd 𝑌 (4) = 1.06. Hence, the mean-optimised PTF is computed by insert-
ng 𝐘̃ into the equations listed in Section 2.2 with 𝐿 = 𝑌 (1), 𝐵 = 𝑌 (2),

1 Refer to https://se.mathworks.com/matlabcentral/answers/101965-
hy-are-the-upper-and-lower-bounds-violated-during-iterations-with-the-

mincon-function-from-the-opt.

https://se.mathworks.com/matlabcentral/answers/101965-why-are-the-upper-and-lower-bounds-violated-during-iterations-with-the-fmincon-function-from-the-opt
https://se.mathworks.com/matlabcentral/answers/101965-why-are-the-upper-and-lower-bounds-violated-during-iterations-with-the-fmincon-function-from-the-opt
https://se.mathworks.com/matlabcentral/answers/101965-why-are-the-upper-and-lower-bounds-violated-during-iterations-with-the-fmincon-function-from-the-opt
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= 𝑌 (3), and 𝐶1 = 𝑌 (4). In Fig. 6, the mean-optimised PTF is compared
raphically to the solution of strip theory that, in this particular case
ith simulated data, represents the ground truth. The figure shows
lots applicable to different relative wave directions, and in each plot
he ground truth is shown as the full lines whereas the mean-optimised
TF is shown as the dashed lines. The result corresponding to the
riginal PTF (Jensen et al., 2004) is also included in the plots as the
hin dashed lines. It is appreciated that the mean-optimised PTF is

much better match to the ground truth than the original PTF. To
his end, it appears relevant to stress that, although the strip theory
ransfer function of pitch can be regarded as the ground truth in the
6

ense that it was used for the calculation of the time series simulation,
he use of the strip theory transfer function itself will not reproduce
he measured spectrum exactly in spectral calculations. The reason is
hat the measured spectrum, derived from time series simulations, also
eflects the inherent randomness of the waves, and this randomness is
ot accounted for in spectral calculations based on the combination of
transfer function and a wave spectrum. This point is demonstrated

n the plot in Fig. 8 which corresponds to the subplot in Fig. 3 for
= 60 deg. In Fig. 8, however, only the computed spectra obtained by
se of the mean-optimised PTF and the ‘‘ground true’’ transfer function
from strip theory) are presented together with the measured spectrum.
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Fig. 4. Boxplot showing statistics of the normalised error between 𝑚0 of the calculated
and the measured response spectrum, cf. Eq. (22); the upper plot shows the error using
the original (Jensen et al., 2004) parameterised transfer function (PTF), the middle plot
shows the error using the sample-specific optimised PTF, the lower plot shows the error
using the mean-optimised PTF.

It is observed that, in the given case, the use of the mean-optimised
PTF, in fact, leads to the better prediction of the measured spectrum.
Suffice it to mention that fairly similar results are obtained for the other
relative wave directions and seeds with a somewhat equal performance
by the mean-optimised PTF and strip theory, fluctuating between the
one or the other as the better.

As suggested in Section 2.5, the variation between the sample-
specific PTFs at the given frequencies can be used to associate confi-
dence bands together with the mean-optimised PTF. In this event, the
result is presented in Fig. 7 that shows both the mean-optimised PTF
and the corresponding solution of strip theory, equivalently, the ground
true transfer function. It is observed that the mean-optimised PTF and
the associated 95% confidence bands match the ground truth well at
the frequencies where most of the response occurs. Some discrepancies
are observed in the higher frequency range, characterised by little to
no response. Fig. 7 applies to four specific relative wave directions,
i.e. 𝛽 = {0, 50, 120, 170} deg., but the results are similar for all remaining
directions, considering the appearance of the 95% confidence bands. It
should be noted that, consistent with a physical viewpoint, the derived
confidence bands do not necessarily have a slope identical to the mean-
optimised parameterised transfer function, since the confidence bands
exhibit a dependency on frequency which, in turn, means that the
thickness of the bounding interval between the upper band and the
lower band varies with frequency. Following this point, it should be
7

s

Fig. 5. Statistics of the optimised parameters 𝐘∗ shown via boxplots. Note that Y(1),
Y(2), and Y(3) are normalised by their respective physical counterparts 𝐿, 𝐵, and 𝑇 ,
espectively, whereas Y(4) = 𝐶1.

ealised that deriving a ‘mean transfer function’ from the mean of all
ample-specific transfer function at a given frequency is, on the other
and, considered physically inconsistent, since this potentially leads to
spurious frequency-dependency.

