
Wienerization of systems in nonlinear control canonical normal form
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Abstract— We extend the concept of model approximation via
wienerization to systems in nonlinear control canonical normal
form. We elaborate on the conditions for, and implications
of, analytically separating nonlinear input affine dynamical
systems in state space form in a static part plus a dynamic
one. In doing so, we discuss under which conditions Wiener
models may approximate the resulting models well. More
precisely, we report that a specific bijective transformation of
the original nonlinear model will separate the system into a
multidimensional state space structure for which it is possible
to compare nonlinear Wiener control against linear control for
underactuated nonlinear systems. We finally assess how the
former type of control has better closed-loop performance than
the latter by means of quantitative examples.

I. INTRODUCTION

We consider a situation where the inputs of an asymptoti-
cally stable system are known to change only very slowly in
time with respect to the characteristic time constant of the
system. The structure and the parameters of such a model
are unknown, and if the plant is operated in closed loop as
close as possible to an equilibrium point, or if the transitions
among operating regimes are performed slowly, the data
collected will be in a static-like modality.

In other words, the measured trajectory is governed more
by the steady state response of the system (i.e., static gain)
than by its transient response. Data-driven modelling in such
a situation, for which the data is non-persistently exciting
(PE), is to the best of our knowledge problematic.

Inspired by this practical problem, we propose and analyze
system representations that allow to formally separate and
investigate the static and dynamic properties of a system, and
we investigate how one may build model approximations that
leverage such a separation. By doing so, we aim at contribut-
ing towards answering the question of what information may
be extracted from non-PE data.

We consider what can be said about a model, given that
one just has information about its equilibria (potentially
obtained by means of opportune identification efforts, ex-
pert knowledge, physics based simulators, or other suitable
sources of information for the specific system). The focus of
the paper is however not on obtaining this information, but
rather presenting a specific model structure and discussing
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how it may be approximated, and the control capabilities
such approximations offer.

Our first main purpose is thus to clarify how the set of
equilibria of the system may be seen (and used) as structural
information about the system. Our second purpose stems
from the consequent consideration: how may such structural
information about the equilibria be used for feedback control
purposes? Again, intuitively for now (but more formally
below), knowing the equilibria of the model should enable
drafting at least part of a model-based control strategy
(potentially nonlinearly, potentially only partially solving the
problem of controlling the plant).

Literature review: The concepts above strongly relate
to Hammerstein Wiener modelling, due to their capability of
embedding nonlinear static information. Hammerstein and
Wiener models are simple nonlinear models that have linear
parts but nonlinear equilibria, thus emphasizing nonlinear
static effects. For these reasons, and the advantages men-
tioned above, such models have proven useful in many areas,
such as chemical processes, biological processes, and signal
processing [1], [11]–[13]. The controllers based on Wiener
and Hammerstein models have much in common with linear
controllers, but generally tend to exceed linear model based
controllers for nonlinear systems.

Data-driven identification of Wiener models is both a
mature and active field of research [6], [17], and it may
be considered a sub-class of identification of general block-
oriented systems [5]. The block structure may in many cases
allow for inclusion of prior knowledge into the model [9]
(e.g., a titration curve in a pH process [7]). This is also the
case here, when relevant. One general and central problem
when identifying Wiener models is static gain estimation,
described in the recent work [16].

We also note that Wiener models are not only considered
to be strictly empirical or having a physical interpretation.
Other interpretations of Wiener models can be found through
Koopman theory [14], or Volterra series approximations [3].
The approach here resembles and connects to the latter,
though the starting point is a system in state space form.

Finally, system identification regularized with steady state
gain (i.e., static information) has been successfully tested in,
e.g., [4], though we note that this paper has the different
focus of characterizing what the static information means
for the system itself.

Statement of contributions: We introduce a nonlinear
transformation for systems in nonlinear control canonical
normal form that separates the system into a dynamical part
with constant gain followed by a memory-less nonlinear
part. We characterize when this transformation exists and



is invertible, and generalize the results from [2] to systems
that also can be underactuated, in this way broadening the
class of systems that are known to be separable to the class
of systems expressable in nonlinear control canonical normal
form (i.e., models containing integrators).

