
Causal versus Marginal Shapley Values for Robotic Lever Manipulation
Controlled using Deep Reinforcement Learning

Sindre Benjamin Remman1, Inga Strümke2 and Anastasios M. Lekkas3

Abstract— We investigate the effect of including application
knowledge about a robotic system states’ causal relations when
generating explanations of deep neural network policies. To
this end, we compare two methods from explainable artificial
intelligence, KernelSHAP, and causal SHAP, on a deep neural
network trained using deep reinforcement learning on the
task of controlling a lever using a robotic manipulator. A
primary disadvantage of KernelSHAP is that its explanations
represent only the features’ direct effects on a model’s output,
not considering the indirect effects a feature can have on the
output by affecting other features. Causal SHAP uses a partial
causal ordering to alter KernelSHAP’s sampling procedure to
incorporate these indirect effects. This partial causal ordering
defines the causal relations between the features, and we specify
this using application knowledge about the lever control task.
We show that enabling an explanation method to account for
indirect effects and incorporating some application knowledge
can lead to explanations that better agree with human intuition.
This is especially favorable for a real-world robotics task, where
there is considerable causality at play, and in addition, the
required application knowledge is often handily available.

Index Terms— Deep reinforcement learning, robotics, ex-
plainable artificial intelligence, Shapley additive explanations,
causal SHAP

I. INTRODUCTION

Data-driven control methods have become widespread
over the last years due to their ability to capture unforeseen
changes in the surroundings and the system dynamics and
adapt accordingly. Reinforcement learning (RL) based meth-
ods show great promise in terms of adaptability in robotics
applications. However, this adaptability comes at a cost, as
RL methods are often paired with a function approximator
such as deep neural networks (DNNs), which are in general
not interpretable by humans. The combination of RL with
DNNs is called deep reinforcement learning (DRL) and has
been prominent in the last decade because of its high per-
formance on several tasks that have been considered difficult
for computers to achieve superhuman performance [1], [2].
DRL has also had success within robotic manipulation [3]–
[5]. However, the non-interpretable nature of DNNs implies
that using DRL methods to control a real-world cyber-
physical system during safety-critical operation comes with
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considerable risks.
Non-interpretable models permeate the state-of-the-art

methods in machine learning (ML). In response to this,
researchers are putting effort into investigating how the de-
cisions of ML agents can be explained. The field addressing
these issues is called explainable artificial intelligence (XAI),
from which a steadily increasing number of methods are
being developed. Among the first and most widely used XAI
methods is Local Interpretable Model-agnostic Explanations
(LIME), presented in [6]. This method locally approximates
the non-interpretable model using an interpretable model,
for instance, a linear model. Linear LIME is an additive
feature attribution method. Methods of this type create an
explanation model that is a linear function of binary vari-
ables. This definition was formalized by [7], whose authors
also realized that several existing explanation methods share
this property, thus unifying several explanation methods and
introducing SHapley Additive exPlanations (SHAP). The
SHAP framework produces feature attributions satisfying the
axioms of the Shapley decomposition, a solution concept
from cooperative game theory [8]. Adapting linear LIME
to satisfy the Shapley axioms [8] results in the feature
attribution method KernelSHAP [7].

One can use SHAP to explain any ML model for which
the target value in the data is known, and the explanation
is given in the form of a feature importance attribution. In
the SHAP value calculation, the binary variables mentioned
above indicate the presence or absence of a model feature.
All SHAP implementations thus rely on calculating an ML
model’s expected outcome in the absence of model features.
In KernelSHAP [7], this calculation is done using a marginal
distribution of the excluded features, which amounts to as-
suming independence between the model features. As argued
by [9], explanations generated using the marginal distribution
can only represent the direct effects of features on the model,
not the indirect effects a feature can have on the output by in
turn affecting other features [10]. Taking the causal structure
in the data into account, [9] present a modification to the
SHAP package, named causal SHAP.

The contributions of this paper are the following:
• Developing a Python version of causal SHAP [9],

available in [11].
• We employ causal SHAP for explaining a deep neural

network controller (policy) performing a robotic manip-
ulation task. To achieve this, we consider the geometry
of the problem and, for each state, identify whether
an intervention on the state value could influence other
states.



• We compare the explanations generated by KernelSHAP
and causal SHAP. In doing so, we investigate the effect
of taking indirect feature effects into account, thereby
obtaining feature attributions based on a more complete
physical description of the system at hand.