. Application to in-service data with use of ERA5 2D wave spectra

.1. Ship data and voyage

A 7200 TEU container vessel is considered, see Table 1.
The container ship is equipped with a motion sensor (XSENS, MTi-

0-6A5G4), and the measurements of this study have been recorded
n-service. Seven days of consecutive data were obtained while the ship
ollowed an east-bound route across the Northern Pacific Ocean, with
easurements from the Sea of Japan to the Graham Island in Canada,

ee map in Fig. 9, in the period of April 1st 2016 to April 7th 2016. The



Applied Ocean Research 125 (2022) 103250U.D. Nielsen et al.

t
(
o

Fig. 6. Comparison between strip theory transfer function, equivalent to the ground
rue transfer function, (full line) of pitch and the corresponding mean-optimised PTF
dashed line) for different relative wave directions. Note that the original PTF (no
ptimisation) is included as the thin dashed line.

Table 1
Main particulars of the example ship.

Length between perpendiculars, 𝐿𝑝𝑝 332 m
Breadth moulded, 𝐵𝑚 42.8 m
Design draught, 𝑇𝑑 12.2 m
Deadweight (at 𝑇𝑑 ), 76,660 ton
Block coefficient, 𝐶𝐵 0.65

particular motion sensor was installed in a position off the centreline
in the engine control room (Nielsen and Dietz, 2020b). In this study,
focus is given to the measured pitch motion exclusively.

An overview of the operational conditions has been given by Nielsen
and Dietz (2020b), suffice it here to mention that vessel speed was
(nearly) constant and the variation in draught was insignificant over
the voyage with the following values 𝑈 = 21 knots and 𝑇𝑀 = 14.1 m,
respectively.
8

Fig. 7. Examples of mean-optimised PTF with associated 95% confidence bands
compared with strip theory, equivalent to the ground truth. The plots apply for different
relative wave directions as indicated by each legend.

Fig. 8. Comparison of measured spectrum and corresponding theoretically computed
spectra.
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Fig. 9. Map of the east-bound voyage of the container ship across the Northern Pacific
Ocean.

Fig. 10. Integral wave parameters at the nearest of the native ERA grid points at
given date-time stamps in the format YYYY-MM-DD and indication of the corresponding
sample numbering used later in the analysis. Top: significant wave height 𝐻𝑠; Middle:
mean wave energy period 𝑇𝑚; Bottom: mean relative wave heading RWH (180 deg is
head sea).

4.2. ERA5 wave spectra

The ERA5 dataset (Hersbach et al., 2021) provides hourly esti-
mates of a large number of atmospheric, ocean-wave, and land-surface
quantities on a discrete spatial grid, which for the ocean is spaced
by 0.5 degrees in latitude and longitude. The reanalysis combines
model data with satellite observations (ECMWF, 2017) – especially
from the Copernicus EU-project (Copernicus Climate Change Service
Information, 2020) – into a globally complete and consistent dataset.
9

In this study, the global-scale hourly ERA5 directional wave spectra,
together with the associated sea state parameters, have been down-
loaded from Hersbach et al. (2021) using a routine in Python to cover
the entire duration of the studied voyage, see Section 4.1. Each wave
spectrum comprises components distributed in a frequency-direction
grid, with 30 wave frequencies in the range [0.0345–0.5478] Hz and
24 circular directions spread evenly with a step of 15◦. The available
spectra which were located closest to the vessel’s exact GPS position
were selected for each time stamps in Coordinated Universal Time
(UTC). A maximum distance of approximately 25 km has been observed
between the ERA5 measurement point and the ship’s position at the
time stamp (Nielsen et al., 2021). The set of spectra obtained by this
nearest-neighbour interpolation was considered as ground truth for the
directional wave spectra near the ship’s geographic position.