Based on this, we define the process of wienerization for
this class of systems and connect this operation to lineariza-
tion, in this way finding results that are of immediate use for
the design of control strategies. We then derive conditions for
when the dynamical part of a wienerized model is equivalent
to the linearization of the original system. Finally we show
that control based on wienerization may be compared against
control based on linearization, and demonstrate this with
numerical examples that confirm the expected performance
gain, especially for slowly varying input references.

In this way we show how Wiener models are particularly
suitable for situations where modelling should start from
non-PE data, and how Wiener models may exceed the gener-
alization capabilities of linear ones by extracting meaningful
nonlinear static information (note that leveraging non-PE
information is particularly useful in the considered scenario
when static behaviour is dominant in the plant). Non-PE data
is available as information or estimates on, e.g., equilibria or
gain of a system computed through a physics based simulator
as in a hybrid modeling setting [15].

Structure of the manuscript: Section II describes how
dynamic and static effects may be separated, exemplifies the
limitations of previous works, and defines a transformation
that can be used for separating underactuated systems. Sec-
tion III describes how a linearization and a wienerization
of the original system are similar and connected, how this
results in related control schemes, and how the schemes are
different. Section IV includes numerical experiments that
illustrate the findings from the two previous sections. Finally
we make some conclusions and outline future research in
Section V.

II. A MODEL STRUCTURE THAT SEPARATES STATIC AND
DYNAMIC NONLINEAR COMPONENTS

We start by recalling a particular model structure, proposed
and analyzed first in [2], that serves the purpose of separating
static and dynamic nonlinear effects as two distinct and sep-
arately identifiable parts. This paper focuses on generalizing
these concepts to a broader class of systems.

Consider the following nonlinear input affine system,

ẏ = f(y) +G(y)u , (1)

where u ∈ Rn and y ∈ Rn, and where both f(y) : Rn 7→ Rn

and G(y) : Rn 7→ Rn×n are smooth functions of class C1.
As shown in [2], to separate this system into a dynamic
model that has purely dynamic nonlinearities in series with
a static nonlinearity, it is required that the steady state map
h(u) : Rn 7→ Rn is a smooth function in C1 that is invertible
in the region of interest. This enables defining the condition
for an input-output equilibrium as

ū := h
−1
(ȳ) := −G(ȳ)

−1
f(ȳ),

where the bar notation indicate steady states (constant in
time). Then the model structure (1) can be equivalently
rewritten into the state space representation

ẋ = k(x)(x− Tu) (2a)

y = h
(
T

−1
x
)

(2b)

where x ∈ Rn, and T ∈ Rn×n is an arbitrary invertible
matrix. The representation (2) is the aforementioned separa-
tion of the static and dynamic part of the original system, as
(2a) essentially contains no steady state information (it has
constant gain); it is all included in (2b), the memory-less
part.

The function k(x) : Rn 7→ Rn×n in (2a) is shown in [2]
to be

k(x) := −T∇h
(
T

−1
x
)−1

(G ◦ h)
(
T

−1
x
)
T

−1
.

Representing a system as in the form (2) may thus be
interpreted as rewriting the model to highlight a specific
type of separation of the static and the dynamic system
nonlinearities. Indeed at the equilibria we have x̄ = T ū,
implying that ȳ = h (ū) may be interpreted as an equilibrium
map. Moreover, as shown in [2], representation (2) can
immediately be used for nonlinear control design purposes.

Consider the linearization versus the wienerization of (1),
the latter obtained by linearizing only (2a). Starting from
both these models one may design an associated linear
feedback controller, and apply it to the system. However,
the controller designed according to the Wiener model is
designed for control in x. Thus, if the equilibrium map h
is known and invertible, its inverse has to be used in the
feedback loop to enable the Wiener model based controller,
making it a nonlinear controller w.r.t. y.

