
International Journal of Impact Engineering 176 (2023) 104563

Available online 6 March 2023
0734-743X/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A non-linear viscoelastic material model with progressive damage based on 
microstructural evolution and phase transition in polycrystalline ice for 
design against ice impact 

Mojtaba Mokhtari *, Ekaterina Kim , Jørgen Amdahl 
Centre for Autonomous Marine Operations and Systems (AMOS), Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Norway   

A R T I C L E  I N F O   

Keywords: 
Ice impact 
Rate-dependent material 
Material model 
Damage model 
Viscoelasticity 
Multiphysics 

A B S T R A C T   

This study presents a nonlinear viscoelastic material model incorporating a progressive damage framework with 
an iterative algorithm for glacial/freshwater polycrystalline ice subject to compressive impact load induced by 
ice-structure interaction. The damage model accounts for microcracking, dynamic recrystallisation, pressure 
melting, and high-shear elastic failure with a pressure- and rate-dependent convex failure locus. The constitutive 
laws are written in Fortran and implemented as a vectorised user material (VUMAT) in Abaqus with three 
different numerical methods, Lagrangian FEM, coupled FEM-SPH, and ALE-FEM. The constitutive model together 
with the implemented numerical methods are validated against two different types of laboratory-scale physical 
tests, indentation of cone-shaped ice and triaxial creep. The proposed model implemented with the coupled FEM- 
SPH method enables simulation of the cyclic transition from solid-like intact ice to the fluid-like pulverised/ 
granular substance, progressively extruded with viscous rheology.   

1. Introduction 

From space to the Earth’s oceans, ice, in its different forms, poses a 
collision hazard to man-made structures [1–5]. Nevertheless, design 
against ice impact is still challenging due to incomplete knowledge 
regarding the behaviour of ice in different environments and engineer-
ing applications. This is because ice behaviour is associated with many 
uncertainties owing to its varied compositional and microstructural 
properties in different environments, as well as the phase transition and 
microstructural transformations in different loading conditions. Design 
against ice actions is of great concern in the maritime sector considering 
the extensive human activities in icy waters including shipping, natural 
resource exploration, commercial fisheries, and tourism, that have been 
on the rise in recent years. 

Numerical methods, in particular Finite Element Methods (FEM), are 
widely used to simulate and study the structural and dynamic behaviour 
of marine structures subject to ice impact. The accuracy and reliability of 
these simulations are highly dependent on the ice material model. 
However, there is still no universal or widely accepted material model 
for ice given its complex and rather stochastic behaviour. Extensive 
research has been done to understand the mechanical behaviour of ice in 
ice-structure collision scenarios. Nevertheless, there are still 

disagreements on the rheology of ice in marine structure-ice interaction 
scenarios, especially when ice undergoes high strain rates in collision 
events [6], for which the material models in the literature could be 
divided into two main groups in terms of their rheological behaviour, 
elastoplastic and viscoelastic. Many experimental studies support the 
viscoelastic behaviour of ice [7–16] in particular when the strain rate is 
lower than the ductile-to-brittle transition strain rate of ice, reported to 
be in the range of 10− 4–10− 2 s− 1 [17–25]. However, plasticity-based 
material models have been used far more often than viscoelastic 
models to simulate ice-structure interactions in particular collision 
scenarios [26]. There are several reasons as to why plasticity models are 
preferred over viscoelastic models as discussed in [26]. Despite the 
acceptable performance of plasticity models, there is still some debate 
on modelling ice with the viscoelastic theory for design against ice 
impact. This is because, even in high-speed impact scenarios, ice could 
undergo crushing cycles that involve the regions near the interaction 
interface crushed into a dense pulverised layer extruding with the 
viscous flow. The energy taken for the extrusion of this viscous substance 
is believed to be significant enough to affect the reaction force magni-
tude and oscillation pattern [16,27]. Also, simulating the extruding 
material could affect the contact area, thereby changing the reaction 
force profile. However, the literature is lacking finite element models 
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that could simulate the extruding material with the viscous flow in 
multiple crushing cycles as either the finite elements are deleted from 
the analysis before undergoing significant deformations or only one 
cycle of the crushing is simulated due to the numerical challenges. 
Therefore, a viscoelastic material model with progressive damage 
incorporating an iterative algorithm is developed herein as a vectorized 
user material (VUMAT) in FORTRAN for Abaqus 2019 [28] to simulate 
multiple crushing cycles of ice including the extrusion of the highly 
damaged viscous substance. 

The cone-shaped ice crushing tests with a flat indenter carried out by 
Kim et al. [29] are adopted to validate the viscoelastic material model 
presented in this study. These tests [29] have been commonly used in 
several studies to validate the ice material models employed for 
ice-structure interactions (e.g., [26,29-36]) for several reasons, 
including the accessibility of the information required for the numerical 
modelling of the tests. Besides, major spalling does not usually occur in 
the cone-shaped ice crushing tests which provides a good condition for 
validating the continuum mechanics-based material models such as 
those in [26] and the viscoelastic model presented herein. It is worth 
noting that natural ice samples incorporate several uncertainties such as 
inconsistent defects (large-scale unhealed cracks) and bubble densi-
ties/distributions and may not be ideal for first-line validation of the 
material models. On the contrary, laboratory-produced ice samples 
follow a standard preparation process ensuring consistent repeatable ice 
quality and crushing force results. Details of the cone-shaped ice 
crushing tests and other physical tests simulated herein to validate the 
viscoelastic material model are discussed in Section 3. 

2. Ice mechanics and viscoelasticity 

In a pioneering study, Glen [37] investigated the creep behaviour of 
polycrystalline ice by applying 1 to 10 bars compressive stresses on ice 
blocks with temperatures in the range of -13◦C to the melting point of 
ice. He proposed a power-law relation between the viscous/creep strain 
rate (termed ‘minimum flow rate’ in his study) and stress, 

ε̇c
= Bexp(− Q /RT)σn (1)  

where σ and ε̇c are stress and the creep strain rate of polycrystalline ice 
under uniaxial compression, respectively; B and n are constants, Q is the 
activation energy, R = 8.314 J/molK is the universal gas constant, and 
T is the absolute temperature in degrees Kelvin. The power-law in Eq. 
(1) has been endorsed in several investigations (e.g., [38–40]). 

In 1978, Sinha [8] developed a Burgers-type viscoelastic model for 
columnar-grained ice under uniaxial compressive load, normal to the 
columns. The total strain, ε, in his model was decomposed to three 
components, one instantaneous elastic component and two creep com-
ponents so that 

ε = εe + εd + εc (2)  

where εe is the ‘instantaneous elastic’ strain; εd and εc are the creep 
strain components termed ‘delayed elastic’ or ‘recoverable primary 

creep’ strain, and the ‘permanent viscous’ or ‘secondary creep’ strain. 
These components are outlined in Fig. 1. For clarity, εe, εd, and εcare 
henceforth termed ‘instantaneous elastic strain’, ‘delayed elastic strain’, 
and ‘secondary creep strain’, respectively. Based upon Glen’s law [37], 
Sinha [8] utilized the following power-law relation to define the sec-
ondary creep strain rate in columnar-grained ice. 