This paper is organized as follows: in Section II, we
present the necessary theory behind DRL, SHAP and causal
SHAP; in Section III, we describe the task to be solved
using DRL, the experimental design, and how we use SHAP
and causal SHAP to explain the decision-making agent;
in Section IV, we present and discuss our results; and finally,
in Section V, we draw our conclusions.

II. PRELIMINARIES

This section gives an overview of the theory and termi-
nology necessary to understand the remainder of this paper.
Firstly, we provide an overview of the fundamentals of DRL.
Secondly, the theory behind SHAP is explained. Lastly, we
look at how SHAP is modified to create causal SHAP values.

A. Deep Reinforcement Learning

Reinforcement learning considers two parts: the agent,
which learns and makes decisions, and the environment,
which consists of everything in the problem other than the
agent [12]. The interactions between these two parts are
illustrated in Figure 1. The agent receives a state from
the environment, performs an action based on this state,
and receives a new state together with a reward from the
environment. This cycle then repeats for the whole operation.
The goal of RL is to find a policy that maps states to actions.
The so-called optimal policy does the mapping in a way such
that a long-term expected reward is maximized, here defined
by the discounted infinite horizon model:

E[

∞∑
t=0

γtrt] , (1)

where γ ∈ [0, 1] is the discount factor, and rt is the reward
received at time t [13, pp.13-15].

As previously stated, DRL refers to RL where the function
approximator is a DNN. Here, we train a DRL agent using
the Deep Deterministic Policy Gradient (DDPG) algorithm
[14]. This is an actor-critic algorithm, which means that it
trains two neural networks, the actor-network and the critic-
network. The actor-network functions as the policy, which
means that it maps states to actions, and the critic-network
is used to guide the training of the actor-network. From a
control engineering point of view, the policy is then akin to a
controller. DDPG trains a deterministic policy, which means
that a specific policy will always give the same output for
the same input.

B. Shapley Additive Explanations

The Shapley decomposition, introduced by Lloyd Shapley
in 1953 [8], has in recent years been applied extensively in
the XAI literature. Originating in cooperative game theory,
the Shapley decomposition decomposes the outcome of a
cooperative multiplayer game and attributes the outcome
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Fig. 1: The reinforcement learning loop.

to the game’s players. This attribution is arguably fair to
all the players since it is the only solution that satisfies
specific properties; see, for instance, Theorem 2 in [15].
These properties are:
• Efficiency (called local accuracy in [7])

– The contribution attributed to all players should add
up to the difference between the outcome and the
outcome with no players in the game.

• Monotonicity (called consistency in [7])
– If the game changes such that a player’s contribu-

tion increases or stays the same regardless of the
other players, that player’s attribution should not
decrease.

• Equal treatment (also called symmetry)
– Two players that contribute the same in all coali-

tions should be given the same attribution.
• Dummy (also called missingness)

– If a player does not change the outcome whether
or not they are added to any coalition, they should
receive an attribution of zero.

The Shapley value of participant i is calculated as a
weighted mean over all subsets S ⊆ N of the game’s N
participants, not containing participant i:

φi =
∑
S⊆N

|S|! (N − |S| − 1)!

N !
(v(S ∪ {j})− v(S)) . (2)

Here, v(S) is the characteristic function, which fully char-
acterizes the game by mapping any set of participants in the
game to a single real number 2N → R.

Table I shows how the game-theoretic concepts can be
viewed in the context of XAI and this paper’s use-case.
The analogy shows that the Shapley decomposition can be
used to obtain a feature attribution for an ML model. The
feature attribution distributes the model’s output among the
model’s input features, quantifying how each of these affect
the model output. The output of an ML model f trained on a
set of data with features x, for a feature vector with specific
values x = x∗, can be decomposed as

f(x∗) = φ0 +

N∑
i=1

φ∗i , (3)



TABLE I:
GAME THEORETIC CONCEPTS IN THE CONTEXT OF XAI

AND THIS PAPER’S USE-CASE

Game theory
interpretation XAI interpretation This paper’s use case

The game A model performing
a prediction task

A DRL model controlling
a manipulator

The game’s
outcome

The model’s
prediction/output

The actions chosen
by the DRL model

The game’s
participants The model’s input features The system’s states

with N the total number of features in the model, φ0 the
expected value of the model output across the data set,
E[f(x)], and φ∗i the Shapley value for the specific output
on x∗.