Example: Consider the following Duffing equation,
physically representing a mass-spring system with nonlinear
spring stiffness (i.e., a hardening spring),

ẏ1 = y2 (3a)

ẏ2 =
1

m

(
− cy2 − ky1

(
1 + a2y21

)
+ u

)
(3b)

where y1 is position of the spring relative to equilibrium,
y2 is the speed, m is the mass, c is a damping or friction
constant, k and a are constants related to the spring stiffness,
and u is some input force.

As system (3) contains an integrator, its equilibria must
be so that the integrated states in equilibrium must be zero.
Indeed the equilibria of system (3) correspond to y2 = 0 and
u = k

my1(1+a2y21), and thus only y1 can have a static non-
zero component. Rewriting (3) in the form (2) is not possible
from the theory summarized above, since G(y) cannot be full
rank for any y (being not even square). □

We also note that requiring that dimu = dim y, as needed
to produce (2), is too restrictive to be useful for modelling
many real-world systems that are typically underactuated,
i.e., dimu < dim y.

A first contribution of this paper is to show how to define
an alternative nonlinear differential equation with a structure



that is inspired by (2) and that shows similar separations
of static and dynamic components, that can also model
situations for which dimu < dim y. We soon describe an
alternative, invertible map based on the nontrivial equilibria
in more general terms than above.

A. On the existence of invertible equilibrium maps

As exemplified above, systems that admit representations
as in (1) do not generally admit representations of the
form (2). Vice versa, systems that may be defined as in (2)
may not admit a representation of the form (1). Any system
that has an output equation like (2b) that is not invertible,
can not be put on the form (1), i.e. can not be represented
through a single, explicit ODE. This is easily seen by any
attempt to do so, as from (2b) it follows that

ẏ = ∇h
(
T

−1
x
)
T

−1
ẋ

for which we can conclude that it is not possible to substitute
out x for y.

We argue now that asking when the two specific repre-
sentations (1) and (2) are equivalent comes down to asking
when an invertible equilibrium map h(u) = y exists.

Consider now the equilibria (ū, ȳ) of the system (1) and
the implicit function theorem, describing when there exists a
mapping h(·) in the neighborhood of an equilibrium. In this
case, the equilibria are given by

0 = r(ū, ȳ) = f(ȳ) +G(ȳ)ū ,

an equation that is solvable with respect to ū if the matrix

∂r

∂ū
(ū, ȳ) = G(ȳ)

is full rank, meaning that a function ū = p(ȳ) exists near the
equilibrium, giving the equilibria values ū from ȳ. Solvability
with respect to ȳ equivalently requires that

∂r

∂ȳ
(ū, ȳ) =

∂f

∂y
(ȳ) + ū⊺∇yG(ȳ)

is full rank, implying existence of a function y = q(u) near
the equilibrium.

When both p(y), q(u) exist, then the function h exists and
is invertible. Clearly, the existence of both p(y) and q(u)
from (1) is generally not possible, as for example a non-
square G(y) will lead to an undefined p(y). However, in
such cases we may define appropriate transformations to still
separate dynamics and statics of systems as (1), though the
resulting form is somewhat different from (2).

B. Equilibria of underactuated systems

To extend the ideas of separation for static and dynamic
nonlinearities to systems where dimu = m < n (and thus
the cases where G(y) is not square and the equilibrium
map is thus non-invertible) we consider the following as a
prototype of such a system, recalled from [18]:

Definition 1 A system is said to be in nonlinear control
canonical normal form (NCCNF) when, for y ∈ Y ⊆ Rn,

ẏ =


y2
y3
...
yn
f(y)

+


0
0
...
0

g(y)

u . (4)

This definition of the NCCNF coincides with the definition
found in literature on input-to-state feedback linearization of
SISO nonlinear systems.