ε̇c
= ε̇c

0

(
σ
σ0

)m

(3)  

where ε̇c
0 is the reference secondary creep strain rate for unit stress (i.e., 

σ0=1 MPa), and m is a constant. Sinha [8] also developed an expression 
for the delayed elastic strain, 

εd = c
(σ

E

)ς[
1 − exp

{
− (aT t)b

}]
(4)  

where c, ς, aT , and b are constants; E and t are elastic modulus and time, 
respectively. Later, he modified this expression for polycrystalline ice 
[41] to include the grain size effect by replacing c with a grain size 
dependent term, c1(d1 /d), where c1=9 is a constant corresponding to 
the unit grain diameter (i.e., d1=1 mm) and d is the grain diameter. 
Jordaan and McKenna [42] extended Sinha’s model to a strict Burgers 
model (Fig. 1) with a nonlinear stress-dependent dashpot in the Kelvin 
unit so that 

εd =
σ

EK

[

1 − exp
{

−

∫ t

0

EK

μK(σd)
dt
}]

(5)  

where EK and μK are the elastic modulus of the spring and the viscosity of 
the dashpot in the Kelvin unit, respectively. 

The nonlinear viscoelastic model proposed by Jordaan and McKenna 
[42,43], which accounted for microstructural changes in crushing ice 
through a damage model based on Schapery’s continuum damage the-
ory [44,45], has been expanded in several studies (e.g., [12,46-50]). 
Based upon Jordaan and McKenna [42,43,51] and Jordaan et al. [27], 
Xiao [12] modelled the viscoelastic behaviour of ice with Eqs. (6)–(24). 
In Xiao’s study [12], the total strain rate is composed of instantaneous 
elastic strain rate, delayed elastic strain rate, and secondary creep strain 
rate, 

ε̇ij = ε̇e
ij + ε̇d

ij + ε̇c
ij (6)  

where ε̇ij, ε̇e
ij, ε̇d

ij, and ε̇c
ij are the total, instantaneous elastic, delayed 

elastic, and secondary creep strain rate tensors. Having the delayed 
elastic and secondary creep strains decomposed to deviatoric and 
volumetric parts, Eq. (6) can be rewritten as 

ε̇ij = ε̇e
ij + ėd

ij + ėc
ij + ε̇υδij (7)  

where ėd
ij and ėc

ij, defined by Eqs. (8) and (9), are the deviatoric parts of 
the delayed elastic and secondary creep strain rate tensors; δij is the 
Kronecker delta, and ε̇υ is the inelastic volumetric strain rate given by 
Eq. (10). ε̇υ accounts for the dilatation of ice undergoing cracking and 

Fig. 1. Burgers material; (a) body diagram; (b) typical strain response (blue dashed line) to constant stress (red solid line). Note s is the von Mises stress.  
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pulverization and also the compaction and sintering of crushed ice under 
high confining pressure [11,12,52-54]. 

ėd
ij =

3
2

sij

μK
(8)  

ėc
ij =

3
2

sij

μM
(9)  

ε̇υ
=

f3

p
s(ė − ėe) =

f3

p
s
(
ėd + ėc) (10)  

where sij is the deviatoric stress tensor; μM is the viscosity of the dashpot 
in the Maxwell unit; ė is the total equivalent strain rate composed of 
instantaneous elastic, ėe, delayed elastic, ėd, and secondary creep, ėc, 
components; s is the von Mises stress; f3 is a constant and p is the hy-
drostatic pressure. The viscosities of the Kelvin and Maxwell units in 
[12] were defined by 

μK =
s
ε̇d

0

(
σ0

s − Eked

)n

(11)  

μM =
s
ε̇c

0

(σ0

s

)m
(12)  

where ε̇d
0 and ε̇c

0 are the reference delayed elastic and secondary creep 
strain rates; σ0 is the reference stress; n and m are constants, and ed is the 
equivalent delayed strain expressed by 

ed =

∫ t

0
ėddt (13)  

Substituting Eq. (11) in Eq. (8) and Eq. (12) in Eq. (9) yields 

ėd
ij =

3
2
ε̇d

0

(
s − Eked

σ0

)nsij

s
(14)  

ėc
ij =

3
2
ε̇c

0

(
s

σ0

)msij

s
(15) 

According to [12,13], microstructural damage in ice can be modelled 
by multiplying an exponential term in the creep strain rates so that 

ėd
ij =

3
2
ε̇d

0

(
s − Eked

σ0

)nsij

s
exp(βdS) (16a)  

ėc
ij =

3
2
ε̇c

0

(
s

σ0

)msij

s
exp(βcS) (17)  

where βd and βc are constants known as creep enhancement factors/ 
parameters and S is the damage index function. Xiao [12] gave the 
following formulation for S based on the investigations carried out in 
[13,44,45,51,54-56]. 

S = S1 + S2 =

∫ t

0

{

f1(p)
(

s
s0

)q1

+ f2(p)exp
(

s
s0

)}

dt (18a)  

f1(p) =

⎧
⎪⎪⎨

⎪⎪⎩

a1

(

1 −
p
p1

)2

p < p1

0 p ≥ p1

(19a)  

f2(p) = a2

(
p
p2

)r

(20)  

where q1, a1, a2, p1, p2, and r are constants, and s0 is the reference stress 
of the damage model. For clarity, this damage model, defined by Eqs. 
(18a), Eq. (19a) and Eq. (20), is termed ‘DMa’ in this study, where DM 
stands for Damage Model. In Eq. (18a), S is comprised of two parts, S1 

and S2. The microcracking damage is modelled by S1 while S2 takes the 
pressure softening processes such as dynamic recrystallisation and 
pressure melting into account. In the absence of these microstructural 
changes, S is zero meaning that the exponential damage terms in Eqs. 
(16a) and (17) are ineffective (i.e., exp(0)=1). 

