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A B S T R A C T   

Installation of offshore wind turbines, particularly blades, is challenging and should be executed within the 
allowable limit of sea states to ensure the safety and the efficiency of installation. During the execution phase 
where weather forecast will be used in the decision-making process, uncertainty in weather forecast is an 
important issue required to be dealt with. The purpose of this paper is to assess allowable sea states for offshore 
blade installation, with emphasis on both considering weather forecast uncertainty and using time-domain nu
merical models for installation response analysis. The general procedure is presented, which includes generation 
of the response-based alpha-factor αR (that is a reduction indicator reflecting weather forecast uncertainty) in the 
planning phase based on time-domain modelling and analysis of blade installation, and assessment of corre
sponding allowable sea states in the execution phase. Single blade installation by a semi-submersible crane vessel 
at the North Sea center is studied in this paper, and two typical limiting response parameters, namely the blade 
root radial motion and velocity, are considered. The αR factors correspond to these two limiting parameters are 
first generated respectively, based on the forecast uncertainty quantification of sea states, the quantitative 
assessment of system dynamic responses and the estimation of their characteristic values through probabilistic 
analysis. The characteristic values of the responses that correspond to a certain exceedance probability (10− 2 or 
10− 4) could be generated with and without the consideration of the weather forecast uncertainty. Finally, the 
allowable sea states with and without the weather forecast uncertainty are obtained when the characteristic 
value reaches the allowable response limit. These could be further used to identify overall workable weather 
windows for the offshore blade installation and support operation decision-making. Results indicate that there is 
a significant difference between the allowable sea states with and without considering weather forecast uncer
tainty. As the forecast lead time increases, the allowable sea states gradually decrease. Hence, it is necessary to 
apply αR to involve and quantify the effect of weather forecast uncertainties on operations. Moreover, since time- 
domain simulations are used for dynamic response analysis of the installation system, the effect of statistical 
uncertainty related to the use of a limited number of simulations to derive the characteristic response values is 
also investigated and is found small.   

1. Introduction 

Due to the growing interest and demand for clean energy, offshore 
wind energy as one of the clean, renewable and reliable energy sources, 
has experienced a rapid development in last decades. Correspondingly, 

increasing attention has been paid on marine operations associated with 
the installation of different components (such as foundations, tower, 
nacelle and blades) of offshore wind turbines (OWTs). Among them, 
wind turbine blade installation is very challenging due to the high 
installation precision requirement. Specifically, the large lifting height 
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makes the operation more weather sensitive, and both wave and wind 
conditions are extremely important for the successful installation. 

To date, jack-up crane vessels are commonly used to install the blade 
of OWTs. They can set legs down to the seabed and then elevate the hull 
above the sea surface to reduce the impact of waves. Hence, one obvious 
advantage is that a stable working platform is provided for operations 
like lifting and mating. Several researchers have focused on marine 
operations using jack-up vessels and studied their operational limit. For 
instance, Smith et al. (1996) studied the allowable impact velocities for a 
jack-up vessel during the standard leg lowering procedure. Thomsen 
(2014) demonstrated that the jack-up leg lowering and retrieval process 
are weather-sensitive and the allowable limit for significant wave height 
Hs is between 1.2 and 1.5 m. Zhao (2019) studied the offshore single 
blade installation by a jack-up crane vessel and summarized typical 
operational environmental conditions for the installation, that is, mean 
wind speed Uw less than 20 m/s and Hs lower than 1.5–2.0 m. Small 
workable water depth and the large time consumption of the lowering 
and retrieval processes of jack-up legs are main drawbacks limiting the 
usage of jack-up crane vessels. In this case, floating crane vessels such as 
the semi-submersible could be regarded as alternatives. Compared to 
jack-up crane vessels, floating crane vessels can be located and relocated 
easier and faster during the installation process. Moreover, due to the 
wider range of applicable water depths, they have greater flexibility in 
marine operations. Nevertheless, the blade installation of OWTs by 
floating crane vessels is not easy since the system is quite sensitive to 
weather conditions. On one hand, wave-induced motions of the floating 
crane vessel are relatively larger than that of the jack-up vessel. On the 
other hand, wind loads on the blade are significant at such a high 
installation position. Besides, it is expensive to wait for suitable weather 
on site when using a floating crane vessel. To ensure the safety and 
cost-efficiency of offshore blade installation, a detailed numerical 
modelling of such operations is required to assess dynamic responses of 
the actual installation process. Depending on the operation properties, 
frequency domain (FD) or time domain (TD) method can be applied. In 
general, many of the marine operations might be considered using linear 
potential flow theory for hydrodynamics and linear structural dynamics 
for rigid-body motion analysis since the operations are often carried out 
in small or moderate sea conditions. In such cases, it is suitable to study 
the dynamic response in frequency domain to significantly reduce 
computational cost. Whereas for complex systems which may involve 
nonlinear mechanics of the coupling devices or the nonstationary hy
drodynamics or structural dynamics due to operational procedures, time 
domain response analysis approach is more suitable. At present, the time 
domain response analysis approach is widely used to study dynamic 
responses of operations with floating systems (Hassan and Soares, 2020; 
Hudson, 2020; Li et al., 2020; Zhu et al., 2017). For offshore blade 
installation, many efforts have been made by applying the time domain 
method to investigate the application potential of using floating crane 
vessels. For example, Verma et al., 2017, 2019c performed time domain 
simulations for the blade lifting operation using a floating crane vessel 
and proposed an approach to estimate limiting sea states. Based on the 
approach, they conducted damage assessment to investigate the impact 
behavior of a blade during the lifting process (Verma et al., 2019b). In 
addition, Zhao et al. (2018a) developed an integrated dynamic analysis 
method to simulate single blade installation using time-domain nu
merical models, and proved the feasibility of using a semi-submersible 
crane vessel for single blade installation, by comparing its perfor
mance with a typical jack-up crane vessel (Zhao et al., 2019). 

After dynamic responses analysis, characteristic response values of 
the relevant limiting parameters could be estimated based on extreme 
value distributions for a target exceedance probability. According to the 
comparison between the characteristic value and the allowable limit of 
the limiting parameter, it is able to assess allowable sea states of the 
operation. Once allowable sea states are assessed, decisions on starting 
times of the operation could be made by comparing allowable sea states 
with weather forecasts in the execution phase. It is well known that the 

weather system is so complicated that it is difficult to be forecasted with 
high accuracy, and therefore uncertainty will be inherent in the weather 
forecasts. The accuracy of weather forecasts is normally assessed by 
comparing forecasted data with reference data from measurements or 
hindcasts. Then, the forecast error statistics can be calculated to quantify 
the forecast uncertainty at different forecast lead times. Typical error 
statistics include mean value and standard deviation, root mean square 
error (RMSE), scatter index (SI), correlation coefficient, etc. At present, a 
combination of multiple error statistics is mainly used to quantify the 
uncertainty in weather forecasts (Campos et al., 2021, 2022b). In order 
to reduce the uncertainty, the ensemble prediction systems have been 
produced in recent years. Compared with deterministic weather fore
casts by a deterministic forecast model, the ensemble wave model per
forms probabilistic prediction by considering the possibilities for various 
initial conditions, wind forcing, boundary conditions and physical pro
cesses in physical wave models (Campos et al., 2020a; Molteni et al., 
1996; Palmer, 2001) or machine learning (Campos et al., 2020b; 
O’Donncha et al., 2019). To measure the uncertainty in ensemble wave 
forecasts, in addition to typical error statistics, the ensemble mean and 
spread, brier score (BS) and reliability diagram are also applied as in
dicators (Harpham et al., 2016; Leutbecher and Palmer, 2008; Roh et al., 
2021; Saetra and Bidlot, 2004). Different studies have proved that the 
ensemble forecasts performs better than the deterministic forecasts and 
are able to be regarded as a measure of the uncertainties in the deter
ministic forecasts (Campos et al., 2022a; Chen, 2006; Saetra and Bidlot, 
2004). 