Two main challenges are associated with calculating Shap-
ley values for feature attribution: First, the calculation is
very computationally expensive. A model using N features
would need to be evaluated 2N times, once for each feature’s
inclusion or exclusion, as is readily seen from (2). Second,
it is, in general, not possible to evaluate a fitted ML model
with sets of features missing. For example, for a neural
network that is trained using N -dimensional input features,
the architecture of the network does not permit the usage
of (N − 1)-dimensional input features. To circumvent these
challenges, implementations such as the widely used SHAP,
introduced by Lundberg and Lee [7], rely on approximations.
SHAP’s characteristic function, in the notation of [16], is

v(S) = E[f(x)|xS = x∗S ] , (4)

which is an estimate of the expected model output, con-
ditional upon the included features with values xS = x∗S .
As such, SHAP values attribute the change in the expected
model output to each model feature. In other words, SHAP
values are the Shapley values of the original model’s con-
ditional expectation function [7]. The SHAP values are
calculated using an estimation of how much each feature
contributes to driving the model output away from its mean
output across a data set. KernelSHAP, introduced in [7],
estimates (4) with absent features by sampling from the
marginal distribution, which amounts to the assumption of
independence between the included and excluded features.

Various changes to the sampling procedure used for esti-
mating the expected model output have since been suggested,
and particularly relevant in this context are [9], [16]–[18].

C. Causal SHAP

To account for mutual dependence among the model
features, the SHAP calculation can use the conditional dis-
tribution of the excluded features, instead of the marginal,
as first suggested by Aas et al. [16]. Furthermore, causal
structure of the features can be taken into account by
conditioning the absent features upon the values of the in-
cluded features by intervention. To achieve this, the sampling
procedure for calculating the expected model output in the

SHAP calculation must use the interventional distribution.
Interventions on random variables are commonly represented
mathematically using the so-called do-operator. Judea Pearl
famously invented the do-calculus [19], consisting of rules
for mapping probability distributions. With this, one can infer
interventional probabilities from conditional probabilities. As
shown by Heskes et al. [9], modifying conditional SHAP
by applying the do-calculus rules thus allows us to use the
interventional distribution in the SHAP calculation. Then, (4)
becomes

v(S) = E[f(x)|do(xS = x∗S)] , (5)

which we calculate by integrating over the absent features
S, as detailed in [9]. The main advantage of the resulting
so-called causal SHAP values is that both direct as well as
indirect effects of the model features are taken into account.
The direct effects represent the change in the model’s output
due to a change in a feature without changing the absent
features. The indirect effects, on the other hand, represent
the change caused in the missing features by the intervention
upon a feature, see [9, eq (5)]. The inclusion of these indirect
effects constitutes the main difference between causal SHAP
values and the marginal SHAP values introduced earlier, as
the latter by construction only represent direct effects.

The causal SHAP implementation used in this paper [11]
was created by the first author, by adapting the R implemen-
tation by [9] to Python. In the implementation, we specify
the causal structure of the data via a causal ordering in a
nested list. Each list is defined as causally dependent on
the elements in the preceding list(s). In addition, we use
a second, separate list to specify whether the dependencies
within each nested list result from a confounding factor or
mutual interactions between the components in the nested
list.

III. METHODOLOGY

In this section, we describe the objective and training
process of the DRL agent, the data set creation, and finally,
how we analyze the data using the two different SHAP
implementations.

A. Lever manipulation task

The robotic manipulator that is used in this paper is the
OpenMANIPULATOR-X1 by Robotis, which can be seen
in Figure 2. This manipulator has five degrees of freedom,
four for the joints and one for the gripper. We do not use
the first joint during this lever manipulation task, which
corresponds to a rotation about the manipulator’s base. This
is both because this makes the training more efficient, but
also because the angle of this joint is trivial to solve for using

θ1 = arctan2(ylever, xlever),

where ylever and xlever is the y- and x- coordinates of the
lever expressed in the inertial frame of the manipulator.

1https://emanual.robotis.com/docs/en/platform/
openmanipulator_x/overview/

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/


Fig. 2: The OpenMANIPULATOR-X.