After ėd
ij, ė

c
ij, and ε̇υ are computed using Eqs. (16a), (17), and (10) in 

an explicit solver, the instantaneous elastic strain rate, ε̇e
ij, is found from 

Eq. (7), which is employed in stress increment, Δσij, calculations, 

Δσij = DijklΔεe
ij + ΔDijklεe

ij (21)  

Δεe
ij = ε̇e

ijdt (22)  

εe
ij =

1 + ν
EM

σij −
ν

EM
σkkδij (23)  

where εe
ij and σij are respectively the instantaneous elastic strain and the 

Cauchy stress tensors, and σkk is the sum of normal stresses; v and EM are 
respectively the Poisson’s ratio and the Maxwell spring stiffness (simu-
lating the instantaneous elastic response of ice); Dijkl is a component in 
the isotropic elastic stiffness tensor, D, that is a fourth-order tensor with 
minor symmetry (i.e. Dijkl = Djikl = Dijlk = Djilk). Using the elastic 
damage relation of Kachanov [57], ΔDijkl is expressed by 

ΔDijkl =
D0

ijkl

1 + C(S + ΔS)
−

D0
ijkl

1 + CS
(24)  

where the superscript 0 is the initial state index, and C is a proportional 
constant that is equal to one according to [49]. Eq. (24) is a simplified 
form of a more general formulation (see [11,12] for more information), 
which is valid only if C1 = C2 = C in 

E = E0(1 + C1S)− 1 (25)  

G = G0(1 + C2S)− 1 (26)  

where C1 and C2 are constants, andG is the shear modulus. 
Two recent studies [50,58] have reported that the viscoelastic model 

with the constitutive equations listed above Eqs. (6)–((24)) could pro-
duce unrealistically large stresses in numerical simulations. Shi et al. 
[58] reported that although the viscoelastic model well simulates 
compressive creep tests with relatively low and moderate strain rates, it 
might overestimate the ice strength in iceberg-ship collision scenarios 
where much higher strain rates due to short loading durations (0.01–1.0 
s) are induced. It was argued that the viscoelastic model does not ac-
count for the ductile to brittle transition so that the stress continues to 
increase exponentially with the strain rate even for the strain rates 
beyond the transition strain rate while the ice strength is shown to 
remain almost constant [17,18] upon a transition strain rate, ≈ 0.002 
s− 1. Recently, Turner [50] conducted a detailed and comprehensive 
study on the viscoelastic material model outlined above Eqs. (6)–((24)). 
He found that the viscoelastic model, implemented with FEM, occa-
sionally produced von Mises stresses significantly larger than those 
measured in his physical tests. The strength of ice samples in the phys-
ical tests — triaxial tests on cylindrical specimens of granular ice pre-
pared according to Stone et al. [59] — was found to remain under a 
certain value at which the samples failed. This upper limit of the ice 
strength, expressed with an equivalent (von Mises) stress of 26.0 ± 1.6 
MPa, was found to be associated with ‘high-shear elastic failure’ phe-
nomenon. Turner examined four different models to describe and 
numerically implement the high-shear elastic failure (HSEF), 

HSEF1 : σij =

⎧
⎪⎨

⎪⎩

σij s ≤ 26 MPa

σij
26
s

s > 26 MPa
(27)  
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HSEF2 : S1 =

{
S1 s ≤ 26 MPa

Smax s > 26 MPa
(28)  

HSEF3 : EM =

⎧
⎪⎨

⎪⎩

EM s ≤ 26 MPa

EM
26
s

s > 26 MPa
(29)  

HSEF4 : EM =

⎧
⎪⎨

⎪⎩

EM s ≤ 26 MPa
EM

100
s > 26 MPa

(30) 

HSEF1, enforcing a limit of 26.0 MPa on the von Mises stress, could 
not replicate the experimental results as it produced force-displacement 
(F-D) curves insensitive to the strain rate. Besides, this model could not 
develop the damage layer commonly observed in ice crushing tests. 
Consequently, HSEF1 was discarded [50]. The second model, HSEF2, 
suggests that the microcracking damage function, S1, in an element 
immediately reaches an upper limit, Smax=14.0, if the von Mises stress in 
that element exceeds the 26.0 MPa threshold. This model was also dis-
missed in part because it resulted in a sharp load drop with a dramatic 
increase in the size of the damage layer in just 0.002 s (due to the abrupt 
jump in the value of S1 to 14.0) while the damage layer development 
should be a continuous process according to experimental observations 
in ice indentation tests. The last two models, HSEF3 and HSEF4, reduce 
the elastic modulus when the von Mises stress exceeds the 26.0 MPa 
threshold, and this reduction is independent of the microstructural 
damage (i.e., microcracking/dynamic recrystallization). HSEF3 gradu-
ally reduces the elastic modulus by scaling it down in any time step that s 
exceeds 26.0 MPa, while HSEF4 enforces a sudden drastic drop on the 
elastic modulus a single time, by a factor of 100. Although HSEF3 and 
HSEF4 produced more satisfactory results than the first two models (i.e., 
HSEF1 and HSEF2), they contradict the theory of ‘constant elastic 
modulus’ established and validated earlier in Turner’s thesis [50] before 
investigating the HSEF effect. Besides, the physical meaning of HSEF3 
and HSEF4 models is unclear. Therefore, further theoretical and 
experimental work was recommended to better understand and 
numerically implement the high-shear elastic failure [50]. The delayed 
strain rate and the damage model were also expressed slightly differ-
ently in [50] by 

ėd
ij =

3
2
ε̇d

0sgn
(
s − Eked)

(
|s − Eked|

σ0

)nsij

s
exp(βdS) (16b)  

S = S1 + S2 =

∫ t

0

{

f1(p)
(

s
s0

)q1

+ f2(p)
(
2s/s0 − 1

)
}

dt (18b)  

f1(p) = a1exp
(

−
p
p1

)

(19b)  

where sgn(•) is the sign function. This relatively different damage model 
defined by Eq. (18b), Eq. (19b), and Eq. (20) is henceforth termed 
‘DMb’. 

The present study aims to present a nonlinear viscoelastic constitu-
tive model for simulating glacial/freshwater polycrystalline ice- 
structure collision with repeating cycles of crushing and viscous extru-
sion of ice. For this purpose, a combination of the constitutive equations 
presented by Xiao [12] and Turner [50], based on Jordaan and McKenna 
[42,43,51] and Jordaan et al. [27], are adopted as the foundation of the 
constitutive model presented herein. A progressive damage model with 
an iterative algorithm is proposed to address the issues regarding the 
unrealistically large stresses reported in [50,58]. The scalar limit of 26.0 
MPa for the von Mises stress proposed by Turner [50] is replaced with a 
strain-rate and pressure-dependent failure function with an elliptical 
locus in p − s space. Details are discussed in the following sections. 

3. Numerical modelling of physical tests and preliminary results 

Two different types of physical tests, indentation and creep, pub-
lished in the literature are simulated in the present study to examine and 
validate the constitutive equations. Details of the physical tests and the 
corresponding numerical models developed herein are discussed in this 
section. 