Accordingly, any input affine nonlinear system ż =
fz(z) + Gz(z)u, z ∈ Z can be represented by (4) as
long as there exists a diffeomorphism T : Z 7→ Rn s.t.
Y = T(Z) contains the origin, and where transforming
the states according to y = T(z) results in the NCCNF
representation [8]. In the following, it is assumed that there
exists such a diffeomorphism, and that systems are given on
the form (4).

We now show how such nonlinear control canonical
normal forms enable performing the sought extension to
the case m < n, through defining a nonlinear coordinate
transformation based on the nontrivial equilibria of the
original system.

Consider the following additional assumption, posed to
guarantee the existence of an invertible steady state map for
the state y1 for systems represented as in (4):

Assumption 2 Considering system (4), 0 = f(y)+g(y)u is
solvable with respect to y1 and u.

Elaborating on the consequences of Assumption 2, it im-
plies that the output equilibrium in (4) is ȳ = [ȳ1, 0, . . . , 0]

⊺,
i.e., only y1 is non-zero at equilibrium. Since all the other
states are zero at the equilibrium, the steady state from u to
y1 has to be a function of y1 only, meaning that we may
define

h
−1

1 (y1) := u = −
(
g(ȳ)

)−1

f(ȳ) . (5)

Moreover, Assumption 2 implies that (5) is bijective, allow-
ing us to define the mapping

x1 := h
−1

1 (y1) (6a)
y1 := h1(x1) . (6b)

When the mapping is not bijective we may not find a closed
form solution to the inversion, and so methods for locally
approximating the inverse will likely have to be used. This
is outside the scope of this work.

In addition to (6), for the purpose of extending the
sought separation property to the case m < n, we define
a transformation for each of the remaining states s.t.

h
−1
(y) :=

[
h

−1

1 (y1), h
−1

2 (y), . . . , h
−1

i (y)
]⊺

h(x) := [h1(x1), h2(x), . . . , hi(x)]
⊺
.

Then, since y1 is the only state with non-zero equilibria, we
may freely choose the remaining maps h−1

i (y), hi(x) as long
as they satisfy



C1) h−1

i (ȳ) = 0 and hi(x̄) = 0, and
C2) h−1(y) is invertible (and the inverse is h(x)) .

Given this, we define the transformation as:

Definition 3

xi := h
−1

i (y) =


h−1

1 (y1) i = 1
i−1∑
j=1

∂h−1

i−1

∂yj
yj+1 i = 2, . . . , n

(7a)

yi := hi(x) =


h1(x1) i = 1
i−1∑
j=1

∂hi−1

∂xj
xj+1 i = 2, . . . , n .

(7b)

Note that this transformation is defined such that xi+1 =
ẋi, seen from e.g.

x2 := h
−1

2 (y) =
∂h−1

1

∂y1
y2 =

∂h−1

1

∂y1
ẏ1 =

d

dt
h1(y) = ẋ1 .

This ensures that the relation between states are preserved
through the transformation, as then both the linearization and
wienerization of (4) result in models that are on NCCNF.

To show this, we start by noting that Definition 3 trivially
satisfies C1) above. Moreover, C2) may be proven using the
implicit function theorem, i.e., by ensuring that ∇h−1(y) is
non-singular for all y ∈ Y . The latter requires the eigenvalues
of the Jacobian matrix to never be zero. Computing the
Jacobian using definition (7b) leads to

∇h
−1
(y) =



∂h
−1
1

∂y1
0 0 · · · 0

∂h
−1
2

∂y1

∂h
−1
2

∂y2
0 · · · 0

...
...

. . . · · ·
...

∂h
−1
n−1

∂y1

∂h
−1
n−1

∂y2
· · · ∂h

−1
n−1

∂yn−1
0

∂h
−1
n

∂y1

∂h
−1
n

∂y2
· · · ∂h

−1
n

∂yn−1

∂h
−1
n

∂yn


,

where the matrix structure emerges from the fact that each
subsequent h−1

i will be a function of one more state than the
last. This is a lower triangular matrix, and so its eigenvalues
are given by the elements along the diagonal. From (7b) we
may also deduce that

∂h−1

i

∂yi
=

∂h−1

1

∂y1

regardless of the index i, thus the Jacobian is non-singular
as long as ∂h

−1
1

∂y1
̸= 0 for all y ∈ Y , which holds by

Assumption 2. Consequently, the inverse of h−1(y) is well
defined and it is trivial to see that it is h(x).