The task involves moving the lever from a random start
angle to a random target angle. These target and start angles
are selected uniformly according to

θstart, θtarget ∈ R : θstart, θtarget ∈ [−1.0 rad, 1.0 rad],

and |θstart − θtarget| > 0.4 rad, to ensure that the target
and start angles have viable minimum and maximum values,
while also not initializing the lever too close to the goal

B. States and Actions
In this task, the dimension of the state vector is eight

and consists of: the joint angles of the manipulator, three
in total, since we do not use the first joint, as explained in
section III-A, denoted by q1, q2, q3; the distance between the
two fingers of the gripper, q4; the horizontal and vertical
distance from the end-effector to the lever, dx, dz; and the
current and desired angles of the lever, θlever, θtarget. See
Figure 3 for a visualization of the system’s states.

The action vector is of dimension four, where the first
three entries correspond to the desired change in angle of
the shoulder, elbow, and wrist joints, respectively. The fourth
entry in the action vector indicates whether the gripper
should open or close:

a4 ≥ 0,→ Gripper should open
a4 < 0,→ Gripper should close.

Then the state vector s and the action vector a consist of:

s =
[
q1 q2 q3 q4 dx dz θlever θtarget

]T
a =

[
∆q1 ∆q2 ∆q3 a4

]T
C. Training procedure

The agent was trained using the DDPG algorithm together
with the technique Hindsight Experience Replay (HER) [20].
HER enables the usage of sparse rewards by treating each
configuration of the lever angle as a separate goal. In other
words, even if the agent did not reach the original goal, it
treats the lever angle that was reached as an alternative goal,
and it receives rewards accordingly. Sparse rewards avoid
overcomplicating the reward engineering, and we, therefore,
give sparse rewards according to

r =

{
−1, if |θlever − θtarget| ≥ 0.025 rad

0, if |θlever − θtarget| < 0.025 rad
,

q1

q4

q3

q2

θlever θtarget

dgripper to lever

Fig. 3: Visualization of the system’s states.

where 0.025 rad is the chosen precision for the lever manip-
ulation task. The agent is trained using simulations, and we
use two different simulators for this. The first simulator is
PyBullet, a fast simulator but not close enough to the real-
world environment for our purposes. The agent trained in
PyBullet is then transfer learned in Gazebo, which is slower
but more like the real-world environment. After transfer
learning in Gazebo, we can deploy the agent in the real-
world environment. This training procedure is described in
more detail in [21], where the main difference here is that we
have reduced the number of states, which we did primarily
to make the feature attributions simpler to interpret.

D. Data set and explanations

To sample the excluded features, implementations
of SHAP rely on background data sets. Furthermore, we
wish to choose interesting decisions by our agent to explain.
To this end, we collect a data set by letting the fully trained
DRL agent operate in the real-world environment by running
15 test episodes with randomly selected target and start
lever angles. From these test episodes, we identify interesting
events and compare the explanations generated by the two
different SHAP implementations on these. We remove the
episodes where these events occur and use the resulting data
set as our background data set. In this data set, the input
features x are the environment’s states, while the targets y
are the actions chosen by the DRL agent. We chose one event
from Episode 1 and two events from Episode 3, meaning that
our background data set consists of episodes 2 and 4− 15.

To display the results, we create a plot similar to the
force plot available in the SHAP package2. The force plot
illustrates the “force” of each feature on the prediction,
showing how the features force the prediction away from the
mean prediction and towards the model’s prediction. In our
adaptation, we show one force plot for each of the agent’s
actions on the same figure.

As stated in Section II-C, the causal SHAP implementation
requires the causal structure of the data to be specified by a
causal ordering. The causal ordering we use is

[[θtarget], [q1, q2, q3], [q4, dx, dz], [θlever]].

2https://github.com/slundberg/shap

https://github.com/slundberg/shap
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Fig. 4: Visualization of the chosen causal ordering.

In addition, we assume that none of the features are influ-
enced by a confounding factor but instead have only mutual
interactions. We found the causal ordering by considering
which of the other features would change if we performed an
intervention on one feature. For instance, the lever position
θlever would change if we changed one of the joint features
such that the manipulator pushes the lever. A visualization
of our causal ordering is shown in Figure 4, where blue
arrows indicate each feature’s direct effect on the target,
purple arrows indirect effects via other features, and the red
arrows indirect effects that we know are not present. More
details on this are given below.

