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ABSTRACT Developing model predictive control (MPC) schemes can be challenging for systems where
an accurate model is not available, or too costly to develop. With the increasing availability of data and
tools to treat them, learning-based MPC has of late attracted wide attention. It has recently been shown that
adapting not only the MPC model, but also its cost function is conducive to achieving optimal closed-loop
performance when an accurate model cannot be provided. In the learning context, this modification can be
performed via parametrizing the MPC cost and adjusting the parameters via, e.g., reinforcement learning
(RL). In this framework, simple cost parametrizations can be effective, but the underlying theory suggests
that rich parametrizations in principle can be useful. In this paper, we propose such a cost parametrization
using a class of neural networks (NNs) that preserves convexity. This choice avoids creating difficulties
when solving the MPC problem via sensitivity-based solvers. In addition, this choice of cost parametrization
ensures nominal stability of the resulting MPC scheme. Moreover, we detail how this choice can be applied
to economic MPC problems where the cost function is generic and therefore does not necessarily fulfill any
specific property.

INDEX TERMS Dissipativity, economic nonlinear model predictive control, neural networks, reinforcement
learning.

I. INTRODUCTION
Learning-based model predictive control (MPC) has become
a popular field of research. In general terms, this category
describes the combination of recent advances within the field
of machine learning and MPC. An important motivation for
learning-based MPC is the potential of designing optimal con-
trollers even in face of model errors and uncertainties.

One direction of learning-based MPC is the use of learning
to build the MPC prediction model. In that context, neural
networks (NNs) have typically been used for learning an
approximation of the system dynamics from data, which is
then used as the prediction model in the MPC scheme, see
e.g. [1], [2], [3]. However, it is in general difficult to conclude
regarding the closed-loop optimality of the resulting MPC
scheme.

Another approach to learning-based MPC, is using cost
modifications to handle model imperfection. In [4], it was
proved that an MPC scheme can deliver the optimal policy
for a system, even if the model in the MPC is inaccurate. This
can be achieved under some fairly mild conditions via modifi-
cations of the cost of the MPC scheme, which compensates
for model inaccuracy. This idea can be applied in practice
by parametrizing the MPC cost and constraints, and using
learning techniques to adapt the parameters. In that context,
reinforcement learning (RL) has been extensively investigated
as a learning tool for tuning the cost, constraints and MPC
model, see [5], [6], [7], [8], [9].

RL aims to find the optimal policy that minimizes the
expected value of the infinite-horizon sum of costs [10]. Ex-
isting RL methods are usually divided into two categories,
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that is either value-based or policy-based methods. Value-
based methods aim at fitting a parameterized approximation
of the optimal action-value function, whereas policy-gradient
methods parameterize and learn the optimal policy directly.
Data-driven techniques are then used to find the optimal func-
tion parameters. For both types of methods, NNs are often
used as they are generic function approximators. Recently,
MPC schemes have also been exploited as function approx-
imators for RL. This approach allows one to use the extensive
theory underlying MPC to discuss the closed-loop properties
of the resulting policy [11], [12], [13]. We take advantage
of the following result, and will use both value-based and
policy-based methods.

The idea of compensating model inaccuracy with cost mod-
ifications, has successfully been tested in [4], [14], [15], using
fairly simple parametrizations of the cost. However, the the-
ory underlying this result suggests that in principle the cost
parametrization should be “rich,” i.e. it should be able to cap-
ture fairly generic functions. Rich parametrizations of the cost
in the context of economic nonlinear MPC (ENMPC) were
first considered in [16]. In this paper, we elaborate on this
early investigation and propose a more complete framework
to provide such a rich parametrization. More specifically,
we propose to use a class of NNs that preserve convexity.
This choice has two important benefits. First, ensuring con-
vexity of the MPC cost alleviates the difficulties inherent
to solving MPC schemes numerically using sensitivity-based
solvers. Second, the stage cost in the MPC scheme must be
lower-bounded by a K∞-function to ensure stability. A convex
function can be designed to satisfy this lower bound, and in
turn ensures nominal stability of the resulting MPC scheme.

In this paper, we will apply the framework of convex cost
modifications to ENMPC problems. ENMPC is concerned
with optimizing performance rather than penalizing devia-
tions from a given reference. This means that the cost function
not necessarily can be lower-bounded by a K∞-function [17].
Dissipativity theory is a fundamental tool in order to un-
derstand the stability of ENMPC. For dissipative problems,
there exist corresponding tracking MPC schemes that yield
the same policy as the ENMPC scheme. As tracking MPC
schemes use quadratic cost functions, they intrinsically sat-
isfy the lower bound. Dissipativity of a problem is verified
through the existence of a storage function that satisfies the
dissipativity inequality [18]. Finding a valid storage function
for the general problem is hard, but may be captured using RL
techniques as suggested in [4] and justified in [19]. As we are
focusing on economic problems, we use deterministic systems
as a proof of concept, for which general dissipativity theory is
valid.

Even for dissipative problems, the ideal modified stage cost
may not be convex. This means that enforcing convexity as
a means to ensure stability, may impose limitations on the
learned cost function. In [20], the authors showed that for a
dissipative problem, a tracking MPC with a quadratic stage
cost is locally equivalent to ENMPC. In other words, a convex
cost approximation is at least valid locally.

The main contribution of the paper is the introduction of
convex NNs as cost modifications in MPC schemes with
imperfect prediction models. Using the MPC scheme as a
function approximator for the value function and the policy,
we will use RL to adjust the cost parameters, including the
NN weights, in pursuance of the optimal economic policy.
The second contribution of the paper is the combination of
RL methods for when neither value-based nor policy-based
RL methods alone are sufficient. We let one simulation exam-
ple serve as a proof of concept, and then consider a second
simulation example to benchmark the addition of convex cost
modifications against the standard quadratic cost parametriza-
tion.

The paper is structured as follows. Section II introduces
the problem statement and presents general theory on dissi-
pativity leading to necessary assumptions for stability. This
is followed by a section on convex cost parametrizations. In
Section IV the requirements from Section III are specified in
terms of NNs. Section V then outlines how RL can be used for
updating the parameters in the parameterized MPC scheme.
A method that combines value-based and policy-based RL
methods is detailed in Section VI. To illustrate the presented
theory, two numerical examples are presented in Section VII.
Finally, conclusions are given in Section VIII.