Furthermore, how to reflect weather forecast uncertainty when 
performing marine operations is a key issue. This uncertainty will 
heavily affect the weather window predictions and further influence 
their decision-making. So far, only a few studies have been published on 
investigating the effect of weather forecast uncertainty on marine op
erations. At present, an alpha-factor α (a normalized factor less than 1) 
proposed by DNV (JIP, 2007) is normally used to downgrade the oper
ational limit in terms of weather variables, in order to make the decision 
more conservative. In practice, this criterion is primarily expressed in 
terms of Hs and makes the operation’s allowable sea state become α•Hs. 
However, in view of the current development of marine operations 
related to the OWTs installation, only accounting for Hs might not be 
sufficient since responses of the installation system also strongly depend 
on other weather variables such as the peak wave period Tp. In this case, 
Wu and Gao (2021) presented a similar indicator, called the 
response-based alpha-factor αR, to reflect the effect of forecast un
certainties in both Hs and Tp on marine operations. This factor is 
generated from the perspective of dynamic response of the system and it 
is an operation-specific criterion. In that paper, a preliminary study on 
the response analysis of crane tip motions on a floating system was 
carried out by applying frequency-domain response analysis approach 
under different wave conditions, to illustrate the feasibility of the αR. 
However, for the challenging blade installation, the nonlinear wind 
loads acting on the blade is also important and needs to be considered 
simultaneously. Hence, time-domain simulation is critical to numeri
cally model the actual installation process and assess the dynamic re
sponses of the blade during installation. The aim of the present study is 
to derive αR for the offshore blade installation using a semi-submersible 
crane vessel on the basis of time-domain response analysis approach. 
Furthermore, allowable sea states of the corresponding mating opera
tion are assessed with emphasis on taking into account the uncertainty 
of weather forecasts. 

The paper is organized as follows. In Section 2, the procedure for 
derivation of αR and assessment of allowable sea states for the offshore 
blade installation is presented. The forecast uncertainty quantification 
of Hs and Tp at the North Sea center are summarized in Section 3. Section 
4 provides the details about the time-domain numerical modelling and 
dynamic response analysis of the blade installation using a semi- 
submersible vessel. According to the response time series, the extreme 
value distribution and characteristic value of two limiting response 
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parameters (i.e., blade root radial motion and velocity) are estimated by 
statistical analysis. Based on weather forecast analysis and dynamic 
response analysis, the αR factors of each limiting response parameter are 
then generated and given in Section 5. The corresponding allowable sea 
states are assessed in Section 6. Finally, main conclusion and limitations 
are summarized in Section 7. 

2. Assessment procedure 

This section presents a procedure for assessing allowable sea states 
for offshore blade installation using time-domain numerical models and 
considering weather forecast uncertainty. 

2.1. Planning phase 

During the planning phase of the blade installation, numerical sim
ulations of the operation should be conducted and dynamic responses of 
the structure should be assessed. These are necessary to evaluate the 
response-based alpha factor αR (Wu and Gao, 2021), which is designed 
to account for the effect of forecast uncertainties in sea states (charac
terized by Hs and Tp) on dynamic responses of the coupled system for 
marine operations. The overall procedure to establish the αR for offshore 
blade installation in time domain during the planning phase is briefly 
presented in Fig. 1 and the details are further discussed in the following. 
The blue parts in the figure are operation-specific conditions, which 
could be changed according to the properties of weather conditions and 
marine operations. 

To establish the αR for offshore blade installation, both weather 
forecast uncertainty analysis and dynamic response analysis are 
required. 

2.1.1. Weather forecast uncertainty analysis 
For weather forecast uncertainty analysis, the input parameters for 

weather forecasting and the forecasting method should be determined 
first, see steps 1-1 and 1–2 in Fig. 1. Sea state is normally characterized 
by Hs and Tp, which can be forecasted by means of various methods, such 
as the physics-based numerical method, the statistical method and the 
machine learning method. In this study, a machine learning-based 
method, called the physics-based machine learning (PBML) method 
(Wu et al., 2020), is utilized and the target forecast horizon is 24 h, 

referring to the typical execution duration of marine operations. Given 
that the sea state reference period TS of the dataset used is 3 h, the 
forecast lead times TL are 3 h, 6 h, etc., until 24 h. The adopted weather 
forecasting method (i.e., PBML) and dataset will be described in Section 
3 in details. In addition, it should be noted that the weather forecast data 
from meteorological centers such as METOffice can also be utilized to 
perform weather forecast uncertainty analysis and establish the corre
sponding uncertainty model, in order to derive the response-based 
alpha-factor αR. Such factor will depend on the accuracy of the fore
casting method. 

To quantify the forecast uncertainty, two forecast error factors εh and 
εt, defined as the ratio between the true and the forecasted values of Hs 
and Tp (as shown in step 1–3 and Eqs. (1) and (2)), will be used. They are 
assumed as random Gaussian variables that depend on the sea state 
ranges and the forecast lead time. By statistically analyzing forecast 
data, their distributions can be generated. Based on the expressions of εh 
and εt , actual Ht

s and Tt
p are also random Gaussian variables for a given 

forecasted hf
s and tfp, and the forecast uncertainty distribution fHt

sTt
p
(ht

s, tt
p)

(step 1–4 in Fig. 1) will be established according to the generated error 
distributions. This distribution reflects the possibility of true sea states 
when a forecasted sea state is provided, and therefore reveals the 
weather forecast uncertainty. In addition, weather forecast analysis can 
also be carried out directly by applying commonly used error statistics 
(e.g., bias and correlation coefficient) of weather forecasts, which are 
normally provided by various forecasting institutions. This will be 
introduced in Section 3. 

εh =
Ht

s

hf
s

(1)  

εt =
Tt

p

tf
p

(2)  

2.1.2. Dynamic response analysis 
For dynamic response analysis, the critical events and corresponding 

limiting response parameters as well as the operation duration should be 
pre-identified for a specific operation, see step 2-1 in Fig. 1. Based on the 
analysis from Zhao (2019), the final mating process between the blade 
root and hub is critical for the blade installation, and the related critical 

Fig. 1. Overview procedure for establishing αR for offshore blade installation.  
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events are excessive radial motion of blade root and bent guide pins at 
blade root. Correspondingly, the limiting response parameters are the 
blade root radial motion and blade root radial velocity, respectively. For 
the identified limiting response parameters, dynamic responses can be 
obtained and analyzed by numerical modelling of the actual installation 
process in time domain (lasting about 10 min corresponding to the 
duration TE of the mating process). 

