Computer Networks 219 (2022) 109434

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

Computer Networks —
p o5

An offline mobile access control system based on self-sovereign identity

standards

Check for
updates

Alexander Enge, Abylay Satybaldy *, Mariusz Nowostawski

Department of Computer Science, NTNU, Gjovik, Norway

ARTICLE INFO

Keywords:
Self-sovereign identity
Secure communication
Access control

ABSTRACT

Self-sovereign identity (SSI) is a new paradigm to digital identity management that is built on decentralized
technologies and can exist without centralized third-parties for managing the identity data. Within the SSI
model, a digital identity wallet enables a user to establish relationships and interact with third parties in a
secure and trusted manner. At present, the existing SSI solutions rely on the Internet connection for carrying
out the necessary operations such as messaging and credential verification. However, there are many places
the Internet may not be accessible and other means for communication is needed. The objective of this
paper is to design a proof-of-concept that would allow for secure, trustworthy, and decentralized peer-to-
peer communication without the need for any external networking infrastructure. For this, we investigate
a particular case involving DIDComm and Bluetooth Low Energy (BLE). We identify requirements for the
architecture and propose an architectural framework that allows two entities to securely communicate and
exchange verifiable credentials. Furthermore, we look at a specific use case, namely, how offline access control
can be enabled within SSI between two mobile devices. We present and evaluate the implementation of offline
access control system based on the proposed architecture. Through this research, and experimentation we can
conclude that this approach has the potential to enable a wide range of interesting use cases and can be
integrated into existing digital identity wallet solutions to extend the capabilities of offline messaging in a
secure and decentralized manner that goes beyond the current models that rely on the Internet connectivity.

1. Introduction

Wireless technology has become an integral aspect of everyday life,
with Wi-Fi and Bluetooth being two of the most extensively utilized
wireless communication technologies. Bluetooth is included in the vast
majority of today’s smartphones, smartwatches, bracelets and other
portable devices. Furthermore, the Internet of Things (IoT) is develop-
ing rapidly, and the Bluetooth Low Energy (BLE) protocol has proven
to be an effective option for seamlessly communicating between low-
power devices [1]. The number of communicating devices is predicted
to grow in conjunction with the Internet of Things.

The ability to communicate securely among peers is an essential
component of any communication system. Individuals or organizations
nowadays frequently rely on some central authority or intermediate
third party to build a trusted and secure communication route between
unrelated devices. The issue is that establishing a trusted and secure
communication channel between unrelated individuals or organizations
is often difficult with today’s methods. Despite the development of
various messaging systems for delivering peer-to-peer communications,
most solutions rely on a centralized identity management system for

* Corresponding author.
E-mail address: abylay.satybaldy@ntnu.no (A. Satybaldy).

https://doi.org/10.1016/j.comnet.2022.109434

device authentication and operate as silos or federations, preventing
interoperability across many current and future systems.

Self-sovereign identity (SSI) is a new paradigm that promises a more
decentralized approach compared to existing identity systems. In this
new model, individuals take ownership of their digital identities and
have full control over their personal information. This information is
typically carried around by the user in the digital identity wallet on
their mobile device. A digital wallet, in the context of SSI, is a software
application and encrypted database that stores credentials, keys, and
other secrets necessary for self-sovereign identity management to oper-
ate. The model enables the user to have data sovereignty and complete
control as well as data portability. A user can establish relationships
and interact with third parties in a trusted manner.

One of the principles of SSI is to allow people to interact in the
digital world with the same freedom and capacity for trust as they do
in the physical/offline world. There is a broad interest from many indi-
viduals and organizations around the world in the area of decentralized
identity systems and there exist many proposals and contributions [2—
71. However, the use of offline communication in SSI without the need

Received 17 August 2022; Received in revised form 15 October 2022; Accepted 24 October 2022

Available online 28 October 2022

1389-1286/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:abylay.satybaldy@ntnu.no
https://doi.org/10.1016/j.comnet.2022.109434
https://doi.org/10.1016/j.comnet.2022.109434
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109434&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Enge et al.

for the Internet access is largely unexplored, especially since many
existing SSI implementations depend on an Internet connection for their
operations and sending messages between parties, and there is little
research on how SSI could be applied in an offline setting without the
need for external infrastructure.

There are many situations where we need to be able to exchange
messages or prove our identity without having the Internet access.
For example, the vast majority of Africa does not have access to the
Internet [8], in conflict areas or after natural disasters there might be no
Internet connectivity and in some use-cases, e.g. large gatherings such
as concerts or ad-hoc demonstrations may not have sufficient Internet
infrastructure to support the communication needs. There are also
possible scenarios where you might need to verify a digital credential
stored in your wallet in the remote locations where the Internet access
is simply not available at all.

This research is primarily motivated by the new technological ad-
vancements in the fields of self-sovereign identity and decentralized
technology. Self-sovereign identity and supporting technologies have
enabled opportunities that were previously not possible to achieve. It
is therefore interesting to explore how self-sovereign identity could be
deployed in an offline scenario to exchange messages between digital
wallets without requiring an active Internet connection.

As a result, the topic we want to investigate in this paper is offline
messaging and mobile access control in the context of self-sovereign
identity. This study is concerned with a specific feature of self-sovereign
identity, particularly, how credentials can be transferred wirelessly
and verified with another party without relying on any other network
infrastructure, specifically, without the Internet connectivity.

Our proposal is based on the open SSI standards such as Decen-
tralized Identifiers (DIDs) [9] and Verifiable Credentials (VCs) [10].
A shared protocol is needed for two entities to create a connection
and communicate with one another. With the rise of DIDComm [11],
a new transport-agnostic messaging protocol based on the concept of
decentralized identifiers that enables secure, trustworthy, and decen-
tralized communication between agents in a self-sovereign identity
ecosystem, some interesting alternatives to existing systems are now
possible. Because this protocol is transport-agnostic, it can use BLE
to transfer the data without depending on a certain transport-specific
protocol. Furthermore, BLE is already supported by billions of devices,
making it a suitable candidate for transmitting data between devices.
Therefore, integrating these two technologies for transmitting messages
can be desirable in certain situations, particularly BLE combined with
DIDComm can provide a secure manner of sharing information directly
between peers in close proximity.

The main contributions of this paper is the proposal of the ar-
chitectural design and development of a proof-of-concept application
for a direct peer-to-peer communication system that is based on the
self-sovereign identity standards and does not rely on any centralized
servers or external infrastructure. The proof-of-concept consists of a
mobile application (digital wallet) that enables interoperable and se-
cure DIDComm BLE messaging between two devices, and an Android
library that enables two devices to send DIDComm messages to each
other. A mobile application and the library have been created in order
to issue, present and verify credentials over BLE via DIDComm messag-
ing protocol using Presentation Exchange protocol [12] to demonstrate
the mobile access control use case.

This work is an extended version of our paper, presented at IEEE
COMPSAC conference [13], where we proposed an architectural de-
sign for offline peer-to-peer messaging between two devices. In this
paper, we significantly expanded the design by integrating verifiable
credentials on top of the protocol and developed and evaluated a
proof-of-concept application for the mobile access control use case. The
performance, security, and interoperability aspects of the application
are evaluated and discussed. The paper concludes with valuable in-
sights into the limitations and capabilities of the system. This work
should provide a better understanding of how BLE credential exchange
works and whether such a method is ready for production use in current
SSI systems.

Computer Networks 219 (2022) 109434

Isser Holder Verifier

Issues VC Presents VC

ot =
W) [2=]

% Verifies

DID Document Sec

Registers
public DID

__________________ =

' g

I Verifiable Data Registry e.g. Public Blockchain @ |
H7|

Fig. 1. Self-Sovereign Identity Architecture.

2. Background

In this section, we will provide the background knowledge on the
main concepts and technologies that are needed to understand the
work.

2.1. Self-sovereign identity and decentralized technologies

The foundation concepts of SSI were officially brought to life when
the Credentials Community Group was created under the umbrella
of the international organization, the World Wide Web Consortium
(W3C). The group defined two fundamental standards for the devel-
opment of a new decentralized identity architecture: Decentralized
Identifiers (DIDs) [9] and Verifiable Credentials (VCs) [10]. Decen-
tralized identifiers are a new type of identifier that is decentralized,
resolvable and cryptographically verifiable. A DID has the format of
an URI scheme and is in the form did:<DID method>:<method-
specific identifier>. The DID method describes how the DID
is resolved into its DID document and the CRUD actions' are done on
the document. This document contains information associated with a
DID, including cryptographic public keys, authentication suites, and
service endpoints. The data format of DID documents can be serialized
as JSON or JSON-LD (JavaScript Object Notation for Linked Data) [14].
In order to be resolvable to DID documents, DIDs are typically recorded
on an underlying system or network of some kind. Regardless of the
specific technology used, any such system that supports recording DIDs
and returning data necessary to produce DID documents is called a
verifiable data registry as shown in Fig. 1. Examples include distributed
ledgers, decentralized file systems, various database systems, peer-to-
peer networks, and other forms of trusted data storage. This design
eliminates dependence on centralized registries for identifiers as well as
centralized certificate authorities for key management — which are the
standard patterns in hierarchical PKI (Public Key Infrastructure). Each
identity owner may serve as its own root authority — an architecture
referred to as DPKI (Decentralized PKI).

To date, various DID methods have been created and implemented
for different use cases [15]. A did:key [16] and did:peer [17]
are examples of peer DID methods that can be used independent of
any central source of truth and can be resolved off-chain. They are
suitable for most private relationships between people, organizations,
and things. The specification for did:peer method is maintained by
the Decentralized Identity Foundation (DIF) [18]. A simpler version of
peer DID is the did:key, which encodes the public key directly into
the identifier string to generate the DID document in a deterministic
process. The did:peer can be seen as more versatile than did:key
since they enable extra features such as defining service endpoints for
communication and CRUD activities to alter the document, key rotation

1 Create, read, update, and delete (CRUD) are the four basic operations of
persistent storage.

A. Enge et al.

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://example.com/contexts/acvc/vl"

1

2

3

4

5 1,
6 "type": [

7 “VerifiableCredential",

8 “AccessControl”

9 N

10 "id": "@b95846f-3393-41f1-990d-6e5b7feffada",
11 “credentialSchema": {

12 “id": "45aba846-a251-4c91-aed1-4d77b1d90949",
13 "type": "JsonSchemaValidator2018"

14 +H

15 “credentialSubject": {

16 “id": "did:key:z6Mko3RowD...",

17 "name": "DID,2",

18 “role": "Admin"

Fig. 2. Example of a Verifiable Credential in JSON-LD format.

without having to replace the DID. It is essential to select a method
that supports peer-to-peer systems that do not rely on the Internet.
As a result, we will rely on the did:peer and did:key in this project
because they are built for peer-to-peer relationships and do not require
any additional infrastructure. In this paper, we refer to did:peer and
did:key as peer DIDs for simplicity sake as either can be used to
establish peer connections.

A Verifiable Credential (VC) is made up of three main parts. The first
is the credential metadata, which consists of information that describes
the credential such as credential type, who issued the credential, when
it was issued, and when it expires, as well as a context property
that permits an agreed-upon understanding of the credential and its
structure and can be processed by JSON-LD. Second, the credential
can contain statements about the credential subject in the form of one
or more claims expressed as property-value pairs in the credential.
Last but not least, it contains proof(s) that enables the credential to
be cryptographically verifiable using digital signatures. A verifiable
credential can be serialized in JSON or JSON-LD, with the proof format
being JSON Web Token (JWT) or Linked Data [19]. Fig. 2 shows an
example of a VC in JSON-LD format. A Verifiable Presentation (VP)
contains data that can be cryptographically verified and is commonly
used to encapsulate one or more VCs. In addition, the proof on the VP
is often used for authenticating the holder.

A digital wallet is the software or hardware that is responsible for
securely storing identity data and cryptographic content. In the context
of SSI solutions, this includes storing VCs, DIDs and the associated
cryptographic keys. An agent acts on behalf of the user and can commu-
nicate with other agents to do various actions [20], it typically accesses
the digital wallet for storing and retrieving information to perform
cryptographic operations. Depending on the usage, these actions can be
programmed to be executed automatically by the agent or manually by
the user. Furthermore, the agent can operate on an edge device or in the
cloud. When an agent communicates using the DIDComm messaging
protocol, the agent can act according to three roles: relay, mediator, or
edge agent. The relay and mediator’s job is to send a message from one
edge agent to another edge agent. A relay agent can be used to change
the transport medium, whereas a mediator has more sophisticated logic
and can also perform routing and cryptographic operations [21]. This
approach, for example, allows a sender device to transmit a message
using HTTP as the transport protocol by first sending it to the relay,
which then sends it to the final destination device over BLE.

2.2. DIDComm
DIDComm is a novel DID-based asynchronous end-to-end encrypted

communication and messaging protocol maintained by DIF. It creates a
secure communication channel between agents controlled by entities,

Computer Networks 219 (2022) 109434

— JWE envelope: authN, confidentiality, integrity, routing —
- optional JWS envelope: non-repudiation -

_ plaintext: app data + metadata

{

\» decem

Fig. 3. The three different DIDComm messages formats [11].

which can be people, organizations or things. This protocol has var-
ious distinguishing characteristics that set it apart from other secure
communication protocols. As described in the specification, DIDComm
is designed to be transport-agnostic, flexible, and secure. Several orga-
nizations have contributed to its implementation by releasing libraries
in a variety of programming languages [4]. DIDComm is also used to
establish the methodology and underlying basis for higher-level proto-
cols to be implemented on top of, inheriting DIDComm’s properties. The
presentation exchange protocol, for example, allows a verifier to request
credentials from a holder [12]. This protocol will be covered in greater
depth later.

The DIDComm specification defines three message formats: DID-
Comm plaintext message, DIDComm signed message, and DIDComm
encrypted message. The messages that are transmitted are typically
encoded as JSON and follow the JSON Web Message (JWM) [22]
specification. In comparison to an encrypted or signed message, plain-
text does not guarantee security or integrity. The DIDComm signed
message is a plaintext message with a digital signature that ensures
message integrity and follows the JSON Web Signature (JWS) [23]
format. The DIDComm encrypted message is a plaintext message that
has been encrypted, following the JSON Web Encryption (JWE) [24]
format, to prevent the content of the message from being revealed to
unauthorized parties and provide integrity guarantees. Fig. 3 depicts
the three different DIDComm message formats.