II. BACKGROUND AND PROBLEM STATEMENT
We consider discrete-time, constrained dynamic systems of
the form:

sk+1 = f (sk, ak ), h(sk, ak ) ≤ 0, (1)

where k denotes the discrete time step, sk ∈ X ⊆ R
n denotes

the state and ak ∈ U ⊆ R
m denotes the input. The (possibly

nonlinear) dynamics are defined by f : Rn × R
m → R

n. The
function h(sk, ak ) describes a mixed input-state constraint. We
propose how to formulate stable MPC schemes by parameter-
izing the cost function, for an economic problem where the
stage cost L : X × U → R is indefinite, using a (potentially)
inaccurate model of the system, f̃ .

A. ECONOMIC NMPC
ENMPC is a framework for optimal control of dynamical sys-
tems with respect to a generic economic objective, typically
performance-oriented, and usually referred to as economic.
The objective may address the energy, time or financial cost
of running a system. The following section will describe the
ENMPC formulation and recall dissipativity theory as a tool
to analyze stability. The following standard assumptions for
ENMPC are used in the rest of the paper. The set of states
s ∈ X and inputs a ∈ U define the set of feasible state-input
pairs as follows

Z = {(s, a) ∈ X × U | f (s, a) ∈ X, h(s, a) ≤ 0}, (2)

for which we need the following assumption.
Assumption 1 (Properties of constraint sets): The set Z is

compact and non-empty.
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Assumption 2 (Continuity of cost and system): The func-
tions f (·) and L(·) are continuous on Z.

The optimal steady state pair (se, ae) is defined as follows:

(se, ae) ∈ arg min
(s,a)∈Z

{L(s, a) | s = f (s, a)}. (3)

We define a shifted stage cost as:

�(s, a) = L(s, a) − L(se, ae), (4)

so that �(se, ae) = 0.
Let π denote a deterministic policy, that maps the state to

an action, π : Rn → R
m. The optimal policy π� is then given

by the solution to the following infinite-horizon problem

V �(s) = min
π

∞∑
k=0

�(xk, π (xk )) (5a)

s.t xk+1 = f (xk, π (xk )), x0 = s, (5b)

h(xk, π (xk )) ≤ 0, (5c)

where xk denotes the predicted state, not to be confused with
the true state sk , so that (xk )∞k=1 is the predicted state trajectory
for the system starting at some initial state x0 = s, subject
to policy π . The optimal action-value function is defined as
follows

Q�(s, a) = �(s, a) + V �( f (s, a)). (6)

The action-value function and the value function are related
through the underlying Bellman equations [21]

π�(s) ∈ arg min
a

Q�(s, a), V �(s) = min
a

Q�(s, a). (7)

B. STRICT DISSIPATIVITY
A generic economic stage cost can make it challenging to
establish closed-loop stability of the resulting MPC scheme.
Satisfaction of the dissipativity conditions, entails that the
ENMPC scheme can be recast as a tracking MPC scheme,
for which closed-loop stability properties are straightforward
to prove [18]. The concept of strict dissipativity is defined
using a storage function λ. A function c : R≥0 → R≥0 is a
K-function if it is strictly increasing and c(0) = 0. If a K-
function is such that limb→∞ c(b) = ∞, it is a K∞-function.

Definition 1 (Strict dissipativity): The system (1) with
stage cost L(·) is strictly dissipative if there exists a storage
fuction λ : X → R satisfying

λ( f (s, a)) − λ(s) ≤ −ρ(||s − se||) + �(s, a), (8)

where ρ ∈ K∞ and || · || denotes the Euclidean norm.
Assumption 3 (Strict dissipativity): The system (1) is

strictly dissipative.
For the storage function, we make the following assump-

tion.
Assumption 4 (Continuity of storage function): The storage

function λ(·) is continuous on Z.
Without loss of generality, we can add a constant to the

storage function, in order to ensure that λ(se) = 0, without in-
validating inequality (8). If λ exists, we can define the rotated

stage cost as

�̄(s, a) = �(s, a) + λ(s) − λ( f (s, a)). (9)

Combining (8) and (9) then yields

ρ(||s − se||) ≤ �̄(s, a), �̄(se, ae) = 0. (10)

For a strictly dissipative problem, the ENMPC scheme is
equal to a tracking MPC, using the rotated stage cost �̄. As
the rotated stage cost is zero at the optimal steady state and
lower-bounded by a K∞-function, the closed-loop system is
stable [17]. The corresponding tracking MPC is formulated as

V �(s) = min
π

−λ(s) +
∞∑

k=0

�̄(xk, π (xk )) (11a)

s.t (5b), (5c). (11b)

To formulate the finite-horizon MPC, we introduce the finite-
horizon stage cost, �̂, and add a terminal cost, according to

V �(s) = min
u,x

−λ(s) + T (xN ) +
N−1∑
k=0

�̂(xk, uk ) (12a)

s.t xk+1 = f (xk, uk ), x0 = s, (12b)

h(xk, uk ) ≤ 0, (12c)

xN ∈ X f , (12d)

where N is the horizon length, T : X f → R is a penalty on
the terminal state and X f is a compact terminal region con-
taining the steady state operating point in its interior. The
resulting input sequence is the vector u = {u0, . . . , uN−1}, and
x = {x0, . . . , xN } is the corresponding state trajectory. Note
that we use �̂ to denote the finite-horizon stage cost, to clearly
distinguish it from the infinite-horizon stage cost �̄, as these
may not be the same. The stage cost �̂ must be selected
such that it satisfies (10). For the terminal cost, we make the
following assumptions.

Assumption 5 (Continuity of terminal cost): The terminal
cost T (·) is continuous on X f .

Assumption 6 (Stability assumption): There exists a com-
pact terminal region X f ⊆ X, containing the point se in its
interior, and terminal control law κ f : X f → U such that

T ( f (s, κ f (s))) − T (s) ≤ −�̂(s, κ f (s)), (13)

∀s ∈ X f and (s, κ f (s)) ∈ Z. Moreover, T (se) = 0 and T (s) >

0 ∀s ∈ X f \ {se}.
Remark 1: This assumption requires that for each s ∈ X f ,

f (sk, κ f (s)) ∈ X f , i.e. the set X f is a control invariant set.
Assumption 6 is a standard assumption used with the pur-

pose of analyzing the stability of the resulting closed-loop
system.