To summarize, under Assumption 2 it is possible to define
a transformation based on the equilibrium map as in (7).
Next we show how this transformation enables extending
the structure in (2) so that it is possible to separate static
and dynamic nonlinearities for systems with dimu < dim y.

C. Separating static and dynamic nonlinearities

Before presenting the separated system, we define an
invertible matrix T for some equilibrium point x̄

T := ∇h(x̄) ∈ Rn×n (8)

Remark 4 We note that T in the following can be any
invertible matrix, analogous to (2). However, for reasons
discussed in Section III, we will limit our discussion to the
case where T is defined as in (8).

Lemma 5 Consider system (4). Let Assumption 2 hold, h(·)
be as in Definition 3, and the corresponding T be as in (8).
Then, transforming y in (4) by means of y = h(T−1x) results
in the system structure

ẋ =


x2

x3

...
xn

f̃(x)

+


0
0
...
0

g̃(x)

u (9a)

y = h(T
−1
x) (9b)

where

f̃(x) =
h′
1(T

−1x̄1)

h′
1(T

−1x1)

f(h(T
−1
x))−

n−1∑
j=1

∂hn

∂xj
xj+1

 (9c)

g̃(x) =
h′
1(T

−1x̄1)

h′
1 (T

−1x1)
g
(
h(T

−1
x)
)

(9d)

Moreover, this representation separates dynamic and static
nonlinearities, i.e. the static gain from u to x is constant.

Proof: To show that (9a) indeed holds, observe that

ẏ =
d

dt

(
h(T

−1
x)
)
= ∇h(T

−1
x)T

−1
ẋ

Note that since x̄ = [x̄1, 0, . . . , 0]
⊺ and xj is a factor

in ∂hi

∂xj
for i ̸= j (seen by expanding and differentiating

(7b)), we have that T is a diagonal matrix with h′
1(x̄1) in

every diagonal element. Furthermore, since ∇h(x) is lower
triangular, we may use forward substitution to solve the
above equation for ẋi. When i < n we get

ẋi =
(
∇h(T

−1
x)T

−1
)−1

ii

(
ẏi −

i−1∑
j=1

∂hi

∂xj
ẋj

)
(10)

=
h′
1(x̄1)

h′
1(x1)

(
hi+1 (x)−

i−1∑
j=1

∂hi

∂xj
xj+1

)

=
h′
1(x̄1)

h′
1(x1)

(
h′
1(x1)

h′
1(x̄1)

xi+1 +

i−1∑
j=1

∂hi

∂xj
xj+1 −

i−1∑
j=1

∂hi

∂xj
xj+1

)
= xi+1

where we have omitted T−1 from the function arguments in
the last three lines for ease of notation. When i = n, we
may rewrite (10) to get

ẋn =
h′
1(x̄1)

h′
1(x1)

(
f(h(x)) + g(h(x))u−

n−1∑
j=1

∂hn

∂xj
xj+1

)

again omitting T−1 in the function arguments.



To see that (9a) indeed has equilibrium x̄1 = T11ū (where
the subscript denotes the row-column index) we consider
ẋn = 0. Using that x = Th−1(y), the definition of h−1

1

and T , and considering the equilibrium (ū, x̄, ȳ), we get

f̃(x̄) = f(ȳ1)

g̃(x̄) = g(ȳ1)

so that

ū = g(ȳ1)
−1
f(ȳ1) = h

−1

1 (ȳ) = h
−1

1

(
h1

(
T

−1
x̄
) )

=
1

T11
x̄1

Under Lemma 5, the equation (9a) only explains dynam-
ical behaviour of the original system, while the static infor-
mation is completely contained in the transformation (9b).