DIDComm supports a variety of encryption algorithms that relies on
a subset of the JSON Web Algorithms (JWA) [25] defined algorithms
for the purpose of interoperability. It employs Public Key Authenticated
Encryption for JOSE (ECDH-1PU) algorithm [26] for authenticated
sender encryption (authcrypt) and Key Agreement with Elliptic Curve
Diffie-Hellman Ephemeral Static (ECDH-ES) algorithm [27] for anony-
mous sender encryption (anoncrypt). Both types provide end-to-end
encryption (E2EE) of messages to the sender, but only the autherypt
achieves sender authentication.

Self-sovereign identity standards and DIDComm have been used in
a variety of applications, including decentralized factorization [28], a
learning framework for healthcare [29], federated machine learning
tasks [30], and vehicle identity management [31]. In addition, the
Sovrin Foundation SSI in IoT Task Force [32] has looked into business
opportunities and IoT use cases in the context of SSI. They exemplify
the use of peer DIDs and DIDComm with HTTPS as the transport layer
in the paper.

2.3. Bluetooth Low Energy

In 2010, the Bluetooth Special Interest Group (SIG) officially an-
nounced the Bluetooth 4.0 specifications along with the Bluetooth Low
Energy (BLE) protocol [33]. BLE is a low-power wireless communi-
cation technology that is based on the Bluetooth Classic protocol. It
operates at 2.4 GHz and is commonly used in IoT and low-powered
devices.

According to the Bluetooth specifications, two BLE devices can com-
municate using one of two interaction patterns. The advertisement and

A. Enge et al.

observer roles are defined in the first mode. This mode does not require
the devices to connect; instead, the advertiser broadcasts a message,
which the observers can retrieve by listening to the advertisement
channel.

In the other mode, the two devices can establish a connection
with each other. Depending on who initiates the connection with the
other device, a device can represent one of two roles: peripheral or
central. The peripheral is responsible for advertising itself to other
devices. It does so by periodically sending out advertisement packets
at regular intervals. The central then scans for these advertisement
packets to find available peripherals that it may initiate a connection
with. The communication channel can be secured and encrypted by
pairing the devices. The data packets are encrypted with Advanced
Encryption Standard (AES), and while this encryption is considered
secure, attackers can exploit different BLE vulnerabilities during key
exchange [34].

BLE defines two profiles that an application will interact with
to perform operations. These are the Generic Access Profile (GAP)
and Generic Attribute Profile (GATT). The GAP essentially defines the
parameters required to enable a connection or pairing with another
device. While GATT defines the attributes used for transmitting data
between devices once the connection is established. Profiles define
the set of services and characteristics that the device supports. The
Maximum Transmission Unit (MTU) is the maximum amount of data
that can be transmitted at once in a packet.

A universal unique identifier (UUID) is a unique number used to
distinguish between all the attributes. These UUIDs are communicated
by the peripheral in order for the central to know which services
are available. A UUID can be either public (16 bit) or vendor spe-
cific (128 bit). The Bluetooth standards describe the public UUIDs,
whereas the vendor specifics are custom UUIDs for services defined by
the various vendors. A 6-byte address (BD ADDR) is used to uniquely
identify a BLE device. To avoid tracking, the device can utilize random
addresses that are either static (do not change) or private (change on
a regular basis). Paired devices that support Bluetooth V4.2 and higher
can resolve the private address on the link layer.

3. Related work

Existing research into offline communication and credential ver-
ification in a self-sovereign identity ecosystem is rather limited and
under-explored.

Authentication and authorization using DIDs and VCs has been
studied by several researchers. Lux et al. [35] combine OpenID Connect
(OIDC) with VCs using a scheme that adheres to the OIDC specifica-
tion’s claims. This technique enables user login by presenting verifiable
credentials to the OIDC provider, who authenticates the user. Fotiou
et al. [36], on the other hand, proposed a capability-based access
control technique that employed verifiable credentials as an access
token to access protected resources using the OAuth 2.0 authorization
flow.

Lagutin et al. [37] proposed a method where they moved the
computational power required for the cryptographic operations on
DIDs and VCs. Instead of performing the operations on the IoT device
itself, it is moved to an external OAuth authorization server that then
authenticates the user on behalf of the IoT device. This is achieved by
proving to the authorization server that the user has a credential that
it trusts. After that, the server generates an access token that is given
to the user and can be shown to the IoT device in order to gain access.
An SSI-based access control based on the attribute-based model and
the use of privacy-preserving techniques including selective disclosure
and range proofs is proposed by Belchior et al. [38]. Their approach
relies on blockchain technology for authentication and does not address
offline access control.

Abraham et al. [3] proposed and evaluated a method for achieving
revocation and verification of VCs without requiring an active Internet

Computer Networks 219 (2022) 109434

connection. This works by continuously generating new timestamped
access tokens against a credential revocation registry in order to attest
the validity of a credential. These access tokens are used to demonstrate
to an offline verifier that the credential was not revoked at the time
of token attestation and is still valid. The verifier can then utilize this
information to see if the period between presenting it and attestation is
within the permitted range. A trusted network of nodes signs the access
tokens using a multi-signature mechanism. When offline, verifiers can
assess the validity of the multi-signature using a trust store, which
contains a list of all the trusted nodes’ public keys signed by the
network. Their research is focused on the mechanisms involved in
offline credential revocation, as well as the evaluation of the credential
exchange and verification stage.

Fedrecheski et al. [39] argue that self-sovereign identity can sig-
nificantly enhance the security and privacy of IoT. In addition, they
highlight issues that constrained devices must overcome related to the
required computation power for asymmetric cryptography processing,
data overhead, DID resolution without Internet access, traceability, and
limited software for IoT devices. As a solution to resolving DID without
Internet access they suggest using a local cache of trusted DIDs that is
managed by the device itself or a gateway. Alternatively, peer DIDs
could be securely exchanged and used instead. Their study compares
several approaches to digital identity, focusing on data models, and
discusses the benefits and challenges of SSI in the IoT.

Bartolomeu et al. [40] studies SSI in the context of industrial IoT.
They mention that it has many use cases, but still faces technical
difficulties related to lack of widespread adoption and immaturity.
Furthermore, Grabatin et al. [41] looks into how devices can be man-
aged in a wireless ad-hoc mesh network (WANET) based on LoRa by
using SSI. Their solution was benchmarked in terms of data overhead,
time on-air, computation time and power consumption. Although some
of these are more difficult to quantify precisely than others, whilst
others can be calculated directly, they came to the conclusion that
the secp192k1 elliptic curve algorithm provides an acceptable overhead
in real-world mesh networks. For being interoperable at the commu-
nication protocol level, they plan to implement DIDComm into their
solution.

César et al. [42] conducted a survey on BLE in terms of security and
privacy, considering the various versions and providing an overview
of known weaknesses and attacks. Barua et al. [1] provides a compre-
hensive survey of security and privacy threats of BLE devices in the
IoT environment. It includes a threat model and discusses the various
attacks and mitigation strategies.

Furthermore, Tosi et al. [43] provides a comprehensive review
of the Bluetooth Low Energy protocol and its performance. It looks
into throughput, maximum sensors that can be connected, power con-
sumption, latency and maximum range. They found that although the
theoretical limit of data throughput in BLE is around 230 kbps, the
analyzed applications reached a limit of around 100 kbps. Also, the
maximum number of sensors connected is usually lower than 10, but
is dependent on the connection parameters, network architecture and
the device characteristics. Both latency and power consumption is
largely dependent on many different factors. Lastly, they found that
the maximum range is up to a few ten meters, but depends on radio
power.

In January 2020, Albrecht et al. [44] conducted a security analysis
of a popular end-to-end encrypted messaging platform called Bridgefy.
The platform relies on Bluetooth amongst other technologies for send-
ing messages between peers. The analysis revealed that it offered no
authentication mechanism, poor confidentiality protections and users
could be tracked by constructing social graphs. This was made possible
because both the identifiers for sender and receiver are sent across the
mesh network in plain-text. It supports direct one-to-one messaging
over a BLE connection or using a Bluetooth mesh network. When
sending messages over the mesh network, it can either be sent to a
specific receiver or broadcasted to all nearby users within range. If both

A. Enge et al.

parties are online, it can also be sent over the Internet. In response to
their research, the developers of Bridgefy switched to Signal protocol
in October 2020 which is a secure instant messaging protocol.

Schoolfield [45] implemented a proof-of-concept messaging appli-
cation for sending authenticated and encrypted messages over a BLE
connection. They provided implementation library and application for
Android. A performance test was conducted on the solution and a
transfer speed of 1 KB/s was achieved when sending a file between
two BLE connected Android devices.

A draft specification for using BLE as the transport layer for DID-
Comm has been released by DIF [46]. The specification is not complete
yet and lacks technical details. It provides recommendations such as us-
ing an agreed-upon service UUID during advertising to identify devices
that support the DIDComm protocol which we followed in our work.

Although the aforementioned studies cover techniques and evalua-
tion for sending messages over BLE, they do not address some of the
concerns related to self-sovereign identity and offline access control.
This work seeks to fill in some of the missing gaps identified in the
previous works above. It offers a proof-of-concept for an offline access
control system that details each step of the message exchange pro-
cess and empirically evaluates the results. Aspects such as feasibility,
interoperability, and security are also discussed.

4. Requirements

In this section we start with an overview of the use case that
will be investigated, followed by the identified requirements for the
system. For mapping out the requirement and to better understand
the requirements of the system, relevant specifications, documentations
and papers have been reviewed. Moreover, the self-sovereign identity
properties are taken into account when making decisions about the
requirements. It is also influenced by requirements identified in other
existing SSI solutions and Bluetooth messaging solutions. Lastly, the
requirements and application was developed over several iterations
following an evolutionary prototyping approach [47].

4.1. Use case

A use case is presented in order to better understand the system’s
requirements. For this, a common scenario for IoT devices will be
employed, which is to perform authentication and authorization [48].
The case under study in this project will look more closely at how two
devices can perform offline authentication and authorization using SSI
principles and the enabling technologies discussed in the background
section. Moreover, the goal of this use case is to evaluate and demon-
strate how devices can use SSI in a peer-to-peer fashion to perform
messaging and access control in a secure and trustworthy manner using
the designed architecture without relying on external infrastructure,
proprietary software, a single service provider, centralized servers, or
federation. Furthermore, unless otherwise specified, it is assumed that
BLE is used to transfer messages between devices, that the devices
do not have active Internet access when performing message and cre-
dential exchange, authentication, or authorization, and that all data is
stored off-chain and locally on the peer devices. The messaging between
the devices and the access control system are two elements of the case
covered in this paper.

First, the system must facilitate messaging between two mobile de-
vices without requiring the Internet access. It involves both sending and
receiving a message from device A to device B. The BLE protocol will be
used for this, as already mentioned, this technology is widely used to
enable wireless communication between IoT devices. Although there
are other end-to-end encrypted secure messaging protocols [49], the
protocol that will be employed here is DIDComm, which is commonly
used in existing SSI frameworks for agent-to-agent communication.

For sending a message from one device to another, two roles are
defined: sender and recipient. The sender is responsible for creating and

Computer Networks 219 (2022) 109434

encrypting messages for the intended recipient. The sender then estab-
lishes the connection with the recipient device and begins sending the
message. When the message has been entirely transferred, the message
receiver can decrypt and read it. The mobile access control system that
will be demonstrated will leverage the messaging capabilities described
here to securely send and receive messages via BLE.

Access control system is defined by the National Institute of Stan-
dards and Technology (NIST) as “a set of procedures and/or processes,
normally automated, which allows access to a controlled area or to in-
formation to be controlled, in accordance with pre-established policies
and rules” [50].

There are various access control models for presenting access con-
trol policies, and one common model is the role-based access control
model (RBAC), in which the permissions granted to a subject are
determined by the assigned role [51]. In this use case we will focus on
the RBAC model. Because a VC can be used to make verifiable claims
about a subject, we can use these credentials to assign a particular
role to a subject. For example a subject of a VC can have the role
of an administrator giving permissions to enter restricted areas that
non-administrators should not have access to.

The case under study will use the Decentralized Identifiers and Ver-
ifiable Credential data model. As seen by several papers [35-37], these
standards have been used in existing authentication and authorization
protocols. The following is a brief description of how access control can
be accomplished among the three roles (issuer, holder and verifier). The
issuer is responsible for issuing VC that include the rights provided in
the form of claims. The holder responsibility is to hold the VC obtained
from the issuer and present them to the verifier upon request during
access control. After that, the verifier can verify the VC to see if the
holder has the necessary permissions to gain access.

The aim of the access control system is to give users access that
is consistent with the access policies. The system is extended to show
how to use SSI for access control when using BLE as the transport
layer under the established assumptions. This access control process is
divided into four steps, each of which is discussed in detail in Section 5
about system architecture and design.

4.2. Functional requirements

This section outlines the functional requirements of the system.
They are divided into two parts: messaging and access control. The
messaging part focuses on the setup of connections and how messages
are securely transported using BLE, whilst the access control part will
make use of the messaging capabilities to build an access control
system.

Messaging.

+ A device should be able to define a service endpoint in the DID
document that other devices can use to discover the BLE device
associated with this DID.

A device should be able to manually or automatically initiate and
establish a BLE connection with another device.

Allow for the pairing of two BLE devices before sending messages.
Allow two devices to agree on common connection parameters
and MTU before sending messages.

A device should support both the peripheral and central BLE roles.
A device should have the ability to both send and receive mes-
sages over BLE.

There should be no constraints on the message size transferred
(i.e., large files or messages can be sent).

Allow two devices to securely establish peer-to-peer connection
that will be used for encrypted communications and application-
layer encryption.

A device should be able to display and use peer-to-peer connec-
tions that have already been established for future interactions
with that peer.

A. Enge et al.

+ Support for the three types of DIDComm message formats (none,
anoncrypt, authcrypt).

» Any of the three DIDComm message formats can be sent and
received over a BLE.

» A device should be able to display messages that have been
retrieved and sent in a chat.

Access control.

Able to create and issue verifiable credentials and presentations.
Able to request proofs from another device in a standard format.
Able to verify the proofs on verifiable credentials and presenta-
tions.

Able to display verifiable credentials and presentations that have
been received and issued.

Grant or deny access for a device based on the defined access
policies, the role the device is assigned, and the outcome of the
verification of the verifiable credential.

4.3. Non-functional requirements

The section describes the non-functional requirements that the sys-
tem must satisfy. It should also align with properties of SSI and the
performance that BLE can provide.

The system must be extendable, interoperable, and capable of
running on a wide range of platforms.