Theorem II.1: Let Assumptions 1–6 hold. Then the steady
state solution se is an asymptotically stable equilibrium point
of the system (1) using input a where a = u∗

0 and u∗
0 is the first

element in the optimal solution to (12).
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Proof: Note that the term −λ(s) does not affect the opti-
mal solution in (12), but shapes the action-value and value
function. The rest of the proof is a standard result, and can be
found in e.g., [17].

C. PARAMETERIZED TRACKING MPC
We propose to use a finite-horizon MPC problem to ap-
proximate the value function (5), where the cost function is
parameterized with parameters θ , according to

Vθ (s) = min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑
k=0

�̂θ (xk, uk ) (14a)

s.t xk+1 = f̃ (xk, uk ), x0 = s, (14b)

h(xk, uk ) ≤ 0, (14c)

xN ∈ X f , (14d)

where f̃ (xk, uk ) is a potentially inaccurate prediction model.
The resulting policy is given by the first element in the input
sequence

πθ (s) = ū∗
0(s, θ ), (15)

where ū∗(s, θ ) is the optimal solution to (14). Using the MPC
scheme as a function approximator, entails using RL to update
the parameters θ in order to shape the value function esti-
mate (14) and improve the policy (15). For stable economic
problems, using rich parametrizations for the cost function
enables the MPC scheme to deliver the optimal policy even
with an inaccurate prediction model. This is stated in Theorem
1 in [4]. The following assumption is needed to ensure the
stability of the closed-loop system.

Assumption 7: The stage cost �̂θ (s, a) satisfies

ρ(||s − se||) ≤ �̂θ (s, a), �̂θ (se, ae) = 0, (16)

where the optimal steady state pair (se, ae) may be part of the
parametrization θ .

Because the MPC scheme in (14) may use an inaccurate
prediction model, we propose to parameterize the steady state.
This is not a new idea, but closely resembles an approach the
real-time optimization (RTO) community refers to as modifier
adaptation, see e.g. [22]. Our case differs in that we use RL to
adjust the modifiers, or as we call them, parameters.

We note that as long as the MPC scheme is using an inaccu-
rate prediction model f̃ (s, a), we can only guarantee nominal
stability of the resulting MPC scheme, i.e. stability with re-
spect to the MPC model. In order to guarantee the stability
of the true system, we would have to apply robust techniques.
Robust techniques for MPC with RL, is treated in [8]. The
authors in [8] describe a robust technique for MPC that uses
a nominal prediction model. A tube-based approach considers
the system stochasticity and the model uncertainties, and is
used to perform a suitable tightening of the constraints. Be-
cause we are considering economic MPC problems, re-cast
as tracking MPC schemes, the techniques from [8] directly
extend to the proposed parameterized MPC scheme. For the

FIGURE 1. Generic cost function (green) lower-bounded by a K∞-function
(blue), with a quadratic approximation (dashed green).

sake of brevity, we have not treated robust techniques further
in this paper.

Remark 2: The easiest way to ensure (nominal) stability of
(14) is to use the so-called zero terminal equality i.e. X f =
{se}, for which the terminal cost can be omitted. However,
this is very restrictive and may yield feasibility issues. The
terminal constraint may also be defined using an inequal-
ity constraint defined by a terminal region. For the standard
quadratic stage and terminal cost, the terminal region can
be approximated. For more generic stage and terminal cost
approximations, the terminal region may be hard to find.
However, in practice we may use a general positive definite
terminal cost, select N “large enough,” and ensure stability
without terminal constraints.

Proposition 1: The parameterized MPC scheme in (14),
with a stage cost satisfying Assumption 7, using either a
stabilizing terminal cost, i.e. satisfying Assumption 6, with
terminal constraints or a general positive definite terminal cost
and a long enough horizon N , will be stabilizing for all θ .

Proof: This is a standard result, and proofs are given in
e.g. [17] and [23].

III. CONVEX COST PARAMETRIZATIONS
For proving nominal closed-loop stability of the MPC scheme,
the stage cost must be lower-bounded by a K∞-function. A
generic cost function lower-bounded by a K∞-function is
illustrated in Fig. 1. The K∞ lower bound in principle entails
no restrictions regarding the convexity of the cost function. On
the other hand, convexity may be selected as a tool to show
that the same lower bound holds. The first reason for selecting
convexity is that we are able to describe and therefore param-
eterize generic convex functions. Second, it is easier to handle
convex functions in the MPC scheme. Moreover, a strictly
convex function will satisfy the K∞ lower bound by enforcing
its global minimum to be zero at zero and the function to be
radially unbounded.

For ENMPC schemes that are locally stabilizing, it can be
shown that the modified stage cost obtained using dissipativity
theory, is locally quadratic [20]. The quadratic approximation
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of the stage cost is also illustrated in Fig. 1. In fact, the
local quadratic approximation of the cost can be computed
by solving a semi-definite program (SDP) [20]. As convex
functions also describe quadratic functions, we can establish
that the choice of a convex stage cost is at least valid locally.

A. STAGE COST
In order to satisfy strict dissipativity as stated in Assump-
tion 3, the approximated stage cost must satisfy the lower
bound from Assumption 7 and continuity from Assumption 2.
Without loss of generality, we let (sa, ae) = (0, 0) so that
�̄(0, 0) = 0. The following Lemma lists the function require-
ments for the stage cost.

Lemma III.1: Let p(s, a) : Rn × R
m → R be a strictly con-

vex function. If the minimum of the function is p(0, 0) =
0, and p(s, a) is radially unbounded with respect to s, i.e.
p(s, a) → ∞ as s → ∞, then ρ(‖s‖) ≤ p(s, a) for some ρ ∈
K∞.

Proof: If the function is strictly convex, it will only have
one global minimum. If this is at p(0, 0) = 0, it means that
∀(s, a) �= (0, 0) p(s, a) > 0, so that p(s, a) ≥ β(||s||), where
β ∈ K. Because p(s, a) is radially unbounded with respect to
s, we can also state that p(s, a) ≥ ρ(||s||), where ρ ∈ K∞.

B. TERMINAL COST
The terminal cost must satisfy continuity from Assumption 5,
and should be positive definite according to Assumption 6.

C. STORAGE FUNCTION
The storage function must satisfy continuity from Assump-
tion 4, and zero at the optimal state, λ(se) = 0, as a result of
(9).