3.1. Creep tests 

Xiao [12] carried out triaxial compressive creep tests on cylindrical 
ice samples, shown schemetically in Fig. 2a, to validate the constitutive 
equations outlined in the previous section. The cylindrical specimens 
were made of laboratory-prepared granular ice, following the procedure 
detailed in [59]. The granular ice was produced in a cylindrical, acrylic 
mould with a diameter of 229 mm and a height of 303 mm. After filling 
with 2.00–3.36 mm ice seeds, the mould was flooded with distilled, 
deionized, deaerated water, and the freezing process was conducted at 
–10◦C. The products of the freezing process were then machined to 
cylinders with 70±0.05 mm in diameter and 175±1.0 mm in height. The 
triaxial compressive creep tests were conducted on both intact and 
pre-damaged specimens with a variety of axial loads and confining 
pressures. Three of these tests using intact specimens have been 
repeatedly employed in recent studies to validate the material models 
developed for simulating the viscoelastic behaviour of ice [58,60,61]. 
These three tests, also employed in the present study as a reference to 
validate the material model, include an intact ice specimen subject to a 
confining pressure of 10 MPa and an axial load that is different in each 
test (i.e., Pcnf=10 MPa and Pax=5, 7, and 10 MPa in Fig. 2). The loads are 
applied with a rectangular pulse profile (red solid line in Fig. 1b) so that 
an instant load with a constant magnitude is applied for 20 s followed by 
an instant unload to zero lasting for 20 s to measure the strain recovery 
(Fig. 3). Note that the unloading phase was longer than 20 s in the 
physical tests [12], but only 20 s of which was simulated in [60] to 
diminish the computational costs (the unloading phase was not simu-
lated in [58,61]). The total 40 s duration (20 s loading followed by 20 s 
unloading) is adequate for the model verification given that the duration 
of impact load in ice-structure collision events is much shorter than 40 s. 
In addition, the curves almost level out following 20 s of unloading. 

To simulate the triaxial creep tests in the present study, an axisym-
metric finite element model, shown in Fig. 2b was developed using 
Abaqus/CAE 2019 [28]. The material behaviour was modelled by the 
VUMAT demonstrated in Fig. 4 with the damage model DMa, termed 
hereafter ‘VUMAT-DMa’. This VUMAT is written in FORTRAN based on 

Fig. 2. (a) Illustration of the triaxial creep test specimen under confining 
pressure, Pcnf , and additional axial pressure, Pax, which together cause the 
compressive axial stress, σax = Pax + Pcnf . (b) The axisymmetric finite element 
model of the triaxial creep test developed in the present study. 
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the constitutive equations proposed by Xiao [12] (i.e., Eqs. (6)–(24)). 
The axisymmetric domain in Fig. 2b is discretised into 36 linear quad-
rilateral elements with reduced integration (CAX4R). The model was 
found insensitive to element size mostly due to the small deformations 
and in part because of the axisymmetric load and geometry. The axial 
strain results produced by the finite element models using the material 
parameters listed in Table 1 are plotted in Fig. 3, which correlate very 
closely with the experimental strain histories. It is worth noting that 3D 
hexahedral finite element models of the creep tests were also developed, 
and they produced essentially the same results as the axisymmetric 
models. For concision and clarity, only the results of the axisymmetric 
models are plotted in Fig. 3 

Despite modelling the same physical tests, different studies [12,58, 
60] have reported different material properties for the intact ice spec-
imen. While the elastic modulus of intact ice (modelled with the spring 
stiffness in the Maxwell unit, EM) was experimentally measured to be 9.5 
GPa in the reference study [12], the values 11.8 GPa and 14.0 GPa were 
used for the elastic modulus, EM, in [58] and [60], respectively (the 
elastic modulus 14.0 GPa is calculated from the shear and bulk moduli 
and Poisson’s ratio provided in [60] as this reference has not disclosed 
the value of EM). Given that the elastic modulus is a physical property 
found directly from the instantaneous response of the ice specimen, the 
9.5 GPa measured experimentally in [12] is bound to be the most ac-
curate value among the three reported values. Therefore, the elastic 
modulus of ice in the triaxial creep test simulations of the present study 
is set to 9.5 GPa. The elastic stiffness in the Kelvin unit, Ek, also varies 
significantly in the references noted above [12,58,60]. Ek in [58] and 
[60] is 8.36 GPa and 0.933 GPa, respectively (the value 0.933 GPa is 
calculated from the equations and the parameter values provided in [60] 
as the value of Ek is not reported in this reference). Xiao’s calibration 
study in [12], however, yielded Ek= 9.5 GPa. That said, Xiao also used a 
different value, 3.8 GPa, for Ek in another study [11] to simulate the 
triaxial creep tests with ice samples prepared and tested under the same 
conditions. These inconsistencies might be because Ek is a phenome-
nological parameter and its value could depend on the value of other 
phenomenological parameters. A calibration analysis in the present 
study gave 5.0 GPa for Ek which is between the two values reported in 
[11] and [12]. The values of the other parameters are listed in Table 1. 

3.2. Cone-shaped ice crushing tests 

The VUMAT-DMa accurately modelled the triaxial creep tests in the 
previous section. The capability of this VUMAT in modelling the pro-
gressive crushing of ice, typical in ice-structure collision events, is 
investigated in this section. Two ice crushing tests with flat rigid in-
denters, carried out by Kim et al. [29] with the experimental set-up 
displayed in Fig. 5a, are simulated. The only difference between the 
two tests is the indentation speed, V, set to 100 mm/s for the first test 
and 1 mm/s in the second one. The first test better represents the loading 
rates in collision scenarios. However, to ensure the material model can 
correctly capture the strain rate (loading rate) effects, the second test is 
also simulated. 

For computational efficiency, a quarter finite element model, shown 
in Fig. 5, was developed to simulate the physical tests (the geometry and 
load were assumed to remain generally symmetrical during the simu-
lation). A preliminary study with both a quarter model and a full model 
was carried out to ensure that the full and the quarter model produce 
very similar results. The ice domain was discretised with ∼3 × 3 × 3 
mm3 reduced integration hexahedral elements (C3D8R), found through 
a mesh sensitivity analysis to produce mesh-independent results. The 
uniform mesh in Fig. 5 was produced via a manual, incremental meshing 
process, known as ‘bottom-up meshing’, since an automatically gener-
ated mesh for the conical geometry would include elements with 
significantly different sizes, shapes and aspect ratios. These elements, 
generated by automatic meshing, could have poor quality leading to 
smaller time increments and more expensive computations or even 
premature excessive element distortions that cause simulation failures. 
The uniform mesh generated using the bottom-up technique, however, 
comes with the disadvantage of having an uneven surface at the base of 
the model (i.e., the bottom surface of the model). This uneven surface is 
not expected to affect the numerical results as the maximum indenter 
displacement, D, in the simulations is 26 mm which provides a signifi-
cant distance between the base and the indentation stop point (Fig. 5b). 