The dynamic response analysis in time domain shown in step 2-2 is 
more time-consuming than the analysis in frequency domain, since a 
large amount of time-domain simulations is required. In frequency 
domain, the response spectrum of a limiting response parameter for a 
given sea state can be estimated in terms of the transfer function and 
wave spectrum under a linear assumption. Accordingly, based on the 
statistical information derived from the response spectrum, the extreme 
value distribution can be established straightforwardly. By contrast, the 
extreme value distribution in time domain (step 2–3 in Fig. 1) should be 
fitted by means of a set of maximum response values. Specifically, for a 
given sea state, time-domain numerical simulations of blade installation 
should be conducted N times using different random wave seeds to 
obtain multiple response time series. By extracting the maximum value 
in each response time series, N independent response maxima can be 
obtained. They will be used to fit the extreme value distribution ac
cording to different methods, e.g., the maximum likelihood estimation 
method, the method of moments, etc. For different sea states, this pro
cedure should be performed repeatedly to establish corresponding 
extreme value distributions. Although the use of time-domain response 
analysis approach requires high computational cost, it is necessary for 
the simulation of complex non-linear systems. These will be discussed in 
Section 4.2. 

Based on the results of forecast uncertainty quantification and dy
namic response analysis, the extreme value distributions of a limiting 
response parameter with and without weather forecast uncertainty for 
the given sea state can be obtained. Their cumulative density functions 
(CDFs) are given by Eqs. (3) and (4), denoted as FR(r) and FWF

R (r)
respectively. From these two distributions, the characteristic responses 
corresponding to a target exceedance probability p can be calculated. RE 
and RE_WF (shown in steps 3 and 4 in Fig. 1) represent the characteristic 
values of the extreme responses with and without considering weather 
forecast uncertainty, that are calculated by Eqs. (5) and (6), respectively. 
Finally, the αR for the given sea state can be calculated by Eq. (7) and 
shown in step 5. By following the procedure illustrated in Fig. 1, αR 
corresponds to the blade root radial motion and velocity under different 
sea states can be obtained separately. In addition, it should be noted that 
in order to integrate Eq. (4), the conditional PDF of the extreme response 

fR|Ht
sTt

p
(r′

⃒
⃒
⃒ht

s, ttp) at different actual sea states (ht
s, tt

p) must be pre- 

identified. Since it is not realistic to cover all sea states, parameters in 
the extreme value distribution should be fitted in terms of Hs and Tp, 
which will be described in Section 4.3. 

FR(r)=
∫r

0

fR|Ht
sTt

p

(
r′
⃒
⃒
⃒ht

s, tt
p

)
dr′ (3)  

FWF
R (r)=

∫r

0

∫+∞

0

∫+∞

0

fR|Ht
sTt

p

(
r′
⃒
⃒
⃒ht

s, tt
p

)
⋅fHt

sTt
p

(
ht

s, t
t
p

)
dht

sdtt
pdr′ (4)  

where fR|Ht
sTt

p
(r′

⃒
⃒
⃒ht

s, ttp) is the conditional probability density function 

(PDF) of the extreme response with a given actual sea state (ht
s, ttp). 

fHt
sTt

p
(ht

s, tt
p) reflects the uncertainty in actual sea state for a given fore

casted sea state (hf
s , tfp). 

1 − FR(RE) = p (5)  

1 − FWF
R (RE WF) = p (6)  

where p is the exceedance probability, which depends on the type of 
operation, the consequences of failure, etc. 10− 4 is normally considered 
for marine operations, which is recommended in the DNV standard 
(DNV, 2011). 

αR =
RE

RE WF
(7)  

2.2. Execution phase 

During the execution phase, decisions on whether or not to start the 
operation should be made. The basic criterion for decision-making is 
that the characteristic value of a limiting parameter should not exceed 
its allowable limit (Guachamin-Acero et al., 2016). In practice, for ease 
of use, the allowable limit is usually transformed into the limit in terms 
of sea state parameters, which is referred to the allowable sea states. A 
comparison of the weather forecast with the assessed allowable sea 
states can then support installation decision-making. To account for the 
weather forecast uncertainty, traditionally, the assessed allowable sea 
states in terms of Hs can be adjusted directly by the selected α when 
using the α-factor generated by DNV. That is, the new allowable sea 
states for an operation are considered to be α• Hs. In comparison, the αR 
takes into account the forecast uncertainty in both Hs and Tp and is 
determined from the perspective of dynamic responses. Correspond
ingly, allowable sea states cannot be adjusted directly and have to be 
reassessed considering explicitly the forecast uncertainty. Fig. 2 shows 
two methods for dealing with the forecast uncertainty of Hs and Tp in 
decision-making during the execution phase. 

The first method is to use the response-based alpha factor, which 
requires the direct response calculation in real time when the forecasted 
Hs and Tp were obtained and the forecasted responses are calculated. As 
shown in Fig. 2, the characteristic response RE under a specific weather 
forecast (Hs, Tp) should be calculated. By using it with the αR generated 
in the planning phase, the true responses RE_WF considering the weather 
forecast uncertainty could be obtained in Eq. (7). Based on the com
parison result between the RE_WF and the allowable limit, decisions on 
whether to start the operation can be made. This is the similar method as 
the Hs-based alpha factor approach from DNV, but to correct responses. 

The second method is to generate the contour plots. In this method, 
characteristic responses RE_WF considering weather forecast uncertainty 
are calculated firstly under typical sea states using the method intro
duced in Section 2.1. Then based on the comparison between RE_WF and 
the allowable limit, allowable sea states of an operation can be estab
lished. The allowable sea states are contour plots in terms of Hs and Tp, 
representing the maximum sea states that the operation can be safely 
executed. A simplified example is displayed in Fig. 2. The allowable sea 
states could be further used to make decisions on whether to start the 
installation. This is done by identifying workable weather windows 
based on the comparison between allowable sea states with weather 
forecasts. Obviously, once allowable sea states are generated in terms of 
Hs, Tp and lead times, it is quite convenience to use them. In this paper, 
allowable sea states of offshore wind turbine blade installation are 
assessed based on this method. In addition, it is important to emphasize 
that an operation may be governed by series of limiting response pa
rameters. For example, in this paper, both blade root radial motion and 
blade root radial velocity govern the final mating phase simultaneously 
during the blade installation. In this case, weather windows corre
sponding to each limiting response parameter may affect the selection of 
execution time for the installation. Thus, weather windows for the two 
limiting response parameters should be identified individually, and the 
overall workable weather windows of the mating operation is the 
overlap part of them. 

3. Weather forecasting and uncertainty quantification 

The North Sea center, that is the central part of the North Sea, is 
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selected as the target installation location. At this location, one-day- 
ahead Hs and Tp are forecasted respectively on the basis of the 
physics-based machine learning (PBML) method. The PBML method is a 
hybrid method, which designs the forecasting model with reference to 
the physical phenomena of wave evolutions embodied in physics-based 
wave models and employs machine learning technique to learn the 
model. The PBML models for Hs and Tp are trained separately, by nine 
years (2001–2009) three-hourly hindcast wave and wind data from the 
CERA-20C dataset (Laloyaux et al., 2018). After training successfully, Hs 
and Tp are forecasted by the trained models and their uncertainties are 
quantified based on the hindcast data in year 2010 from the same 
dataset. Since a sufficient number of the training and testing data is 
used, the effect of uncertainties from the ensembling could be reduced. 
For detailed description of the PBML method and the multi-step-ahead 
forecast results at the North Sea center, refer to Wu et al. (2020). 

Fig. 3 shows the forecasted time series of Hs as well as the actual data 
(hindcast data used in the study). To illustrate the forecast performance, 
only the first 200 data during the testing period is plotted. Each one-day- 
ahead forecast case contains 8 forecasts, from one-step-ahead to eight- 
step-ahead. The green and blue points represent one- and eight-step- 
ahead forecast values respectively, representing the beginning and end 
of one forecast case. The next case starts when the previous one ends. 
Although good overall forecast performance can be seen, the forecast 
uncertainty is inevitable in the forecasting model. This phenomenon is 
more evident as the forecast step increases, presented by the deviation 
between the forecast data and the corresponding actual ones. 