The system must provide high availability and be able to handle
any errors that occur in a way that the system does not crash.
The system must be decentralized and work independently of any
third-party, central authority or external infrastructure.

The system must support offline access.

The system must provide security and privacy-preserving features
that adhere to privacy regulations.

The system must be efficient and provide minimal latency when
performing the access control procedure and transferring mes-
sages.

5. System architecture

In this section, we first present an overview of the proposed of-
fline mobile access control system and subsequently give a detailed
description of the individual components of the designed architecture
and protocols. The proposed architecture is based on the use case and
the identified requirements presented in Section 4. To adhere to the
separation of concerns principle, the design takes a modular approach.

5.1. Components

A high-level overview of the system is depicted in Fig. 4. The
architecture is composed of multiple components that work together.
It displays two mobile devices, using an application, that communicate
with each other in a peer-to-peer manner over BLE. The application
consists of five main components: (1) Application view, (2) Services,
(3) Edge agent and wallet, (4) DIDComm BLE library, (5) BLE Android
APIL. The DIDComm BLE library is responsible for handling the BLE
connections and transport of DIDComm messages at the lower layers.
This library uses the BLE Android API. Further on, the edge agent is
concerned about performing actions on behalf of the user and it uses
the DIDComm BLE library for operations such as sending and receiving
messages over BLE. Next, the services are the functionality provided
by the application and implements higher-level protocols. It makes
use of the edge agent and the view to provide functionality such as
establishing a DID connection, message exchange, and access control.
Following the separation of concerns, it also makes the application
more maintainable and easier to test since the view and agent are not
directly coupled. Finally, the view is the graphical interface that the

Computer Networks 219 (2022) 109434

'
. Internet

'
: cloud-to-cloud connectionr
' { l
'
'
'
'
'
\

[Cloud agent 1 } [Public blockchain } [Cloud agent 2 }

Intemnet connection required
{ Android application 1 \ { Android application 2 \

(peripheral or central) (peripheral or central)

Services

Edge agent 1 (wallet)

DIDComm BLE library t+—Bluetooth LE connection— DIDComm BLE library

Fig. 4. A diagram showing the system’s high-level architecture.

Services

Edge agent 2 (wallet)

user is interacting with to perform actions and displaying information.
The next section focuses on the interactions between these components
and the different data flows associated. For the purpose of showing
how the applications can be integrated into the wider SSI ecosystem,
the high-level architecture demonstrates that the applications can be
connected through the Internet in order to establish connection with
cloud agents, utilize a public blockchain for storing or resolving DIDs,
or using other online resources. However, further on in the paper, it is
assumed that the Internet is not accessible and the BLE connection is
used for device-to-device communication and for transferring messages.

5.2. Protocols

This section describes each protocol used in the application for
achieving secure messaging and the access control use case. It is bro-
ken into: out-of-band message, BLE connection establishment, device
messaging (sending and retrieval), DID connection establishment and
presentation exchange. Then the access control process is presented
which includes all the aforementioned protocols. When we use the term
flow instead of protocol, we refer to the flow of information in the
protocol.

The protocols will further be modeled as a set of the involved
roles, states and message types. Each of the message types that are
sent between the devices is described for each protocol. Although both
devices in the system can act as either the peripheral and central
under the different protocols, each protocol is being described from the
perspective of the peripheral and central BLE roles depending on which
device first initiated the connection in the protocol. An example of this
can be illustrated when sending and receiving a ping. The sender of
the ping connects to the device in which the ping should be sent to
and therefore the sender becomes the central, and receiver of the ping
is the peripheral. However, when the receiver of the ping wants to send
a response, it will also connect with the device that should receive the
ping response message and thus the ping receiver becomes the central
and the original sender of the ping becomes the peripheral. The reason
for this is because each device that wants to send a message needs to
establish a connection with the other device that should receive the
message. However, more details on this are provided when discussing
each of the respective protocols.

A. Enge et al.

The protocols that work with DIDComm messaging and are used
in the implementation are: Basic Message,” Trust Ping,® Out-of-Band,*
DID Exchange® and Present Proof.°® Minor changes were made to some
of these in order to accommodate for the specific use case, and they
will be discussed when it applies. In the next following sections, each
of the protocols and the data flows used in the solution is described.

5.3. Out-of-band message

The out-of-band (OOB) message is used to bootstrap the connection
establishment between the two devices. We assume that each of the
devices that want to establish a DID connection already has created
their own DID (using the did:key method). Moreover, when two devices
are first presented to each other, they do not have a BLE connection,
and they do not know each other’s DIDs or the public key material re-
quired for encryption. It is important to note that a connection between
two devices in the system can exist on two levels. The BLE connection
that is established between two devices, and the DID connection that
can exist between two peer DIDs. The BLE connection is responsible
for providing a secure wireless communication channel where the mes-
sages can be sent from one device to another, while the DID connection
is responsible for enabling the devices to have a secure and trusted
peer-to-peer communication that allows messages to be end-to-end
encryption (E2EE) and authenticated on the application-level.

The out-of-band protocol has two roles: sender and receiver. How-
ever, since BLE and DIDComm define different roles, and when also
considering which device that will initiate the BLE connection, the
sender is also the peripheral, and the receiver is the central. The
role that a device has in the system during the different data flows
depends on whether looking at it from the perspective of DIDComm
or BLE. The protocols will mostly be described from the perspective of
the peripheral and central when looking at the data flow in order to
highlight the use of BLE as the technology for sending and receiving
the message. This contrast is emphasized in Sections 5.4 and 5.5,
which address the BLE connection establishment and device messaging,
respectively.

The protocol begins with the peripheral device creating an connec-
tion invitation using a OOB message that includes information such as
a self-generated BLE Service UUID that the receiver of the OOB uses to
identify the device to which it should send any response to the OOB,
as well as the sender DID, which the receiver can use for encrypting
the response. Fig. 5 depicts the OOB data flow between peripheral
and central, whereas establishing the BLE connection is covered in
Section 5.4.

The OOB message can be represented as binary data using Base64-
url encoding and contained in a URL. There are several ways to share
this OOB message, e.g. included in QR-code or NFC-tag. In the im-
plementation, NFC-tags can for example be used to hold the OOB
invitation message. We will focus on the case where the OOB is pre-
sented as a QR-code on the peripheral device’s screen. The central
will then use a camera to scan this QR-code and obtain the Base64-url
encoded OOB message. It then decodes it and reads the payload of the
message. This payload includes a DID and a self-generated BLE Service
UUID for identifying the peripheral.

Following that, the central begins the discovery process by scanning
for devices. The BLE Service UUID obtained from the OOB message can

2 https://didcomm.org/basicmessage/2.0/

3 https://identity.foundation/didcomm-messaging/spec/#trust-ping-
protocol-20

4 https://github.com/hyperledger/aries-rfcs/tree/main/features/0434-
outofband

5 https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-
exchange

6 https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-
present-proof-v2

Computer Networks 219 (2022) 109434

Out-of-band message

Peripheral
|

| Create invitation
| .

Display invitation QR-code
Scan QR-code

A

Establish BLE connection

e '
-y __

Fig. 5. Overview of the out-of-band message data flow between peripheral and central.

Establish BLE connection

|

| Broadcast BLE advertisement packets (with service UUID) |
T »

Connect devices)

|, Discover device & connect to GATT server (using service UUID)
<

|
f
[{ Set BLE connection parameters (MTU, PHY)

Discover services and characteristics

L Services and characteristics

Fig. 6. Overview of the BLE connection establishment flow.

then be used to filter out other devices and find the peripheral device
that sent the OOB. The next step is to connect the devices, which is
addressed in the following section.

5.4. BLE connection establishment

This section describes the steps involved in connecting two devices
using BLE and the OOB message. A BLE session allows the connected
devices to exchange data over the channel and begins when the con-
nection is established and ends when one of the devices disconnects.
An overview of the flow is depicted in Fig. 6.

After the peripheral has advertised its BLE service UUID and the
central has found it using the OOB message, the central can connect to
the peripheral. The Maximum Transmission Unit (MTU) and Physical
Layer (PHY) of the channel are then set based on the capability of
the BLE devices in order to achieve higher throughput. Then services
provided by the peripheral are discovered and received by the central.
The devices may optionally start the pairing process if needed. After
that, the BLE connection is ready for messages to be exchanged using
the read and write characteristics, and is covered in the next flow.

5.5. Device messaging

Despite the fact that the system was built to allow communication
to flow both ways between peripheral and central devices, the system
only uses the central to peripheral flow when sending messages from
one device to another. This is because when multiple messages are
sent back and forth between the devices in a BLE session, if one of
the devices loses connection, there is no mechanism for the peripheral
to contact the central device. Therefore, an alternative was used where

https://didcomm.org/basicmessage/2.0/
https://identity.foundation/didcomm-messaging/spec/#trust-ping-protocol-20
https://identity.foundation/didcomm-messaging/spec/#trust-ping-protocol-20
https://github.com/hyperledger/aries-rfcs/tree/main/features/0434-outofband
https://github.com/hyperledger/aries-rfcs/tree/main/features/0434-outofband
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange
https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2
https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2

A. Enge et al.

one device establishes a connection with the other device when sending
a message, and both act as either the peripheral and central depending
on who sends the message. Nevertheless, both sending messages from
the peripheral to central, and central to peripheral are covered below.
A message that is sent from peripheral to central is denoted as M,
— M,, while sending a message from central to peripheral is denoted
as M, — M,. To symbolize that a message is encrypted, a superscript is
used, such as M¢ — M¢, meaning that the message is encrypted from
central to peripheral. If not otherwise specified, it is assumed that the
DIDComm messages transported over the established BLE channel are
using JSON encoding and encrypted using the authcrypt method.

Send message from peripheral to central. Sending a message from periph-
eral to central, M, — M_, is performed as follows. First, the peripheral
and central needs to have an established BLE connection as described
in the above flow. Then the peripheral begins by creating a message
M,. This is a message in the DIDComm plaintext format and JSON
encoding. After that, the message is split into message packets of
size MTU. This is the payload size that can be transferred at once as
specified by the Bluetooth specifications. The packets are then added to
a message queue, waiting to be transmitted. A loop will iterate through
all the queued message packets until all is sent. On each iteration,
the read characteristics are updated with the data of the packet and
a notification is sent to the central. When the central receives those
notifications, it will append the packet to a buffer. After all the message
packets for a specific message are sent by the peripheral, it will update
the read characteristics to the value “EOM” and send a notification,
indicating to the central that the entire message has been transmitted.
The central can then read the message from the buffer. Furthermore,
after the DID connection establishment is completed, the messages
can be encrypted to the other party M; — M¢. This is achieved by
the peripheral first encrypting the message using the public key that
belongs to the central, before splitting it into message packets.

Send message from central to peripheral. This flow is similar to the M, —
M., however there are some differences when sending a message from
central to peripheral M, — M,,. Again, the peripheral and central first
need to have an established BLE connection. The central then creates a
message M., splits the message into message packets of size MTU and
then added to the queue. Then a loop iterates through all the packets.
Differently from the peripheral to central flow, on each iteration the
central will instead write to the peripheral write characteristics with
the value of the message packet. Also, on each write, the peripheral
will append those packets to a buffer. Then, when the central has no
more packets to send, the central will write to the peripherals write
characteristic with the value “EOM” to indicate end of message. An
overview of this flow can be seen in Fig. 7. Also, the central can encrypt
the message to the peripheral M7 — M using the public key that
belongs to the peripheral after DID connection establishment. The DID
connection establishment flow is described in the next section.

Now that the different ways for sending a message over BLE be-
tween devices have been explained, we will focus on the type of
messages being sent and the higher-level functionality such as how
a secure peer-to-peer connection is established through a series of
DIDComm messages exchanged between the devices.

Sending a basic message. Despite the fact that it is not used in the
access control flow, the basic message’ protocol has been integrated
into the application to provide messaging and chat functionality be-
tween the devices, and is later used as a baseline for testing the
performance when sending and receiving messages over BLE. It is
a stateless protocol using one message type with the following URI
“https://didcomm.org/basicmessage/2.0/message”. Two roles are de-
fined: sender and receiver. The message that is to be conveyed from
sender to receiver is contained within a “content” attribute in the body
of an DIDComm message.

7 https://didcomm.org/basicmessage/2.0/

Computer Networks 219 (2022) 109434

Send message from central to peripheral

Peripheral

An established BLE connection

Write DIDComm message

| —

Encrypt DIDComm message

Split message into packets with size MTU

e

100p [for all message packets]

| Write packet to DIDComm write

Append packet to buffer

|, Write "EOM" to DIDComm write characteristic

Decrypt DIDComm message

Handle message

Fig. 7. Overview of the message exchange data flow from central to peripheral.

Sending a ping and receiving a ping response. The core DIDComm V2
specifications define the trust ping protocol.® It is used to check the
other agent’s connectivity, responsiveness, and security. The ping is
analogous to the one used in networking, but also inherits the prop-
erties of DIDComm messages. The protocol has two message types: the
ping message and the ping response message.

5.6. DID connection establishment

A DID connection provides a cryptographically secure direct peer-
to-peer link between the edge agents of the respective devices. This
allows the devices to securely exchange encrypted and authenticated
messages in a trustful way. The DID Exchange’ protocol is used to
exchange the DIDs between two peers in order to establish the DID
connection.

In order to establish a DID connection, the devices must first ex-
change DID documents and the public keys contained within them.
This DID connection can be established in one of two ways. When an
existing DID connection is not used, the initial step is for the central
to send a request message to the peripheral. A reference to the OOB is
included in this request message, along with the DID document for the
DID that the central wants to use for this connection. The message is
then sent to the peripheral using the message exchange flow described
previously in Section 5.5. After receiving this message, the peripheral
responds by sending its own DID document to the central. Lastly, the
central will send a complete message to the peripheral to acknowledge
that the response message was received. The second option is to reuse
a previously established DID connection. It begins when the central
sends the peripheral a reuse message. The peripheral will respond with
a reuse accepted message if the reuse is accepted. Fig. 8 depicts an
overview of the data flows when not reusing an existing connection
and when reusing an existing connection.