III. USING STRUCTURE (9) FOR CONTROL DESIGN
PURPOSES

We now demonstrate that structure (9) enables improving
closed loop performances by means of moving from linear
controllers to nonlinear Wiener controllers.

A. Linear Output Feedback Control

A classical strategy to controlling system (4) is by using
a linear output feedback controller

u = −Kly +Nlyr (11)

where Kl is the controller gain, yr is the reference we wish
to track, and Nl is a matrix that is chosen such that the
steady state tracking error is ideally zero with respect to
some opportune linearization of the nonlinear system.

Such a linearization may be either identified from data or
provided through linearizing (4) around a specific equilib-
rium point (x̄, ū). We denote such a linear model by

ẏl = Ayl +Bu . (12)

Assuming w.l.o.g. that the equilibrium is (ū, ȳ) = (0, 0), and
assuming that (12) has been obtained through linearizing a
model whose structure is (4), it follows that

A :=



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
∂f

∂y1

∂f

∂y2

∂f

∂y3
. . .

∂f

∂yn


y=ȳ

B :=


0
0
...
0

g(ȳ)

 .

(13)

This is a controllable linear model, since it is in a linear
control canonical form. This in turns allows us to define the
controller gain Kl so that the closed loop system matrix

Al = A−BKl

is not only Hurwitz but also with eigenvalues chosen accord-
ing to some criterion on the desired closed loop performance.

Following this approach to design a closed loop controller
for the nonlinear system (4) is rather immediate, since it
mimics classical output feedback strategies, and it results in

a controller whose closed loop performances are ideally as
specified when designing Kl and Nl for a reference that is
kept close to the linearization point.

However, if reference tracking is sought, then one should
expect, in general, that the trajectory of the output will
deviate from the desired one, as the static gain of the original
system is generally nonlinear.

B. Wiener Control

Another strategy to control (9) is by means of the linear
output feedback controller

u = −KwTh
−1
(y) +NwTh

−1
(yr) (14)

where again Kw is the controller gain and Nw is a matrix
that is chosen such that the tracking error is nominally zero
in steady state conditions. Note that although this controller
is linear in the states, the controller itself is in practice a
nonlinear one, since it is based on applying the (in general)
nonlinear static ”block” h−1. Still, the procedure to design
the controller is similar to designing a linear output feedback
controller (indeed Kw may be designed according to some
opportune linearization of the original model).

We now note how the model structure (9) facilitates
linearizing (9a) around the equilibrium point (ū, x̄) =
(ū, Th−1(ȳ)). Indeed, assuming w.l.o.g. (ū, x̄) = (0, 0) as
before, and choosing T as in (8) immediately yields the
Wiener model

ẋw = Axw +Bu (15a)

yw = h
(
T

−1
xw

)
(15b)

where A and B are the same as defined in (13), owing mainly
to the fact that x̄i = 0, ∀ i > 1, resulting in ∂f̃

∂xi
= ∂f

∂yi
and

g̃(x̄) = g(ȳ).
The overall combination of separating the system into

static and dynamic nonlinear components as in (9), together
with the linearization as above, may be referred to as a
wienerization [2].

In the following we let the subscript w indicate a model
that is in fact a Wiener approximation of the original nonlin-
ear system. Thus, the feedback control approach proposed
in this section may equivalently be called Wiener output
feedback control, as discussed in [10]. Once again, due to
the controllable form of the linear model, we may define
Kw so that the closed loop system matrix

Aw = A−BKw

is Hurwitz, with eigenvalues chosen according to some
criterion on the desired tracking performance. We regard the
Wiener output feedback control and the linear output feed-
back control as comparable when the performance criterion
is the same for both models.

C. Comparing the structures of controllers (11) and (14)

The two control strategies (11) and (14) are structurally
similar, with the unique difference being whether we design
the controller for x (since Th−1(y) = x) or for y.