To quantify the weather forecast uncertainty, statistical analysis of 

the forecast results should be carried out. Since the offshore blade 
installation is often performed in relatively calm weather, the uncer
tainty of weather forecasts corresponding to low sea states is studied. 
Correspondingly, εh and εt are evaluated as functions of the range of hf

s 

and tf
p. As aforementioned, it is assumed that the forecast errors εh and εt 

follow Gaussian distributions. According to the definition of εh and εt, 
the PDFs of actual Ht

s and Tt
p, i.e., fHt

s
(ht

s) and fTt
p
(ttp), also follow Gaussian 

distributions with adjusted mean values and standard deviations of the 
forecast errors, as shown in Eqs. (8) and (9) respectively. Given that Hs 
and Tp are forecasted separately, their uncertainties are assumed to be 
independent in the study, and the distribution of actual sea state can be 
expressed as Eq. (10). In addition, it should be noted that, if an ensemble 
forecast wave model is applied, statistics of the forecast errors (i.e., 
mean values and standard deviations) should be calculated based on the 
ensemble forecasts at a certain lead time. 

fHt
s

(
ht

s

)
= N

(
hf

s ⋅ μεh, hf
s

2 ⋅ σεh
2
)

(8)  

fTt
p

(
tt
p

)
=N

(
tf
p ⋅ μεt, tf

p
2 ⋅ σεt

2
)

(9)  

fHt
sTt

p

(
ht

s, t
t
p

)
= fHt

s

(
ht

s

)
⋅fTt

p

(
tt
p

)
(10)  

where μεh and σεh are mean value and standard deviation of εh respec
tively. μεt and σεt are mean value and standard deviation of εt respec
tively. 

Fig. 2. Methods for decision-making considering weather forecast uncertainty in the execution phase.  

Fig. 3. Forecasted time series of Hs by means of the PBML method.  
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Forecast uncertainties of Hs and Tp using the PBML method have 
been quantified and discussed in Wu and Gao (2021). The results are 
summarized in Tables 1 and 2 respectively, which list the statistics of εh 

and εt in terms of the range of hf
s and tfp as well as the forecast lead time 

TL. These will be utilized to generate the αR in the following part. 
In addition to the PBML model employed in the study, physics-based 

wave models (such as WAM (Group, 1988), SWAN (Booij et al., 1999) 
and WATCH III (Tolman, 1991)) are another choice commonly used for 
the sea state forecasting. Various meteorological centers such as ECMWF 
(European Centre for Medium-Range Weather Forecasts) and MetOffice 
are able to provide sea state forecasts based on the physics-based wave 
models. Their forecast performance is generally evaluated in terms of 
error statistics like RMSE, bias, SI, etc. In order to deal with the corre
sponding forecast uncertainty and apply the results in the development 
of αR, a slightly different uncertainty model should be developed. The 
aim of the model is to directly use error statistics for the uncertainty 
quantification analysis. 

In this uncertainty model, the forecast error Δh and Δt for Hs and Tp 
are used in the forecast uncertainty analysis, which are shown in Eqs. 
(11) and (12) respectively. Likewise, they are also modelled as random 
Gaussian variables but considering all possible forecasted sea states. As a 
consequence, Δh and Δt are not functions of the sea state ranges, but 
only functions of the forecast lead time. This is the different as compared 
to the error factors defined in Eqs. (1) and (2). To establish their dis
tributions, the corresponding Gaussian parameters (i.e., the mean value 
μΔ and standard deviation σΔ) can be derived directly by means of RMSE 
and bias instead of statistical analysis of forecasted data. Their expres
sions can be seen in Eqs. (13) and (14), respectively. 

Δh = hf
s − Ht

s (11)  

Δt = tf
p − Tt

p (12)  

μΔ = bias (13)  

σΔ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 − bias2

√
(14) 

A detailed example will show the work of it in the following part. 
Table 3 summarizes the forecast performance of one-day-ahead Hs and 
Tp in terms of RMSE and bias. In the table, physics-based numerical 
methods from six forecast modelling institutions are considered, namely 
ECM (ECMWF), MOF (MetOffice), MTF (MeteoFrance), SHM (SHOM - 
Service hydrographique et océanographique de la Marine, Naval Hy
drographic and Oceanographic Service), DMI (Danish Meteorological 
Institute) and MTN (METNO). The results are extracted from a report 
(JR, 2017), which evaluated the forecast accuracy of Hs and Tp by 
comparing the forecasts against measurements at different North Sea 

buoys. 
Following the above procedure, the calculated statistics of Δh and Δt 

are listed in Table 4. According to the expressions of Δh and Δt , the 
conditional PDFs of actual Hs and Tp can be expressed as Eqs. (15) and 
(16), respectively. Then the distribution of actual sea state is estimated 
by Eq. (10). By doing this, the evaluation information of weather fore
casts issued by different forecast modelling institutions can be used, and 
the forecast uncertainty quantification can therefore be carried out. The 
quantification results will be further used in the following allowable sea 
state assessment. However, this is a relatively simple method since the 
error keeps constant within all ranges of the weather variables, and the 
error distributions are not expressed as a function in terms of hf

s and tfp. 
Then the distribution of actual sea state can be estimated by Eq. (10). By 
doing this, the evaluation information of weather forecasts issued by 
different forecast modelling institutions can be used, and the forecast 
uncertainty quantification can be carried out. The quantification results 
can be further used in the following allowable sea state assessment. 

However, this is a relatively simple method since the error keeps 
constant within all ranges of the weather variables, and the error dis
tributions are not expressed as a function in terms of Hf

s and Tf
p. 

4. Dynamic response analysis of the single blade installation 

4.1. Numerical model and simulation method 

This study focuses on the final mating phase of single blade instal
lation. In this phase, the blade is close to the nacelle and the dynamic 
properties of the system do not vary with time significantly. Therefore, 
the steady-state analysis of blade installation is performed. The config
uration of a semi-submersible crane vessel used to simulate the single 
blade installation is shown in Fig. 4. As displayed, the numerical model 
consists of three main parts, i.e., a semi-submersible vessel, a crane and a 
blade. The semi-submersible vessel is assumed to be equipped with 
dynamic positioning (DP) systems to mitigate its slowly varying motions 
in surge, sway and yaw. The crane is modelled as the typical pedestal 
crane and the DTU 10 MW wind turbine blade (Bak et al., 2013) is used. 
Detailed description of dimensions and dynamic properties of the system 
can be found in Zhao et al. (2019) and Wu and Gao (2021). Three 
right-handed coordinate systems, i.e., a global coordinate system O-XYZ, 
a vessel-related coordinate system Ov-XvYvZv and a blade-related coor
dinate system Ob-XbYbZb, are applied in the study, whose origins are 
located at the mean sea surface, the center of the waterplane of the 
semi-submersible at rest and the center of gravity (COG) of the blade, 
respectively. Xv and Xb are in the longitudinal direction of the vessel and 
blade, respectively. In the initial stage, the latter two local coordinate 

Table 1 
Statistics of εh in terms of different Hs groups and forecast lead times.  

