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Abstract. In this paper we show that Gorensteinness, singularity categories
and the finite generation condition Fg for the Hochschild cohomology are in-

variants under the arrow removal operation for a finite dimensional algebra.
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1. Introduction and the main result

In [7] the arrow removal operation on quotients of path algebras was investigated
with respect to the finitistic dimension conjecture. The idea was to remove those
arrows that don’t contribute to the finitistic dimension. This new technique gave
us a successful reduction method for actual computing the finistic dimension in
many examples. Our aim in this paper is to investigate further this operation,
and in particular study the class of arrow removal algebras with respect to various
homological invariants. The guiding problem can be formulated as follows:

Problem. How does the arrow removal behave with respect to Gorensteinness,
singularity categories and the finite generation condition Fg for the Hochschild
cohomology.

See Section 4 for the definition of Gorensteinness [1] and the singularity category
Dsg(Λ) of a finite dimensional algebra Λ [3], and Section 5 for the definition of
Fg [5, 10].

In our main result we prove that the above three homological invariants remain
the same under the arrow removal operation for an admissible path algebra over a
field. Before we state our main result we briefly recall the arrow removal operation.

Let Λ be an admissible quotient kQ/I of a path algebra kQ over a field k.
Consider an arrow a in Q such that a does not occur in a minimal generating set
of I. Then the quotient algebra Γ = Λ/〈a〉 is called an arrow removal algebra of Λ.
This new algebra can be explicitly described as a trivial extension. More precisely,
it has been proved in [7, Theorem A] that the arrow a : ve → vf in Q does not
occur in a set of minimal generators of I in kQ if and only if Λ ∼= Γ n P , where
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ARROW REMOVAL 2

P = Γe ⊗k fΓ with HomΓ(eΓ, fΓ) = (0). Here e is a trivial path in kQ and ve
denotes the corrsponding vertex in Q. We can also consider arrow removal for any
finite number of arrows, but for simplicity we only review our results in the one
arrow case in the introduction.

The module category of Λ can be described using the context of cleft extensions of
abelian categories in the sense of Beligiannis [2]. This means that there are functors
i : mod-Γ→ mod-Λ and e : mod-Λ→ mod-Γ, induced by the natural surjection map
Γ→ Λ and by the inclusion map Γ→ Λ respectively, the functor e is faithful exact
and the composition e ◦ i is equivalent to the identity functor on mod-Γ. The arrow
removal operation gives even more homological properties on this cleft extension.

The notion of eventually homological isomorphism was introduced in [8]. Recall
that a functor F : B → C between abelian categories is called an eventually homo-
logical isomorphism, if there is an integer t such that for every j > t there is an
isomorphism ExtjB(X,Y ) ∼= ExtjC (FX,FY ) for all objects X,Y ′ ∈ B. Given the
smallest such t, we call the functor a t-eventually homological isomorphism. The
latter notion was used in comparing the algebras Λ and eΛe for an idempotent e in
Λ, with respect to Gorensteinness, singularity categories and the finite generation
condition Fg for the Hochschild cohomology ([8, Main Theorem]). We mention that
this comparison theorem was achieved via recollements of abelian categories.

We summarize below our main results in the simplified setting of a one arrow
removal.

Main Theorem. Let Λ = kQ/I be an admissible quotient of a path algebra kQ
over a field k and let Γ = Λ/〈a〉 an arrow removal of Λ for an arrow a in Q. Then
the following hold.

(i) The functor e : mod-Λ→ mod-Γ is a 1-eventually homological isomorphism.
(ii) Λ is Gorenstein if and only if Γ is Gorenstein.
(iii) The functor e : Dsg(Λ)→ Dsg(Γ) is a singular equivalence.
(iv) Λ satisfies Fg if and only if Γ satisfies Fg.

We remark that the arrow removal operation has been also considered in [4].
They mainly worked on the converse process, i.e. add arrows to a path algebra, and
they described the Hochschild (co)homology using different techniques.

We end the introduction with a short description of the contents of the paper
section by section. In Section 2 we review relevant results on cleft extensions. As
part of a cleft extension between abelian categories A,B there is a functor e : A→ B

which is faithful and exact. One would like this to be an eventually homological
isomorphism. In Section 3, we show this is the case under certain conditions.
Section 4 shows that Gorensteinness and singularity categories are invariant under
arrow removal. In Section 5 we investigate the Fg condition, and prove that it is
invariant under arrow removal.

2. Cleft extensions and arrow removals

We start this section by recalling and reviewing some results about cleft exten-
sions of abelian categories from [2,7] that we need in the sequel.

2.1. Cleft extensions. We first recall the definition of cleft extensions of abelian
categories.

Definition 2.1. ([2, Definition 2.1]) A cleft extension of an abelian category B
is an abelian category A together with functors:

B
i // A

e // B

l

||
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henceforth denoted by (B,A , e, l, i), such that the following conditions hold:

(a) The functor e is faithful exact.
(b) The pair (l, e) is an adjoint pair of functors, where we denote the adjunction by

θB,A : HomA (l(B), A) ' HomB(B, e(A)).

(c) There is a natural isomorphism ϕ : ei −→ IdB of functors.

Denote the unit θB,l(B)(1l(B)) and the counit θ−1
e(A),A(1e(A)) of the adjoint pair

(l, e) by ν : 1B −→ el and µ : le −→ 1A , respectively. The unit and the counit
satisfy the relations

1l(B) = µl(B)l(νB) (2.1)

and
1e(A) = e(µA)νe(A) (2.2)

for all B in B and A in A . From (2.2) the morphism e(µA) is an (split) epimor-
phism. Since e is faithful exact, it follows that µA is an epimorphism for all A in
A . This implies that for all A in A the following sequence is exact

0 // KerµA // le(A)
µA // A // 0 (2.3)

The next result collects some basic properties of a cleft extension which basically
follows from Definition 2.1 and are discussed in [2]. For a detailed proof the reader
is referred to [7, Lemma 2.2].