An overview of the encountered wave conditions during the voyage
is presented in Fig. 10 via integral wave parameters, notably the
significant wave height, the mean wave energy period, and the mean
relative wave heading (RWH), emphasising that results apply to the
nearest ERA5 grid point. The consequence of being off the native grid
points has been investigated by Nielsen (2021) in a study focused on
integral parameters, and it is concluded that it can be influential but
generally the effect will be small. Anyhow, the present study uses the
2D wave spectra at the nearest ERA5 grid points in the analysis. As
such, it is left to note that the mismatch in ship position and the
nearest ERA5 grid point will introduce errors/uncertainties, but this
issue is not considered herein. For interested readers, Nielsen and Dietz
(2020a) provides a fairly complete overview of the encountered wave
conditions, i.e. directional wave spectra; both those from ERA5 and
those obtained using the ship as a wave buoy.

Returning to Fig. 10, it is interesting to note that the sea state is
relatively low in the beginning of the voyage, the first day or so, with
a small significant wave height and a low mean wave period. The low
period means that waves with a short wave length, equivalently high
frequency, characterise the wave systems. In theory, this means in turn
that no substantial motions are induced, since the ship acts as a low-
pass filter. As a result of this, it is decided to exclude the first 24 h of
the data, so that the first sample considered in the analysis dates from
00:00 (UTC) on 2nd April. Thus, in total, 144 (= 6 × 24) samples of
measurement sequences are available for the optimising of the PTF.

4.3. Calculation of response spectra

Response spectra have been computed from 30-minutes time series
sequences. The actual calculation is based on the estimated autoco-
variance function with frequency smoothing using a Parzen window
function (Brodtkorb et al., 2000), and the resulting spectrum is low-
pass filtered and interpolated to values at 𝑓𝑒 = (0.04 ∶ 0.002 ∶ 0.40) Hz,
noting that 𝜔𝑒 = 2𝜋𝑓𝑒. As mentioned in Section 4.2, the ERA5 2D
wave spectra are updated on an hourly basis. Therefore, it is just every
second response spectrum, equivalently pitch time series sequence,
which is considered; noticing that the 30-minutes sequence is selected
from a window starting and finishing 15 min prior to and succeeding,
respectively, the corresponding hourly ERA5 update.

4.4. Results

The parameter values of the optimised vector 𝐘∗, as obtained for
each of the 144 samples, are presented in Fig. 11. In line with the
results for the simulated data, it is seen that 𝑌 (1), 𝑌 (2), 𝑌 (3) in all cases
take values smaller than or equal to their physical counterparts, being
𝐿 = 332 m, 𝐵 = 42.8 m, and 𝑇 = 12.2 m, respectively. Likewise,
relatively large variations can occur, even from the one sample to
the following, in the single parameters. In this particular case, part
of the variability of the optimal parameters can be attributed to the
randomness of the encountered wave elevation sequence in similar

operational conditions, and another part is a result of changes in the
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Fig. 11. Variation in the values of 𝐘∗ corresponding to the sample-specific optimisation
or each of the 144 samples. Note that Y(1), Y(2), and Y(3) are normalised by their
espective physical counterparts 𝐿 = 332 m, 𝐵 = 42.8 m, and 𝑇 = 12.2 m, respectively,
hereas Y(4) = 𝐶1. For each parameter, the mean value has been indicated with a thin
lue line.

nvironmental conditions. For each parameter, the mean value based
n all 144 samples is included as the thin blue line, and using the four
espective mean values is what basically leads to the mean-optimised
TF. Further discussions about the use of the PTF follow below, but it
s also interesting to see that, in the variability of the parameters, it
an be argued that there are three main clusters: points from samples
to 44, then from sample 45 to 93, and finally from samples 94 to

44, where it is fair to say that the observation is a bit more evident
or 𝑌 (1) and 𝑌 (2). As a suggested future work, this apparent clustering
ould be analysed by some Machine Learning method, and perhaps it
ould be used to find associations between the sea state parameters and
he values of vector 𝐘.