Statistical parameter hf
s group (m) Forecast lead time (hour) 

3 6 9 12 15 18 21 24 

μεh 0.5 0.97 0.94 0.98 0.98 0.98 0.98 0.99 0.99 
1.0 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 
1.5 1.02 1.01 1.01 1.01 1.00 1.00 0.99 0.99 
2.0 1.03 1.02 1.01 1.01 1.00 1.00 0.99 0.98 
2.5 1.00 1.01 1.00 1.00 0.99 0.99 0.99 0.98 
3.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
3.5 0.98 0.99 0.99 0.99 1.00 1.00 1.01 1.02 
4.0 0.95 0.96 0.96 0.97 0.98 0.99 1.00 1.00 

σεh 0.5 0.12 0.13 0.15 0.16 0.17 0.19 0.20 0.22 
1.0 0.11 0.13 0.15 0.17 0.20 0.22 0.24 0.26 
1.5 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 
2.0 0.09 0.11 0.12 0.14 0.14 0.17 0.19 0.20 
2.5 0.08 0.09 0.10 0.11 0.13 0.14 0.15 0.17 
3.0 0.09 0.09 0.10 0.11 0.12 0.13 0.13 0.14 
3.5 0.07 0.08 0.09 0.10 0.11 0.12 0.14 0.15 
4.0 0.09 0.09 0.10 0.10 0.11 0.14 0.12 0.12  

M. Wu et al.                                                                                                                                                                                                                                     



Ocean Engineering 260 (2022) 111801

7

systems are parallel to the global one. 
The offshore blade installation is simulated by a fully coupled 

simulation method SIMO-RIFLEX-Aero (Zhao et al., 2018b) in 
time-domain, which integrates three programs, i.e., SIMO (SINTEF 
Ocean (2017)), RIFLEX (SINTEF Ocean (SINTEF, 2017)) and Aero code 
(Zhao et al., 2018a). Among them, the hydrodynamic loads on the 
semi-submersible and structural dynamics (e.g., crane flexibility) are 
analyzed by SIMO and RIFLEX respectively, and they are integrated in 
the SIMA workbench (SINTEF, 2015). The aerodynamic loads acting on 
the blade are calculated by the Aero code based on the cross-flow 
principle (Hoerner and Borst, 1975; Horner, 1965), in terms of the 
instantaneous blade displacement and velocity at each time step. It is 
coupled with SIMO and RIFLEX using the external dynamic link library 
(DLL) in SIMA. 

During the mating phase of the blade onto hub, the blade root radial 

Table 2 
Statistics of εt in terms of different Tp groups and forecast lead times.  

Statistical parameter tfp group (s) Forecast lead time (hour) 

3 6 9 12 15 18 21 24 

μεt 5 1.02 1.03 1.05 1.06 1.08 1.09 1.11 1.12 
6 0.98 0.99 0.99 1.00 1.00 1.01 1.00 1.02 
7 1.01 1.01 1.00 1.00 1.00 1.00 1.00 0.99 
8 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 
9 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.96 
10 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97  
5 0.24 0.25 0.26 0.27 0.28 0.29 0.29 0.30  
6 0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 

σεt 7 0.11 0.13 0.14 0.15 0.16 0.17 0.18 0.19  
8 0.12 0.13 0.13 0.14 0.15 0.16 0.17 0.17  
9 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.16  
10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.14  

Table 3 
Error measures of one-day-ahead Hs and Tp forecasts.  

Forecast modelling institutions Forecast variable 

Hs Tp 

bias RMSE bias RMSE 

ECMWF − 0.15 0.32 − 0.35 0.84 
MOF − 0.08 0.25 − 0.08 0.84 
MTF − 0.22 0.42 − 0.22 1.02 
SHM − 0.27 0.44 − 0.44 0.84 
DMI − 0.11 0.27 − 0.28 1.26 
MTN − 0.17 0.29 − 0.26 0.84  

Table 4 
Error mean and standard deviation of forecasts from six institutions (TL = 24 h). 
fHt

s |H
f
s

(
ht

s

⃒
⃒hf

s

)
= N

(
hf

s − μΔh, σΔh
2) (15)  

fTt
p|T

f
p

(
tt
p

⃒
⃒
⃒tf

p

)
=N

(
tf
p − μΔt , σΔt

2
)

(16)   

Forecast variable Gaussian parameter Forecast modelling institutions 

ECM MOF MTF SHM DMI MTN 

Hs μΔh − 0.15 − 0.08 − 0.22 − 0.27 − 0.11 − 0.17 
σΔh 0.28 0.24 0.36 0.35 0.25 0.24 

Tp μΔt − 0.34 − 0.08 − 0.22 − 0.44 − 0.28 − 0.26 
σΔt 0.77 0.84 1.00 0.72 1.23 0.80  

Fig. 4. Schematic view of the offshore blade installation system (θwv is the incident wave angle and θwd is the wind inflow angle).  
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motion and velocity (i.e., motion and velocity in the YbObZb plane in 
Fig. 4) are very critical. To assess their dynamic responses, steady-state 
time-domain simulations are carried out under different wave and wind 
conditions. In this study, only irregular beam wind and wave conditions 
are considered (i.e., θwv and θwd are zero) because they could induce 
relatively higher response of the system. In addition, the JONSWAP 
spectrum with a peakness factor γ of 3.3 (Veritas, 2010) is used to 
describe sea states at the North Sea center. 

4.2. Comparison between frequency and time domain analysis 

The necessity of numerical simulation in time domain (TD) is dis
cussed and illustrated in this section through a comparison with the 
results in frequency domain (FD). Fig. 5 shows the motion spectra of the 
semi-submersible in 6◦-of-freedoms (DOFs) under a typical beam sea (Hs 
= 1 m and Tp = 7 s). 

As illustrated in Fig. 5, in the beam sea condition, the sway and roll 
motions of the semi-submersible are relatively larger. The 1st order 
wave force dominant the motions, since the peak frequency in the mo
tion spectrum is similar to the one of the wave spectrum. From a com
parison with the results in FD and TD, a good agreement can be observed 
in the wave-frequency part. Nevertheless, in this study, the method in FD 
do not capture the slow varying motions (dominated by the difference 
frequency wave forces), which makes its power spectral density different 
from that of the motions obtained by the method in TD. This difference 
will further affect motions of crane tip and blade. The difference be
tween power spectra of the crane tip motions is shown in Fig. 6. By 

comparison, the difference between the slow varying motions of the 
crane tip can also be observed in FD and TD. 

The advantages and disadvantages of the method in TD and FD are 
briefly listed in Table 5. As shown above, the time domain modelling can 
capture the crane vessel motion which is subjected to wave loads more 
accurately by including nonlinear effects such as 2nd order wave forces, 
lift wire tension formulation and geometrical nonlinearities for motion 
analysis. Furthermore, the nonlinear aerodynamic loads on the blade 
and the strong coupling between waves and wind are also important for 
the response of the installation system. However, these cannot be 
directly included by the method in FD. Therefore, although its compu
tational efficiency is relatively low, the time-domain modelling is 
necessary to simulate the whole blade installation process and perform 
dynamic response analysis. 

4.3. Sensitivity analysis of wind loads 

To establish the conditional distribution of the extreme response 

with a given sea state (i.e., fR|Ht
s ,Tt

P
(r
⃒
⃒
⃒ht

s, tt
p), the time domain simulation 

has to be repeated many times with different wave seeds. As a conse
quence, it is time-consuming compared with the simulation in frequency 
domain. Moreover, different combinations of wind and wave conditions 
should be considered. Given that under each combination multiple 
simulations are required, the computational cost of extreme response 
analysis will be heavily increased. To decrease the cost in TD, a sensi
tivity study on wind loads will be carried out. 