IV. NNS FOR COST MODIFICATION
NNs are known to be universal function approximators.
Consequently, a multilayered NN can represent any contin-
uous function under mild assumptions, see e.g. [24]. More
uniquely, NNs also perform well for high dimensions, where
traditional approximation methods tend to perform poorly. We
propose to combine NNs with quadratic functions to parame-
terize the cost. The quadratic function is a good initial guess
as we know it is locally valid and we know how to compute
it [20]. NNs are then added as an attempt to capture everything
beyond the locally valid quadratic function.

In this section we will describe both regular NNs as well as
convex NNs, and how these can be combined with quadratic
functions to provide nominal stability of the MPC scheme by
construction.

A. REGULAR NEURAL NETWORKS
A (not necessarily convex) feedforward neural network (FNN)
with F layers, for which i = 0, . . . , F − 1, can be formulated
as

zi+1 = σi(Wizi + bi ), v(s) = zF , (17)

where z0 = s is the network input, zi ∈ R
qi×1 denotes the hid-

den state of layer i, zi+1 ∈ R
qi+1×1 denotes the hidden state of

the next layer, so that Wi is a matrix of size Rqi+1×qi containing
the weights of layer i and bi ∈ R

qi+1×1 are bias terms. The
nonlinear activation function used in layer i is denoted by σi,
and operates element-wise.

An FNN will be used to modify the parametrization of the
storage function. From [20] we know that locally a quadratic
storage function is sufficient to show strict dissipativity. We
therefore combine the quadratic function with an FNN, ac-
cording to

λθ (s) = vθ (s) + θλ0 + (s − θse )�D(θ )(s − θse ), (18)

where vθ (s) is the FNN as defined in (17), θse is the param-
eterized steady state, θλ0 is a parameter that will be tuned so
that λθ (θse ) = 0 and D(θ ) is a matrix with entries from the
parameter vector θ . All NN weights W0:F−1 and bias terms
b0:F−1 are part of the parameter vector θ .

The terminal cost is typically modelled with a quadratic
function, and here combined with an FNN

Tθ (s) = vθ (s)2 + θT0 + (s − θse )�(B(θ )�B(θ ) + εI )(s − θse ),
(19)

where B(θ ) is a parameter matrix, and θT0 is tuned to shift
Tθ (θse ) to zero. We use B(θ )�B(θ ) + εI , where ε is a small
positive constant, to ensure that the quadratic term is positive
definite. For this reason we also square the output from the
FNN.

Remark 3: In (19) the terminal cost is modelled with an
FNN that does not preserve convexity. To ensure nominal
stability the terminal cost should be at least positive definite.
However, for optimization reasons, it may be beneficial to
model also the terminal cost using a convex NN, as detailed
next.

B. CONVEX NEURAL NETWORKS
In order to build stable MPC schemes, the parameterized stage
cost must satisfy Assumption 7. Making general FNNs respect
the lower bound, would entail constraining the majority of the
network’s weights, giving an in practice intractable optimiza-
tion problem for most applications. Instead, we select convex
NNs to parameterize the stage cost. In addition to the stabil-
ity argument, a convex cost function is expected to alleviate
difficulties when using sensitivity-based solvers. This section
outlines how convex NNs can be adapted so that Assumption 7
is satisfied.

In recent years several convex NN architectures have been
developed. Using convex NNs as cost modifications in MPC
has, to the best of the authors’ knowledge, not been done
before. We consider a class of fully input convex neural net-
works (ICNNs) first proposed in [25]. It was proven in [26]
that ICNNs are universal approximators of convex Lipschitz
functions. Alternative convex NN architectures exist, as de-
scribed in e.g. [27], that are richer function approximators
than ICNNs, but usually require a larger number of param-
eters. The specific type of ICNN is selected because it offers
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FIGURE 2. Input convex neural network.

a simpler parametrization and training process, and requires
fewer parameters.

Let y = {s, a}. An ICNN with F layers as described in [25],
for which i = 0, . . . , F − 1, can be formulated as

zi+1 = σi(W
(z)

i zi + W (y)
i y + bi ), g(y) = zF . (20)

The ICNN is similar to the FNN in (17), to the exception of the
additional input weights W (y)

i ∈ R
qi+1×(n+m) and the input to

the ICNN y ∈ R
(n+m)×1, that here enters every hidden layer.

Also, the ICNN requires the activation σi to be a convex and
non-decreasing nonlinear activation function. An example of
this is given in Section IV-C. For the input layer we have that
W (z)

0 = 0. The network is visualized in Fig. 2.
Proposition 2: The function g is convex in y provided that

all terms in W (z)
1:F−1 are non-negative, and all functions σi are

convex and non-decreasing.
Proof: This is straightforward to prove, using the fact that

non-negative sums of convex functions are also convex and
that the composition of a convex and convex non-decreasing
function is convex [28].

By limiting all weights W (z)
1:F−1 to be non-negative, the func-

tion g(y) will be a convex function with respect to its input. We
model the stage cost as

�̂θ (y) = gθ (y) + θ�0 + (y − θe)�(M(θ )�M(θ ) + εI )(y − θe),
(21)

where θ�0 is a dedicated parameter used to shift �̂θ (θe) to
zero and θe contains the parameterized steady state, i.e. θe =
(θse , θae ). Moreover, we use M(θ )�M(θ ) + εI to ensure that
the quadratic term is positive definite. The quadratic term will
ensure that for a (not necessarily strictly) convex function, θe

will be the only global minimum. The quadratic term will also
ensure that the resulting function is radially unbounded with
respect to s. In addition to the function being convex, we also
need the global minimum of the function to be zero at steady
state, i.e.

�̂θ (θe) = 0, ∇y�̂θ (θe) = 0. (22)

This is satisfied by construction as the parameters are updated.
Next, we will formally establish that the stage cost is lower-
bounded by a K∞-function. As a result, the parameterized
MPC scheme ensures nominal stability by construction.

Theorem IV.1: Let (22) hold for �̂θ (s, a) modelled as in
(21). Then the parameterized stage cost (21) satisfies

ρ(||s − θse ||) ≤ �̂θ (s, a), �̂θ (θse , θae ) = 0. (23)

Proof: The ICNN term, gθ (y) + θl0 , and the quadratic term,
(y − θe)�(M(θ )�M(θ ) + εI ))(y − θe), are both convex func-
tions. The addition of the quadratic term ensures that the stage
cost becomes strictly convex, so that it will have at most one
global minimum. The quadratic term also ensures that the
cost will be radially unbounded. Because (22) holds, the only
global minimum will be at (θse , θae ), and consequently the
stage cost satisfies Lemma III.1, and �̂θ (θse,θae ) = 0.