Lemma 2.2. Let A be a cleft extension of B. Then the following hold.

(i) The functor e : A −→ B is essentially surjective.
(ii) The functor i : B −→ A is fully faithful and exact.
(iii) The functor l : B −→ A is faithful and preserves projective objects.
(iv) There is a functor q : A −→ B such that (q, i) is an adjoint pair.
(v) There is a natural isomorphism ql ' IdB of functors.

A cleft extension (B,A , e, l, i) is equipped with three additional functors that are
crucial in our investigations. We saw in (2.3) that there is a short exact sequence

0 // KerµA // le(A)
µA // A // 0

for all A in A . The assignment A 7→ KerµA defines an endofunctor G : A −→ A
and therefore also an exact sequence of endofunctors on A

0 // G // le
µ(−) // IdA

// 0 (2.4)

Precompose the above exact sequence of functors with the functor i : B → A , and
we obtain an exact sequence of functors

0 // Gi // lei
µi(−) // i // 0

Denote the functor Gi : B → A by H and view ϕ : ei → IdB as an identification.
Then we have the exact sequence of funtors

0 // H // l
µi(−) // i // 0 (2.5)

Postcompose the above exact sequence with the functor e : A → B and obtain the
exact sequence

0→ eH → el
e(µi(−))−−−−−→ ei→ 0.

Again, viewing ϕ : ei→ IdB as an identification and denote the endofunctor eH on
B by F . Then we obtain an exact sequence of endofunctors on B

0 // F // el
e(µi(−))// IdB

// 0 (2.6)
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The functors G, F and H introduced above are important functors associated
to a cleft extension. We collect them in the following definition.

Definition 2.3. Let (B,A , e, l, i) be a cleft extension of abelian categories. Then
we have endofunctors G : A → A and F : B → B given by the exact sequence
(2.4) and (2.6)

0 // G // le
µ(−) // IdA

// 0 (2.7)

and

0 // F // el
e(µi(−))// IdB

// 0 (2.8)

In addition, there is a functor H : B → A given by the exact sequence (2.5)

0 // H // l
µi(−) // i // 0 (2.9)

The following lemma is an immediate consequence of (2.2).

Lemma 2.4. Let (B,A , e, l, i) be a cleft extension of abelian categories. Then the
exact sequence (2.8) in Definition 2.3 splits.

Another fact on cleft extensions we use later, is the following result (see [7,
Lemma 2.4]).

Lemma 2.5. Let (B,A , e, l, i) be a cleft extension of abelian categories. The fol-
lowing statements hold.

(i) For any n ≥ 1, there is a natural isomorphism eGn ' Fne.
(ii) Let n ≥ 1. Then Fn = 0 if and only if Gn = 0.

In Sections 3 and 5 the following assumption on a cleft extension (B,A , e, l, i)
of abelian categories shall be of importance.

The functor l is exact and the functor e preserves projectives. (2.10)

2.2. Cleft extensions arising from arrow removals. In this subsection we
recall from [7] that the arrow removal operation on an admissible path algebra
induces a cleft extension with certain homological properties.

First we recall the definition of an arrow removal.

Definition 2.6. Let Λ = kQ/I be an admissible quotient of a path algebra kQ over
a field k. Suppose that there is a set of arrows ai : vei → vfi in Q for i = 1, 2, . . . , t
which do not occur in a set of minimal generators of I in kQ and HomΛ(eiΛ, fjΛ) =
0 for all i and j in {1, 2, . . . , t}. Let Γ = Λ/Λ{ai}ti=1Λ. The natural projection
π : Λ→ Γ or just the pair Λ and Γ = Λ/Λ{ai}ti=1Λ is an arrow removal.

The following result from [7] shows that the arrow removal operation induces a
cleft extension between the corresponding module categories, i.e. mod-Λ is a cleft
extension of mod-Γ, with certain homological properties.

Theorem 2.7. (For (i) [7, Corollary 4.3, Proposition 4.6], and for (ii) Proposi-
tion 4.6) Let Λ = kQ/I be an admissible quotient of a path algebra kQ, where
{ai}ti=1 is a set of arrows in Q. Furthermore, let Γ = Λ/Λ{ai}ti=1Λ.

(i) The pair Λ and Γ is an arrow removal if and only if Λ is isomorphic to the
trivial extension Γ n P , where P = ⊕ti=1Γei ⊗k fiΓ with HomΓ(eiΓ, fjΓ) = 0
for all i, j = 1, 2, . . . , t.
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(ii) Let Λ and Γ be an arrow removal. Then the tuple (mod-Γ,mod-Λ, e, l, i) :

mod-Γ

F

�� i=HomΓ(ΛΓΓ,−)// mod-Λ

G

�� e=HomΛ(ΓΛΛ,−)//

q=−⊗ΛΛΓΓ

yy

p=HomΛ(ΓΓΛ,−)

dd mod-Γ

F

��

l=−⊗ΓΓΛΛ

yy

r=HomΓ(ΛΛΓ,−)

dd (2.11)

is a cleft extension satisfying the following conditions, where F and G are as
in Definition 2.3 and sequences (2.8) and (2.7):
(a) e is faithful exact,
(b) (l, e) is an adjoint pair of functors,
(c) ei ' 1mod-Γ,
(d) l and r are exact functors,
(e) e preserves projectives,
(f) ImF ⊆ proj(Γ) and ImG ⊆ Proj(Λ),
(g) F 2 = 0.