Fig. 5. Comparison of power spectra of semi-submersible motion using FD and TD methods (Hs = 1 m, Tp = 7 s).  
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In the sensitivity study, a constant Hs value of 2 m is applied, and Tp is 
selected as the mean value of the conditional distribution of Tp with the 
given Hs value, which is 7.5 s. The conditional distribution of Tp with 
given Hs is modelled as a Lognormal distribution, in which the 
Lognormal parameters are fitted using ten-year hindcast data from the 
CERA-20C dataset at the target location. Likewise, the joint distribution 
of Uw, Hs and Tp is fitted by data based on a simplified method proposed 
by Li et al. (2015). The joint distribution is used to determine the mean 
wind speed distribution with the given sea state. From the mean wind 
speed distribution, five typical Uw values (i.e., 1.9 m/s, 3.6 m/s, 5.3 m/s, 
7 m/s, 8.7 m/s) are selected to conduct the sensitivity study. It should be 
noted that the mean wind speed in the joint distribution is at the height 
of 10 m above the mean sea level. For offshore wind turbine installation, 
the mean wind speed at the hub height is required and it can be calcu
lated using a power law profile shown in Eq. (17). 

U(z)=U10⋅
( z

10

)αU
(17)  

where z represents the hub height, that is 119 m for the DTU 10 MW 
wind turbine. U10 is the mean wind speed at the reference height of 10 m 
αU is the power law exponent which is set to 0.14 in this study, based on 
IEC 61400-3 (IEC, I., 2009) for an offshore wind field. 

Substituting the parameters into Eq. (17), Uw values at the hub height 
are 2.7 m/s, 5.1 m/s, 7.5 m/s, 9.9 m/s and 12.3 m/s. For each Uw, the 3D 
turbulent wind field is generated by TurbSim (Jonkman and Buhl Jr, 
2007) using the IEC Kaimal model (TC88-MT, 2005), and the turbulence 
intensity is defined as class C according to the standard IEC categories. 
The wind field is incorporated into SIMA using DLL to simulate the blade 
installation in time domain. After simulations, the power spectra and 
standard deviation of the blade COG motion in 6 DOFs with different 
wind fields are shown in Figs. 7 and 8 respectively. According to the 
blade COG motion, the radial motion of the blade root can be obtained. 
The power spectra and standard deviations of the blade root radial 
motion are shown in Fig. 9. 

From Figs. 7 and 8, it is visible that the surge, heave and pitch mo
tions of the blade COG are almost irrelevant to the wind in the beam 
wind and wave conditions, and the wave-induced motion is the main 
source of the blade motion in these 3 DOFs. By comparison, both aero
dynamic loads and wave-induced motions contribute to the blade mo
tion in sway, roll and yaw. Among them, the aerodynamic loads have 
significant effects on the blade roll motion and an obvious increase of the 
peak roll motion can be observed as the mean wind speed increases. 
Nevertheless, regarding radial motion of the blade root, it does not vary 
greatly under different wind conditions. Fig. 9 indicates that the wave 
loads have a major contribution on the blade root radial motion, while 
the aerodynamic loads have relatively less contribution. 

Overall, the sensitivity study demonstrates that the wave load 
dominates over the wind load. From the perspective of computational 
efficiency, the mean wind speed is simply selected as a constant value (8 
m/s at 10 m height) and the effect of different wind conditions on the 
blade installation is not considered in this paper. 

4.4. Extreme response analysis 

As aforementioned, unlike the extreme response analysis based on 
response spectra in frequency domain, the extreme value distribution in 
time domain needs to be fitted using maxima values extracted from the 
response time series. Fig. 10 shows a typical example of the extreme 

Fig. 6. Comparison of power spectra of crane tip motion using FD and TD methods (Hs = 1 m, Tp = 7 s).  

Table 5 
Properties of TD and FD response analysis methods for blade installation.  

Response 
analysis 
methods 

Advantage Disadvantage Properties of the 
modelling of blade 

Time 
domain 

Can simulate the 
whole blade 
installation process 
Various terms can be 
included:  
• 2nd order wave 

forces (mean drift 
and difference 
frequency wave 
forces)  

• Wind loads  
• Viscous loads  
• Nonlinear 

structural 
responses 

Low computational 
efficiency 

The actual blade 
root motion and 
velocity can be 
simulated, which 
are directly related 
to the operational 
criteria for 
installing blade 

Frequency 
domain 

High computational 
efficiency 

Only includes 1st 
order wave loads 
and the linear 
motion response 

The crane tip 
motion is referred 
to, not the blade 
motion  
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distribution of the blade root radial motion under a given sea state (Hs =

2 m and Tp = 5 s). To reduce statistical uncertainty in the tail of the fitted 
distribution, 50 10-min time-domain simulations are carried out with 
random wave seeds. The Gumbel distribution is utilized to fit the 
extracted 10-min extreme responses. 

Under this sea state, parameters (i.e., the location parameter γ and 
scale parameter β) of the Gumbel distribution are estimated by the 
maximum likelihood estimations (MLEs) method. Results shown in 
Fig. 10 (a) indicate that the Gumbel distribution has a good performance 

to capture the extreme radial motion of the blade root. The characteristic 
value can therefore be obtained based on the distribution with a certain 
exceedance probability, as shown in Fig. 10 (b). The exceedance prob
ability refers to the failure probability per marine operations. In the 
mating phase of the blade installation, a small exceedance probability (i. 
e., 10− 4) is considered since larger radial motion and velocity of the 
blade root may lead to the failure of installation. In addition to 10− 4, 
other exceedance probability levels such as 10− 2, can also be used by 
taking the consequences of operation failure into account. 

Fig. 7. Power spectra of blade COG motion with different wind fields (Hs = 2 m, Tp = 7.5 s).  

Fig. 8. Standard deviations of blade COG motion with different wind fields (Hs = 2 m, Tp = 7.5 s).  
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4.4.1. Statistical uncertainty 
In the above extreme response analysis, only a limited number of 

simulations (i.e., 50 10-min) are conducted to estimate the characteristic 
values with a quite small exceedance probability level. The statistical 
uncertainty may exist when fitting the extreme response distribution. In 
this subsection, the accuracy of the estimated extreme values due to a 
limited number of simulations is addressed. 

In Fig. 11, the extreme distribution of the blade root radial motion 
under the given sea state (Hs = 2 m and Tp = 5 s) is further fitted, using 
1000 simulations with different wave seeds. Based on the distribution, 
characteristic values with two exceedance probability levels, namely 
10− 2 and 10− 4, are estimated and displayed. For the 10− 2 level, 1000 
simulations can be considered as a reasonable choice, and the corre
sponding characteristic value is regarded as an accurate estimation for 
extreme responses. In this sensitivity study, the characteristic value with 
10− 4 level shown in Fig. 11 is also taken as the reference value for the 
extreme response. Comparison between Figs. 10 and 11 shows that there 
is a slight difference in the characteristic value estimated by different 
numbers of simulations. 

To investigate the effect of simulation numbers in the extreme 
response analysis, Fig. 12 shows variation of the characteristic values of 
the blade root radial motion with the number of time-domain simula
tions. Results for the exceedance probability of 10− 2 and 10− 4 are dis
played in subfigure (a) and (b) separately. 

It is visible that the number of simulations affects the determination 
of fitting parameters for the Gumbel distribution, and thereby affect the 
estimation of the characteristic values. This phenomenon is especially 
obvious when the simulation number is less than 40. Compared with the 
case based on 1000 simulations, large uncertainty exists when only 5 
simulations are used to estimate the extreme response. As expected, the 

statistical uncertainty decreases as the number of simulations increases. 
When the number of simulations is greater than 40, there is no signifi
cant difference in the results among different cases. Therefore, taking 
into account the computational efficiency, the number of simulations is 
selected as 50, which can give a reasonably good estimation of the 
characteristic response value. 