5.7. Presentation exchange

This protocol is concerned with requesting the proofs and makes
use of the DIF Presentation Exchange [12] specification for defining the

8 https://identity.foundation/didcomm-messaging/spec/#trust-ping-
protocol-20

9 https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-
exchange

https://didcomm.org/basicmessage/2.0/
https://identity.foundation/didcomm-messaging/spec/#trust-ping-protocol-20
https://identity.foundation/didcomm-messaging/spec/#trust-ping-protocol-20
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange

A. Enge et al.

Establish DID connection

Peripheral

| |

alt [no reuse] |
|

|

| Send request message

| Send response message |

! Send completed message |

Fig. 8. Overview of the DID connection establishment flow using Bluetooth Low Energy
for sending the DIDComm messages.

data format for requesting VCs and certain claims from the prover. We
use the term prover instead of holder in the context of presenting proofs
to a verifier. The specification defines a way for verifiers to request
holders for proofs that meet certain requirements. Its goal is to provide
a standard way for a verifier to request proof from a holder, and it
specifies two data formats for doing so: a presentation definition that
a verifier can use to describe the proofs that should be submitted, and
a presentation submission that a holder can use to include the proofs
that are in accordance with the presentation definition.

The presentation definition is sent from the verifier to the prover
and will include the required credential claims and proofs that the
holder needs to submit. The definition data model can include a set
of input descriptors that describes what information is expected from
the prover and the purpose. Also, the input descriptor may include a
constraint property that contains fields. The field specifies a JSONPath
for selecting a target value from the input, as well as a filter for filtering
the data provided by the JSONPath evaluation using JSON Schema.

A presentation submission contains the credential claims and proofs
that fulfill the requirements set forth by the presentation definition. The
data model specifies the descriptor map object that contain an array of
input descriptor. mapping object where each object must have an id that
maps to the input descriptor of the presentation definition, a format
property for specifying the claim format, and a path expressed as a
JSONPath for selecting the input claim.

Moreover, the specification does not impose any restriction on the
credential format and how the presentation definition or submission
is transported. The DIDComm based present-proof protocol as speci-
fied in an Hyperledger Aries RFC [52] has been used for requesting
and presenting proofs using the presentation definition and presenta-
tion submission. Here, the definition and presentation submission is
appended to the ‘attachment’ field of the DIDComm message.

In this described data flow, the peripheral will act as the verifier and
the central will act as the prover. An overview of the flow is depicted
in Fig. 9. It first requires that a presentation definition is created by
the peripheral. The peripheral then includes this presentation definition
inside a presentation request message and sends it to the central.
When the request is received by the central, it generates a presentation
submission. On submitting this, it will send a presentation message to
the peripheral that includes the presentation submission along with
any required verifiable credentials. The peripheral will then validate
the presentation submission against the definition and check proofs to
determine its validity.

6. Implementation

In this section we describe our approach to implement a proof-of-
concept (PoC) application for Android that integrates the DIDComm

Computer Networks 219 (2022) 109434

Presentation exchange

Peripheral
|

| Create presentation definition

Send presentation request message

I
I
I
I
I
N
I
I

Create presentation submission

Send presentation message |

|

L

|

|

|

|

|

lq _____Sendpresentation message __ _
* 1
|

Validate presentation submission against definition :
:‘ |
|

|

|

|
|
|

Fig. 9. Overview of the Presentation Exchange flow using Bluetooth Low Energy for
sending the DIDComm messages.

messaging protocol and Bluetooth Low Energy protocol. The focus is
on the BLE transport layer and the presentation exchange flow that is
used for access control, as stated in the use case. It aims to provide
developers with an overview of the implementation and technology
utilized to provide the given functionality. The implementation strives
to be as straightforward and adaptable as feasible while still achieving
the desired functionality. The full source code for the application is
available at GitHub.!°

The PoC application has mainly two parts that will be described
separately:

» The React Native application. This is the mobile digital identity
wallet application that the user is interacting with and pro-
vides the graphical user interface. After assessing several SSI
frameworks [53-55], Veramo was selected as the framework
for building the agent. The Veramo framework is open-source,
have active development and community, and support the W3C
VC/DID standards. Each fundamental agent functionality in the
PoC application is implemented as a Veramo plugin such as
identifier management, key management, DID method provider
and resolver (for did:key), credential signing and verification.!!
Those plugins do not handle any functionality related to the BLE
transport or higher-level protocol message handling. However,
they manage the involved cryptography such as encryption and
decryption of messages, and also the signing and verification of
credentials. A reference implementation of DIDComm [56] has
been used and is integrated into a Veramo plugin. This imple-
mentation provides the functionality needed to pack and unpack
DIDComm messages. Packing a DIDComm message will encrypt
the plaintext message using the specified mode. On the other
hand, unpacking the DIDComm message will decrypt the message
into a plaintext message. The application relies on the Native
Modules [57] provided by React Native for making native calls
to the Android DIDComm BLE library.

The Android DIDComm BLE library. A custom library was
made to provide the BLE functionality needed for the application
to exchange DIDComm messages between devices. The library
provides the React Native application with functionality for con-
ducting the various Bluetooth operations, such as establishing
a BLE connection with another device, writing and reading op-
erations on the GATT server in order to send the messages. It
also handles splitting larger messages into message packets and
appends them to a queue, waiting to be transferred. This library
provides an abstraction on top of the Android Native BLE API [58]
for serving the React Native application with an API that provides
functionality for sending and receiving DIDComm messages.

10 https://github.com/alexanderenge/DIDCommunication-using-BLE
11 https://veramo.io/docs/veramo_agent/plugins/

https://github.com/alexanderenge/DIDCommunication-using-BLE
https://veramo.io/docs/veramo_agent/plugins/

A. Enge et al.

& ChatMessages

5> (@) oos

=) oo2

%) oo2

2 oot

Rl scanmic

25 sonan + newcrar

®

B2 ® @ ®

(a) Setup screen

(b) Home tab (c) Messages tab

screen

(d) Chat messages (e)

Computer Networks 219 (2022) 109434

& ChatNew € BluetoothMessaging

o oo
P
dickey:26MkeqPepz1GhCINNWPVIBZEBSdzeat

0 CopyDID 5 Comnect
To DID

§ S6B2E21B1B80
on2 Agent endpoints o

3§ Notscanning

Decentralized identifers >

eS25407... No

Wed25 6

Fig. 10. Application screens.

Storage and state management. The application stores information about
the agent settings, chat messages, current protocol states, as well as the
decentralized identifiers, cryptographic keys, established connections,
verifiable credentials, and presentations. The storing of cryptographic
keys and identifiers is handled by the Veramo agent framework and
uses a SQLite database. Redux is selected as the tool for managing state
within the application.

6.1. Application screens

The proof-of-concept mobile application integrates the above-
mentioned flows and includes multiple screens as well as a navigation
bar with three primary tabs: Home, Messages, and Profile. Although not
all screens were necessary to demonstrate the given use case, they were
useful for testing and presenting some of the functionality of the system.
Nonetheless, a brief description of some of the screens is provided,
followed by the section that covers each stage of the access control
process in the system.

Home. 1If the application is being used for the first time, the user is
presented with a setup screen, as shown in Fig. 10(a). Clicking the
‘Next’” button will set up the agent and wallet with a default DID
(did:key), and then redirect to the home screen. A button on the home
screen opens the access control module panel, which is used to perform
access control and is detailed in more depth in Section 7 about access
control process. A button for accessing the camera and reading QR-
codes, as well as another for scanning NFC-tags, are all on the same
screen. This allows the content of the OOB message to be read in order
to bootstrap the establishment of BLE and DID connection with another
device. Fig. 10(b) depicts the home tab.

Messages. The message tab displays the chats (Fig. 10(c)) that exist
between a DID connection, and each chat can be opened to display
the chat messages from and to the specific DID (Fig. 10(d)). From the
chat messages screen, encrypted DIDComm messages can be sent to the
particular DID over BLE. A new chat can also be created by selecting an
existing DID connection (Fig. 10(e)). The functionality provided here is
primarily based on the establishment of a DID connection covered in
Section 5.6 to establish a trusted peer-to-peer connection for securely
sending messages, and the messaging exchange flow to transmit the
messages from one device to the other as covered in Section 5.5. The
Bluetooth messaging screen (Fig. 10(f)) can be used to manually start
scanning for BLE devices and connect to discovered devices, in addition
to sending a simple ping message containing a string message to test
connectivity and the messaging functionality. This ping message is not
a DIDComm message since the DID of the connected device is still
unknown because DIDs have not been exchanged.

10

3 3 setting: >
®
@ 5]
New chat (f) Bluetooth mes-
. (g) Profile screen
screen saging
e
3 Creat tati :
Initial steps | Setup Issue ACVC reaie Eresen ation)
i definition i
Connect 3 QOB invitation E%tabhsh_BLE E?tabhsh‘D\D !
: connection connection)
1 :
l [e e e e e e e et
Verification Send

presentation presentation

f Send presentation
: request
1

Verify] ;

Fig. 11. The overall steps involved in the access control system.

Profile. From this tab, the user can navigate to their agent endpoints,
identifiers, connections, invitations, credentials, presentations and set-
tings (Fig. 10(g)).

The agent endpoints screen is used to set up the agent’s BLE service
endpoint, which is used by other devices to identify the device when
scanning for it. Starting and stopping the BLE advertisements can be
done from this screen. However, in order to be discovered by other BLE
devices and receive messages, the BLE advertisement must be active.

The identifiers screen consist of a list of the created DIDs, as well
as the options for creating new DIDs using the did:key method. When
clicking on a specific DID, it redirects to a screen that views the DID
document of that DID, the service endpoints of that DID, and the
possibility to give the DID a name that will be shared when establishing
a DID connection with another device. An invitation to establish a
connection with the DID will be created when clicking the ‘connect’
button. This invitation is displayed on the device as a QR-code. Writing
the message to an NFC-tag can be done by clicking the ‘share’ button.
Another device can then scan this QR-code or NFC-tag to establish
a DID connection with this device. The connections screen shows a
list of existing DID connections and the respective DIDs used in the
peer-to-peer relationship.

Moreover, the invitations screen keeps track of the state of current
OOB invitations, and whether they have been accepted or not. The
credentials screen lists the verifiable credentials that have been issued
or received from another issuer. It also contains a button that, when
clicked, redirects to a list of existing schemas that can be used as
the template for issuing new credentials. The presentations screen
provides information about the created presentation definitions used
for requesting proofs and the submitted presentations. It allows creating
new presentation definitions that can be used in presentations requests
sent from the verifier to the prover. Lastly, the settings tab lets the user
configure the agent, such as whether to reuse existing connections for
an invitation from a DID that there exists an connection with, whether
invitations should be automatically accepted, or multiple use of the
same OOB invitation is allowed.

A. Enge et al.

{
"@context": {
"@version": 1.1,
"@protected": true,
"AccessControl": "https://example.com/contexts/AccessControl",
"name": "https://schema.org/name",
"role": "https://schema.org/roleName"

VOO U A WN

Fig. 12. Example of schema for the access control verifiable credential.

7. Access control process

This section describes the access control process. The information
flows according to the covered protocols in Section 5.2. It makes use
of the previous protocols, except basic message and the trust ping pro-
tocol. The different stages are presented along with the corresponding
screens that are displayed within the developed application.

The necessary functionality required to perform the role of an issuer,
holder and verifier is integrated into a single mobile application as one
unit. The function of the issuer is to manage and issue the credentials
to the holder that specifies the access rights. During the access control
process, the function of the verifier is to request and verify access rights.
While, the prover uses the verifiable credentials as proof of access
rights. Within the proof-of-concept, there have been identified three
main phases: setup, credential issuance and verification. An illustration
of the workflow for performing the access control process can be seen in
Fig. 11. The following paragraphs will describe these phases, focusing
on access control between two devices.

The application setup phase consists of first creating a DID using
the did:key method and this DID is used as the default DID for further
interactions with other agents and devices. This will create a key-pair
consisting of a public and private key, and then use the public key as
part of the method-specific identifier for the DID. The exact procedure
is specified by the DID method. Key material is then safely stored within
the digital wallet for protection. After this, the application generates a
random BLE Service UUID and adds it alongside the DID document as
a service endpoint. This finishes the setup phase and BLE advertising
could be started using the BLE Service UUID that was generated earlier.
This setup phase will be performed on both devices involved in the
access control such that each device has their own DID.

The next phase consists of issuing the access control verifiable
credentials. This credential is based on a predefined schema that should
be understood by all participating parties in order to be interoperable.
It contains the granted permissions as attributes within the VC. In the
current solution, an example schema for access control was created for
testing purposes and is seen in Fig. 12 below. Following this schema,
a verifiable credential can then be created, including the name and
role attributes as specified by the schema, and digitally signed by the
issuer. Then the credential is sent to the credential subject. After this,
the verification step can take place.

The input for the verification step is the presentation definition used
for requesting proofs, while the output is access granted or denied. The
verifier will check to see if the prover’s presentation submission is in
accordance with the presentation definition. If the presentation sub-
mission is valid, it will grant access with the specified role. However,
if it is not valid, it will deny access. This verification step also includes
determining whether the data structure is as expected, validating the
proofs and checking the credential status.

A proof of holder identity and that the credentials are indeed owned
by the holder that presents them, and not some third-party that got hold
of them, can be proved with the subject-holder bindings as shown in the
specifications when creating a verifiable presentation [59]. This creates
a link between the subject and claims held in the verifiable credentials
using digital signatures.

Inside the access control module screen, an invitation to present
proof can be shown for others to scan. To do so, the user must first

11

Computer Networks 219 (2022) 109434

choose a presentation definition that will be used in the presentation
exchange and validation stage. The entire process goes through four
different steps: select a presentation definition (step 1) — display invi-
tation as QR-code (step 2) — await proof (step 3) — validate (step 4).
We assume that the access control verifiable credentials have already
been distributed to those who require them as proof of access rights,
and that the verifier has established the presentation definition. These
presentation definitions are stored on the verifier device.

In step 1, the verifier decides on the presentation definition that will
be used (Fig. 13(a)). This lets the verifier choose the proofs that must be
submitted in order to be granted access. When a definition is selected,
the ‘start access control module’ button can be clicked to generate an
OOB invitation message, then it redirects to the invitation screen which
displays the invitation as a QR-code (Fig. 13(b)), step 2.

In step 2, any holder of access control verifiable credentials that
want access can scan this QR-code. This will first establish the BLE
connection between the devices if not already existing and a DID
connection. A presentation request message containing the presentation
definition is then sent from the verifier to the prover. In step 3,
when the prover receives the presentation request, the verifier sees an
awaiting proof screen (Fig. 13(c)), while the prover sees a screen asking
if they want to submit or cancel the presentation request (Fig. 13(d)).
The prover will try to match the presentation definition against the
credentials held in the wallet in order to find candidate credentials
that can be used to generate a presentation submission. On submit, the
presentation submission is sent to the verifier.