Figs. 12 and 13 present results of response spectra for an arbitrarily
elected set of samples. In each plot, corresponding to a given sample,
he measured pitch spectrum is shown together with three theoretical
10
computations: (1) The spectrum based on the sample-specific optimi-
sation, referred to by ‘Optim PTF’, where the parameters in 𝐘 are
optimised to yield a minimum error between the measured spectrum
and the computed spectrum using the PTF. (2) The predicted spec-
trum based on the mean-optimised PTF. (3) The predicted spectrum
based on a calculation using transfer functions computed by strip
theory (Salvesen et al., 1970). It is observed that results of the original
(non-optimised) PTF by Jensen et al. (2004) are not included in Figs. 12
and 13. This choice is intentional; first of all to limit the amount
of information presented in the single plots. Secondly, the former
study (Nielsen et al., 2021) did already present those results, which,
to no surprise, were very poor. Returning to the theoretical predictions
made in the present study, specifically with regards to (2), it should
be noted that the mean-optimised PTF is derived in a similar manner
as was explained in Section 3 studying simulated data. However, in
this very case with in-service measurements, the data comprising the
particular 20 samples in Figs. 12 and 13 has itself been excluded before
the computation of the mean parameters 𝐘̃, cf. Eq. (21). In this sense, to
use Machine Learning terminology, the evaluation of the model, i.e. the
mean-optimised PTF, is made using truly unseen data; this to replicate
a real-case scenario, where the response is to be predicted solely on
the basis of a model derived from past observations. In practice, on
the other hand, it has an insignificant effect to include the very same
samples (Figs. 12 and 13) in the ‘‘training data’’, since the method relies
on computation of the mean values considering many samples. Here
many is used to indicate that the mean values are computed using
144 samples taken from six days of measurements (cf. Fig. 11), or,
alternatively, using 144-20 = 124 samples. In concrete numbers, by
excluding the particular samples, the parameter values corresponding
to the mean-optimised PTF become 𝑌 (1) = 266 [m], 𝑌 (2) = 28.1 [m],
𝑌 (3) = 9.54 [m], and 𝑌 (4) = 0.82, whereas the inclusion of the samples
yield the following parameter values 𝑌 (1) = 269 [m], 𝑌 (2) = 28.4 [m],
𝑌 (3) = 9.56 [m], and 𝑌 (4) = 0.83. Hence, it means little to use the one
set or the other set. It is noteworthy, however, that this observation
holds only when an arbitrary set of samples is excluded.

This study is used to evaluate, on a conceptual level, the proposed
method for determining transfer functions. As such, it is beyond the
present scope to start discussing the exact details and the better, or
worse, agreement for some samples of the shown response spectra in
Figs. 12 and 13. Suffice it therefore to say that the spiky behaviour
observed in the predictions for some samples, in line with results in
Section 3, is a result of stern-quartering and/or following waves, and
different frequency discretisation could therefore potentially lead to
better results; see also Section 3 where a similar discussion was made
on the basis of simulated data. Preliminary remarks in this regard
are the following: The scales of the response spectra of, say, Samples
105, 111, 116, and 120 (Fig. 13) are inappropriate for a fair assess-
ment. Zoomed versions of the particular spectra are shown in Fig. 14.
While both predictions, i.e. the results of strip theory and the results
of the mean-optimised PTF, including the sample-specific optimised
PTF, are inconsistent with the measurements, the agreement between
the predictions themselves is striking. It is believed that a dedicated
sensitivity study could indicate if there would be an optimum setting
of the discretisation of the frequency vector(s) used with Eq. (20). This
type of work is beyond the present scope, but a few provisional results
are seen in Fig. 15. The figure presents the response spectra of Samples
105, 111, 116, and 120, although results are shown only for the sample-
specific optimised PTF, next to the measured spectra. In contrast to
the results in Figs. 12 and 13, where the encounter frequency vector is
discretised as 𝑓𝑒 = (0.04 ∶ 0.002 ∶ 0.40) Hz (cf. Section 4.3), the discrete
values of the encounter frequency vector is 𝑓𝑒 = (0.04 ∶ 0.005 ∶ 0.40) Hz,
and it is evident that the theoretical spectra – with a coarser frequency
spacing – make up a better match to the measured spectra than seen in