Moreover, the statistical uncertainty of the extreme response 

Fig. 9. Comparison of blade root radial motion with different wind fields (Hs = 2 m, Tp = 7.5 s).  

Fig. 10. Extreme value distribution estimation of the blade root radial motion (50 simulations, Hs = 2 m, Tp = 5 s).  

Fig. 11. Fitted extreme distribution of the blade root radial motion (1000 
simulations, Hs = 2 m, Tp = 5 s). 
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assessed by a fixed number of simulations (i.e., 50) is illustrated in 
Fig. 13. In the figure, 10 sets of 50 time-domain simulations are selected 
randomly from 1000 simulations, and the extreme value in each set is 
estimated individually. 

As illustrated, the variation in characteristic values between different 
sets is small. The coefficient of variation (CoV), that is defined as Eq. (18) 
in terms of the mean value (μRE

) and standard deviation (σRE ) of char
acteristic values, is applied to measure the related statistical uncertainty. 
It is calculated based on 20 sets of 50 time-domain simulations and the 
relevant results are summarized in Table 6. The results show low sta
tistical uncertainty, since small CoV values corresponding to 10− 2 and 
10− 4 exceedance probability levels (i.e., 4% and 6%) are observed. 

CoV =
σRE

μRE

(18) 

Overall, the fitted distribution with 50 simulations for a sea state can 
give an overall good estimation of the extreme value and the statistical 
uncertainty is low. Therefore, the extreme responses of both the blade 
root radial motion and velocity in this paper are assessed based on 50 
time-domain simulations for each sea state. 

4.4.2. Characteristic response values 
By carrying out the extreme response analysis in TD, the RE values of 

the blade root radial motion and velocity under different typical sea 
states are calculated and summarized in Tables 7 and 8, respectively. 

As displayed in Tables 7 and 8, REM and REV increase significantly 
with Hs and Tp. This indicates that both Hs and Tp are important for 
assessing the dynamic responses of the blade and need to be considered 
before executing the offshore blade installation. As aforementioned, the 
Gumbel parameters are functions of Hs and Tp. Figs. 14 and 15 present 
the fitting surfaces of Gumbel parameters for extreme radial motion and 

velocity of the blade root, respectively. 
In Figs. 14 and 15, the blue points are Gumbel parameters estimated 

by the simulated response time series under typical sea states. They are 
utilized to evaluate the characteristic values without weather forecast 
uncertainty, i.e., RE in Eq. (5). Based on these blue points, the surfaces of 
γ and β for different sea states are fitted by the piecewise cubic inter
polation method (Fritsch and Carlson, 1980) in Matlab. These surfaces 
are necessary to integrate the marginal distribution of the extreme 
response expressed in Eq. (4). Accordingly, the characteristic values 
RE_WF of the extreme radial motion and velocity can be calculated, 

Fig. 12. Variation of the characteristic with the number of simulations (Hs = 2 m, Tp = 5 s).  

Fig. 13. Variation of the characteristic values in different sets (Hs = 2 m, Tp = 5 s).  

Table 6 
Statistical uncertainty in extreme response estimation (Hs = 2 m, Tp = 5 s).  

Exceedance probability μRE 
σRE CoV 

10− 2 0.43 0.02 0.04 
10− 4 0.59 0.03 0.06  

Table 7 
RE values (in m) of the blade root radial motion (REM).  

Hs (m) Tp (s) 

5 6 7 8 9 10 

0.5 0.20 0.27 0.37 0.42 0.47 0.54 
1.0 0.23 0.46 0.60 0.81 0.88 1.03 
1.5 0.36 0.71 0.96 1.26 1.42 1.55 
2.0 0.61 1.03 1.41 1.76 2.02 2.16 
2.5 0.93 1.44 1.95 2.35 2.74 2.86 
3.0 1.30 1.93 2.62 3.06 3.64 3.68 
3.5 1.72 2.53 3.37 3.90 4.62 4.56 
4.0 2.20 3.18 4.21 4.87 5.68 5.46  
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accounting for weather forecast uncertainty by Eq. (6). 

5. Response-based alpha-factor 

Based on characteristic values of each limiting response parameter 
with and without weather forecast uncertainty, the response-based 
alpha-factors of the blade root radial motion (αRM) and velocity (αRV) 
can be estimated. Relevant results will be presented and discussed in this 
section. 

5.1. Blade root radial motion 

Fig. 16 shows an example of the αRM, considering weather forecast 
uncertainty of the PBML method with a lead time of 3 h. It is clearly that 
the αRM varies with sea states. Since the blade installation normally re
quires low sea states, Fig. 17 further presents the variation of αRM for 
different Tp and TL, focusing on the results in Hs ranging from 0.5 m to 
2.0 m. 

It is seen from Fig. 17 that the αRM does not change significantly with 

the lead time, due to the good forecast performance of the PBML method 
on sea state forecasting. By comparing αRM in different subfigures, a 
significant effect of forecast uncertainty in Tp is observed. Moreover, the 
effect of Hs can be found by comparing αRM factors at each lead time for 
each subfigure. As shown, the αRM varies with Hs, but the variation also 
depends on conditions of Tp and TL. 

5.2. Blade root radial velocity 

A similar analysis is conducted on the blade root radial velocity. αRV 
with different Hs, Tp and TL are presented in Fig. 18. Likewise, only re
sults in Hs groups between 0.5 m and 2.0 m are displayed. 

From Fig. 18, the influence of Tp on the αRV can be clearly found. For 
all lead times and Hs groups, αRV are in the range of 0.16–0.52 for the Tp 
group of 5 s, and 0.52 to 0.99 for other Tp groups. By comparing Figs. 17 
and 18, it is noted that the variation observed in αRV is different from 
that observed in αRM. This reflects the characteristics of αR, that is, it is 
specific to the operations and associated limiting response parameters. 

Overall, results demonstrate that for the blade installation using a 
floating crane vessel, uncertainty in Tp forecasts is important and should 
not be neglected. Therefore, it is meaningful to propose a correction 
factor αR. Unlike the conventional alpha-factor that only relies on the 
uncertainty in Hs, αR reflects forecast uncertainties in both Hs and Tp to 
guide marine operations. 

6. Allowable sea states assessment 

Allowable sea states are finally assessed through a comparison be
tween the RE_WF (adjusted by the αR) and the corresponding allowable 
limits. In the following parts, allowable sea states associated with the 
blade root radial motion and velocity are shown separately. For the 
blade root radial motion, the allowable limit is defined as the gap 

Table 8 
RE values (in m) of the blade root radial velocity (REV).  

Hs (m) Tp (s) 

5 6 7 8 9 10 

0.5 0.13 0.18 0.25 0.27 0.31 0.33 
1.0 0.22 0.36 0.47 0.58 0.61 0.64 
1.5 0.32 0.53 0.70 0.88 0.98 0.96 
2.0 0.43 0.70 0.92 1.19 1.22 1.29 
2.5 0.54 0.88 1.16 1.50 1.53 1.62 
3.0 0.66 1.06 1.40 1.82 1.84 1.94 
3.5 0.78 1.24 1.66 2.15 2.17 2.28 
4.0 0.90 1.43 1.92 2.48 2.49 2.63  

Fig. 14. Fitting surface of Gumbel parameters as a function of Hs and Tp (blade root radial motion).  