In step 4, the verifier validates the proofs against the presentation
definition, as well as verifying that the credentials have not been
tampered with and are issued by a trusted issuer, to determine if access
should be granted or denied. Figs. 13(e) and 13(f) show the access
granted and denied screens.

8. Experimental results

After describing the functionality and the specific implementation of
proof-of-concept, this section presents the evaluation setup and test bed
infrastructure. The overall evaluation will refer to the application use
case presented earlier, however a discussion on how the system can be
applied to other cases is also given along with benefits and challenges.

The methods for each of the various tests that aim to capture
the performance of the system as a whole are presented individually
along with the experimental result. When doing performance testing,
numerous factors must be considered, such as the time required for
cryptographic computation, network latency, and other variables that
may affect the outcome. All of this adds to the intricacy of the pro-
cedure. The performance is mainly measured in the duration it takes
for each step to complete in the aforementioned protocol flows. Also,
the performance will vary depending on the encryption scheme applied
and BLE connection parameters.

The goal is not to capture the precise BLE data-transfer rate as this is
already done in several papers [43], but instead focusing on capturing
and quantifying overall performance under different scenarios specific
to our use case. It also provides an overview of the extra payload in
bytes produced when encryption is applied to the messages, as seen by
the difference between content size and message payload. The message
size of the different message types when encrypted has been measured.
Lastly, the measures are taken in such a way that it captures the
duration it takes to send messages over the network, and the duration
spent on computation such as encrypting, decrypting and verifying.

During the experiment, two BLE capable smartphone devices that
can interact with one another were used as the hardware and when
benchmarking the developed application. Furthermore, the two devices
are kept in close proximity to one another during the experiments and
are not paired. Table 1 depicts the hardware specifications of these two
mobile devices. For the rest of the report, the two devices used for
performance testing will be referred to as device 1 and device 2. Within

A. Enge et al.

&« ACMAwaiting

€ ACMStart & ACMinvitation

Default ACVC Definition <

blera0TbedcS-7e89-4840-bBch-6cba742de3d

Goal: Request a presentation

See detals

(a) Start screen (b) Invitation screen

screen

(c) Awaiting proof (d) Presentation con-
firm screen

Computer Networks 219 (2022) 109434

& PresentationConfirm

€ ACMVerified € ACMDenied

Default ACVC Definition

Required input

Default ACVC Descriptor

D Get schema with matching id

v X

@ nsered matching credentia

Verified

® Cancel @ submit

(e) Verified screen (f) Denied screen

Fig. 13. Access control process.

Table 1
Hardware specifications for the two devices used in performance testing.

Device 1 Device 2

Device name: HUAWEI P30 Pro HUAWEI Mate 20 Pro

Model: VOG-L29 LYA-L29

Build number: 12.0.0.132 11.0.0.200

EMUI version: 12.0.0 11.0.0

Android version: 10 10

Processor: Huawei Kirin 980 Huawei Kirin 980
RAM: 6.0 GB 6.0 GB
Resolution: 2340 x 1080 3120 x 1440

the presentation exchange protocol, device 1 is assigned the verifier
role, whereas device 2 is assigned the prover role.

While conducting the performance tests, a production build of the
React Native application was used. All performance measurements are
carried out with the react-native-performance library.'? Each test is
run through the application’s user interface, and the results are then
saved in a database for later retrieval and analysis. In the following
paragraphs, the different testing procedures and metrics used will be
described.

Measurements were done using four separate tests, each with its
own set of parameters. These tests are: (1) BLE connection establish-
ment, (2) Device messaging, (3) DID connection establishment, and (4)
Presentation exchange. An MTU of 509 is used when transferring the
message payload over BLE. Each test contains a number of measure-
ments. Also a test can have different scenarios such as different content
length, payload. Each test scenario is repeated 100 times and then
the results are averaged for all measurements. All measurements are
recorded using four separate metrics: min duration (over 100 measure-
ments), max duration (over 100 measurements), average duration (over
100 measurements), standard deviation (over 100 measurements).

Performance measurements are taken on both devices 1 and 2. Each
measurement reports the duration from a start marker and until the
measurement is taken. These are denoted using the symbols S and M,
where S is the start marker that sets the start time for the measurement
M, and M is then the time duration from the start marker S. The
duration for all measurements taken is specified in milliseconds (ms).
A subscript is used to differentiate between each start marker and
measurement.

8.1. BLE connection establishment

We first consider the scenario when the sender device (central) is
not connected to the receiver device (peripheral) and perform tests

12 https://www.npmjs.com/package/react-native-performance

12

Table 2
Performance results for the BLE connection establish-
ment.
Device 1
S]:smrr:can
M,_, M
Min: 76 1355
Max: 1415 2940
Average: 212 1691
Stdev: 220 238

to identify how long it takes for the BLE connection establishment.
Between each test, the message sender disconnects from the connected
device and waits 5 s before running the next test.

In this test, device 1 acts as the message sender. The start marker
(S,) is placed right before the device begins scanning for other BLE
devices. It first measures the duration it takes for device 1 to find device
2 (M,). Then it measures the duration it takes until the services have
been discovered (M,). Both of these measurements (M;, M,) start from
when device 1 starts scanning for other devices (S;). After the service
has been discovered, messages can be sent to the device.

Results. An overview of the results can be seen in Table 2. It is observed
that the average duration from start scanning to when the device is
found (M,) is 212 ms, having a minimum duration of 76 ms and a
maximum of 1415 ms. The standard deviation is 220 ms. When the
services have been discovered on the device (M,), the total average
duration is 1691 ms with a minimum of 1355 ms and maximum of
2940 ms. The standard deviation here is 238 ms.

8.2. Device messaging

This test will serve as a baseline for the other tests and covers
the three different DIDComm packing modes (none, anoncrypt and
autherypt) described in Section 2.2 using five different content lengths
for each packing mode. In this test, three measurements have been
taken for each of the packing modes and content lengths in order to
capture time taken to transmit a message from one device to another
device via BLE. In this test, device 1 acts as the message sender and
device 2 acts as the message receiver of that message. It assumes
that the sender device (central) is connected to the receiver device
(peripheral). The measurements along with the associated starting mark
are described as follows.

On device 1, the start marker (S,) is placed right before packing
the DIDComm message. The first measurement considers the duration
from the start marker (S,) and until before transporting it across BLE
(M3). This measure includes the time taken to pack the message and

https://www.npmjs.com/package/react-native-performance

A. Enge et al.

Computer Networks 219 (2022) 109434

Table 3
Performance results for messaging between two BLE devices.
Packing Content Payload Device 1 Device 2
Samsend—message S3-handte-message
M,_ M, Ms_npacked-message
10 328 1 69 2
100 418 1 71 1
none 1000 1318 1 143 2
10000 10318 2 774 7
100000 100318 10 7133 38
10 951 97 225 170
100 1071 98 293 170
anoncrypt 1000 2271 101 375 170
10000 14271 108 1651 183
100000 134271 200 11763 295
10 1105 198 400 244
100 1225 201 370 242
autherypt 1000 2425 201 456 244
10000 14425 214 1849 248
100000 134425 295 11653 343

encrypt it, but excludes the duration taken to transmit the message via
BLE. The next measurement also includes the time it takes to send an
entire message over BLE (M,). Both of these measurements (M5, M,)
start from before the packing of the message (S,). The device 2 uses
a start mark (S;) in the message handler right before unpacking the
received message. From this start marker (S;), a measurement is then
taken after finishing unpacking the message (Ms).

The basic message is used as the message type for this test. Each
basic message has some overhead which includes the attributes for the
messages. Therefore, to get the exact payload for each message, the
equation will be contentlength+overhead = messagepayload. The content
length is specified as the number of characters in the ‘content’ field
of the message body that is sent. The message payload is specified as
the total number of bytes in the message after the message has been
packed. The Table 3 depicts this relationship between content length
(shown as content) and message payload (shown as payload) for each
packing mode.

Results. An overview of the results is shown in Table 3. On the sender
device, it can be observed from M; that the average elapsed time
before transporting the message is shortest when packing mode is
none, then comes anoncrypt, and authcrypt takes the longest time with
295 ms when using a content length of 100,000 characters. When
also considering the time when the message is sent (M,), anoncrypt
spends 11,763 ms, while authcrypt spends 11,653 ms. For unpacking
the message on the receiver device (Ms), authcrypt using a content
length 100,000 takes the longest with 343 ms.

Data transfer speed rate, including the duration it takes to encrypt
the message, can be calculated with the following formula: speed =
(message payload)/(duration of measurement M,). We then get the
following results for the different payloads when using a content length
of 100,000:

« Packing mode is none = % =14.1 KB/s
+ Packing mode is anoncrypt = % =114 KB/s
» Packing mode is authcrypt = % =11.5 KB/s

In order to calculate the transfer speed to send the message without
including the time spent on encryption, we subtract the duration of M,
since that is the duration elapsed before sending the message over BLE.
Data transfer speed rate is then calculated as follows: speed = (message
payload)/(duration of measurement M, - duration of measurement M;):

. _ 100318 bytes _ 100318 bytes __
none = (7133-10) ms 7123 ms 14.1 KB/s
. _ 134271 bytes __ 134271 bytes __
anoncrypt = (11763=200) ms 11563 ms 11.6 KB/s
. _ 134425 bytes _ 134425 bytes __
autherypt = e = “Tisss ms — 118 KB/s

13

8.2.1. Sending and receiving a ping response over BLE

This test compliments the baseline test presented above by also
including a response message sent from the receiver device. It assumes
that both sender devices (central) are connected to the other receiver
device (peripheral). From the ping sender, this means that the device
has a connection with the ping receiver, and also that the ping receiver
which now becomes a sender when responding to the ping, has a
connection with the ping sender. Meaning that both devices act in the
peripheral and central role simultaneously.

The start marker (S,) for device 1 is placed right before constructing
the trust ping message object and therefore also before encryption is
applied. From this start marker (S,), two measurements have been
taken. First, a measurement that measures the duration when the ping
is sent (My), which then includes the time spent from start sending
the ping, constructing the message, then to completely having sent
the entire ping message over BLE. Another measurement is then taken
when a ping response is received from the other device (M;).

Results. The results for this test are shown in Table 4. For the ping
sender device, the average duration elapsed when sent ping (M) is
383 ms, while when a ping response has been received (M;) the
duration is 1210 ms. During the 100 test runs, the lowest duration was
324 ms, highest was 456 ms, and a standard deviation of 30 ms for M,
whereas M; resulted in 1108 ms as the lowest duration, 1392 ms as the
maximum, and a standard deviation of 44 ms.

8.3. DID connection establishment over BLE

This test measures the time it takes to establish a DID connection
over BLE. In this test, device 1 acts as the inviter and device 2 acts as the
invitee. It covers the two scenarios: no connection reuse and connection
reuse. During the testing, the invitation messages were sent over BLE
to the other device, and not using OOB.

8.3.1. No connection reuse

This test covers the scenario when not reusing the DID connection.
On device 1, the start marker (Ss) is placed right before the invita-
tion object is created. Then, measurement Mg, measures the duration
until completely having sent the entire invitation message over BLE.
It included the time encrypting the invitation message to device 1.
Measurement M, includes the duration elapsed when handling the
request message. Then, measurement M, is the duration before send-
ing the response, while measurement M;; is the duration when the
response has been sent over BLE. Lastly, measurement M,;, measures
the duration when handling the complete message and includes the
total duration for the DID connection flow when no connection reuse
is utilized.

A. Enge et al.

Computer Networks 219 (2022) 109434

Table 4
Performance results for sending and receiving a ping between two BLE devices.
Device Start marker Measurement Min Max Avg. Stdev
1 Se Mo seni—ping 324 456 383 30
=i My peceved—ping-response 1108 1392 1210 44
Table 5 Table 6
Performance results for establishing a DID connection with no reuse. Performance results for establishing a DID connection with reuse.
Device Start marker Measurement Min Max Avg. Stdev Device Start marker Measurement Min Max Avg. Stdev
MR:xemﬂnvimﬂon 96 217 142 18 Mlx:semr’mum!ion 77 215 152 22
Mo pandie-reguest 876 1363 1095 101 1 s Mo handiereuse 748 925 831 42
1 Ss—send-invitation Mio—send-response o1 1392 1127 102 Ssendumtaton Mao—sendreuseaccepred 776 959 861 43
M i—sent—response 1420 1861 1674 105 M, _sentreuseaccepted 1102 1359 1235 52
Mischote-comiae 2290 2994 2560 151 Mo % 108 s 5
M3 send—request 31 75 45 6 2 S, M, 375 541 459 36
Miszsent—request 524 1005 729 107 M pandiereuseaccepted 1205 1469 1324 55
2 Se— M5 pandie—response 1544 1977 1776 102
M 6=send—complete 1552 1987 1786 102
M7= sent—complere 1918 2640 2203 156 Table 7

On device 2, the start marker (Sq) is placed right before handling
the invitation. The first measurement M;3, measures the duration be-
fore sending a connection request in response to the invitation, and
measurement M;, is the duration when it has been sent over BLE.
Measurement M 5 is the duration when handling the response message.
Lastly, measurement M;¢ is the duration before sending the connection
complete message and measurement M;, is the duration when the
message is sent over BLE.

Results. The performance results when a DID connection is not used
are shown in Table 5. First, on device 1 (inviter), the duration of the
measurements starts from the send marker (Ss). The duration when the
invitation is sent (Mg) are 142 ms, 1095 ms on handling the request
message (My), 1127 ms when start sending the response (M;y) and
1674 ms when the response is sent (M;), then the total duration when
handling the complete message (M;,) is 2560 ms.

For device 2 (invitee), the measurements start from when handling
the received invitation (Sg). On send request (M;3), the duration is
45 ms and when the request is sent (M;,) the duration is 729 ms.
On handling the response (M;5s) the duration is 1776 ms, whereas the
duration is 1786 ms when sending the complete message (M;q) and
2203 ms when sent (M;5).

8.3.2. Connection reuse

Differently from the previous test, this test considers the case of
when a DID connection is reused. On device 1, the start marker (Ss)
is placed right before the invitation object is created. Then, measure-
ment Mg, is the duration when having sent the invitation message.
Measurement (M;q) is the duration when handling the reuse message
received. Measurement M, includes the duration before sending the
reuse accepted message whereas measurement M,; is the duration
when the reuse accepted message has been sent over BLE.