At the same time, the Wiener output feedback controller
is based on a model that does not approximate the static
nonlinearity of the system. In a sense, and laddering on the
intuitions developed in the first part of the paper, the model
structure (15) includes a globally accurate representation of
the equilibrium map, something that a linearized version of
the original system does not have. This raises the following
ansatz: provided that the reference signal is slow enough,
controlling the nonlinear plant via the Wiener control strat-
egy should lead to better closed loop performance than with
the linear one. This ansatz is based on the intuition that the
Wiener output feedback control provides a smaller simulation
error, and the system will behave closer to what is desired.

The formal investigation of the validity of such an ansatz
may be made by opportune error bounds on the control of
the original system (4) under Wiener feedback, using the idea
of ”slowly varying systems” [8], similar to what is proved
in [2]. This is though beyond the scope of this paper, and is
left as an open research question.

D. Stability of the Wiener simulation error
The discussions above formalize how the Wiener model

approximates the dynamics of the original system, while
retaining the static parts (that will therefore in the remainder
of the paper be assumed to be exact). To analyze the
simulation error induced by the fact that the dynamics are
approximated, consider the Wiener model error

ew(t) = y(t)− yw(t) . (16)

As shown in Section II-C, y(t) and yw(t) have identical
equilibrium u. When the original system is exponentially
stable (in closed or open loop), so will the wienerized
model be. Thus, y and yw are converging and bounded, and
converging to the same point. This implies that ew also is
convergent and bounded, i.e., exponentially stable to zero.

IV. EXAMPLES

In the following, we present two input affine nonlinear
systems on which we demonstrate

1) the possibility of separating dynamic and static non-
linearities by transforming the systems from (4) to (9)

2) the possibility of designing an improved control system
using the Wiener feedback control discussed above.

As for point 2) we utilize the two controllers considered
in (11) and (14), with

Kl = Kw = K

Nl = Nw = −B† (A−BK)

where † indicates the Moore-Penrose pseudo inverse. More-
over, K is chosen as the solution to the LQR problem

K = B⊺P

A⊺P + PA− PBB⊺P = −In .

The performance is assessed using (16), when wieneriza-
tion based control is used, and

el(t) = y(t)− yl(t),

when linear control is used.

A. Example 1

As a first example, consider the NCCNF system

ẏ =

[
y2
f(y)

]
+

[
0

g(y)

]
u (17a)

where

f(y) =
y1y

2
2 − y2

(
y21 + 1

)
+ 5asinh (y1)

(
y1

2 + 1
)2

y21 + 1
(17b)

g(y) = y21 + 1. (17c)

1) Transforming the system: From (5) we find that

h
−1

1 (y1) := arcsinh(y1).

From Definition 3 we have

h
−1
(y) =

arcsinh(y1)y2√
y21 + 1

 (18)

h(x) =

[
sinh(x1)

cosh(x1)x2

]
, (19)

which gives

∇h(x) =

[
cosh(x1) 0

x2 sinh(x1) cosh(x1)

]
(20)

and T = I2×2. Using this together with (19), (20), the
definition of T , and Lemma 5, we may rewrite (17a) into
the separated system representation

ẋ =

[
x2

5x1 cosh(x1)− x2

]
+

[
0

cosh(x1)

]
u (21a)

y = h
(
T

−1
x
)

(21b)

2) Control Performance: Linearization and wienerization
of (17a) and (21) around (ū, x̄, ȳ) = (0, 0, 0) results in the
two models

ẏl = Ayl +Bu and
{

ẋw = Axw +Bu
yw = h(T−1y)

where

A =

[
0 1
5 −1

]
B =

[
0
1

]
.

To assess the model performance we simulate the orig-
inal system and the two models using a reference yr =
[5 sin(2πωt), 0]⊺. We recall that the goal of this experiment
is not for the systems to track the references, but to assess if
the system under the wienerization and linearization based
controllers behave similarly to the Wiener and linear models
with those controllers, respectively. Accordingly, Figures 1
and 2 present the norm of the errors el(t) and ew(t) with
this reference when ω = 0.2 and ω = 0.02, respectively.