From the proof of [7, Proposition 4.6 (iv)] we have the following description of
the functors F and F op (when we consider left modules).

Lemma 2.8. Let Λ = kQ/I be an admissible quotient of a path algebra kQ over
a field k. For a set of arrows ai : vei → vfi in Q for i = 1, 2, . . . , t suppose that
Λ→ Γ = Λ/Λ{a}ti=1Λ is an arrow removal. Then

(a) The endofunctor F : mod-Γ→ mod-Γ is given as

F = −⊗Γ Γ{ai}ti=1Γ: mod-Γ→ mod-Γ.

(b) The endofunctor F op : mod-Γop → mod-Γop is given as

F op = Γ{ai}ti=1Γ⊗Γ − : mod-Γop → mod-Γop.

We remark that the above homological properties were used to show that the
finiteness of the finitistic dimension of Λ can be reduced to the finiteness of the
finitistic dimension of the arrow removal algebra Γ, see [7, Theorem A]. These
homological properties are also used intensively in the sequel of the paper to show
the invariance of Gorensteinness, singularity categories and the finite generation
condition Fg for the Hochschild cohomology under the arrow removal operation. It
is interesting that this operation gives rise to such a powerful cleft extension.

3. Cleft extensions and eventually homological isomorphisms

Let (B,A , e, l, i) be a cleft extension of abelian categories. Then the functor
e : A → B is an exact functor, so it always induces homomorphism of the following
Yoneda rings

e : Ext∗A (A,A)→ Ext∗B(e(A), e(A))

for all A in A . Recall from [8, Section 3] that e is called an eventually homological
isomorphism if

ExtiA (A,A) ' ExtiB(e(A), e(A))

for every i > t where t is some positive integer. For the minimal such t, the above
isomorphism is called a t-eventually homological isomorphism. Note that in the
definition we do not require that the isomorphism is induced by the functor e.

In this section we describe one situation where the functor e of a cleft extension
is an eventually homological isomorphism. We start with the following result.
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Lemma 3.1. Let (B,A , e, l, i) be a cleft extension of abelian categories such that
condition (2.10) is satisfied. Then, for all i ≥ 1 and for all A,C ∈ A , the following
diagram commutes

ExtiA (C,A)
e // ExtiB(e(C), e(A))

ExtiA (C,A)
µ∗C // ExtiA (le(C), A)

θe(C),A'

OO

where the vertical maps are isomorphisms.

Proof. Letm ≥ 1, and let f ∈ ExtmA (C,A) be represented by a morphism f : ΩmA (C)→
A. Then consider the following exact commutative diagram

0 // ΩmA (C) //

f

��

Pm−1
//

��

Pm−2
// · · · // P0

// C // 0

0 // A // M // Pm−2
// · · · // P0

// C // 0

Apply the exact functor e to this diagram and obtain the following diagram

0 // e(ΩmA (C)) //

e(f)

��

e(Pm−1) //

��

e(Pm−2) // · · · // e(P0) // e(C) // 0

0 // e(A) // e(M) // e(Pm−2) // · · · // e(P0) // e(C) // 0

The lower row represents the image of f under the functor e.
By the adjunction θ : HomB(e(ΩmA (C)), e(A)) ' HomA (le(ΩmA (C)), A) the mor-

phism e(f) corresponds to θ(e(f)) : le(ΩmA (C)) → A. This last morphism is equal
to the composition of the morphisms

le(ΩmA (C))
le(f)−−−→ le(A)

µA−−→ A.

In addition we have the following two commutative diagrams

0 // le(A) //

µA

��

le(M) //

s

��

le(Ωm−1
A (C)) // 0

0 // A // E //

t

��

le(Ωm−1
A (C)) //

µ
Ω
m−1
A

(C)

��

0

0 // A // M // Ωm−1
A (C) // 0

and

0 // le(Ω1
A (C)) //

µ
Ω1

A
(C)

��

le(P0) //

s′

��

le(C) // 0

0 // Ω1
A (C) // E′ //

t′

��

le(C) //

µC

��

0

0 // Ω1
A (C) // P0

// C // 0
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with ts = µM and t′s′ = µP0
. Using these commutative diagrams we can construct

the following commutative diagram

0 // le(ΩmA (C)) //

le(f)

��

le(Pm−1) //

��

le(Pm−2) // · · · // le(P1) // le(P0) // le(C) // 0

0 // le(A) //

µA

��

le(M) //

s

��

le(Pm−2) // · · · // le(P1) // le(P0) // le(C) // 0

0 // A // E //

t

��

le(Pm−2) //

µPm−2

��

· · · // le(P1) //

µP1

��

le(P0) //

s′

��

le(C) // 0

0 // A // M // Pm−2
// · · · // P1

// E′ //

t′

��

le(C) //

µC

��

0

0 // A // M // Pm−2
// · · · // P1

// P0
// C // 0

The third row in the above diagram corresponds to the θ−1
e(C),A(e(f)), and the

fourth row in the above diagram corresponds to the image of f under the map µ∗C .
It follows that the diagram in the statement is commutative.

Finally, using the adjunction (l, e) and since both functors are exact and preserve
projectives, it follows immediately that the map θe(C),A is an isomorphism. �

If the map induced by µ∗C in Lemma 3.1 is an isomorphism for all C and all
i� 0, it would follow that the functor e is an eventually homological isomorphism.
Using a homological condition on the functor G (see Definition 2.3 and (2.7)) the
next result describes a situation when µ∗C induces such an isomorphism.

Theorem 3.2. Let (B,A , e, l, i) be a cleft extension of abelian categories satisfying
condition (2.10). Assume that

sup{pdA G(A) | A ∈ A } ≤ nA

for some integer nA . Then the functor e : A → B is an nA + 1-eventually homo-
logical isomorphism.