Fig. 15. Fitting surface of Gumbel parameters as a function of Hs and Tp (blade root radial velocity).  
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between the hub radius and blade root radius during the mating phase. 
Fig. 19 shows a sensitivity study on the allowable limit, in which 
0.5Rroot, 0.3Rroot and 0.2Rroot are selected as the allowable limit, where 
Rroot is the radius of blade root which is 2.69 m. For the blade root radial 
velocity, the allowable limit is normally related to the plastic bending in 
the guide pins. A reference velocity (0.7 m/s) proposed by Verma et al. 
(2019a) is applied in this study as the allowable limit of the blade root 

radial velocity. Correspondingly, Fig. 20 shows the allowable sea states 
using the blade root radial velocity as criteria. In Figs. 19 and 20, both 
the allowable sea states with (dash lines) and without (solid lines) 
weather forecast uncertainty are presented as functions of Hs and Tp. 
They represent the maximum allowable sea states, and all sea states 
below the lines imply that the operation can be safely executed. The 
dash lines with different colors correspond to weather forecast un
certainties at different lead times. Obviously, once these contour lines 
are generated, they can be used easily and directly. According to the 
comparison between weather forecast value of a certain lead time and 
the corresponding allowable sea states, the decision on whether or not to 
start the operation can be quickly made. 

As displayed in Figs. 19 and 20, the allowable sea state is signifi
cantly affected by the sea state forecast uncertainty, since an obvious 
discrepancy between the solid line and dash lines can be observed. 
Uncertainty in sea state forecasts decreases the allowable sea state, 
especially in the range of short Tp. Moreover, the comparison among the 
dash lines in each figure indicates that the forecast horizon is another 
important parameter for determining the allowable sea states when the 
weather forecast uncertainty is taken into account. As expected, the 
allowable sea states gradually decrease with the forecast lead time TL 
increases. This is because when the forecast lead time increases, the 
weather forecast becomes more uncertain, which reduces the αR and 
therefore makes the allowable sea states more conservative. For 
instance, in Fig. 19 (a), when Tp is 5 s, allowable Hs without forecast 
uncertainty is about 2 m, while allowable Hs with lead times of 3 and 24 
h are about 1.9 m and 1.3 m, respectively. In addition, the importance of 
the pre-determined allowable limit is also illustrated in Fig. 19. The 

Fig. 16. αRM with a lead time of 3 h.  

Fig. 17. Variation of αRM with lead times in different Hs groups.  
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Fig. 18. Variation of αRV with lead times in different Tp groups.  

Fig. 19. Allowable sea states of the blade root radial motion.  
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comparison among the three examples shows that small allowable limit 
requires a more accurate operation, and therefore, the allowable sea 
states will be reduced by high performance requirement. 

Furthermore, the workable weather windows for offshore blade 
installation can be identified by comparing the allowable sea states with 
weather forecasts. It is important to emphasize that if the operation is 
controlled by more than one limiting response parameter, identification 
of workable weather windows is relatively complicated. Regarding the 
final mating phase, the blade root radial motion and velocity should be 
considered simultaneously, and the overall weather window should be 
identified and selected considering the two corresponding windows. 
This also depends on the pre-determined allowable limits. For instance, 
if the allowable limit of the blade root radial motion is selected as 
0.5Rroot (see Fig. 19 (a)), the allowable sea states related to the blade 
root radial velocity are lower than those related to the blade root radial 
motion at every lead time. As a consequence, the overall workable 
weather window is decided by the blade root radial velocity. In contrast, 
if the allowable limit of the blade root radial motion is 0.2Rroot (see 
Fig. 19 (c)), the corresponding weather windows will be shorter than 
that for the blade root radial velocity. In this case, the weather window 
for the blade root radial motion decides the overall workable weather 
windows. However, when the allowable limit of the blade root radial 
motion is 0.3Rroot (see Fig. 19 (b)), two weather windows should be 
taken into account simultaneously. Specifically, it is necessary to iden
tify weather windows separately for each limiting parameter, and the 
overlap part will be the reference for the selection of overall workable 
weather windows. 

7. Conclusions 

In this paper, a response-based method for assessing the allowable 
sea states of offshore single blade installation is developed, with 
emphasis on both considering weather forecast uncertainty and using 
time-domain numerical models. It includes the establishment of the 
response-based alpha-factor αR to measure the effect of forecast uncer
tainty in sea states (Hs, Tp) on the system responses, and the assessment 
of operation allowable sea states. 

The general procedure for establishing the αR in the planning phase 
based on time-domain modelling and analysis of blade installation, and 
then assessing corresponding allowable sea states in the execution phase 
is presented. To establish the αR, two important analyses should be 
carried out, namely, the dynamic response analysis of the installation 
system and the uncertainty quantification of sea state forecasts. Specif
ically, steady-state time-domain simulations of the final mating phase 
for blade installation are carried out to assess dynamic responses of the 
limiting response parameter (i.e., the blade root radial model and ve
locity). Meanwhile, sea state forecasts are generated and quantified by 
the pre-defined error factors with respect to the range of sea sates and 

the forecast lead time. Based on the probabilistic assessment of dynamic 
responses together with the quantification result of sea state forecasts, 
the αR can finally be obtained by a comparison between the character
istic values of the limiting response parameters with and without 
weather forecast uncertainty. In the execution phase, the established αR 
are used to adjust the corresponding characteristic response values to 
include the effect of sea state forecast uncertainty. The allowable sea 
states of blade root radial motion and velocity are then assessed sepa
rately by comparing the adjusted characteristic values with the corre
sponding allowable limits. These allowable sea states are able to identify 
the weather windows through a comparison with the updated sea state 
forecasts. 

Allowable sea states for offshore blade installation using a semi- 
submersible crane vessel at the North Sea center is assessed. One-day- 
ahead sea state forecasts generated by the PBML method is utilized in 
the uncertainty quantification analysis. Besides, a simple uncertainty 
model is also developed to show how to quantify forecast uncertainty by 
directly applying commonly used error statistics RMSE and bias. 
Regarding the time-domain response analysis approach, the effect of 
statistical uncertainty related to the use of a limited number of simula
tions to derive the characteristic response values is also investigated and 
is found small. Quantitative assessment of the dynamic responses shows 
that the radial motion and velocity of the blade root are sensitive to both 
Hs and Tp. In addition to the forecast uncertainty of Hs, that of Tp is also 
critical and needs to be considered during the installation. Compared to 
the α-factor, the αR takes sea state forecast uncertainties into account 
more comprehensive and reflects their effect on the system dynamic 
response. If the sea state forecast uncertainty is not considered, the 
allowable sea state may be greatly over-estimated. As the forecast lead 
time increases, the allowable sea states gradually decrease. Overall, in 
the execution phase of offshore blade installation by a floating crane 
vessel, it is necessary to develop the αR to involve weather forecast un
certainties at different lead times, which can reduce the operational 
limit reasonably and provide a good reference for the allowable sea state 
assessment to improve the safety of the installation. 

Nevertheless, it should be noted that the variation of the wave di
rection and wind field are not considered in this study. Besides, only 
forecast uncertainty in sea states are investigated due to the marginal 
effects of wind conditions on the installation system. To get more reli
ably αR and further assess the allowable sea states with higher accuracy, 
more comprehensive studies are required in future work. Furthermore, 
the performance and efficiency of the forecasting method is another key 
point that determines the practicality of the αR. More efforts are still 
needed to further improve the reliability of the αR by adopting more 
accurate weather forecasting methods. 
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