On device 2, the start marker (Sq) is placed right before handling
the invitation. It includes three measurements. First, measurement My,
is the duration before sending the reuse message. Second, measurement
M,; is the duration when the reuse message has been sent over BLE.
Lastly, measurement M,, is the duration when handling the reuse
accepted message.

Results. An overview of the test results for the scenario when reusing
a DID connection are shown in Table 6. The measurements taken on
device 1 (inviter) start from the send invitation mark (S;). When the
invitation is sent (M;g), the average duration is 152 ms, whereas on
handle reuse (M;q) the duration is 831 ms. The duration is 861 ms
when send reuse accepted (M,;) and 1235 ms when sent (M,;). For
device 2 (invitee), the measurements use handle invitation (S¢) as the
start marker. Here, the average duration is 52 ms when send reuse

14

The average reported performance for presenting and verifying proofs over BLE.
M,s=sent presentation request, M,s=handle presentation, M,,=validated presen-
tation submission, Myg=accepted invitation, M,o=verified presentation, Mjs,=send
presentation, Mj, =sent presentation.

Reuse Device 1 Device 2
S7:scnd[rrevrnlnlmnrfqumi Ss— S 1 q
Mys My My, My My EN Mg,

No 425 1994 2486 2707 5217 17 1134

Yes 513 2093 2589 1359 4032 19 1138

(M,,) and 459 ms when sent (M,3), and 1324 ms when handling the
reuse accepted message (My,).

8.4. Presentation exchange over BLE

This test reports on the performance results for the presentation
exchange over BLE, including the DID connection establishment flow,
using the two scenarios. These scenarios are whether DID connection
reuse is used or not. In this test, device 1 acts as the verifier and device
2 acts as the prover. When running the tests, all steps that would require
interactions by the user are performed automatically by the system, i.e
both invitations and presentations requests are accepted automatically
such that no user involvement is needed during the testing.

On device 1, the start marker (Sg) is placed right before creating
the invitation. Then measurement M,g is the duration from the start
marker and until the invitation has been accepted. Measurement Myq
is the duration when the presentation has been verified and covers
the entire flow used in the access control process. The two scenarios
of whether DID connection is reused or not have been tested. On the
other hand, the start marker (S;) is used when measuring only the
presentation exchange flow part and is placed right before sending
the presentation request message, it excludes the duration taken for
the DID connection establishment. Then measurement (M,s) is the
duration when the request has been sent over BLE. Measurement (Myg)
is the duration when handling the received presentation from the other
device. In addition, measurement (M,;) reports the duration when
the presentation submission contained in the presentation has been
verified.

On device 2, the start marker (Sy) is placed right before handling the
presentation request. Then measurement Ms, is taken before sending
the presentation. It therefore includes the time to handle the pre-
sentation request. Then measurement Ms; is the duration when the
presentation has been sent over BLE to the verifier.

Results. An overview of the results is shown in Table 7. On device 1 and
when DID connection reuse is not used, it is observed that the average
duration from sending the presentation request (S;) is 425 ms on sent
presentations request (Mys), 1994 ms on handle presentation (Myg)

A. Enge et al.

and 2486 ms when validated presentation submission (M,;). When
looking at the duration from the created invitation marker (Sg), the
duration on accepted invitation (M,g) is 2707 ms and 5217 ms when
verified presentation (M,g). On the other hand when reuse is used,
from presentation request marker (S;), the average duration on sent
presentation request (Mys) is 513 ms, 2093 ms on handle presentation
(Mj) and 2589 ms when validated presentation submission (Myy).
From the created invitation marker (Sg), the duration is 1359 ms (Myg)
on accepted invitation and 4032 ms when verified presentation (Myg).

For device 2, the measurements start from handle presentation
request (Sy). When no reuse is used, the average duration is 17 ms on
send presentation (M3y) and 1134 ms when the presentation is sent
(M3;). When reuse is used, the send presentation (M) has a duration
of 19 ms and 1138 ms when sent (Mgz;).

9. Discussion

In this section, a general discussion of the proposed proof-of-concept
and the performance is given.

Performance. When we look at all of the performance data (Sec-
tion 8), we can see that the time it takes to establish the BLE connection
between the two devices is the most time-consuming process. This
phase spends on average 212 ms before the device is found and 1691 ms
when the services on the GATT server have been discovered and mes-
sages are ready to be sent. Once the connection has been established,
a 1000-byte message payload was transmitted to the other device in
459 ms on average, including the time it takes to encrypt the message
using authcrypt, using a MTU of 509 bytes. Different BLE connection
parameters could have been used to get different results. If low energy
consumption is a requirement, the time taken to establish the BLE
connection would have been longer since the performance was tested
on Android with a low latency, high power mode when advertising.

For sending the messages, a packing mode of none was used as
the baseline for testing the performance when sending unencrypted
DIDComm messages. When the packing mode is set to none, meaning
that no encryption is applied, the overhead is 318 bytes for all different
content lengths. On the other hand, when anoncrypt and autherypt
is used the message payload for a basic message with content length
10 is 951 and 1105 bytes, respectively. We can therefore see that the
message payload relative to the content length increases more when
using encryption than when the messages are not encrypted. As seen in
Table 3, the anoncrypt and authcrypt algorithms are relatively similar
in terms of the produced message payload after packing the message
for each of the content lengths.

When sending messages over BLE, the ratio between content length
and message payload is important because higher payloads require
more message packets to be sent. Message payloads of fewer than 509
bytes could be sent in a single message packet because the MTU be-
tween the two devices was set to 509 during testing. This is evidenced
by the fact that sending a message with a payload less than 509 takes
about the same amount of time.

The various differences seen across a few measurements that should
report similar results may be due to other underlying factors lower
down the stack or in the operating system that causes the process to
take less or more time in some circumstances. We had no influence
over these factors because they are handled by the Android operating
system and the React native framework on which the app is based such
as a resource reallocation. Comparing the data transfer speed when
sending an encrypted DIDComm message, excluding the duration to
encrypt it, over BLE using anoncrypt and authcrypt gives reasonable
results when comparing it to other applications [38,44,45]. As seen
in BLE, although the theoretical data throughput is around 230 kbps,
the analyzed applications reached a limit of around 100kbps [43]. Our
result reported the data transfer rates for the anoncrypt to be 92.8kbps,
and 94.4kbps for authcrypt. When comparing the two cases of reusing
a DID connection against not reusing a DID connection, we can see

15

Computer Networks 219 (2022) 109434

that the overall time to finish the DID connection establishment from
sending the invitation takes on average 2560 ms when not reusing
the connection and 1235 ms when reusing the connection. Therefore,
reusing an existing DID connection takes substantially less time.

When using no reuse and reuse connections, the time to complete
the presentation exchange from sending the request to the presenta-
tion submission is validated takes on average 2489 ms and 2589 ms,
respectively. Because the presentation request is sent after the DID
connection is established, the reported results should be similar, but
this could be due to some underlying factors. When comparing the
time from creating the invitation to the time it takes to have verified
the presentation, the two scenarios produce different results. This is
because the process includes the establishing of a DID connection.
When not reusing a DID connection, the total duration is 5217 ms, and
when reusing the DID connection, the time is 4032 ms.

The overall transfer speed of which the messages are sent depends
on a variety of factors, including message payload size, data overhead,
packet loss, whether packet acknowledgment is used, and interference
during transmission. For achieving higher throughput in BLE devices,
five methods can be applied [60]: First, increasing the connection
interval parameters allows faster transfer. Second, when performing
operations on the attributes and sending messages, commands and
notifications can be used instead of request and indications. Third,
increasing the MTU causes more data to be transmitted in each packet
therefore achieving higher throughput. Fourth, take advantage of the
Data Packet Length Extension (DLE) which reduces overhead during
transmission. Last, enable 2M PHY on devices that support Bluetooth
5.0 and above. Some of these methods are used in the proposed system.
The effect of this, however, will vary based on the BLE device used, as
the capabilities enabled by each device may vary. Also the message
data needed to be transmitted could be reduced by applying different
compression and encoding techniques.

Security. There are many components related to the system that
concerns the security and privacy. As covered in the background sec-
tion, both BLE and DIDComm already have security and privacy fea-
tures built into their protocols for allowing secure messaging and
communication. These individual features are not analyzed in this
paper, but we instead focus on the combination of BLE and DIDComm
and how it affects the security as a whole during the initial connection
establishment and message exchange under different scenarios. The
steps that are considered are from the beginning of creating an OOB
message, and until the DIDs have been securely exchanged in a trusted
manner. Only direct one-to-one messaging between devices over BLE
is included, and both transport layer security and application layer
security is discussed.

Before or after the inviter shares the OOB invitation message,
it starts to advertise a service UUID. This makes the inviter device
discoverable to other devices. Another device can then find and con-
nect with the inviter’s device by utilizing the information obtained
from the OOB. The OOB invitation message is a plaintext DIDComm
message without any encryption applied and is used for bootstrapping
connections. Moreover, the OOB message contains a BLE service UUID
encoded as part of the invitation in a service endpoint attribute field
which looks like: “ble/84a4fc0f-a310-4629-885d-83d95ebc58e3”. This
service UUID with a “ble/” prefix will be referred to as the BLE service
UUID. A connecting device can then filter for available BLE devices
found during scanning which has the same advertised service UUID as
the BLE service UUID, and once a matching device is found, it initiates
the BLE connection.

Service endpoints can cause privacy leakage as it is used to identify
a device. In addition to be included in OOB messages, service endpoints
are also included in the DID documents shared during DID connection
and is needed by other devices as a way of specifying how a DID with
associated device or agent can be reached. The broad disclosure of
service endpoints may provide a unique fingerprint that can be used to
correlate multiple identifiers in use by a single party. In the proposed

A. Enge et al.

system the service UUID being used as the service endpoint for a DID
is created during the application’s setup phase and is considered static;
however, it may be rotated afterwards to avoid tracking and for privacy
purposes. In this case, because the service UUID is required to identify
the device associated with a specific DID (as stored in the service
endpoint), the new service UUID would need to be shared with existing
DID connections in order to link the new BLE device address to the DID.

A MITM attack could occur during the connection process since
there is no method to prohibit other devices from advertising with the
same BLE service UUID. This implies that the device could connect to a
device other than the one that originally created the OOB. To prevent
tampering with the data, the exchange of DID and related documents
must take place via a BLE secure connection. Because the inviter’s DID
and public key are also contained in the OOB message, any response to
this invitation can be encrypted to this DID using the included public
key.

An authentication system can have been employed to counteract
these spoofing attempts. During pairing, BLE has several methods for
authenticating the other device. Also, once the DID connection is
established, a key verification mechanism, such as manually comparing
the public keys using a hash or QR-code, could have been utilized
to validate and authenticate the other device [49]. We will not go
into detail of the privacy and security of BLE which has already been
analyzed to great extent [1,42].

When the BLE connection is established, the DIDs can be exchanged
over this BLE connection. This process consists of two cases. First, if the
devices have not been connected before, they need to exchange public
keys. The key exchange is performed when the DID documents are
shared between the parties using the DID connection exchange protocol
as described earlier in order to establish a secure DID connection. This
will leave each peer knowing each other’s did:key and the public key
which can be used to encrypt the messages during device messaging
at the application layer. Second, if the public keys have already been
exchanged, the devices can choose to reuse the DID connection. After
the Bluetooth connection is established and the DID exchange protocol
has successfully completed, then they become each other’s contact,
and messages can be securely exchanged between them using end-to-
end encryption (E2EE) in a trusted manner providing both message
encryption and authentication. E2EE protects content from being read
by anyone who does not have the private key required for decryption.
Having encryption at the application level is recommended as one of
the security controls defined in the National Institute of Standards and
Technology (NIST) Bluetooth Security Guide [61].

Another security and privacy-preserving method is DID rotation. A
DID rotation can be performed in order to change from one DID to
another DID. Although it is a supported DIDcomm feature, it has not
been implemented in the proof-of-concept application. One could, for
example, perform a DID rotation during the DID exchange protocol
because the OOB invitation message is sent unencrypted and therefore
the DID used in the invitation should not be considered private.

In addition, regularly rotating the keys is advised for minimizing
risk in the event of a key compromise. Any updates to the cryptographic
keys in the DID document is handled by the corresponding DID method.
However, because did:key does not support updates to the DID docu-
ment without changing the DID itself, a DID rotation is required if keys
must be updated. An alternative approach is to use the did:peer method
which support updates to the DID document.

This paragraph provides an explanation on how a message is trans-
ferred securely from the sender to the receiver with respect to the
used protocols. Each message is sent as packets over a BLE connection
either using BLE pairing or not. The Bluetooth pairing and DIDComm
encrypted messages enforce security on different layers. Since encryp-
tion can be applied in either of these layers (the transport layer or
application layer), several combinations of encryption are possible:

* Bluetooth pairing and non-encrypted DIDComm message

16

Computer Networks 219 (2022) 109434

+ Bluetooth pairing and encrypted DIDComm message
+ No Bluetooth pairing and DIDComm non-encrypted message
» No Bluetooth pairing and DIDComm encrypted message

In analogy to how TLS may be used to provide additional security
by applying transport layer encryption to DIDComm messages sent over
HTTP, Bluetooth pairing can be used to encrypt the channel between
two connected BLE devices and provide device authentication, while at
the same time encryption of the DIDComm messages ensures security at
the application level. Both BLE and DIDComm require a connection to
first be established between two devices before a secure communication
channel can be provided. In the proposed architecture, a secure Blue-
tooth connection is first established, followed by a exchange of peer
DIDs over this BLE channel that relies on the security provided by this
channel. Furthermore, replay attacks can be prevented by identifying
each message using an id that can later be used to check if the message
has previously been received.

Encrypted messages can be sent at the application layer after the
DIDs have been shared. These messages follow the format as specified
in the DIDComm messaging specifications and can use different encryp-
tion schemes depending on the packing mode. It also supports message
authentication.

The JOSE (JSON Object Signing and Encryption) [62] framework
consists of numerous standardized algorithms and formats for repre-
senting JSON data in encrypted or signed form. For encrypted content,
JOSE follows the JWE specification, while signed content is formatted
according to JWS, and the cryptographic algorithms is specified within
JWA. DIDComm messages are based on JOSE and use a subset of
the JSON Web Algorithms for encrypting the messages with standard
methods, such as ECDH.

The supported encryption schemes are defined in the specifications
and will not be covered in detail here. The proof-of-concept implemen-
tation has not been tested for vulnerabilities. Messages are encrypted
using the “pack” function as provided by the Veramo framework.
Upon receiving a message, the message payload is decrypted using the
“unpack” function.