Proof. Using the commutative diagram in Lemma 3.1 and the long exact sequence
induced from the exact sequence

0→ G(C)→ le(C)→ C → 0

applying the functor Ext∗A (−, A), in fact the functor e induces an isomorphism

between ExtiA (C,A) and ExtiB(e(C), e(A)) for i > nA + 1. The claim follows from
this. �

Applying Theorem 3.2 to the cleft extension of the arrow removal, see Theo-
rem 2.7, we get the following consequence. This result constitutes part (i) of the
Main Theorem presented in the Introduction.

Corollary 3.3. Let Λ = kQ/I be an admissible quotient of a path algebra kQ over
a field k, and assume that Γ = Λ/〈{ai}ti=1〉 is an arrow removal of Λ for the arrows
{ai}ti=1 in Q. Then the functor e : mod-Λ → mod-Γ is a 1-eventually homological
isomorphism.
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4. Gorenstein algebras and singular equivalences

In this section we show that Gorensteinness and singularity categories are invari-
ant under the arrow removal operation. Recall from [1] that a finite dimensional al-
gebra ∆ is called Gorenstein if id∆op ∆∆ <∞ and id∆ ∆∆ <∞. Furthermore, recall
from [3] that the singularity category Dsg(A ) of an abelian category A with enough
projectives is given by the Verdier quotient Db(A )/Dperf(A ). Here Dperf(A ) de-
notes the full triangulated subcategory of Db(A ) consisting of the perfect objects,
i.e. complexes quasi-isomorphic to bounded complexes with components in ProjA .

4.1. Gorenstein algebras. Let Λ = kQ/I be an admissible quotient of a path
algebra kQ, and suppose {ai}ti=1 is a set of arrows in Q such that Γ = Λ/〈{ai}ti=1〉
is an arrow removal. The key fact for the invariance of Gorensteiness is that the
functor e : mod-Λ→ mod-Γ is an eventually homological isomorphism, as shown in
Corollary 3.3. The reason is the following result which we formulate, for simplicity,
for module categories over finite dimensional algebras.

Theorem 4.1. ([8, Theorem 4.3 (v)]) Let T : mod-∆→ mod-Θ be a functor which
is essentially surjective and an eventually homological isomorphism. Then ∆ is
Gorenstein if and only if Θ is Gorenstein.

We can now show that Gorensteinness is indeed invariant under the arrow re-
moval operation. In particular, the following result is an immediate consequence
of Corollary 3.3 and Theorem 4.1. This result constitutes part (ii) of the Main
Theorem presented in the Introduction.

Corollary 4.2. Let Λ = kQ/I be an admissible quotient of a path algebra kQ, and
suppose that Γ = Λ/〈{ai}ti=1〉 is an arrow removal of Λ for the arrows {ai}ti=1 in
Q. Then Λ is Gorenstein if and only if Γ is Gorenstein.

4.2. Singularity categories. Our aim in this subsection is to show that the sin-
gularity categories of the algebras under an arrow removal are triangle equivalent.

For this we have the following lemma in the abstract setting of cleft extensions
of abelian categories.

Lemma 4.3. Let (B,A , e, l, i) be a cleft extension of abelian categories with enough
projectives. Consider the following conditions.

(i) sup{pdB e(P ) | P ∈ Proj(A )} = pA for some integer pA .
(ii) sup{pdA i(F ) | F ∈ Proj(B)} = pB for some integer pB.
(iii) sup{pdA H(B) | B ∈ B} = nH for some integer nH .
(iv) sup{pdA G(A) | A ∈ A } = nG for some integer nG.

(a) If (ii) holds, then i : B → A induces a functor i : Dsg(B)→ Dsg(A ).
(b) If (i) holds, then e : A → B induces a functor e : Dsg(A )→ Dsg(B).
(c) If (i) and (ii) hold, then ei : Dsg(B) → Dsg(B) is isomorphic to the identity

functor.
(d) If l is an exact functor, then l : B → A induces a functor l : Dsg(B)→ Dsg(A ).
(e) If (i) and (iv) hold and l is an exact functor, then le : Dsg(A ) → Dsg(A ) is

isomorphic to the identity functor.
(f) If (i)–(iv) hold and the functor l is exact, then e : Dsg(A ) → Dsg(B) is a

singular equivalence.

Proof. (a) Since the functor i : B → A is exact, we have an induced functor
i : D(B) → D(A ). By property (ii) the functor i induce a functor i : Dperf(B) →
Dperf(A ). The claim follows from this.

(b) This follows as the claim in (a).
(c) This follows from (a) and (b) and the fact that ei ' IdB.
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(d) Since the functor l : B → A preserves projective objects, the claim is imme-
diate.

(e) By (b) and (d) the functors e and l induce functors on the singularity cate-
gories. Having the exact sequence

0→ G(A)→ le(A)→ A→ 0

from (2.7) in Definition 2.3 and property (iv) ensure that the composition of l and
e is isomorphic to the identity.

(f) By (c) the composition of e and i is the identity functor on Dsg(B). From (e)
the composition of l and e is isomorphic to the identity functor on Dsg(A ). Using
the exact sequence of functors

0→ H → l→ i→ 0

from (2.9) in Definition 2.3 and property (iii), we infer that le and ie are isomorphic
as endofunctors of Dsg(A ). The claim follows from this. �

As a consequence of Lemma 4.3 and Theorem 2.7 we have the following. This re-
sult constitutes part (iii) of the Main Theorem presented in the Introduction. Below
the singularity category Dsg(Λ) of Λ is the Verdier quotient Db(mod-Λ)/Dperf(Λ).