Our setup reveals a weakness in the causal SHAP im-
plementation: The feature θtarget does not have any causal
connection with any of the other features, but because of
the way causal SHAP is implemented, it still has to be
defined in the causal ordering. We list this feature first
in the causal ordering to avoid the indirect effects of all
the other features flowing through this independent feature
(which would happen if we placed it after other features). We
assume now and show in the results sections that although
this feature is put first in the causal ordering, the causal
SHAP algorithm will uncover that this feature only has a
direct effect on the prediction and therefore assign it an
indirect causal connection strength close to 0 to the following
features in the causal ordering.

Another weakness is that, according to our causal ordering,
q1, q2, q3 (the joint features), have a causal effect on q4
(the gripper feature). This is not necessarily true, but the
current implementation does not allow two features to affect
a third feature without affecting each other in the causal
ordering. Figure 4 highlight these two issues, indicating that
θtarget does not influence features succeeding it in the causal
ordering and that other joint variables not influencing q4.

IV. RESULTS AND DISCUSSION

In this section, we discuss and compare the results from
using causal SHAP and KernelSHAP to explain the actions
of the agent performing the robotic lever manipulation task.
We select three events from the data set described above
and examine interesting aspects of the events’ SHAP values.
We group the discussion into where the methods agree and
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Fig. 5: Episode 1: pushing event, causal SHAP

where the methods disagree with each other for each event.
The selected events are defined as follows:
Pushing event: The first of the events is from episode 1,
where the manipulator pushes the lever from the start angle to
the target angle with the gripper closed. We select a time-step
in which the manipulator is actively pushing the manipulator
and analyze it.
Grasping event: The second event selected is from episode
3, in which the manipulator is grasping the lever before
pulling it. We here analyze the exact time-step in which the
manipulator grasps the lever.
Pulling event: The third and final event we analyze also
belongs to episode 3 and takes place just after the grasping
event when the manipulator is being used to pull the lever
from the start angle to the target angle.

A. Pushing event

Where the methods agree: For the pushing event,
force plots for causal SHAP and KernelSHAP are shown
in Figures 5 and 6, respectively. In both plots, for action 4,
all but one feature have negative SHAP values, implying
that most aspects of this situation inform the agent to
keep the gripper closed. For both methods, for the actions
corresponding to moving the joints (actions 1 to 3), the
feature q4 has the lowest SHAP value. This means that
both methods agree that knowing whether the gripper is
closed is not important for the movement of the joints. Both
methods attribute similar importance to θlever and θtarget.
However, causal SHAP assigns slightly lower values to θlever



Action 1 Action 2 Action 3 Action 4

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

O
ut

pu
tv

al
ue

θlever

q3

q4

dx

θtarget

q1
q2
dz

dx

dz

θtarget

q2

q3

q4

θlever

q1

dx

q3

θtarget

dz

q2

q4

θlever

q1

dx

θlever

dz

q3

q4

q2

θtarget

q1

Pos. SHAP value
Neg. SHAP value

Mean pred.
Model pred.

Fig. 6: Episode 1: pushing event, KernelSHAP

compared to KernelSHAP, likely because this feature is at
the bottom of the causal ordering. Nevertheless, θlever is
still among the features with the highest SHAP values. This
implies that θlever is an important predictor variable for how
the manipulator should be used to move the lever. Simply
put, it is important to know where the lever is to move it.

Where the methods disagree: Overall, causal SHAP
attributes higher importance to the joint variables, q1, q2, q3.
In contrast, KernelSHAP attributes higher importance to dx
and dz , the features that together form a Cartesian vector
from the end-effector to the lever’s base. The joint variables
are higher in the causal ordering, and they cause changes in
dx and dz , and thus causal SHAP assigns more importance to
them. This indicates that some of the effects attributed to dx
and dz in KernelSHAP are captured as indirect effects of the
joint variables in causal SHAP. The joint variables, dx and
dz , contain much of the same information, that is, informa-
tion about the manipulator’s position. However, in addition
to this information about the manipulator’s position, the
joint variables contain information about the manipulator’s
orientation. However, dx and dz contain information about
where the lever is situated in relation to the manipulator.
The exclusive information that these two sets of features
contain makes each of them valuable for performing the lever
manipulation task. However, because the joint variables are
what is being controlled by actions 1−3, and it is difficult to
manipulate something one does not know where is, it makes
sense these features should have among the highest SHAP
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Fig. 7: Episode 3: grasping event, causal SHAP

values.