C. CHOICE OF ACTIVATION FUNCTIONS
Convexity of the ICNN is dictated by proposition 2, which
requires convex and non-decreasing activation functions. By
selecting a smoothed version of the rectified linear unit
(ReLU), such as the softplus function, the specified convexity
properties are ensured. The fact that this function is also con-
tinuously differentiable, may ease optimization of the MPC
problem. The softplus function is given by

σ (x) = ln(1 + exp(x)). (24)

For the cost terms modelled by the FNNs, we have no lim-
itations on the choice of activation functions, except the
requirement on continuity. As stated in Section II-A, all cost
terms should be continuous functions. For the NN terms this
is dictated by the choice of activation function, and this is
satisfied for all the most popularly used activation functions.

V. RL FOR PARAMETER UPDATES
For dissipative economic problems, finding a storage func-
tion that allows us to recast the ENMPC as a stable tracking
MPC, is a difficult problem. Recently, new methods have been
proposed to build these conditions, either via sum-of-squares
programming [29], or via techniques borrowed from RL [4].
The latter approach allows one to build ENMPC schemes that
are optimal and whose stability is established by construction
rather than by verification. This framework also introduces
the additional flexibility to tackle non-dissipative problems.
Indeed, for non-dissipative problems, the proposed framework
can be used to find a controller that as closely as possible
resembles the optimal unstable policy for the problem at hand.
In this section, we will consider how RL can be used to
perform parameter updates of parameterized MPC schemes
such that the requirements outlined in Section IV, are ensured.

A. Q-LEARNING
Q-learning is an RL method based on learning the optimal
action-value function Q�(s, a) [10]. Using MPC as a function
approximator, we can estimate the optimal Q-function by con-
straining the first action in the input sequence, according to

Qθ (s, a) = min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑
k=0

�̂θ (xk, uk ) (25a)
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s.t (14b) − (14d ), (25b)

u0 = a. (25c)

It can be shown that the Q-function estimate from (25),
the value function estimate (14) and the policy (15) satisfies
the Bellman equations [4]. Q-learning seeks to provide the
solution to the following least-squares problem

min
θ

E

[
1

2
(Qθ (s, a) − Q�(s, a))2

]
. (26)

One approach to solving this, is updating the parameters us-
ing temporal difference (TD) methods. For the undiscounted
setting the parameter update is (see e.g. [10])

δk = �(sk, ak ) + Vθ (sk+1) − Qθ (sk, ak ), (27a)

θQ = αδk∇θQθ (sk, ak ), (27b)

where α denotes the learning step size, δk the TD error at time
step k and θQ = θk+1 − θk .

For Q-learning techniques it should be mentioned that there
is no guarantee to find the optimal policy. This is because the
parameter update of Q-learning methods is not designed to op-
timize closed-loop performance directly. Instead, Q-learning
aims to fit Qθ as closely as possible to Q�, and assumes that
Qθ ≈ Q� results in πθ ≈ π�. However, there are no guar-
antees that the former approximation implies the latter, and
for certain shapes of Q-functions, it still may be challenging
to capture the optimal policy, even with an almost correct
Q-function estimate. In this scenario, policy-based methods
such as deterministic policy gradient methods may be more
suited.

B. DETERMINISTIC POLICY GRADIENT METHODS
The lack of convergence guarantees for Q-learning meth-
ods has motivated the need for alternative methods with
more formal convergence guarantees. Using policy gradient
methods, the parameters are updated towards improving the
performance of the policy irrespective of the action-value
function accuracy. The policy performance index used in the
undiscounted setting, for a deterministic policy, is defined as
follows

Jθ (πθ ) = Eπθ

[ ∞∑
k=0

�(sk, ak ) | ak = πθ (sk )

]
. (28)

The expectation Eπθ
[·] can be estimated by taking the mean

of trajectories generated by the policy πθ . The policy gradient
in the deterministic case is given by [30]

∇θ J (πθ ) = Eπθ

[∇θπθ (s)∇aQθ (s, a)|a=πθ (s)
]
. (29)

The condition for optimality is ∇θ J (πθ ) = 0, and the param-
eters are then updated in the direction of policy improvement,
according to

θJ = −αEπθ

[∇θπθ (s)∇aQθ (s, a)|a=πθ (s)
]
. (30)

The deterministic policy gradient is used to derive a range of
actor-critic algorithms [30].

C. SENSITIVITY ANALYSIS
The gradients needed for Q-learning are found from sensitiv-
ity analysis of the parameterized MPC scheme in (25). The
Lagrange function for the optimization problem is

Lθ = �θ + ν�G + μ�H, (31)

where �θ is the cost (25a), H gathers the inequality con-
straints and G the equality constraints in (25). The variables
ν and μ are Lagrange multipliers associated with the equal-
ity constraints and inequality constraints respectively. Let p
label the primal decision variables and let η = {p, ν, μ}. The
solution to the MPC problem (25) is then given by η�. The
gradient of Qθ (s, a), needed in (27b), is then

∇θ Qθ (s, a) = ∇θLθ (s, η�). (32)

The policy gradient ∇θπθ required in (30), is found by consid-
ering the MPC scheme in (14). The primal-dual Karush Kuhn
Tucker (KKT) conditions are given by

R =

⎡
⎢⎣

∇pLθ

G

diag(μ)H

⎤
⎥⎦ = 0, (33)

where diag(μ) is a diagonal matrix with entries μ. Using the
implicit function theorem, it follows that

∇θπθ (s) = −∇θ R(η∗, s, θ )∇ηR(η∗, s, θ )−1 ∂η

∂u0
. (34)

The other gradient needed in policy gradient methods,
∇aQθ (s, a), can under certain conditions be derived using a
simple approximator of the action-value function. For further
details the reader is referred to [30].

D. CONSTRAINED RL STEPS
In order to ensure convexity of the ICNN, we need to perform
constrained RL steps so that selected weights in the network
stay non-negative. This applies to the hidden state weights
W (z)

1:F−1 in (20). We also use the constrained RL update to
ensure that all NNs are zero at steady state, and to ensure that
the global minimum of the stage cost is zero at steady state
i.e. that (22) holds.