We observe that the wienerization based controller is
effective in improving the model-simulation error over using
a linear controller for this particular system. Moreover, we
see that the relative improvement increases as the frequency
of the reference decreases, i.e., the reference is slower, which
is as expected.
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Fig. 1. Error associated to (17a) in feedback control with a sinusoidal
reference.
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Fig. 2. Error associated to (17a) in feedback control with a slowly varying
sinusoidal reference.

B. Example 2

In the following we revisit the mass-spring system
from (3). Defining y := [y1, y2]

⊺, we may write it as

ẏ =

[
y2

1
m

(
−cy2 − ky1(1 + a2y21)

)]+

[
0
1

]
u (22)

which one can recognise as a NCCNF.
1) Transforming the system: Seeing that u =

1
m

(
cy2 + ky1(1 + a2y21)

)
in equilibrium, we define

h−1

1 (y1) :=
k
my1(1 + a2y21), which is invertible.

Using this with Definition 3, (8) and Lemma 5, we
rewrite (22) into the separated system representation

ẋ =

 x2

m

kh′
1(x1)

(
f
(
h(T

−1
x)
)
− ∂h2

∂x1
x2

)+

[
0
m

kh′
1(x1)

]
u

(23a)

y = h
(
T

−1
x
)
. (23b)

Due to the presence of the cubic polynomial in h−1(y), the
resulting h1(x), h(x), ∇h(x) and system transformation are
too long and complex to write out in full. However, analytical
solutions of these are found using Cardano’s formula and (7).

2) Control Performance: Linearization and wienerization
of (22) and (23) around (ū, x̄, ȳ) = (0, 0, 0) result in the two
models

ẏl = Ayl +Bu and
{

ẋw = Axw +Bu
yw = h(T−1y)

where

A =

[
0 1

− k

m
− c

m

]
B =

[
0
1

]
.

For this example we assess the performance by sim-
ulating the system and models using a reference yr =
[sin(2πωt), 0]⊺. Figures 3 and 4 present the norm of the
errors el(t) and ew(t) corresponding to this reference when
ω = 0.2 and ω = 0.02, respectively.

For this system observe that the wienerization based
controller performs worse than the linear controller for the
case when the reference has a higher rate of change, and
that the performance is improved once the rate change of the
reference is lower. This is an unfortunate side-effect of the
wienerization procedure; the dynamic and static nonlinear
components of the spring are somewhat similar in nature,
resulting in the system being more linear-like than its indi-
vidual parts when they are represented in a combined form
(apparent by the involved expression for the dynamical part
after transformation). That linearizing effect is lost during the
separation in the wienerization, with the result being a model
and controller that behaves worse in some scenarios. This
is subject to future analysis. Nonetheless, the wienerization
based controller is seen to be effective for a reference that
is sufficiently slowly varying, as expected.
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Fig. 3. Errors associated to the mass-spring system in feedback control
with a sinusoidal reference.
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Fig. 4. Error associated to the mass-spring system in feedback control
with a slowly varying sinusoidal reference.

V. CONCLUSION

This work presented an extension of existing concepts
about how to separate static and dynamic behaviours in
nonlinear systems, and obtained generalizations that allow
performing such separations for a class of underactuated sys-
tems on nonlinear control canonical normal form (NCCNF).
Underactuated systems generally do not have invertible
equilibrium maps, and therefore do not immediately yield
separated, wienerizable structures. We have characterized



and clarified these issues, and shown a way to still separate
dynamics and statics that in turn enables wienerization, and
discussed what this means for state space representations.
This leads to a new system theoretical approach to Wiener
modeling that highlights related and more sophisticated
model structures too.

Extending the wienerization further to even broader classes
of systems and proving stability of the controller and model-
ing error is a high priority for future works. Moreover, since
the model approximations proposed above extend the ideas
of linearization and control schemes based on linearized
models, we foresee Hammerstein models to be interesting
candidates for similar approaches, putting this type of model
approximation on more solid grounds.
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