B. Grasping event

Where the methods agree: For the grasping event,
the plots for causal SHAP and KernelSHAP are shown in
Figure 7 and Figure 8, respectively. In contrast to the plots
for the pushing event, q4 has a much higher SHAP value for
both methods. This is presumably because the agent is in the
process of pulling the lever, and q4 is important for knowing
that the lever still needs to be grasped by the manipulator.

Where the methods disagree: The difference between
the two methods is much more significant for θlever than
before. KernelSHAP still attributes the most importance to
this feature, while causal SHAP attributes the lowest overall
importance to θlever in the grasping event. This is curious
since the position of the lever should be necessary for
deciding how to grasp it. The reason is that causal SHAP
assigns part of the contribution from θlever as indirect effects
to the features above it in the causal ordering. Similar to
the pushing event, the joint variables are generally more
critical according to causal SHAP than they are according
to KernelSHAP. Conversely, dx and dz are generally more
critical according to KernelSHAP than what they are to
causal SHAP. However, there are some exceptions to this:
Consider q2, which has approximately the same SHAP values
for both plots’ corresponding actions, and action 3, for
which the SHAP value of q3 has a larger magnitude for
KernelSHAP than for causal SHAP.
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Fig. 8: Episode 3: grasping event, KernelSHAP

C. Pulling event

Where the methods agree: Figure 9 and Figure 10 show
the results from causal SHAP and KernelSHAP, respectively.
As discussed in Section III-D, θtarget was put on the top
of the causal ordering by necessity. However, we can see
that this feature has approximately the same SHAP value for
all actions in the pulling event for both methods. This was
also the case for the pushing and grasping events described
above. This suggests that causal SHAP has discovered that
this feature has only a direct effect, and therefore given an
indirect causal connection strength of approximately 0 to the
features succeeding it in the causal graph, in agreement with
our expectation.

Both methods assign only negative SHAP values to actions
1 and 4. This means both methods agree that the gripper
should be closed, which corresponds to having a negative
action 4. If action 4 had a positive value, the manipulator
would lose its grip on the lever, which is undesirable in this
situation. In addition, since action 1 controls the joint closest
to the manipulator’s base, this action is most effective at
moving the end-effector. For example, moving q1 a specific
angular distance would result in a much more significant
difference in the end-effector position than moving q3 the
same angular distance. Therefore, it seems reasonable that
both methods give negative SHAP values to all features for
action 1. This is because this is the most effective way
to move the end-effector backward, which corresponds to
pulling the lever in this case.
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Fig. 9: Episode 3: pulling event, causal SHAP
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Fig. 10: Episode 3: pulling event, KernelSHAP



Where the methods disagree: As for the two previous
events, we observe again that KernelSHAP prioritizes dx and
dz over the joint variables, and vice versa for causal SHAP.
In fact, dx and dz account for over half of the total magnitude
of all the SHAP values for actions 1, 2 and 4 in Figure 10.

V. CONCLUSION

We have shown how causal SHAP can be used to explain
not only the direct effects but also the indirect effects features
can have on the decisions of a deep reinforcement learning
agent controlling a real-world robotics system. In addition,
we have shown how causal SHAP can incorporate applica-
tion knowledge in the explanation generation process. We
expect causal relations to be an essential part of explainable
artificial intelligence (XAI) in the future, especially for
explaining physical systems.

Due to the complex nature of the presented explanations,
we regard these as most useful for data scientists, model
developers, and others with experience in data analysis and
XAI. The explanations would require processing to produce
explanations suitable for non-technical end-users. According
to [22], explanations should be contrastive, and explanations
based on counterfactuals [23] are more intuitive to humans.
Work has been done towards unifying feature attribution and
counterfactuals [24], and towards generating counterfactu-
als from SHAP [25]. Further work could thus investigate
whether transforming feature attributions to counterfactual
explanations could make them more accessible to non-
experts. Taking a leaf from [26], further work can also
include adjusting explanations based on the characteristics of
a specific end-user audience, which is particularly applicable
to a real-world robotics application.

More specific to causal SHAP, further work can i.a. consist
in modifying causal SHAP to account for fully independent
features (such as θtarget in this paper). Another valuable
extension would be the possibility to specify which indirect
causal connections have strength 0 (for causally independent
subsystems).
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