Fig. 13.
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Fig. 12. Arbitrarily selected samples of response spectra. The mean relative wave heading (RWH) of the specific sample is included in the legend. [Continues in Fig. 13.].
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The results, corresponding to what is achieved for the considered
amples in Figs. 12 and 13, are representative. Hereby, it is understood
hat, considering other sets of samples, the results are generally similar
or those samples; noting that the inclusion/exclusion of the particular
amples before computing the mean parameters 𝐘̃ by Eq. (21) is of
ittle importance, as reported above. This observation, although not
resented for other samples than those in Figs. 12 and 13, indicates
hat the proposed method for the computing of optimised parame-
erised transfer functions is fairly robust. A summary of the results
s given in Fig. 16 that shows the normalised error, Eq. (22), using
he sample-specific optimised PTF, the mean-optimised PTF, and the
ransfer function obtained by strip theory, respectively. In this case,
he result corresponding to the mean-optimised PTF is simply based
n all available data, i.e. all 144 samples taken from the six days.
11

p

The main observation is that, overall, the use of the mean-optimised
PTF yields results which agree well with the results obtained by using
transfer functions computed with strip theory. The average error per
sample has been calculated for the two (true) predictions,2 and the
esult is included in the legend. It is seen that the average error is
lightly smaller when using strip theory but it should also be noticed
hat the deviation is largely explained because of the discrepancy
bserved for Samples 12–30, where the use of the mean-optimised
TF produces too large response values. Otherwise, the two set of
redictions exhibit the same trend and agree, as mentioned, nicely.
ddressing the observation around Samples 12–30, it is somewhat

2 Take note that the results from the sample-specific optimised PTF are not
redictions as such.
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Fig. 13. [Continued from Fig. 12.] Arbitrarily selected samples of response spectra. The mean relative wave heading (RWH) of the specific sample is included in the legend.
peculiar to see the poor agreement for these cases, noting that poor(er)
results are achieved by both strip theory and the mean-optimised PTF.
The particular samples represent cases where the ship experiences bow-
quartering and head waves. In this sense, it could be expected that
predictions would perform relatively good, since the complexities in
following sea are avoided, cf. Section 3. Speculations could be that the
ERA5 directional wave spectra for the particular samples are not fully
consistent with the ground truth, whatever this may be, thus leading to
a mismatch between the theoretical predictions and the measurements.
At the same time, it is possible that the mean-optimised PTF actually
underperforms for head and bow-quartering waves, as indicated in the
following.

The agreement between the mean-optimised PTF and the transfer
functions from strip theory can be directly assessed by comparing the
12
modula, and Fig. 17 presents the results for relative wave directions
{0, 20, 40, . . . , 180} deg. The 95% confidence bands, cf. Section 2.5,
of the mean-optimised PTF are included in all cases. Leaving aside the
suspicious behaviour of the strip theory results for the higher frequency
range in the following sea cases, overall there is a reasonable match
between the mean-optimised PTF and the transfer function from strip
theory. There is a tendency, however, that the mean-optimised PTF
overshoots the peak and the response at the frequencies larger than
the peak frequency for head sea cases, including bow-quartering waves.
This tendency is likely what is observed from some of the samples
of response spectra, where the spectrum computed from the mean-
optimised PTF resulted in too large ordinates, see Fig. 12. In fact, this
hypothesis is also supported by Fig. 10, which features bow-quartering
to head sea condition for the particular samples.
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Fig. 14. Zoomed versions of the response spectra of Samples 105, 111, 116, and 120 which all represent cases with following waves.
Fig. 15. Response spectra of Samples 105, 111, 116, and 120 using a different discretisation of the encounter frequency vector.
Fig. 16. Normalised error as computed by Eq. (22). The average error per sample,
using the mean-optimised PTF and the strip theory transfer function, respectively, is
included in the legend.
13
5. Additional discussions and future work