To simulate the constraints induced by the ice holder, an extra layer 
of elements has been developed at the base, and all the element nodes 
located outside of the target ice domain are fixed (i.e., all nodes inside 
the dashed box in Fig. 5b). Besides, all the nodes located on the cylin-
drical side of the model except for the ones on the edge connecting the 
cylindrical section to the conical section are only allowed to move along 
the vertical direction (i.e., X direction) to simulate the effect of the 
vertical surface of ice holder. These boundary conditions provide very 
similar constraints to those in the physical tests. In the physical tests 
[29], the indenter had two stop-start points (D≈9 mm and D≈179 mm) 
for data collection purposes that caused two large drops/discontinuities 
in the F-D curves (see the experimental curves in Figs. 6, 7, and 8). To 
simulate the effect of these stop-start points on the numerical F-D curves, 
the indenter displacement is paused at D≈9 mm and D≈179 mm for 0.5 
ms in the 100 mm/s test and 500 ms in the 1mm/s test. These settings 
have provided good agreements between the numerical and experi-
mental results discussed in Section 5. 

The viscoelastic model discussed in Section 2 is supposed to simulate 
the softening in crushing ice until the crushed/pulverised substance is 
extruded out of the interaction interface. Therefore, ideally, the finite 
elements should not be eroded/deleted from the analysis. However, 
keeping the excessively distorted elements in the analysis cause simu-
lation failure. In a preliminary study with the mesh configuration shown 
in Fig. 5, it was found that the simulations fail with an excessive 
distortion error message when the equivalent strain, ε, is between 1.0 
and 1.5. Therefore, an element erosion criterion is set in this study that 
activates the erosion when ε exceeds 1.0. The effect of element erosion 
on the reaction force would be negligible if the eroding element with 
ε=1.0 contains a significantly softened substance with a remaining 
strength negligible compared to intact ice. To investigate this hypothe-
sis, two different numerical modelling methods, ALE-FEM and coupled 
FEM-SPH, are employed that could minimize the artificial strength loss 

Fig. 3. Axial strain history for three axial loads (5 MPa, 7 MPa, and 10 MPa) 
from the physical tests [12], the viscoelastic VUMAT developed in the present 
study (DMa branch in Fig. 4), the viscoelastic model of Shi et al. [58], and the 
viscoelastic-plastic model of Xu et al. [60]. 
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Fig. 4. The viscoelastic VUMAT with three different damage models, DMa, DMb, and iDM given in three branches.  
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due to the element erosion [28]. These methods can significantly in-
crease computational costs and should be used when necessary. 

Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing allows for 
maintaining a high-quality mesh when large deformations or loss of 
material occur. This is because ALE adaptive meshing combines the 
features of pure Lagrangian and pure Eulerian analyses allowing the 
mesh to move independently of the material so that the mesh topology 
(elements and connectivity) is maintained under extreme deformations 
[28]. 

Coupled FEM-SPH method takes advantage of the intrinsic strength 
of both Lagrangian FEM and Smoothed Particle Hydrodynamics (SPH) 
method by converting Lagrangian elements to SPH particles when the 
conversion criterion is met. This method overcomes the numerical issues 
caused by the conventional element erosion technique such as the arti-
ficial loss of strength in the material and the loss of contact at the 
interaction interface because the generated particles can withstand de-
formations beyond the finite element distortion limits [28]. The con-
version criterion in this study is the same as the erosion criterion, ε=1.0. 
Therefore, the difference between the reaction force histories produced 
by the Lagrangian FEM and the coupled FEM-SPH method could imply 
how much of the material strength is lost artificially due to the element 
erosion. The model is set to generate one particle per parent element at 
the beginning of the analysis. The particles remain inactive until the 
conversion criterion is met, upon which the parent element is removed 
from the analysis and the particle becomes active. 

For ease of identification, the numerical models developed and dis-
cussed in this section are labelled according to their numerical model-
ling method, damage model, parameter values (Ek, βd and βc), and 
indentation speed (Table 2). The first numerical model, FEM-DMa-5.0-1- 
1-V100, has the same damage model (DMa) and parameter values 
(Table 1) as the numerical model validated in the previous section 
against the triaxial creep tests. The reaction force, F, produced by this 
model for the 100 mm/s crushing test, plotted in Fig. 6a, is extremely 
higher than the experimental reaction force. This overestimation was 
expected considering that the viscoelastic material model with DMa, 
VUMAT-DMa, is reported to produce unrealistically large stresses for 
high strain rates [58] or when the high-shear elastic failure occurs in ice 
[50] (see Section 2 for details). 

In an effort to achieve better agreement with the experimental re-
sults, the simulation has been repeated using FEM-DMa-5.0-8-18-V100 
which has the same numerical specifications as the first model except 
for the values assigned to the creep enhancement factors (i.e., βd= 8 and 
βc=18). These higher values for the creep enhancement factors were 
reported in [62] for simulating only one crushing cycle in an ice 
indentation test (see [62] for more details about a crushing cycle). The 
larger βd and βc have improved the numerical results in Fig. 6a, but not 
enough to achieve a good correlation with the experimental data. 
Therefore, the trial simulations are continued with a new group of three 
numerical models, Group 2, in which the damage model and high-shear 
elastic failure models proposed by Turner [50] are implemented instead 
of the damage model DMa. 

Table 1 
The model parameters used to simulate the triaxial creep test simulations.  

Parameter Value Reference 

EM (GPa) 9.5 [11,12,48,49,58] 
Ek (GPa) 5.0 (9.5) Calibrationa ([12]) 
ν 0.3 [11,12,48,49] 
ε̇d

0 (s
− 1) 1.0 × 10− 5 [11,12,48,49] 

ε̇c
0 (s

− 1) 1.76 × 10− 7 [11,12,48,49] 
n 1.9 Calibration b 

m 2.5 [12,48] 
f3 0.11 [11,12,48] 
s0 (MPa) 15.0 [12,48,49,58] 
q1 2.4 [48,58] 
a1 (s− 1) 0.712 [12,49] 
a2 (s− 1) 0.1 [12,49,50] 
p1 (MPa) 37.0 [12,49] 
p2 (MPa) 42.8 [12,49,50] 
r 5.0 [12,49,50] 
βd 1.0 (8.0) [12,48,49] ([62]) c 

βc 1.0 (18.0) [12,48,49] ([62]) c  

a The value of Ek is reported to be 9.5 GPa in [12] and 3.8 GPa in [11]. 5.0 
GPa, found in the present study to produce the best fit with the physical creep 
test results (shown in Fig. 3), is between these two values. However, both 5.0 and 
9.5 GPa are used in, a sensitivity analysis for cone-shaped ice crushing simula-
tions in Section 3.2. 

b n=2.0 was reported in [49] which is slightly higher than the 1.9 found in the 
present study from a calibration analysis. 

c The set, 1.0 and 1.0 for βd and βc is used for the triaxial creep test simula-
tions. However, an additional set of values for βd and βc, 8.0 and 18.0 reported in 
[62], is used in a sensitivity analysis for cone-shaped ice crushing simulations in 
Section 3.2. In iDM damage model, βd and βc are material state dependent pa-
rameters with the initial values of 1.0 and 1.0 which change to 8.0 and 18.0 upon 
the intuition of the HSEF phase (see Section 4 for more details).  