Let d denote the proposed step by RL at time step k, i.e.
we could have either d = θQ in case of using Q-learning or
d = θJ if using policy gradient methods. We can then define
the following optimization problem to constrain d , so that the
parameter update respects the constraints as detailed above

min
θ

1

2
‖θ‖2 − d�θ (35a)

s.t wi + θi ≥ 0 for i = 1, . . ., r, (35b)

�̂θk+1 (θk+1,e) = 0, (35c)

∇y�̂θk+1 (θk+1,e) = 0, (35d)

λθk+1 (θk+1,se ) = 0, (35e)

Tθk+1 (θk+1,se ) = 0, (35f)
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where θ = θk+1 − θk is the constrained update of the entire
parameter vector and wi are the constrained elements in the
ICNN weight matrices W (z)

1:F−1. The r constrained weights wi

are also part of the parameter vector θ , and we have that
wi = θi,k . It can be shown that if there exists a constrained
parameter update θ at k = 0 by solving the optimization
problem (35), such that (35b)-(35f) are satisfied, then there
must exist a feasible solution θ ∀k > 0.

Remark 4: The constraints in (35) are not necessarily en-
sured at k = 0 for the initial values of the parameters θ , even
for NNs that are pre-trained to quadratic functions. To guar-
antee that these constraints hold at k = 0, the constraints can
be enforced either during or after pre-training.

Lemma V.1: If learning converges, the constrained parame-
ter update found from solving (35) will yield the true optimal
parameters θ , i.e. the parameter values that minimize the func-
tion with gradient step d .

Proof: Let �(θ ) denote the function that RL is trying to
minimize, i.e. d = −α∇�(θ ). We formulate the original op-
timization problem as

min
θ

α�(θ ) (36a)

s.t Z (θ ) = 0, (36b)

�(θ ) ≤ 0, (36c)

where Z and � are matrices that gather the equality and
inequality constraints in (35) respectively. For (36) the sta-
tionarity of the KKT conditions is given as

α∇�(θ ) + φ�∇Z + ξ�∇� = 0, (37)

where φ and ξ are the multipliers associated with equality
and inequality constraints, respectively. The stationarity of the
KKT conditions for (35) are

θ − d + φ�∇Z (θ + θ ) + ξ�∇�(θ + θ ) = 0. (38)

As learning converges, θ ≈ 0. Using this, and the fact that
d = −α∇�(θ ), we see that we obtain the same expression
for stationarity of the KKT conditions. Note that one can
also show that the primal/dual feasibility conditions and the
complementary slackness condition are the same. The two op-
timization problems therefore share the same optimal values
of θ .

VI. COMBINING Q-LEARNING AND POLICY GRADIENT
METHODS
Policy-based methods have several advantages over value-
based RL methods. First and most important, these methods
are more reliable when it comes to improving the policy,
as they are designed based on optimality of the closed-loop
policy. Second, certain types of policy-based methods are
also known to be more sample-efficient than Q-learning [10].
However, there may be parameters that the MPC policy gra-
dient will be insensitive to. Mathematically this entails that
certain parameters lie in the null space of the policy gradient.

This is especially relevant for rich parametrizations, as they
contain more parameters. Although certain parameters may
not influence the optimal policy, we may still want to update
them, in order to e.g. capture the correct shape of the value and
action-value function. In this context we propose to embed
Q-learning, as a measure to handle the parameters that the
MPC policy may not be sensitive to. As the Q-function and
the policy are jointly unique functions, the parameters should
affect at least one of these functions.

A. NULL SPACE METHOD
For an ENMPC problem recast as a tracking MPC, policy
gradient methods will not be sufficient for tuning the cost
parametrization, as the MPC policy is insensitive to the stor-
age function. Hence, we will use a policy gradient method
and combine it with Q-learning using a null space method.
More specifically we aim at using a policy gradient method
to update parts of the parameters in order to converge to the
correct policy, and perform Q-learning steps in the null space
of the policy gradient to shape the action-value function with
the remaining parameters. For a parametrization that is rich
enough, the correct action-value function should be captured
without conflicting with the policy approximation. Whereas
the use of both Q-learning and policy gradient methods for ad-
justing a parameterized MPC scheme is well established, we
now introduce a new method for combining RL algorithms.

In order to formulate the null space of the policy gradient
update, we consider an approximation of the Hessian of the
policy gradient, given by the Fisher information matrix [31]:

∇2
θ Jθ ≈ Eπθ

[∇θπθ (s)∇θπθ (s)�]. (39)

Alternatively, a more accurate approximation of the Hessian
can be found in [32]. We then define the null space of ∇2

θ Jθ

as the matrix N , such that ∇2
θ JθN = 0. The parameter update

resulting from Q-learning (27) is then projected to the null
space of the policy gradient according to

θNQ = N (N�N )†N�θQ, (40)

where ·† denotes the Moore-Penrose pseudo-inverse. The full
parameter update resulting from combining policy gradient
and Q-learning is then given by

θ = θJ + θNQ . (41)

VII. NUMERICAL EXAMPLES
In this section we propose two numerical examples to illus-
trate the proposed method. The first example is a seemingly
simple case of an economic linear quadratic regulator (LQR),
i.e. an LQR with weighting matrices that are not positive def-
inite. The example becomes challenging because of the shape
of the action-value function that calls for a combination of RL
methods in order to capture both the correct policy and value
function. The second simulation example is a chemical reactor
with nonlinear dynamics and an economic cost function. The
ENMPC scheme is recast as a tracking MPC scheme, using
a parameterized cost and storage function. We combine the
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TABLE I NNs for LQR Example

convex NN-based cost modifications and quadratic functions
for all cost terms, ensuring nominal stability of the MPC, and
benchmark its performance against the standard quadratic cost
parametrization.