It should be realised that forward speed also has the potential to
manipulate the shape of the transfer function. In fact, this has been
investigated by Mounet et al. (2022a), where a sensitivity study using
three different forward speeds is made in a work focused exclusively
on simulated data. In the study, no explicit conclusions are drawn
with respect to forward speed, in the sense that its inclusion as a
tuning parameter does not really improve nor degrade the outcomes.
As such, these observations are in line with initial investigations made
at the beginning of the present study, where forward speed also was
considered a fitting parameter, although those outcomes have not been
mentioned or addressed. To follow this, herein it will not be attempted
to make any firm conclusion towards the inclusion of forward speed, or
not. This is said also because the inclusion of forward speed, as a fitting
parameter, must be made by considering an additional choice: should
the computation of the Doppler shift in connection with Eq. (20) also
be made with forward speed as an optimising parameter. Future work
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Fig. 17. Examples of mean-optimised PTF with associated 95% confidence bands. The plots apply for different relative wave directions as indicated by each legend.
could consider to take up this open question, especially considering the
debate about the reliability of the speed log including the trustwor-
thiness of position measurements derived from continuous monitoring
systems (e.g. Ikonomakis et al., 2021, 2022).

The degree of variation in the sample-specific optimised parameters
is a measure of the (un)certainty with which the mean-optimised PTF

atches the ground truth; emphasising that the ‘‘ground truth’’ is a
heoretical concept, since it has a true meaning only in case of sim-
lation studies, whereas for real-data the ground truth is never known.
s has been noticed, the sample-specific sets 𝐘∗

℘, ℘ = 1, 2, 3,… , 𝑁℘
corresponding to consecutive samples of measurements can be quite
different, despite fairly similar operational conditions from the one
sample to the following. This was seen both for the case study using
simulated data (Section 3) and from the results corresponding to in-
service data (Section 4). Stated as a hypothesis, the less variation in
𝐘∗
℘, ℘ = 1, 2, 3,… , 𝑁℘, the better a predictor is the mean 𝐘̃ expected

to be when applied together with unseen data. It is therefore suggested
14
to associate a measure of uncertainty, based on the variation in the
solution 𝐘∗

℘ of the sample-specific optimisation. At this point, it is not
clear how to consistently formulate such an uncertainty measure in a
proper mathematical way but one possible measure could be expressed
simply via the respective standard deviations observed in the single
elements of 𝐘∗

℘, relative to its mean value.

In the derived fashion, the confidence bands reflect uncertainties
due to several phenomena: The inherent randomness in a wave ele-
vation sequence (cf. the numerical case study using simulated data);
the uncertainty in the ‘‘predicted’’ sea state (ERA5 is not the ground
truth); the model uncertainty considering the fact that the optimised
sample-specific PTF is not capable in mapping/matching perfectly the
measured response spectrum in each and every case. It should be inter-
esting to combine the aforementioned (potential) uncertainty measure
with the confidence bands for the parameterised transfer function to
better characterise the level of trust depending on operational condi-
tions, sea state, frequency range, etc. In such an effort, it will be natural
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Fig. 18. Normalised error as computed by Eq. (22) based on six-fold cross validation
ith and without shuffling of the data. The average error per sample is included in

he legend.

o make a more careful segmentation and selection of the ‘‘training
ata’’ than what has been made in the present conceptual evaluation.
ext to being very comprehensive, however, it is also believed that any

uch future work requires a dataset much larger than the one studied
erein. At this point, it seems relevant to make a note that Machine
earning very likely could be a helpful tool in not only the assessment
f the results but also for the actual fitting of parameter values of the
arameterised transfer functions.