Fig. 5. (a) Experimental set-up [29]. (b) Front view of the finite element model with 3 mm elements in a uniform mesh. (c) Back view of the finite element model 
with boundary condition symbols displayed. 
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The modifications suggested by Turners have significantly improved 
the numerical results. Among the three new models, the model with 
HSEF2 has returned the best correlation with the experimental data. 
This model, however, has slightly underestimated the reaction force 
(compare the numerical and experimental curves in Fig. 6b). Whether 
this underestimation is caused by element erosion is investigated by 
changing the numerical method from Lagrangian FEM to ALE-FEM and 
coupled FEM-SPH. Figure 7a shows that the effect of the numerical 
modelling method on the F-D curves is not noticeable. This is due to the 
large damage index (S1=14.0) used in HSEF2 which has caused signif-
icant softening in the elements so that they do not produce any signifi-
cant reaction force after ε=1.0 (the erosion criterion). Therefore, 
converting them to SPH particles at ε=1.0 has just slightly increased the 
total reaction force, and the results of the ALE method are essentially the 
same as the Lagrangian FEM. 

Another possible reason for the underestimation of the reaction force 
by FEM-DMb-HSEF2-5.0-8-18-V100 could be the uncertainties associ-
ated with some of the parameters in the literature. As discussed earlier 
there are greatly different values reported for Ek, βd and βc (addressed as 
uncertain parameters in Table 2) by the authors of the viscoelastic model 
for ice crushing simulations. In order to address the underestimation of 

Fig. 6. Force vs. displacement investigated for the effects of (a) creep enhancement factors, (b) the damage model and high-shear elastic failure model.  

Fig. 7. Force vs. displacement investigated for the effects of (a) numerical modelling method and (b) the uncertain parameters,Ek, βd and βc.  

Fig. 8. Force vs. displacement investigated for the effect of loading rate.  
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reaction force by FEM-DMb-HSEF2-5.0-8-18-V100, another group of 
three models (Group 4 in Table 2) with the same settings as FEM-DMb- 
HSEF2-5.0-8-18-V100 but with different values for Ek, βd and βc are 
developed. To increase the reaction force, in the first model of Group 4, 
Ek is set to 9.5 GPa as per [12]. This change did not make a noticeable 
difference in the F-D results (Fig. 7b). Hence, in the second model of 
Group 4, in addition to having Ek set to 9.5 GPa, βd and βc are dropped to 
their original values given in Table 1 (i.e., βd=βc=1.0) to decrease the 
creep strain and increase the material strength. With these changes, the 
reaction force has increased so that the numerical F-D curve sits only 
slightly higher than the experimental one (Fig. 7b). In the last attempt in 
Group 5, the original values of βd and βc are kept (i.e., βd=βc=1.0) and Ek 
is set back to its original value in Table 1 (i.e, Ek=5.0) to reduce the 
slight overestimation of the reaction force. Figure 7b demonstrates a 
slight reduction in F when Ek is dropped from 9.5 to 5.0 GPa but the 
diminution is too small to make any noticeable difference in the F-D 
curve. Consequently, the numerical F-D curve is still higher than the 

experimental one, but the difference is acceptable. Hence, the numerical 
study is continued with the settings applied in 
FEM-DMb-HSEF2-9.5-1-1-V100 and FEM-DMb-HSEF2-5.0-1-1-V100, 
both of which provided acceptable agreements with the 100 mm/s 
physical test. The indentation speed in these two models was changed to 
1 mm/s to create the models in Group 5 (Table 2) for simulating the 1 
mm/s physical crushing test. 

Fig. 8 shows that the numerical models that provided a good 
agreement with the experimental results for the 100 mm/s indentation 
speed have largely overestimated the reaction force in the 1 mm/s case. 
Furthermore, having Fig. 8 compared with Fig. 7b, the reaction force is 
increased by dropping the indentation speed which contradicts the 
experimental results in [29]. The reason lies in the high-shear elastic 
failure model, which unlike the viscoelastic stress-strain relations is not 
rate-dependent. Using the viscoelastic model, a certain stress intensity 
(e.g., 26 MPa) can be produced in an element in two different ways, 
small deformation with a high strain rate or large deformation with a 

Table. 2 
Details of the numerical models discussed in Section 3.  

Group No. Model # Numerical method Damage model HSEF model Uncertain parameters Indentation speed, V (mm/s) 
Ek (GPa) βd βc 

1 FEM-DMa-5.0-1-1-V100 Lagrangian FEM DM-a N/A 5.0 1 1 100 
FEM-DMa-5.0-8-18-V100 Lagrangian FEM DM-a N/A 5.0 8 18 100 

2 FEM-DMb-HSEF2-5.0-8-18-V100 Lagrangian FEM DM-b HSEF2 5.0 8 18 100 
FEM-DMb-HSEF3-5.0-8-18-V100 Lagrangian FEM DM-b HSEF3 5.0 8 18 100 
FEM-DMb-HSEF4-5.0-8-18-V100 Lagrangian FEM DM-b HSEF4 5.0 8 18 100 

3 ALE-DMb-HSEF2-5.0-8-18-V100 ALE-FEM DM-b HSEF2 5.0 8 18 100 
FEM-SPH-DMb-HSEF2-5.0-8-18-V100 FEM-SPH DM-b HSEF2 5.0 8 18 100 

4 FEM-DMb-HSEF2-9.5-8-18-V100 Lagrangian FEM DM-b HSEF2 9.5 8 18 100 
FEM-DMb-HSEF2-9.5-1-1-V100 Lagrangian FEM DM-b HSEF2 9.5 1 1 100 
FEM-DMb-HSEF2-5.0-1-1-V100 Lagrangian FEM DM-b HSEF2 5.0 1 1 100 

5 FEM-DMb-HSEF2-9.5-1-1-V1 Lagrangian FEM DM-b HSEF2 9.5 1 1 1 
FEM-DMb-HSEF2-5.0-1-1-V1 Lagrangian FEM DM-b HSEF2 5.0 1 1 1  

Fig. 9. The effect of loading rate on the HSEF zone (top row) and stress (bottom row) when HSEF2 model is implemented.  
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low strain rate. It means that the elements in the 100 mm/s test exceed 
the HSEF threshold (26 MPa) earlier and with less deformation/strain 
compared to the elements in the 1 mm/s case. As mentioned earlier, 
HSEF2 enforces a value of 14.0 on S1 once the von Mises stress in an 
element surpasses 26.0 MPa, which causes an abrupt marked escalation 
in the damage index, S, (from below 2.0 in blue elements to above 14.0 
in red elements in Fig. 9). This significantly softens the material in the 
HSEF zone so that the stress in this zone drops far below 26.0 MPa 
(Fig. 9). Therefore, elements have a significantly higher energy dissi-
pation rate before undergoing HSEF, meaning that the longer they last 
before experiencing HSEF, the more energy they absorb. Therefore, the 
elements in the 1 mm/s case absorb more energy compared to the 100 
mm/s case as they need larger deformations to exceed 26 MPa (the HSEF 
criterion). Additionally, the HSEF zone (red elements in the top row of 
Fig. 9) in the 100 mm/s test is larger than the 1 mm/s one due to the 
same mechanism just described. A larger HSEF zone means a larger 
region of low stress with less resistance against the indenter 
displacements. 