Corollary 4.4. Let Λ = kQ/I be an admissible quotient of a path algebra kQ over
a field k and suppose that Γ = Λ/〈{ai}ti=1〉 is an arrow removal of Λ for the arrows
{ai}ti=1 in Q. Then the functor e : mod-Λ→ mod-Γ induces a singular equivalence
between Λ and Γ:

e : Dsg(Λ)
' // Dsg(Γ)

The next example shows that algebras can be of finite, tame or wild representa-
tion type and still be singular equivalent to each other.

Example 4.5. Let Qn be the quiver given by

1
α1 //
α2

))

αn

��
2

β��
3

γ

^^

for n ≥ 1. For a field k consider the relations ρ = {α1β, βγ, γα1} in kQn, and
define the algebra Λn = kQn/〈ρ〉. Then the algebras Λ1 and Λn are related by
arrow removal for all n ≥ 2, so that they are all singular equivalent by the above
corollary, where Λ1 is of finite type, Λ2 is of tame type and Λn is wild type for
n ≥ 3.

5. Cleft extensions and the Fg condition

This section is devoted to study the behaviour of the Fg condition for Hochschild
cohomology under the arrow removal operation. As mentioned in the Main result
of the Introduction, we prove that the Fg condition is invariant under an arrow
removal. Recall from [5,10] that an algebra Λ over a commutative ring k such that
Λ is flat as a module over k satisfies the Fg condition if the following is true:

(i) The Hochschild cohomology ring HH∗(Λ) of Λ is noetherian.
(ii) The HH∗(Λ)-module Ext∗Λ(Λ/radΛ,Λ/radΛ) is finitely generated.

Towards this we start with the following result where we show that starting with
an arrow removal and passing to the corresponding enveloping algebras we still get
a cleft extension.
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Proposition 5.1. Let Λ = kQ/I be an admissible quotient of a path algebra kQ,
and suppose {ai}ti=1 is a set set of arrows in Q such that Γ = Λ/〈{ai}ti=1〉 is an
arrow removal. Let ν : Γ→ Λ and π : Λ→ Γ be the algebra homomorphism defining
the cleft extension. Then the following assertions hold.

(i) The algebra homomorphisms

ν ⊗ ν : Γop ⊗k Γ→ Λop ⊗k Λ

and

π ⊗ π : Λop ⊗k Λ→ Γop ⊗k Γ

define Γenv = Γop ⊗k Γ and Λenv = Λop ⊗k Λ as a cleft extension.
(ii) ΓenvΛenv and Λenv

Γenv are projective modules.
(iii) The restriction functor eenv along the algebra homomorphism ν ⊗ ν preserves

projective modules (and is exact), and the functor

lenv = −⊗Γenv Λenv : mod-Γenv → mod-Λenv

is exact. In particular the condition (2.10) is satisfied for the cleft extension
Λenv → Γenv.

Proof. (i) It is straightforward to see that (π ⊗ π)(ν ⊗ ν) = idΓenv .
(ii) Since Λ and Γ is an arrow removal, ΓΛ and ΛΓ are projective modules. Since

ΓenvΛenv ' ΓΛop ⊗k ΛΓ, it follows that ΓenvΛenv is a projective module over Γenv.
Similarly we infer that Λenv

Γenv is a projective module over Γenv.
(iii) Both of the claims follow from (ii). �

The functors F and G are crucial for a cleft extension. Next we see how the F -
and the G-functors are connected for a cleft extension of algebras and the corre-
sponding cleft extension for the enveloping algebras.

Lemma 5.2. Let Λ and Γ be a cleft extension given by the algebra homomorphisms

Γ
ν−→ Λ

π−→ Γ. Then for a Γ-bimodule B the following hold.

(a) The endofunctor F of mod-Γ applied to B defines a Γ-bimodule and the exact
sequence

0→ F (B)→ B ⊗Γ Λ
mult(1⊗π)−−−−−−−→ B → 0

obtained from (2.8) in Definition 2.3 splits as a sequence of Γ-bimodules.
(b) We have the isomorphism

F (Λ⊗Γ B) ' Λ⊗Γ F (B).

(c) Let F op be the endofunctor of mod-Γop considering Γop and Λop as a cleft ex-
tension of algebras. We have

F env(B) ' (Λ⊗Γ F (BΓ))⊕ F op(ΓB).

For a Λ-bimodule B the following hold.

(d) The endofunctor G of mod-Λ applied to B defines a Λ-bimodule.
(e) When ΛΓ is projective, we have

G(Λ⊗Γ (ΓBΛ)) = Λ⊗Γ G(B).

(f) Let Gop be the endofunctor of mod-Λop considering Γop and Λop as a cleft ex-
tension of algebras. For a Λ-bimodule B we have an exact sequence

0→ Λ⊗Γ G(BΛ)→ Genv(B)→ Gop(ΛB)→ 0,

when ΛΓ is projective.
(g) In this final statement let Λ and Γ be an arrow removal given by a set of arrows
{ai}ti=1 in the quiver of the algebra Λ as defined in subsection 2.2. Then the
following hold.
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(i) (F env)2(eenv(Λ)) = 0,
(ii) (Genv)2(Λ) = 0,

(iii) Genv(Λ) is a projective Λ-bimodule,

Proof. (a) Let B be a Γ-bimodule and consider the exact sequence

0→ F (BΓ)→ B ⊗Γ Λ
mult(1⊗π)−−−−−−−→ BΓ → 0,

where the map mult is a homomorphism of Γ-bimodules. This implies that F (BΓ) is
a Γ-bimodule whenever B is a Γ-bimodule. The above exact sequence splits as right
Γ-modules by Lemma 2.4, but the splitting (1⊗ ν)mult−1 is also a homomorphism
of Γ-bimodules. Hence the final claim follows.