Interoperability. Interoperability is a critical feature of any SSI
solution in order for it to be as widely used as possible, and it can
exist at several levels. Here the focus will be on the technological
interoperability and the various layers of the Trust over IP stack [2].
In addition, the high-level design given in Section 5 demonstrates how
the system can be interconnected with other systems. The architecture
allows for loose connectivity between components, allowing it to work
with a variety of technologies. Other wireless technology, for instance,
could be utilized to send a message from one device to another.

Many alternative DID approaches have been developed for various
reasons [15]. However, for creating and resolving DIDs, the proof-
of-concept application presently only supports the did:key method.
This means the solution is incompatible with DIDs created with other
methods, such as the did:peer method.

JSON Schema [63] provides a mechanism for validating the data
structure and content of a verifiable credential in a standard way. A
schema is responsible for defining the template used in creating verifi-
able credentials that are interoperable with credentials that utilize the
same schema. In the proposed architecture for access control, schemas
are also used as a template for issuing the access control verifiable
credentials.

JSON-LD [64] is a lightweight serialization format for linked data
based on JSON. It has been designed for web-based environments and
compatible with systems that use JSON to assure compatibility. W3C
creates the specifications, and the current version is 1.1. Linked data
allows data to be linked in a way that machines can understand and
generates a network of data that can be followed by links throughout
the web. In general, the JSON-LD document’s data model can be
represented as a labeled directed network with nodes connected by
arcs, where the node can either be a resource with properties or the
data values of the property.

A. Enge et al.

Using JSON-LD could make the proposed system more interopera-
ble, however as JSON-LD context is usually retrieved from the Internet
the system will not function if the Internet connectivity is unavailable.
In contrast to a JWT certificate, JSON-LD relies on the contexts to
verify the documents. Caching remote contexts in order to make them
accessible for future use when the Internet is unavailable is one method
to tackle this issue. This is also a recommended strategy for maintaining
privacy and avoiding tracking. A cache of all the contexts used during
access control is made available in the implementation, eliminating the
requirement for remote fetching of the relevant contexts.

Different systems may use various contexts as specified by JSON-
LD. Since verifiable credentials allow specifying the context of a VC, it
is important that organizations define contexts that are interoperable
across domains. In order to implement the access control verifiable
credential, a new context was created specifically for it. However in
other scenarios this context should be considered and be carefully
defined according to each organization’s needs in order to be widely
usable.

A verifiable credential’s data and proof formats can differ, and
they can be represented in JSON or JSON-LD. The VCs and VPs are
represented using JSON-LD in this implementation. For enforcing the
data model, a VC can employ a variety of technologies. It may include
context, schema, and type properties, each of which serves a different
purpose. The type parameter is used to identify the VC and its collection
of claims. Multiple types can be given in a single VC, but all credentials
must have the type “VerifiableCredential”. A verifier, for example, can
ask for VC that are of a specific type. This type property could be used
by a JSON-LD processor to enforce the VC’s semantics.

The context attribute is used to express the meaning of the data in
the VC in a way that a computer can understand. A VC can have many
contexts, however the “https://www.w3.0rg/2018/credentials/v1”
context is required for all VCs. The credential schema, on the other
hand, serves as a template for issuing credentials by defining the
credential structure and related data types for each property within
the VC.

Both the context and credential schema properties can be used
to define the structure, but when used together, they provide more
assurance about the semantics and data types required [59]. In this
current implementation we use a JSON-LD processor to enforce the
semantics of the VCs and VPs. In addition, the JSON schemas are
used in the implementation by verifier and holder to find candidate
and validate credentials that meet the requirements of the presentation
definition.

Because there is no agreed-upon standard, the developed applica-
tion relies on the custom DIDComm BLE library for message transfer,
which may cause compatibility issues with other solutions that use BLE
for agent-to-agent communication. It contains several steps. First, there
is the device discovery and identification process. Second, a common
service and characteristics should be defined in order for devices to per-
form service discovery in an interoperable manner. Third, an agreement
on the MTU and whether pairing is required needs to be determined. All
of these elements have the potential to make the task more complicated.
As a result, having a standard for employing BLE as the transport layer
for DIDComm is essential. DIF has a page on GitHub that details a
method for accomplishing DIDComm via Bluetooth [46], which relies
on a method of discovering devices that support the DIDComm protocol
using a shared UUID. In our implementation, however, we used a
random self-generated BLE service UUID to identify the advertising
device linked with a DID, which can also be stored in the service
endpoint as an address (the BLE service UUID) for reaching this device.
Because the Bluetooth Low Energy standard does not include official
support for serial ports, multiple custom profiles [65] have been created
to enable asynchronous serial communication between devices.

The DIDComm messaging protocol defines the core data format
for the messages. It defines the formats and types of messages. The

17

Computer Networks 219 (2022) 109434

implemented application uses the DIDComm v2 reference implemen-
tation and should therefore be interoperable with other agents that
use the same implementation on this level, although this is not tested.
Moreover, because DIDComm relies on other protocols to achieve
higher-level functionality it needs to implement these as well in order
to achieve those specific functionality. For instance, the presentation
exchange protocol.

Technology. Using Bluetooth Low Energy as the wireless technol-
ogy for transferring the messages is advantageous because it is built into
the majority of mobile devices. It is widely used in IoT and is energy
efficient. It does not require other external infrastructure. Combining
the DIDComm messaging protocol with Bluetooth Low Energy as the
transport layer allows messages to be transmitted wirelessly while
retaining the DIDComm benefits for secure and authenticated messages
at the application-layer. Because the devices must be in close proximity
to each other in order to communicate, only these devices may be able
to use the access control system. However, if the devices are not within
range, they will be unable to use the system.

Constrained devices introduce additional challenges when integrat-
ing SSI. Some of these have already been pointed out by Fedrech-
eski et al. [39]. These are related to asymmetric cryptography, com-
munication overhead, DID resolution, traceability and the available
frameworks for building the software.

NFC-tags were used in the approach to hold the OOB invitation used
to bootstrap the connection process. It included using a NTAG215 with
492 bytes available for storage. After the base64 URL encoding the
OOB message and writing it to the tag, 463 bytes of the total 492 bytes
available was used. This shows that the invitation was able to fit the
NFC-tag, however the OOB contains some overhead which could have
reduced the necessary bytes. Also, since DIDComm relies on JSON for
serialization, it causes some data overhead. Fedrecheski et al. [66] also
proposed a method for reducing the data overhead of DID documents
and DIDComm which could be utilized in the next iterations of PoC
application.

Most authentication systems rely on both parties having an active
Internet connection during the operation [3]. In our proof-of-concept
implementation, instead of using a public-ledger to resolve DIDs, the
other peer’s DID documents are saved on their respective devices. This
allows the system to function without connectivity to the Internet,
which was one of the main objectives. However, without the Internet
connectivity public peer discovery is not possible. To exchange DIDs,
the system relies on two devices being in close proximity to one
another. This is mostly used for one-to-one and one-to-many connec-
tions when Bluetooth protocol is used. In the absence of a Bluetooth
connection, secure communication can still take place between the
DIDs, because it may be contacted using other methods as specified
in the service endpoint, for example NFC.

We concentrated on creating a server-less agent that operates with-
out connection to the Internet. This was made possible by using a
smartphone-based edge agent and the protocols outlined above. The
proof-of-concept focuses on the Android platform, and it was created
using Native Module for Android to provide the functionality required
for BLE operations. The React Native framework consumes the API of-
fered by this Native Module. Other Native Modules might be developed
on other platforms to give the same BLE capabilities, which could then
be used by React Native to make the implementation cross-platform.

Some of the technology used was experimental or in the early stages
of development. However, we were able to evaluate the performance
of messaging and access control over BLE. This research focused on
employing a mobile application to enable access control between two
devices in an offline environments. The same concepts might be applied
to various categories of access control systems. However, more research
into how the system functions in environments that should be able to
handle multiple devices at the same time is still needed.

In addition, the system’s access control was based on the RBAC
model. As the number of roles grows within the RBAC, the complexity

A. Enge et al.

increases making it more difficult to manage. An Attribute-Based Access
Control (ABAC) model could be used instead to have more flexibil-
ity [67]. Instead of simply assigning roles, the access control verifiable
credential might be extended to allow an issuer to define any number
of attributes within the VC. Based on these attributes, the verifier can
decide whether authorization is given or denied.

10. Conclusion

The full potential of a system for achieving offline decentralized
messaging and access control has yet to be explored in current research
into SSI ecosystems. Our project investigated an offline messaging and
access control case between two devices that used open SSI standards
and Bluetooth Low Energy as the wireless communication technol-
ogy. A high-level architecture was developed to show how the system
supports loose coupling and interoperability with existing protocols.
The offline mode was possible due to the decentralized nature of self-
sovereign identity and DIDComm. Identity and access management
procedures are carried out locally on peer devices rather than by a
central authority or a third party, for which the Internet connectivity
is necessary. Using a combination of emerging open SSI protocols
together with Bluetooth Low Energy as the wireless technology, a
system for secure and trusted peer-to-peer communication has been
demonstrated. For achieving the secure transport of messages and
the credentials exchanged between the devices, DIDComm messaging
protocol was used. The request and verification of credentials was made
using the presentation exchange protocol. We assessed the performance
of the overall system. Other systems with equivalent capabilities were
not available, therefore doing direct comparison of the performance
was not possible. However, the performance findings show that com-
mon data flows between agents are feasible for practical applications,
though there are still areas where improvements could be made, such as
initial bootstrapping time, improved throughput, more formal analysis
of privacy and security properties. Finally, we determined that the
most difficult stage is bootstrapping the initial connection required to
establish a secure communication channel, which includes ensuring
that a device connects to the correct DID device.

11. Future work

We hope that this research will be useful to future developers
who want to incorporate self-sovereign identity functionality into their
applications. By building on the insights gained from this study, it may
open up new opportunities in other domains that can extend the system
to other use cases. Future IoT studies looking into decentralized secure
messaging or identity and access management could benefit from this as
well. Furthermore, while this work focuses on the performance of using
BLE as the transport mechanism for agent-to-agent communication, the
access control functionality given in this project is rather simplistic;
more advanced models can be investigated. It would also be interesting
to look into how this could be extended to environments with many
devices, as the current project focuses on communication between two
devices.

Future research could delve more into the mechanisms for boot-
strapping the connection used for establishing a secure peer-to-peer DID
connection with a device in an offline environment using Bluetooth Low
Energy or other technologies, as well as looking into performance opti-
mizations. It is also possible to apply the technique to other peer-to-peer
wireless technologies such as NFC and Wi-Fi Direct.

CRediT authorship contribution statement

Alexander Enge: Conception and design of study, Acquisition of
data, Analysis and/or interpretation of data, Writing — original draft,
Writing — review & editing. Abylay Satybaldy: Conception and de-
sign of study, Acquisition of data, Analysis and/or interpretation of
data, Writing — original draft, Writing — review & editing. Mariusz
Nowostawski: Conception and design of study, Analysis and/or inter-
pretation of data, Writing — review & editing.

18

Computer Networks 219 (2022) 109434
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.
Acknowledgment

All authors approved the version of the manuscript to be published.
References

[1] A. Barua, M.A. Al Alamin, M.S. Hossain, E. Hossain, Security and privacy threats
for bluetooth low energy in IoT and wearable devices: A comprehensive survey,
IEEE Open J. Commun. Soc. (2022).

M. Davie, D. Gisolfi, D. Hardman, J. Jordan, D. O’Donnell, D. Reed, The trust
over ip stack, IEEE Commun. Stand. Mag. 3 (4) (2019) 46-51.

A. Abraham, S. More, C. Rabensteiner, F. Horandner, Revocable and offline-
verifiable self-sovereign identities, in: 2020 IEEE 19th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
IEEE, pp. 1020-1027.

G. Laatikainen, T. Kolehmainen, P. Abrahamsson, Self-sovereign identity ecosys-
tems: Benefits and challenges, in: Scandinavian Conference on Information
Systems, Association for Information Systems.

G. Laatikainen, T. Kolehmainen, M. Li, M. Hautala, A. Kettunen, P. Abrahamsson,
Towards a trustful digital world: exploring self-sovereign identity ecosystems,
2021, arXiv preprint arXiv:2105.15131.

R. Soltani, U.T. Nguyen, A. An, A survey of self-sovereign identity ecosystem,
Secur. Commun. Netw. 2021 (2021).

A. Miihle, A. Griiner, T. Gayvoronskaya, C. Meinel, A survey on essential
components of a self-sovereign identity, Comp. Sci. Rev. 30 (2018) 80-86.
Statista, Share of internet users in Africa as of december 2020, 2020,
Available: https://www.statista.com/statistics/1124283/internet- penetration-in-
africa-by-country/, Accessed 22 March 2022.

W3C Credential Community Group, Decentralized identifiers, 2022, Available at
https://www.w3.org/TR/did-core/, Accessed 13 May 2022.

W3C, Verifiable credentials data model 1.0, 2022, Available at https://www.w3.
org/TR/vc-data-model/, Accessed 20 May 2022.

DIF, DIDComm Messaging Specification, 2022, https://identity.foundation/
didcomm-messaging/spec/, Accessed 28 March 2022.

Decentralized Identity Foundation (DIF), DIF presentation exchange, 2022, https:
//identity.foundation/presentation-exchange/, Accessed 18 June 2022.

AH. Enge, A. Satybaldy, M. Nowostawski, An architectural framework for
enabling secure decentralized P2P messaging using DIDComm and Bluetooth
Low Energy, in: 2022 IEEE 46th Annual Computers, Software, and Applications
Conference, COMPSAC, IEEE, 2022, pp. 1579-1586.

G. Kellogg, P.-A. Champin, JSON-LD 1.1-A JSON-based serialization for linked
data (W3C working draft), Proposed Standard (2019).

W. Fdhila, N. Stifter, K. Kostal, C. Saglam, M. Sabadello, Methods for decentral-
ized identities: Evaluation and insights, in: International Conference on Business
Process Management, Springer, pp. 119-135.

W3C, The did:key method v0.7, 2022, Available at https://w3c-ccg.github.io/
did-method-key/, Accessed 10 May 2022.

DIF, Peer DID method specification, 2022, https://identity.foundation/peer-did-
method-spec/, Accessed 8 May 2022.

DIF, Decentralized identity foundation, 2022, Available at https://identity.
foundation, Accessed 10 March 2022.