To address the shortcomings of HSEF2 in capturing the strain rate 
effect, a rate dependent HSEF model with a systematic method for 
determining the value of the damage index beyond the HSEF threshold 
instead of applying an arbitrary flat value is required. An HSEF model 
with such qualities embedded in a damage model with an iterative al-
gorithm is proposed in the following section. 

4. Pressure- and rate-dependent damage model with an iterative 
algorithm 

It is well established that the ultimate/yield/failure strength of ice is 
a pressure- and rate-dependent property [63–76]. Having analysed the 
experimental results from around 300 physical triaxial tests covering a 
wide range of strain rates (10− 6<ε̇<10− 1 s− 1) and hydrostatic pressures 
(0.1<p<85.0 MPa), Derradji-Aouat [72] demonstrated that the failure 

stress data plotted in p-τoct space (τoct =

̅̅̅̅̅̅
sij sij
3

√

is the octahedral shear 
stress) follow an elliptical curve expressed by 
(

τoct − η
τmax

)2

+

(
p − ξ

pc

)2

= 1 (31)  

where η, τmax, ξ, and pc are constants (η = 0). In the present study, Eq. 
(31) is rewritten in the p-s space as 

Φ ≡ φ(p, s) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s2 + α2(p − p0)
2

√

− B = 0 (32)  

where Φ ≡ φ(p, s) is the failure strength function;B = αA = α
( pc+pt

2
)

is 
the vertical semiaxis of the ellipse (along the s-axis in Fig. 10b); α = B

A is 
the shape factor of the elliptical failure envelope that determines the 
relative magnitude of the semiaxes; A is the horizontal semiaxis of the 
elliptical failure envelope (along the p-axis); p0 =

pc − pt
2 is the centre of the 

ellipse on the p-axis, and pt and pc denote the ice material strength under 
hydrostatic tension and hydrostatic compression, respectively (pc should 
be always positive). To obtain the shape factor,α, failure stress in 

Fig. 10. The failure loci of freshwater polycrystalline ice material; (a) evolution in principal stress space (σ1 − σ2 − σ3); (b) the elliptical envelope in the p-s space; (c) 
strain rate dependency graph in terms of uniaxial compressive strength (recreated using the data presented in [1,20]). 
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uniaxial compression test, σf , failure strength in hydrostatic compres-
sion, pc, and the failure strength in hydrostatic tension, pt , are required 
and calculated by 

α =
3k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(3kt + k)(3 − k)

√ ; k =
σf

pc
; kt =

pt

pc
(33)  

To have a valid failure surface, the strength ratios must meet 

0 < k < 3 and kt ≥ 0 (34) 

Derradji-Aouat [72-74,76] showed that for any given strain rate, pt 

and pc remain almost unchanged while B increases with the strain rate. 
This creates a set of concentric elliptical failure loci (Fig. 10a). The strain 
rate hardening of ice is known to be disrupted at a certain range of strain 
rates, termed ‘ductile-to-brittle transition’ strain rate, which is reported 
to be between 10− 4 and 10− 2 s− 1 in various studies [17–25]. During the 
transition stage, ice strength remains constant or decreases slightly and 
then continues to rise with the strain rate in the brittle regime, but with a 
slower rate compared to the ductile regime (Fig. 10c). To capture this 
phenomenon in the present study the relation between ice strength and 
strain rate developed by Jones [20] for iceberg ice is employed for the 
ductile regime (ε̇ ≤ 0.001 in Eq. (35)). For the brittle regime, the rela-
tion developed by Shazly et al. [1] obtained from a series of high 
strain-rate compression tests on single crystal and polycrystalline ice 
using split Hopkinson pressure bar (SHPB) is adopted (ε̇ > 0.001 in Eq. 
(35)). The reason for choosing Shazly et al. study is that their equation is 
obtained from a much broader range of strain rates in the brittle regime, 
from 10− 2 to 1000 s− 1. This was made possible by the SHPB technique 
which also provides better accuracy in material strength measurements 
at high strain rates as opposed to the quasi-static testing techniques 
which can cause considerably scattered results and uncertainties. 

σf =

{
24.8

(
ε̇0.196) if ε̇ ≤ 0.001

10.52
(
ε̇0.0955) if ε̇ > 0.001

(35) 

Having σf obtained form Eq. (35), the pressure and strain-rate 
dependent failure stress, sf , can be found from Eq. (32). In the present 
study, the high-shear elastic failure introduced in [50] is set to occur 
when the von Mises stress exceeds the failure stress, s > sf . The experi-
mental observations reported by Turner [50] showed that the failure 
strength is not fixed at 26.0 MPa, but it reduces as the confining pressure 
increases from mid-to-high levels. This behaviour is in line with the 
theory of the elliptical failure surface. As per the discussion provided in 
the previous section, the damage index should increase significantly in 
the HSEF phase; however, it is not clear to what extent. Hence, a new 
damage model, termed ‘iDM’, with the iterative algorithm given in Fig. 4 
(see iDM branch), is proposed to iteratively correct the value of the 
damage parameter, S, in the HSEF phase. The damage model iDM in-
corporates two failure phases. In the first phase, sf < s ≤ 26.0, the Kelvin 
spring stiffness, EK, is dropped to EK

100, (instead of EM in HSEF4), which is 
inspired by the work of Meaney et al. [62] who also suggested the two 
large constant values for βd and βc (i.e., 8 and 18) for damaging ice and 
the highly-crushed layer. The maximum allowable value of B in the 
damage model is set to 26.0 MPa, meaning that the vertical semiaxis of 
the failure envelope grows with the strain-rate per Eq. (35), as long as B 
> 26.0 MPa, beyond which the failure envelope size remains un-
changed. In the second failure phase, s > 26.0 MPa, EK is reduced to 
zero, eliminating the delayed elastic response in the highly-crushed 
extruding layer under high stresses. The iterations in iDM continue 
until s ≤ sf or k ≥ 1000, where k is the loop counter. 