A. ECONOMIC LQR
We consider an economic LQR for a system with dynamics

sk+1 = 0.1sk + ak, (42)

and stage cost

L(s, a) = −s2 + 10a2. (43)

For the sake of satisfying Assumption 1, we introduce the
following artificial constraints

−100 ≤ a ≤ 100, −100 ≤ s ≤ 100. (44)

For the set of states that never activate the constraints, we
can solve the Riccati equation for the discrete system, and
obtain the optimal value function and policy. For the dynamics
(42) and stage cost (43) in the unconstrained case, the optimal
value function and policy is

V �(s) = −1.0113s2, π�(s) = 0.0113s. (45)

In the first set of simulations, we will make a comparison of
the ICNN and the FNN. For this purpose, we will assume
that both the true dynamics and the optimal steady state pair
are available. We formulate the following finite-horizon linear
MPC scheme

min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑
k=0

�̂θ (xk, uk ) (46a)

s.t xk+1 = 0.1xk + uk x0 = s, (46b)

− 100 ≤ xk ≤ 100, (46c)

− 100 ≤ uk ≤ 100, (46d)

with prediction horizon N = 10. For this example, we used
NNs to model all cost terms in (46). In order to get suitable ini-
tial values of the weights, we pre-trained the NNs to quadratic
functions. This was done using Keras in Python [33]. The ar-
chitecture used to parameterize each cost term, is reproduced
in Table 1. We stress that this simulation example is mainly
providing a proof of concept, and therefore that the choices re-
lated to the architectures of the NNs have not been optimized.
System (42) is simulated from random initial conditions on
the interval [−1, 1], for episodes of length 10.

FIGURE 3. Resulting rotated stage cost (9) when using an ICNN (green)
and an FNN (blue) to model the stage cost respectively.

For this example, regular Q-learning manages to capture
the Q-function fairly accurately, but struggles to capture the
optimal policy. This is likely explained by the shape of the Q-
function, which turns out to be fairly insensitive to the policy,
causing small errors in the Q-function to give large errors in
the resulting policy. This clearly illustrates a known weakness
in Q-learning, and we therefore resort to a combination of
Q-learning and deterministic policy gradient methods using
a null space method as described in Section VI. The gradient
of Q needed to formulate the policy gradient can be computed
from data using a range of algorithms. For convenience, we
use the true Q-function to formulate the gradient needed in
(29), that is

Qθ (s, a) = −s2 + 10a2 + (0.1s + a)2P, (47)

where P is the solution to the Riccati equation. The derivative
with respect to the action is then

∇aQθ (s, a) = 0.2Ps + 2(10 + P)a. (48)

Furthermore, we use gradient descent with learning rate α =
0.02 for both the Q-learning and policy gradient update. A
total of 2500 episodes were simulated in order to update the
parameters, yielding a total of 2.5 × 104 learning samples.
For the same hyperparameter values, we tested learning using
both an ICNN and an FNN to model the stage cost. Given
the learned storage function, we are able to obtain the rotated
cost given by (9). This is plotted for the ICNN and the FNN
in Fig. 3. Because the curvature is much larger in the action
dimension, we have adjusted the axes in order to highlight the
curvature in s-direction.

We see that with an FNN to model the stage cost, learning
may fail to capture the correct storage function, and conse-
quently we obtain a stage cost that is not lower-bounded by a
K∞-function. We stress that for a subset of simulations, using
FNNs would also produce stage costs that are lower-bounded
by a K∞-function. In other words, with FNNs you may risk
that learning fails to modify the cost, whereas when using
an ICNN, we successfully learned the modified cost in every
simulation.
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FIGURE 4. Policy gradient over episodes.

FIGURE 5. Approximated value function and policy using only NNs to
parameterize all cost terms (blue). Optimal value function and policy for
the unconstrained case (green, dashed).

For the second set of simulations, we will demonstrate that
MPC with the proposed cost parametrization, successfully
learns the optimal policy. For this demonstration, we assume
that both the true dynamics and the optimal steady state are
unknown. We used the following inaccurate prediction model
in the MPC scheme:

xk+1 = 0.098xk + 1.02uk (49)

We parameterized the steady state parameters, and wrongly
initialized the parameters with θe = (0.3, 0.3). We ran a total
of 2500 episodes of length 10, resulting in 2.5 × 104 learning
samples, using α = 0.01. In Fig. 4 we have plotted the evolu-
tion of the policy gradient over episodes. We note that this is
noisy due to random choices of initial conditions.

In Fig. 5 we have plotted the approximation of the value
function and the policy, using the final updated values of

FIGURE 6. Evolution of steady state parameters.

the parameters. We see that the value function is captured
accurately, whereas the policy approximation has some inac-
curacies. This is likely improved by increasing the number of
learning samples.

In Fig. 6 we have plotted the evolution of the steady state
parameters over episodes. We see that the steady state param-
eters converge very close to the optimal steady state, namely
(θse , θae ) = (0, 0).

B. ENMPC: CHEMICAL REACTOR
The next simulation example has nonlinear dynamics and an
economic stage cost, and we expect a quadratic cost function
to be valid only locally. It is therefore suitable for testing
the addition of NNs to a quadratic cost parametrization. We
consider a continuously stirred tank reactor (CSTR), with an
economic cost as described in [34]. The CSTR describes a
non-isothermal reactor, where an exothermic reaction, con-
verting reactant A to product B, takes place. The dynamics
are given as

ĊA = F

VR
(CA0 − CA) − k0e−E/RT C2

A (50a)

Ṫ = F

VR
(T0 − T ) − Hk0

ρRCp
e−E/RT C2

A + q

ρRCpVR
, (50b)

where T is the temperature in the reactor, CA is the concen-
tration of the reactant A, F is the flow rate and q is the heat
rate. The same quantities constitute the states and inputs, i.e.
s = [CA, T ] and a = [F, q] respectively. The additional pa-
rameters are listed in the appendix. The inputs are constrained
according to

[0,−2 × 105] ≤ a ≤ [10, 2 × 105]. (51)

The economic cost is

L = −ωF (CA0 − CA) + βq, (52)

VOLUME 1, 2022 375



SEEL ET AL.: CONVEX NN-BASED COST MODIFICATIONS FOR LEARNING MPC

TABLE II NNs for CSTR Example

where ω = 1.7 × 104 and β = 1 so that the production rate
and energy consumption will be balanced. The dynamics in
(50) and cost in (52) describe a non-dissipative problem,
i.e. the closed-loop system does not converge to the optimal
steady state. With the proposed MPC scheme we will learn
a stable controller by design, i.e. we will obtain a controller
that matches the true, unstable economic policy as closely as
possible while maintaining stability. To get the dynamics on
the form of (1), the equations in (50) were discretized using
the Euler method with a step size of 0.02 hours. According to
(3), the optimal steady state of the system is

se = [0.7572, 497.71], ae = [10, 1.38557 × 105]. (53)