The point made in the study is that the 95% confidence bands are
ndicative for a level of trust. On the other hand, it could also be
nteresting to directly apply the confidence bands in the prediction of
esponse spectra for unseen data. This could, for instance, be done
y computing the response spectrum based on the transfer function
orresponding to both the upper band and the lower band, thus yield-
ng two indicative response spectra that jointly form the prediction.
lternatively, but more computationally expensive, all sample-specific
ptimised transfer functions forming the training data could each and
veryone be used to compute a whole set of response spectra that, on
he frequency range, would form a ‘‘cloud’’ for the predicted response
pectrum.

There are several different ways the data (i.e. the sample-specific
ptimised PTFs) can be split and/or sorted, and subsequently analysed.
rom a theoretical point of view, it is believed that it will be most
ensible to sort the data according to sea state. This requires, as
ndicated previously, a lot more data than the present analysis is built
n, since sufficiently many different sea states must have occurred;
nd preferably all of them more than once. An alternative to this
s to set up a 𝑘-fold cross validation, which can be considered as a
omewhat similar approach to what was actually done (cf. Figs. 12,
3, 16), although the conducted analysis in Section 4 was made with
nly one small part (approx. one sixth) of the data being unseen and
onstituting a validation set. Fig. 18 shows the outcome of a 6-fold cross
alidation, showing the outcome of only the mean-optimised PTF since
he results of strip theory remains unchanged, and so does the sample-
pecific optimised PTF. In the figure, two sets of results are shown: One
et where data is shuffled before validation, and another set without
huffling, thereby splitting the data in the precise order it was obtained
o keep the chronology of the data. In either case, the six validation
olds (comprising 24 unseen samples) have been concatenated to form
he complete series. In this way, both sets of results yield the exact
icture of how the method generalises to unseen data. The legend in
he plot presents the average error per sample. From the analysis, it is
vident that the outcomes are quite similar to the previous finding, cf.
ig. 16, and the associated observations remain. As a work left for the
uture, it could also be interesting to sort the data, and thus train, on the
asis of the magnitude of the error obtained from the sample-specific
ptimised PTF.

The last point of the discussion is about the optimisation problem
eing solved. It seems quite reasonable to assume that the formulated
15

2

onlinear least squares problem is not necessarily convex, so the im-
lemented algorithm (cf. Section 2.4.1) may very well find a local
ptimum; rather than the global one. It is definitely beyond the scope
f the present study, but it could be interesting to see the effect of using
genetic algorithm, noticing that such ones are more computationally

xpensive but typically more suitable for finding the global optimum
n nonlinear (non-convex) optimisation problems.

. Concluding remarks

This paper presented a method from which to determine reliable
ransfer functions without the need of detailed hull geometry. Instead,
he method relies on parameterised transfer functions (Jensen et al.,
004), and the availability of response measurements and associated
ave conditions. The idea is based on the establishment of a cost func-

ion derived via spectral analysis equating the measured spectrum with
he corresponding theoretically computed one using the parameterised
ransfer function and the wave spectrum. Solved as an optimisation
roblem, the solution yields the optimum set of parameters in the
arameterised transfer function corresponding to a given measurement
ample.

The study showed that the sample-specific optimum could vary
uite much from one sample to the following. As a result, the mean
alues of the respective parameters of the sample-specific optima were
omputed by consideration of many samples. The achieved mean-
ptimised parameterised transfer function was associated with 95%
onfidence bands to indicate a level of trust depending on frequency.

Application on both simulated data and in-service measurements
ndicated promising results. Thus, reasonable agreement between the
ean-optimised parameterised transfer function and the ground truth

simulated data), respectively, results obtained by strip theory (in-
ervice measurements) was confirmed.

The main advantage of the presented method is considered to be
ts simplicity, repeating that the detailed hull geometry is not required.
he simplicity comes with only a little price on accuracy, as compared
o strip theory, but the small, if any, degradation is partly mitigated
nd/or compensated by the inclusion of the 95% confidence bands.

The fundamental assumption of the proposed method is that ac-
urate 2D wave spectra are accessible. In the particular analysis of
n-service measurements, the ERA5 dataset (Hersbach et al., 2020,
021) was used. It is vital to stress that any (‘‘consistent’’) inaccuracy
r bias in the 2D wave spectra will be detrimental for the proposed
ethod.
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