It should be noted that, unlike HSEF2 which was used as a guide to 
develop iDM, the increase in the damage index in iDM is applied directly 
to the total damage index, S, not through increasing the microcracking 
damage index, S1. This is because, the microcracking damage in ice 
under high pressures becomes almost zero (Eq. (19b)), and consequently 
S2 controls the damage intensity. Therefore, the damage value 

correction was applied directly to S so that in all pressure levels (low, 
medium and high) the stresses beyond the failure surface could be 
returned to the surface by increasing the damage index. 

5. Results and validation of the iterative damage model iDM 

Having iDM implemented in the VUMAT, the 100 mm/s crushing test 
is simulated with Lagrangian FEM, ALE-FEM, and coupled FEM-SPH 
methods. The numerical F-D results plotted against the experimental 
data in Fig. 11 show that the Lagrangian FEM has underestimated the 
reaction force. However, the numerical results produced using ALE-FEM 
and the coupled FEM-SPH methods are closely correlated with the 
experimental data. This means that the reaction force underestimation 
made by the Lagrangian FEM in this section is caused by the element 
erosion. Unlike most plasticity models, the viscoelastic model appears to 
have simulated the physical force oscillation typical to the ice indenta-
tion tests even before the element erosion occurs. The force oscillation in 
physical ice crushing tests is usually controlled by two major mecha-
nisms, spalling and extrusion of the crushed layer. Given that spalling 
occurs only to a limited extent in the cone-ice crushing tests, the oscil-
lation is mainly controlled by the extrusion. In most plasticity models, 
the oscillation is simulated artificially by the element erosion. Element 
erosion in the present study has also caused force drops that are 
responsible for the large oscillations seen in Fig. 11. The force oscilla-
tions observed before the first element erosion in Figs. 11 and 12 are 
simulated by the material model and are not artificial. In addition to the 
oscillations simulated by the material model or caused by element 
erosion, there is also noise in the numerical F-D curves typical in explicit 
simulations [28]. The noise filtered numerical results using the Butter-
worth filter with cutoff frequencies of 150 Hz and 1.5 Hz for the 100 
mm/s and 1 mm/s tests, respectively, are also plotted in Figs. 11 and 12 
(for details about the Butterworth filter refer to the Abaqus user’s 
manual [28]). 

To investigate the accuracy of the material model in capturing the 
strain rate effect, the 1 mm/s test is simulated with the ALE-FEM and 
coupled FEM-SPH methods which both produced good agreement with 
the experimental results (Fig. 12). The ALE-FEM method appears to have 
slightly better performance than the coupled FEM-SPH method at the 
beginning stage of the crushing test. However, in general, the coupled 
FEM-SPH method has a better performance than the ALE-FEM method as 
the ALE-FEM method has underestimated the reaction force of the 1 
mm/s test at large indenter displacements, above 16 mm. Then again, 
the coupled FEM-SPH method needs significantly higher computational 
efforts as opposed to the ALE-FEM method (Table 3). Therefore, ALE- 
FEM method is recommended where computational efficiency is a pri-
ority. That said, the FEM-SPH method allows for keeping the excessively 
deformed material in the analysis. For example, Fig. 13 shows the 
capability of the viscoelastic material model with iDM damage in 
simulating the progressive extrusion of highly-crushed and pulverised 
ice throughout the crushing process when implemented with the 
coupled FEM-SPH method. This could be important in practical simu-
lations where the initial impact could make a large dent in the structure 
confining the ice being crushed and pulverised. The extrusion of the 
pulverised ice under confining pressure then would change the force 
profile given that it should travel a long way under pressure before it is 
extruded away from the interaction interface. This proposition needs to 
be further investigated and confirmed in future studies. 

Additionally, it is recommended to examine the scalability of the 
proposed constitutive laws and numerical methods from small-scale 
laboratory tests presented in this study to full-scale ice-structure colli-
sion events. For this purpose, the user must provide the input values for 
the parameters listed in Table 1, which may require recalibration for 
larger scale models. The failure surface incorporated in iDM can be 
adjusted if necessary by recalibrating pt, pc, and σf (Eq. (35)). 
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Fig. 11. Force vs. displacement obtained from the physical crushing test with V=100 mm/s and the simulation with iDM damage model and three different nu-
merical methods (plots on the right side are magnifications of the first 7 mm of the plots on the left side). 
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6. Conclusions 

The progressive crushing, pulverisation, and viscous extrusion of 
laboratory-scale polycrystalline ice were simulated using a nonlinear 
viscoelastic material model and a novel progressive damage model with 
an iterative algorithm. The nonlinear viscoelastic material model, 
written in Fortran VUMAT for Abaqus, was validated against physical 
triaxial compressive creep tests. The progressive damage model with the 
iterative algorithm, developed for glacial/freshwater polycrystalline ice 
colliding with marine structures, where the ice experiences high stress 
and exhibits high shear elastic failure in addition to microcracking, 
dynamic recrystallisation, and pressure melting, was validated against 
physical cone-shaped ice crushing tests with 1 mm/s and 100 mm/s 

indentation speeds. The results demonstrated that the material model 
with the proposed damage model correctly captured the strain rate ef-
fects. However, further validation of the proposed models may be 
required for other crushing speeds, particularly those outside the 
investigated range. 

The simulations were carried out with three different numerical 
methods, Lagrangian FEM, ALE-FEM, and coupled FEM-SPH. The latter 
method in conjunction with the proposed damage model allowed for the 
simulation of phase transition from solid-like to fluid-like pulverised/ 
granular ice. 

A good correlation between the numerical and experimental force- 
displacement data was achieved with both ALE-FEM and coupled 
FEM-SPH methods. The ALE-FEM method had a slightly better agree-
ment with the test results at the beginning of the indentation. However, 
in general, the results from the coupled FEM-SPH method correlated 
more closely with the experimental data because it could simulate 
extremely large deformations of pulverised ice during the extrusion 
phase by converting excessively distorted elements to SPH particles. 
This is important in practical applications where the initial impact might 
create a dent in the structure which could confine the crushed and 
pulverised ice during the rest of the interaction. Subsequently, the 
confined pulverised ice should travel a long way under high pressure 
before being extruded away from the interaction interface, which in turn 
is believed to significantly affect the reaction force profile. Further 

Fig. 12. Force vs. displacement obtained from the physical crushing test for V=1 mm/s and the simulation with iDM damage model and two different numerical 
methods (plots on the right side are magnifications of the first 7 mm of the plots on the left side). 

Table 3 
Executable time summary for the studied models using Intel(R) Xeon(R) CPU E5- 
2680 v3 2.50GHz with 12 cores.  

Indentation speed (mm/s) Numerical method CPU time (s) 

100.0 Lagrangian FEM 508 
ALE-FEM 1876 
FEM-SPH 2770 

1.0 ALE-FEM 56068  
FEM-SPH 196227  
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Fig. 13. Progressive extrusion of crushed ice simulated with SPH particles (red points) with tracing visualized (black dotted lines).  
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investigation is recommended to confirm this hypothesis. 
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