(b) Let B be a Γ-bimodule and consider the exact sequence

0→ F (BΓ)→ B ⊗Γ ΛΓ
mult(1⊗π)−−−−−−−→ BΓ → 0,

which splits as an exact sequence of Γ-bimodules. Tensoring this split exact se-
quence with Λ⊗Γ − we get the following exact commutative diagram

0 // Λ⊗Γ F (BΓ) //

'
��

Λ⊗Γ B ⊗Γ ΛΓ

1⊗mult(1⊗π) // Λ⊗Γ BΓ
// 0

0 // F (Λ⊗Γ BΓ) // Λ⊗Γ B ⊗Γ ΛΓ

mult((1Λ⊗ΓB)⊗π)
// Λ⊗Γ BΓ

// 0

The claim follows from this.
(c) Recall that F env is given by the exact sequence

0→ F env → eenvlenv → Idmod-Γenv → 0

Let B be a Γ-bimodule. Then lenv(B) = Λ⊗Γ B ⊗Γ Λ, so that

eenvlenv(B) = ΓΛ⊗Γ B ⊗Γ ΛΓ.

We construct the following commutative diagram

0

��
0

��

0

��

F op(ΓB)

��
0 // Λ⊗Γ F (BΓ) //

��

Λ⊗Γ B ⊗Γ Λ
1⊗mult(1⊗π) // Λ⊗Γ B //

mult(π⊗1)

��

0

0 // F env(B)

��

// Λ⊗Γ B ⊗Γ Λ
(mult(π⊗1))(1⊗(mult(1⊗π)))//

��

B //

��

0

F op(ΓB)

��

0 0

0

where the second row is split exact by Lemma 2.4. This implies the first isomor-
phism below

Λ⊗Γ B ⊗Γ Λ ' F env(B)⊕B
' Λ⊗Γ F (B)⊕ F op(B)⊕B
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Since the first row in the above diagram is a split exact sequence by (a) and the first
column is a pullback of the first row, the second isomorphism follows. Cancelling
the direct summand B on each side implies that F env(B) ' Λ⊗Γ F (B)⊕ F op(B).

(d) Let B be a Λ-bimodule and consider the exact sequence

0→ G(BΛ)→ B ⊗Γ Λ
mult−−−→ BΛ → 0, (5.1)

where the map mult is a homomorphism of Λ-bimodules. This implies that G(BΛ)
is a Λ-bimodule whenever B is a Λ-bimodule.

(e) Let B be a Λ-bimodule. Since ΛΓ is projective, tensoring the exact sequence
(5.1) with Λ⊗Γ− leaves it exact and we obtain the following commutative diagram

0 // Λ⊗Γ G(BΛ) // Λ⊗Γ B ⊗Γ Λ
1Λ⊗multB // Λ⊗Γ B // 0

0 // G(Λ⊗Γ B) // Λ⊗Γ B ⊗Γ Λ
multΛ⊗ΓB // Λ⊗Γ B // 0

The claim follows from this.
(f) This follows in a similar way as for F env, and it is left to the reader.
(g) Let Λ and Γ be an arrow removal, and let B be a Γ-bimodule. Then

(F env)2(B) = F env(F env(B)),

' F env(Λ⊗Γ F (B)⊕ F op(B)), using (c)

' F env(Λ⊗Γ F (B))⊕ F env(F op(B)), using additivity

= Λ⊗Γ F ((Λ⊗Γ F (BΓ))Γ)⊕ F op(Γ(Λ⊗Γ F (BΓ)))

⊕ Λ⊗Γ F (F op(ΓB)Γ)⊕ F op(F op(ΓB)), using (c)

= Λ⊗Γ F
2(Λ⊗Γ BΓ)⊕ F opF (Λ⊗Γ B)

⊕ Λ⊗Γ F (F op(ΓB)Γ)⊕ F op(F op(B)), using (b)

Since F 2 = 0 and (F op)2 = 0 for an arrow removal by Theorem 2.7 (ii) (g), we have

(F env)2(B) = F opF (Λ⊗Γ B)⊕ Λ⊗Γ FF
op(B).

When we let 〈{ai}ti=1〉 denote the Γ-sub-bimodule of Λ generated by {ai}ti=1, we
have by Lemma 2.8 that

F opF (Λ⊗Γ B) = 〈{ai}ti=1〉 ⊗Γ Λ⊗Γ B ⊗Γ 〈{ai}ti=1〉

and

FF op(B) = 〈{ai}ti=1〉 ⊗Γ B ⊗Γ 〈{ai}ti=1〉.
When we specialize to B = ΓΛΓ = eenv(Λ) and use that Λ ' Γ⊕ 〈{ai}ti=1〉, then

FF op(eenv(Λ)) = 〈{ai}ti=1〉 ⊗Γ (Γ⊕ 〈{ai}ti=1〉)⊗Γ 〈{ai}ti=1〉
' 〈{ai}ti=1〉 ⊗Γ 〈{ai}ti=1〉

⊕ 〈{ai}ti=1〉 ⊗Γ 〈{ai}ti=1〉 ⊗Γ 〈{ai}ti=1〉
= 0,

since fjΓei = 0 for all i, j = 1, 2, . . . , t. For similar reasons we obtain that
F opF (Λ⊗Γ Λ) = 0 and consequently

(F env)2(eenv(Λ)) = 0.