We assume that we only have an inaccurate prediction model
available, which we define by introducing the following errors
in the dynamics described by (50):

ĊA = 0.85
F

VR
(CA0 − 0.85CA) − 1.2k0e−E/R0.95T C2

A (54a)

Ṫ = 0.85
F

VR
(T0 − T ) − H1.2k0

ρRCp
e−E/R0.95T C2

A

+ 0.8q

ρRCpVR
. (54b)

The MPC scheme is formulated with the inaccurate prediction
model and a parameterized cost according to

min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑
k=0

�̂θ (xk, uk ) (55a)

s.t xk+1 = f̃ (xk, uk ), x0 = s, (55b)

h(uk ) ≤ 0, (55c)

with a prediction horizon of N = 10, where f̃ (xk, uk ) is the
discretized version of (54). The stage and terminal cost were
modelled with quadratic functions and convex cost modifi-
cations as in (21), whereas for the storage function we used
a quadratic function and an FNN as in (18). Because the
true model is unknown, we also parameterized the steady
state. The steady state parameters were initialized with values
found by evaluating (3) for the inaccurate prediction model
described by (54). The architecture for each NN is speci-
fied in Table 2. The quadratic terms were initialized with
M(θ ) = In+m, B(θ ) = In, D(θ ) = 10 × In, where I is the iden-
tity matrix. The NN weights and bias terms were initialized
to small, random numbers. All parameters were updated with
Q-learning until convergence. Because the combination of
quadratic functions and NNs will introduce many parameters,
that may also differ by orders of magnitude, we used Adam

FIGURE 7. Evolution of the quadratic parameters during the first 1000
episodes.

optimization for updating the parameters. Adam optimization
differs from gradient descent by computing individual learn-
ing rates for each parameter. The hyperparameters typically
require little tuning, and we used standard values, see [35].
Because the states and inputs span different orders of mag-
nitude, we used input normalization to force the NN input
variables into the range [0, 1]. Input normalization used cor-
rectly is known to reduce estimation errors as well as speed
up convergence, see for instance [36].

The closed-loop system was first simulated with quadratic
cost terms, i.e. we parameterize the cost with only the
quadratic terms in (18), (19) and (21). We simulated for 1000
episodes of length 60, with a learning rate of α = 1 × 10−3,
until performance converged. The evolution of the quadratic
parameters over the episodes is plotted in Fig. 7. The result
from the first 1000 episodes was used as a benchmark for the
rich cost parameterization.

The rich cost parametrization was obtained by adding NNs
to the already trained quadratic cost terms after 1000 episodes.
We then continued learning for 500 more episodes of shorter
length, as we were mainly hoping to improve performance in
the transients. The closed-loop performance during learning
is plotted for all episodes in Fig. 8. We note that, as for the
previous simulation example, this plot is noisy due to the
random choice of initial conditions. The closed-loop perfor-
mance initially worsens, before improving and converging for
the quadratic cost parameterization. After 1000 episodes we
see that introducing the NNs creates a new peak in perfor-
mance, before converging to a slightly smaller i.e. better mean
than before. The addition of the NN-based cost modifications
clearly gave a modest improvement in performance. This is
most likely because the quadratic cost terms minimize the eco-
nomic objective almost as much as possible while maintaining
stability, and we find that the closed-loop performance is close
to the optimal economic performance. For this example we
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FIGURE 8. Closed-loop performance during training of the quadratic
parameters (0-1000 episodes), and of the quadratic and NN parameters
(after 1000 episodes).

FIGURE 9. Simulation with learned controllers, using a quadratic
parameterization (blue) and a combination of quadratic functions and NNs
(green).

will not be able to achieve the optimal economic behaviour
as we are learning a stable controller by construction and
consider a non-dissipative problem.

In order to further evaluate the performance of each cost
parametrization, we have also compared their performance in
closed-loop using the final values of the updated parameters.
In order to show that the learned controller is robust to model
error, we added parametric uncertainty in the pre-exponential
rate factor k0. For each random initial condition, we also
drew a new value of k̃0 where k̃0 ∼ N (k0, σ

2
k ) with σk =

2.1156 × 105. In Fig. 9 we have plotted the mean and two
standard deviations of simulations from 50 randomly selected

FIGURE 10. Economic cost in simulations with learned controllers, using a
quadratic cost parameterization (blue) and a combination of quadratic
functions and NNs (green).

initial conditions and values of k̃0. We see that the addition
of the NNs does not alter the closed-loop trajectories much,
except noticeably for the flow rate F . Also, both controllers
converge to slightly different steady states than that obtained
by evaluating (3) for the true system. However, we found
that the shifted economic cost, �(s, a), of the original and the
learned steady state is practically the same. This is plotted in
Fig. 10. In Fig. 10 we see clearly that, as previously stated,
at steady state the quadratic cost parametrization is sufficient
to obtain the optimal economic cost. Although the effect of
adding NN-based cost modifications on performance was lim-
ited in this case, we see that the small improvement that does
occur happens in the transients.

VIII. CONCLUSION
In this paper we have considered the use of convex cost
modifications, using neural networks (NNs). We have applied
this framework to economic nonlinear model predictive
control (ENMPC). By invoking dissipativity theory, we
have recast the ENMPC as a tracking MPC scheme, with
the additional storage function. Convexity properties of
the learned stage cost have been leveraged in order to
ensure the appropriate lower bound necessary to establish
nominal closed-loop stability, as well as alleviating numerical
difficulties when solving the MPC problem. We have outlined
how reinforcement learning (RL) can be used to adjust the
parametrized cost, including the weights of the NN, so that
the tracking MPC scheme delivers the optimal policy, even
with an inaccurate prediction model. For a challenging case
of economic linear quadratic regulator (LQR), we have
demonstrated how a combination of RL methods can be used
to update the parameters, so that both the correct policy and
value function is learned. For a nonlinear chemical reactor, we
have benchmarked the combination of quadratic functions and
NNs, against a standard quadratic parametrization. For this
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particular simulation example, the addition of NN-based cost
modifications resulted in a small improvement in closed-loop
performance. This suggests that for many applications
quadratic functions are rich enough. Future work will involve
identifying examples where richer cost functions are expected
to improve performance substantially.

APPENDIX

TABLE III CSTR Parameter Definitions and Values
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