Internet Engineering Task Force (IETF), JSON web token, 2022, https://
datatracker.ietf.org/doc/html/rfc7519, Accessed 4 June 2022.

A. Preukschat, D. Reed, Self-Sovereign Identity, Manning Publications, 2021.
Hyperledger, Aries RFC 0046: Mediators and relays, 2020, https://github.com/
hyperledger/aries-rfcs/tree/main/concepts/0046-mediators-and-relays, Accessed
4 March 2022.

Internet Engineering Task Force (IETF), JSON web message, 2022, https://tools.
ietf.org/id/draft-looker-jwm-01.html, Accessed 4 June 2022.

Internet Engineering Task Force (IETF), JSON web signature, 2022, https://
datatracker.ietf.org/doc/html/rfc7515, Accessed 4 June 2022.

IETF, JSON web encryption, 2022, https://datatracker.ietf.org/doc/html/
rfc7516, Accessed 4 June 2022.
IETF, JSON web algorithms,
rfc7518, Accessed 4 April 2022.
Internet Engineering Task Force (IETF), Public key authenticated encryption
for JOSE: ECDH-1PU, 2022, https://datatracker.ietf.org/doc/html/draft-madden-
jose-ecdh-1pu-04, Accessed 4 August 2022.

[2]

[3]

[4]

[5

[6]

[71

[8

[91
[10]
[11]
[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25] 2022, https://datatracker.ietf.org/doc/html/

[26]

http://refhub.elsevier.com/S1389-1286(22)00468-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb2
http://arxiv.org/abs/2105.15131
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb7
https://www.statista.com/statistics/1124283/internet-penetration-in-africa-by-country/
https://www.statista.com/statistics/1124283/internet-penetration-in-africa-by-country/
https://www.statista.com/statistics/1124283/internet-penetration-in-africa-by-country/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/presentation-exchange/
https://identity.foundation/presentation-exchange/
https://identity.foundation/presentation-exchange/
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb14
https://w3c-ccg.github.io/did-method-key/
https://w3c-ccg.github.io/did-method-key/
https://w3c-ccg.github.io/did-method-key/
https://identity.foundation/peer-did-method-spec/
https://identity.foundation/peer-did-method-spec/
https://identity.foundation/peer-did-method-spec/
https://identity.foundation
https://identity.foundation
https://identity.foundation
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb20
https://github.com/hyperledger/aries-rfcs/tree/main/concepts/0046-mediators-and-relays
https://github.com/hyperledger/aries-rfcs/tree/main/concepts/0046-mediators-and-relays
https://github.com/hyperledger/aries-rfcs/tree/main/concepts/0046-mediators-and-relays
https://tools.ietf.org/id/draft-looker-jwm-01.html
https://tools.ietf.org/id/draft-looker-jwm-01.html
https://tools.ietf.org/id/draft-looker-jwm-01.html
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/draft-madden-jose-ecdh-1pu-04
https://datatracker.ietf.org/doc/html/draft-madden-jose-ecdh-1pu-04
https://datatracker.ietf.org/doc/html/draft-madden-jose-ecdh-1pu-04

A. Enge et al.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Internet Engineering Task Force (IETF), Key agreement with elliptic curve
diffie-hellman ephemeral static (ECDH-ES), 2022, https://datatracker.ietf.org/
doc/html/rfc7518#section-4.6, Accessed 4 August 2022.

N. Mohammadzadeh, S. Dorri Nogoorani, J.L. Mufoz-Tapia, Decentralized
factoring for self-sovereign identities, Electronics 10 (12) (2021) 1467.

H. Kasyap, S. Tripathy, Privacy-preserving decentralized learning framework for
healthcare system, ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 17
(2s) (2021) 1-24.

P. Papadopoulos, W. Abramson, A.J. Hall, N. Pitropakis, W.J. Buchanan, Privacy
and trust redefined in federated machine learning, Mach. Learn. Knowl. Extr. 3
(2) (2021) 333-356.

N. Prakash, D.G. Michelson, C. Feng, Cvin: Connected vehicle information
network, in: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
IEEE, pp. 1-6.

Sovrin Foundation S.S.I. in IoT Task Force, SSI-and-IoT-whitepaper, 2020, https:
//sovrin.org/wp-content/uploads/SSI-and-loT-whitepaper.pdf, Accessed 4 March
2022.

Bluetooth Special Interest Group, Bluetooth® core specification, 2021, https:
//www.bluetooth.com/specifications/bluetooth-core-specification/, Accessed 8
March 2022.

L. Nao, BLE pairing and bonding, 2018, https://www.kynetics.com/docs/2018/
BLE_Pairing_and_bonding/, Accessed 4 March 2022.

Z.A. Lux, D. Thatmann, S. Zickau, F. Beierle, Distributed-Ledger-based authen-
tication with decentralized identifiers and verifiable credentials, in: 2020 2nd
Conference on Blockchain Research & Applications for Innovative Networks and
Services, BRAINS, IEEE, pp. 71-78.

N. Fotiou, V.A. Siris, G.C. Polyzos, Capability-based access control for multi-
tenant systems using oauth 2.0 and verifiable credentials, 2021, arXiv preprint
arXiv:2104.11515.

D. Lagutin, Y. Kortesniemi, N. Fotiou, V.A. Siris, Enabling decentralised iden-
tifiers and verifiable credentials for constrained iot devices using oauth-based
delegation, in: Workshop on Decentralized IoT Systems and Security, Internet
Society.

R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vasconcelos, S. Guerreiro, Ssibac:
self-sovereign identity based access control, in: 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), IEEE, pp. 1935-1943.

G. Fedrecheski, J.M. Rabaey, L.C. Costa, P.C.C. Ccori, W.T. Pereira, M.K. Zuffo,
Self-sovereign identity for iot environments: a perspective, in: 2020 Global
Internet of Things Summit (GIoTS), IEEE, pp. 1-6.

P.C. Bartolomeu, E. Vieira, S.M. Hosseini, J. Ferreira, Self-sovereign identity:
Use-cases, technologies, and challenges for industrial iot, in: 2019 24th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, pp. 1173-1180.

M. Grabatin, W. Hommel, Self-sovereign identity management in wireless ad
hoc mesh networks, in: 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM), IEEE, pp. 480-486.

M. César, T. Pawelke, J. Steffan, G. Terhorst, A survey on bluetooth low energy
security and privacy, Comput. Netw. (2022) 108712.

J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, D. Formica, Performance
evaluation of bluetooth low energy: A systematic review, Sensors 17 (12) (2017)
2898.

M.R. Albrecht, J. Blasco, R.B. Jensen, L. Marekova, Mesh messaging in large-scale
protests: Breaking bridgefy, IACR Cryptol. ePrint Arch. 2021 (2021) 214.

M.T. Schoolfield, Message transfer framework for mobile devices using bluetooth
low energy (Ph.D. thesis), 2015.

Decentralized Identity Foundation (DIF), DIDComm over Bluetooth, 2021, https:
//github.com/decentralized-identity/didcomm-bluetooth/blob/main/spec.md,
Accessed 8 February 2022.

A.M. Davis, Operational prototyping: A new development approach, IEEE Softw.
9 (5) (1992) 70-78.

S. Cucko, M. Turkanovic, Decentralized and self-sovereign identity: Systematic
mapping study, IEEE Access 9 (2021) 139009-139027.

N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, M. Smith, SoK:
secure messaging, in: 2015 IEEE Symposium on Security and Privacy, IEEE, pp.
232-249.

National Institute of Standards and Technology (NIST), Access control system -
glossary | CSRC, 2022, https://csre.nist.gov/glossary/term/access_control_system,
Accessed 28 May 2022.

S. Dramé-Maigné, M. Laurent, L. Castillo, H. Ganem, Centralized, distributed,
and everything in between: Reviewing access control solutions for the iot, ACM
Comput. Surv. 54 (7) (2021) 1-34.

Hyperledger.org, Aries RFC 0454: Present proof protocol 2.0, 2021, https:
//github.com/hyperledger/aries-rfcs/tree/main/features/0454- present-proof-v2,
Accessed 28 May 2022.

19

[53]

[54]
[55]
[56]
[57]
[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Computer Networks 219 (2022) 109434

D. Reed, Hyperledger aries: The next major step towards interoperable SSI,
2019, Available at https://www.evernym.com/blog/hyperledger-aries/, Accessed
18 April 2022.

Spruce, 2022, Available at https://www.spruceid.com/, Accessed 18 May 2022.
Trinsic, 2022, Available at https://trinsic.id/, Accessed 18 April 2022.

DIF, DIDComm Messaging V2, 2022, https://github.com/decentralized-identity/
didcomm-messaging, Accessed 20 March 2022.

React Native, Native modules intro react native, 2022, https://reactnative.dev/
docs/native-modules-intro, Accessed 28 May 2022.

Android, Bluetooth low energy | android open source project, 2022, https:
//source.android.com/devices/bluetooth/ble, Accessed 4 March 2022.

The World Wide Web Consortium (W3C), Verifiable credentials data model v1.1,
2022, https://www.w3.org/TR/vc-data-model/, Accessed 8 April 2022.

M. Afaneh, Bluetooth 5 speed: How to achieve maximum throughput for your
ble application, 2017, https://www.novelbits.io/bluetooth-5-speed-maximum-
throughput/, Accessed 4 March 2022.

B. Oniga, V. Dadarlat, A. Munteanu, Application-level authentication and en-
cryption atop bluetooth stack for sensitive data communication, in: 2020 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR),
IEEE, pp. 1-5.

Internet Engineering Task Force (IETF), Javascript object signing and encryption
(jose), 2022, https://datatracker.ietf.org/wg/jose/charter/, Accessed 13 October
2022.

Internet Engineering Task Force (IETF), JSON schema: A media type for
describing JSON documents, 2020, https://json-schema.org/draft/2020-12/json-
schema-core.html, Accessed 28 May 2022.

The World Wide Web Consortium (W3C), JSON-LD 1.1, 2020, https://www.w3.
org/TR/json-1d11/, Accessed 28 May 2022.

A. Letourneau, Bluetooth low energy serial: A valid design strategy?, 2019,
https://punchthrough.com/serial-over-ble/, Accessed 8 March 2022.

G. Fedrecheski, L.C. Costa, S. Afzal, J.M. Rabaey, R.D. Lopes, M.K. Zuffo, A
low-overhead approach for self-sovereign identity in IoT, 2021, arXiv preprint
arXiv:2107.10232.

K. Andersson, 1. You, F. Palmieri, Security and privacy for smart, connected, and
mobile IoT devices and platforms, Secur. Commun. Netw. 2018 (2018) 5346596,
http://dx.doi.org/10.1155/2018/5346596.

Alexander Enge recently graduated from the Norwegian
University of Science and Technology with a M.Sc. de-
gree in Applied Computer Science, where he specialized
in decentralized technologies and self-sovereign identity
systems. He has a B.Sc. degree in Computer Engineering.
Alexander is currently working as a software developer and
enjoys programming, always aiming to deliver high-quality
software for the user.

Abylay Satybaldy is a Ph.D. candidate at Computer Sci-
ence department of Norwegian University of Science and
Technology. His M.Sc. studies were focused on computer
networks. He is currently working on decentralized identity
systems and privacy-enhancing technologies.

Mariusz Nowostawski is an Associate Professor at Norwe-
gian University of Science and Technology. Previously, an
academic lecturer at University of Otago, New Zealand. His
M.Sc. studies were focused on AI and machine learning,
and his Ph.D. on autonomous systems and computational
modeling of the biological process of life. Passionate about
self-organizing systems, adaptive and autonomous com-
putation. Mariusz has worked on high-end networking
applications on GPUs and multicore systems with Sun Mi-
crosystems and Oracle. He is currently involved in forensics
research with Europol. Bitcoin anonymity. Cryptocurrencies.

https://datatracker.ietf.org/doc/html/rfc7518#section-4.6
https://datatracker.ietf.org/doc/html/rfc7518#section-4.6
https://datatracker.ietf.org/doc/html/rfc7518#section-4.6
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb30
https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf
https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf
https://sovrin.org/wp-content/uploads/SSI-and-IoT-whitepaper.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.kynetics.com/docs/2018/BLE_Pairing_and_bonding/
https://www.kynetics.com/docs/2018/BLE_Pairing_and_bonding/
https://www.kynetics.com/docs/2018/BLE_Pairing_and_bonding/
http://arxiv.org/abs/2104.11515
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb42
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb42
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb42
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb44
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb44
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb44
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb45
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb45
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb45
https://github.com/decentralized-identity/didcomm-bluetooth/blob/main/spec.md
https://github.com/decentralized-identity/didcomm-bluetooth/blob/main/spec.md
https://github.com/decentralized-identity/didcomm-bluetooth/blob/main/spec.md
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb47
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb47
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb47
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb48
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb48
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb48
https://csrc.nist.gov/glossary/term/access_control_system
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb51
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb51
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb51
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb51
http://refhub.elsevier.com/S1389-1286(22)00468-6/sb51
https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2
https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2
https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2
https://www.evernym.com/blog/hyperledger-aries/
https://www.spruceid.com/
https://trinsic.id/
https://github.com/decentralized-identity/didcomm-messaging
https://github.com/decentralized-identity/didcomm-messaging
https://github.com/decentralized-identity/didcomm-messaging
https://reactnative.dev/docs/native-modules-intro
https://reactnative.dev/docs/native-modules-intro
https://reactnative.dev/docs/native-modules-intro
https://source.android.com/devices/bluetooth/ble
https://source.android.com/devices/bluetooth/ble
https://source.android.com/devices/bluetooth/ble
https://www.w3.org/TR/vc-data-model/
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/
https://datatracker.ietf.org/wg/jose/charter/
https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://punchthrough.com/serial-over-ble/
http://arxiv.org/abs/2107.10232
http://dx.doi.org/10.1155/2018/5346596

	An offline mobile access control system based on self-sovereign identity standards
	Introduction
	Background
	Self-sovereign identity and decentralized technologies
	DIDComm
	Bluetooth Low Energy

	Related work
	Requirements
	Use case
	Functional requirements
	Non-functional requirements

	System Architecture
	Components
	Protocols
	Out-of-band message
	BLE connection establishment
	Device messaging
	DID connection establishment
	Presentation exchange

	Implementation
	Application screens

	Access control process
	Experimental results
	BLE Connection establishment
	Device messaging
	Sending and receiving a ping response over BLE

	DID Connection establishment over BLE
	No connection reuse
	Connection reuse

	Presentation exchange over BLE

	Discussion
	Conclusion
	Future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