Since eenv(Genv(B))2 ' (F env)2(eenv(B)) by Lemma 2.5 (i) and eenv is faithful,
we infer that (Genv)2(Λ) = 0. Using similar arguments as above F env(eenv(Λ)) '
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〈{ai}ti=1〉⊕2 as a Γ-bimodule. For an arrow removal 〈{ai}ti=1〉 is a projective Γ-
bimodule. Then by Lemma 2.5 (i) eenv(Genv(Λ)) ' F env(eenv(Λ)) and it is projec-
tive. Since the functor lenv preserves projective modules, the bimodule lenveenvGenv(Λ)
is projective. We have the exact sequence

0→ (Genv)2(Λ)→ lenveenvGenv(Λ)→ Genv(Λ)→ 0,

which implies that Genv(Λ) ' lenveenvGenv(Λ) is a projective Λ-bimodule. �

The following result establishes a close relationship between the Hochschild co-
homology rings for the algebras in an arrow removal. The interested reader is
suggested to compare the isomorphism below with [4, Theorem 4.6].

Proposition 5.3. If π : Λ→ Γ is an arrow removal, then

Ext∗Λenv(Λ,Λ) ' Ext∗Γenv(Γ,Γ⊕ Ker π)

is an isomorphism for ∗ > 1.

Proof. As above we have the exact sequence

0→ Genv(Λ)→ lenveenv(Λ)→ Λ→ 0.

By Lemma 5.2 (g) the bimodule Genv(Λ) is projective. The condition (2.10) is
satisfied for the cleft extension Λenv → Γenv (see Proposition 5.1 (iii)), so that we
can use Lemma 3.1 to obtain

Ext∗Λenv(Λ,Λ) ' Ext∗Γenv(eenv(Λ), eenv(Λ))

for ∗ > 1. The restriction eenv(Λ) ' Γ ⊕ Ker π, where Ker π = 〈{ai}ti=1〉 is a
projective Γ-bimodule. This implies that

Ext∗Λenv(Λ,Λ) ' Ext∗Γenv(Γ,Γ⊕ Ker π),

for ∗ > 1 and it completes the proof. �

For the Fg-property to be preserved for an arrow removal, not only the Hochschild
cohomology rings need to be related, but also their action on the Ext-groups must
respect each other, in order to apply general results from [8, Proposition 6.4]. The
following two results prepares for this.

Lemma 5.4. Let π : Λ→ Γ be an arrow removal. Let M be a right Λ-module and
B a Λ-bimodule. Then the map

e(M)⊗Γ eenv(B)
ϕ−→ e(M ⊗Λ B)

given by m ⊗ b 7→ m ⊗ b is well-defined, functorial in both variables, and an onto
map of right Γ-modules.

Proof. The module e(M)⊗Γ eenv(B) = MΓ ⊗Γ ΓBΓ and the module e(M ⊗Λ B) =
M ⊗Λ BΓ. Therefore the map ϕ is the natural projection. �
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Proposition 5.5. Let π : Λ → Γ be an arrow removal. The following diagram is
commutative

Ext∗Λenv(Λ,Λ)
M⊗Λ− //

eenv

��

Ext∗Λ(M,M)

e

��
Ext∗Γ(e(M), e(M))

Ext∗Γ(ϕ,−)

��
Ext∗Γ(e(M)⊗Γ eenv(Λ), e(M))

Ext∗Γenv(eenv(Λ), eenv(Λ))
e(M)⊗Γ− // Ext∗Γ(e(M)⊗Γ eenv(Λ), e(M)⊗Γ eenv(Λ))

Ext∗Γ(−,ϕ)

OO

Proof. Let η : ΩnΛenv(Λ)→ Λ represent an element in ExtnΛenv(Λ,Λ). As an extension
η correspond to the lower row in the following commutative diagram

0 // ΩnΛenv(Λ) //

η

��

Pn−1
//

��

Pn−2
// · · · // P0

// Λ // 0

0 // Λ // E // Pn−2
// · · · // P0

// Λ // 0

where the first row is the start of a projective resolution of Λ over Λenv. Tensoring
this diagram with M over Λ we obtain the extension M ⊗Λ η as the lower row in
the following exact commutative diagram

0 // M ⊗Λ ΩnΛenv(Λ) //

M⊗η
��

M ⊗Λ Pn−1
//

��

M ⊗Λ Pn−2
// · · · // M ⊗Λ P0

// M ⊗Λ Λ // 0

0 // M ⊗Λ Λ // M ⊗Λ E // M ⊗Λ Pn−2
// · · · // M ⊗Λ P0

// M ⊗Λ Λ // 0

Restricting all the homomorphisms and all the modules to Γ in the above diagram
we obtain the extension e(M ⊗Λ η). We use similar arguments as in the proof of
Lemma 3.1 to construct it. We first look at the case n = 1 to illustrate this. In the
following commutative diagram, the second row is the image in Ext1Γ(e(M), e(M))
and the third row is the image in Ext1Γ(e(M)⊗Γ eenv(Λ), e(M)⊗Γ eenv(Λ)).

0 // e(M ⊗Λ Ω1
Λenv(Λ)) //

e(M⊗η)

��

e(M ⊗Λ P0) //

��

e(M ⊗Λ Λ) // 0

0 // e(M ⊗Λ Λ) // e(M ⊗Λ E) // e(M ⊗Λ Λ) // 0

0 // e(M)⊗Γ eenv(Λ) //

ϕ

OO

e(M)⊗Γ eenv(E) //

ϕ

OO

e(M)⊗Γ eenv(Λ) //

ϕ

OO

0

Then the pullback of the second row along ϕ is equivalent to the pushout of the
third row along ϕ, which shows the claim for n = 1. For n > 1 we have the
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following.

0 // M ⊗Λ ΩnΛenv(Λ)Γ
//

M⊗η
��

M ⊗Λ Pn−1
//

��

M ⊗Λ Pn−2
// · · · // M ⊗Λ P1

// M ⊗Λ P0
// M ⊗Λ ΛΓ

// 0

0 // M ⊗Λ ΛΓ
// M ⊗Λ E // M ⊗Λ Pn−2

// · · · // M ⊗Λ P1
// M ⊗Λ P0

// M ⊗Λ ΛΓ
// 0

0 // M ⊗Λ ΛΓ
// M ⊗Λ E // M ⊗Λ Pn−2

// · · · // M ⊗Λ P1
// E′′ //

OO

M ⊗Γ ΛΓ
//

ϕ

OO

0

0 // M ⊗Λ ΛΓ
// E′ //

OO

M ⊗Γ Pn−2
//

ϕ

OO

· · · // M ⊗Γ P1
//

ϕ

OO

M ⊗Γ P0
//

OO

M ⊗Γ ΛΓ
// 0

0 // M ⊗Γ ΛΓ
//

ϕ

OO

M ⊗Γ E //

OO

M ⊗Γ Pn−2
// · · · // M ⊗Λ P1

// M ⊗Γ P0
// M ⊗Γ ΛΓ

// 0

As said above, the second row is e(M ⊗Λ η), the third row is

ExtnΓ(ϕ,−)(e(M ⊗Λ η)),

the fifth row is e(M)⊗Γ eenv(η), and the fourth row is

ExtnΓ(−, ϕ)(e(M)⊗Γ eenv(η)).

The diagram shows that the extension on the third row and the extension on the
fourth row are equivalent. In other words, the diagram in the proposition is com-
mutative. �

Next we prove the main result of this section which shows that the Fg condition is
invariant under the arrow removal operation. This is part (iv) of the Main Theorem
presented in the Introduction.

Theorem 5.6. Let Λ = kQ/I be an admissible quotient of a path algebra kQ, and
suppose that Λ → Γ is an arrow removal. Then Λ satisfies Fg if and only if Γ
satisfies Fg.

Proof. We use [8, Proposition 6.4] with N = N ′ = Γ/radΓ and M = M ′ =
i(Γ/radΓ), where N is the direct sum of all simple Γ-modules and M is the di-
rect sum of all simple Λ-modules.

We have that

e(M)⊗Γ eenv(Λ) ' e(M)⊗Γ (Γ⊕ Ker π)

' e(M)⊕ (e(M)⊗Γ Ker π)

' e(M)⊕ F (e(M))

Since F (e(M)) is projective by Theorem 2.7 (f), the homomorphism Ext∗Γ(ϕ,−) is
an isomorphism for ∗ > 0 in the commutative diagram in Proposition 5.5. Since
Λ is Gorenstein if and only if Γ is Gorenstein by Theorem 4.2, we have that both
Λ and Γ are Gorenstein whenever we assume one of them is Gorenstein. Hence
if we assume that one of Λ and Γ has Fg, then Γ is Gorenstein by [5, Prop. 2.2].
So we can suppose Γ is Gorenstein. Then Ker π has finite injective dimension as
a right Γ-module, say n. This implies that the homomorphism Ext∗Γ(−, ϕ) is an
isomorphism for ∗ > n in the commutative of Proposition 5.5. Furthermore, Γenv

and Λenv are both also Gorenstein. Suppose that Γenv has Gorenstein dimension d.
Let pΓ = π : eenv(Λ)→ Γ be the natural projection. Then construct the following

commutative diagram for ∗ > max{n, d}. The upper square is the the commutative
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square of Proposition 5.5.

Ext∗Λenv(Λ,Λ)
M⊗Λ− //

eenv

��

Ext∗Λ(M,M)

'
��

Ext∗Γenv(eenv(Λ), eenv(Λ))
e(M)⊗Γ− //

Ext∗Γenv (−,pΓ)

��

Ext∗Γ(e(M)⊗Γ eenv(Λ), e(M)⊗Γ eenv(Λ))

Ext∗Γ(−,1⊗pΓ)

��
Ext∗Γenv(eenv(Λ),Γ)

e(M)⊗Γ− // Ext∗Γ(e(M)⊗Γ eenv(Λ), e(M)⊗Γ Γ)

Ext∗Γenv(Γ,Γ)
e(M)⊗Γ− //

Ext∗Γ(pΓ,−)

OO

Ext∗Γ(e(M)⊗Γ Γ, e(M)⊗Γ Γ)

Ext∗Γ(1⊗pΓ,−)

OO

'
��

Ext∗Γenv(Γ,Γ)
e(M)⊗Γ− // Ext∗Γ(e(M), e(M))

All the vertical maps in this diagram are isomorphisms and the diagram is commu-
tative. Then using [8, Proposition 6.4] with N = N ′ = Γ/radΓ andM = M ′ = i(N),
where M is the direct sum of all simple Λ-modules and noting that e(M) = ei(N) '
N , we obtain that Λ has Fg if and only if Γ has Fg. �

Example 5.7. Let Λn = kQn/〈ρ〉 be the algebra of Example 4.5. After removing
the arrows α2, . . . , αn, we obtain a radical square zero Nakayama algebra which
satisfies Fg by [6, Proposition 1.4]. By Theorem 5.6, we infer that Λn satisfies Fg.

We end the paper with an example showing that a general arrow removal (fac-
toring out an arrow) and preserving Fg is not possible.

Example 5.8. Consider the following example presented by Fei Xu [11, 3.1 The
category E0]. Let Q be the quiver given by

1

a

��

b

ZZ
c // 2

and the ideal I = 〈a2, ab − ba, b2, ac〉 in kQ for a field k. Denote by Λ the factor
algebra kQ/I. By a result in a forthcoming paper or by direct computations,

Λ
π−→ Γ = Λ/〈c〉 is a cleft extension. Then by [11] Λ does not satisfy Fg, while Γ do

satisfy Fg (since Γ is a symmetric radical cube zero algebra satisfying Fg by [6]).
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