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Abstract

The last couple of years, especially during the recent pandemic, Norway has seen a
drastic increase in people trying out ski touring for the first time. With this increase
in the number of inexperienced tourers traversing snowy mountains, there is an
encompassed risk of them being exposed to or triggering avalanches. It is therefore
very important to understand better how to avoid the dangers of avalanches. As
the most dangerous type of avalanche is the slab avalanche, this thesis investigates
the possibility of simulating such avalanches.

Snow is, however, an exceptionally complex material whose physical proper-
ties range from dusty cold snow to dense ice depending on its temperature and
pressure. In addition, it is typically built up in layers that reflect the conditions at
the time of the snow fall, but also the overall current weather conditions. However,
recent works have shown promising results by modeling snow as an elastoplastic
material. One of the numerical techniques used is the SPH (Smoothed Particle
Hydrodynamics) method, which has the ability to model a wide variety of snow
properties.

With the end of Moore’s law becoming a reality, computers have had to im-
prove in other ways. This has pushed the vendors of GPUs (Graphical Processing
Units) to prioritize their use for general computational tasks. These computer
chips contain hardware dedicated to performing highly parallel tasks. SPH simula-
tions are inherently computationally intensive, but can benefit from a high degree
of parallelism. Utilizing the power of GPUs is therefore worth exploring and this
thesis thus focus on how to model slab avalanches using SPH on GPUs.

The thesis’s contributions include a fairly detailed summary of the numer-
ical methods used, including the SPH and how it is used in snow simulations, as
well as a serial implementation that, while not meeting the ambitions of simu-
lating full scale avalanches, shows an ability to model certain aspects found in
slab avalanches such as crack formations. In addition, the thesis demonstrates
how a parallel implementation on the GPU, which is integrated into the HPC-Lab
snow simulator, while remaining computationally expensive, does result in great
performance benefits. The results includes timing and graphical outputs for three
types of implicit stress solved for both acceleration and velocity as well as explicit
stress.
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Sammendrag

De siste årene, spesielt under pandemien, har Norge sett en drastisk vekst i folk
som prøver topptur for første gang. Med denne økningen i uerfarne turgåere i snø-
belagte fjell, er det en medfølgende fare for utsettelse for og utløsning av snøskred.
Det er derfor veldig viktig å bedre forstå hvordan man unngår farene ved snøskred.
Ettersom den mest skadelige typen av snøskred er flakskred, undersøker denne
avhandlingen mulighetene for å simulere slike skred.

Snø er derimot et ekstremt komplisert materiale, med fysiske egenskaper som
omfatter alt fra kald støvete snø til hard is, gitt dens temperatur og trykk. I tillegg
til dette er den vanligvis bygd opp i lag som reflekterer forholdene da snøen falt, i
tillegg til aktuelle vær forhold. Nylig arbeid har derimot vist lovende resultater ved
å modellere snø som et elastoplastisk materiale. En av de numeriske teknikkene
som er brukt er SPH (Smoothed Particle Hydrodynamics) metoden som har mu-
ligheten til å modellere et vidt utvalg av snøegenskaper.

Ettersom slutten av Moores lov har tredd i kraft, har man måttet finne nye
måter å øke kraften til datamaskiner. Dette har presset grafikkortleverandører til å
prioritere grafikkorts bruk innen generelle beregninger. Disse kortene inneholder
maskinvare som er dedikert til å utføre store mengder parallelle oppgaver. SPH
simulasjoner er i seg selv beregningsmessig intensive, men de kan dra nytte av
en stor grad av parallellisering. Bruken av grafikkort er derfor verdt å utforske og
denne avhandlingen fokuserer på hvordan man kan modellere flakskred med SPH
på grafikkort.

Denne avhandlingens bidrag inkluderer en meget detaljert oversikt over nu-
meriske metoder som er brukt, spesielt SPH og hvordan det er brukt for snø sim-
ulering, i tillegg til en seriell implementasjon som, selv om den ikke når ambis-
jonene om å simulere flakskred i sin helhet, viser en evne til å modellere enkelte
aspekter man finner i flakskred, slik som sprekkdannelse. I tillegg viser denne
avhandlingen at en parallell implementasjon på grafikkort, integrert i HPC-Labbens
snøsimulator, selv om den forblir beregningsmessig intensiv, oppnår gode ytelses
forbedringer. Resultatene inkluderer tidtaking og grafiske visualiseringer av tre
typer implisitt stress, hvorav det er løst for båre akselerasjon og fart, i tillegg til
eksplisitt stress.
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Chapter 1

Introduction

Snow is an extremely complex material with a verity of different properties. In
certain situations, like in the upper layer of slab avalanches, snow is compacted
such that exhibit properties reminiscent of elastoplastic materials. Elastoplastic
materials has seen a lot of computational work the last decades, using methods
such as SPH (Smoothed Particle Hydrodynamics) in order to simulate them. With
the continued improvement of GPUs (Graphical Processing Units), they can be
utilized to improve the performance of such simulations. This thesis thus attempts
to implement a simulation of snow as an elastoplastic material using GPUs.

1.1 Motivation

In recent years, especially during the pandemic, Norway has seen a large increase
in people trying out ski touring for the first time. This means that more people are
traversing alpine terrain and consequentially exposing them selves to the danger
of snow avalanches. Understanding how, when and where these avalanches occur
is therefore important in order to make ski touring a safe activity.

While typical weather forecasting can give indications to whether or not an
certain terrain is avalanche prone, they fail to capture small scale terrain vari-
ances, which are highly important for the formation of avalanches. This thesis
will thus try to create a numerical model that can capture these smaller scale
properties of snow.

Previous work on snow simulation at the NTNU HPC-Lab has focused on vari-
ous aspects aspects of snow and avalanches. Most of the work has focused on
either snow fall, like the works of Saltvik et al. [1] and Eidissen [2], or the flow of
avalanches, like the works of Krog [3] and Sandvik [4]. The works that has focused
on the flow of avalanches has all simulated the avalanche motion as a fluid. This,
however, fails to capture the effects that initiate avalanches and it does not enable
modeling the most dangerous types of avalanches, which are slab avalanches. The
work by Boge [5] tries to capture these effects by modeling the fracture dynamics
of snow slabs. However, while that does capture some of the properties that ini-
tiates slab avalanches, it lacks the ability to model the movement of avalanches

1
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in action and it remains disconnected from the other simulation models that are
implemented.

The work by Gaume et al. [6] implements a material point method that models
both the initial formation of slab avalanches and their movement through the
terrain. Their model does however lack the ability to simulate snow fall and the
formation of the snow covers that enables slab avalanches.

The most recent work on snow simulation on snow simulation is the work
by Gissler et al. [7], where they simulate snow as an elastoplastic material using
the SPH method. This method has the advantage of simulating individual snow
particle, thus being able to model snow fall, accumulation and the properties of
snow covers using only a single model. They do however not relate their work to
avalanches and focuses rather on the general properties of snow.

The method by Gissler et al. [7] is essentially meant for longer time consum-
ing simulations and they have thus implemented it on CPUs (Central Processing
Units). SPH is however a method that can take great advantage of the parallelism
enabled by modern GPUs.

This thesis thus tries to implement an SPH for simulating snow as an elastoplastic
material with a focus on its ability to model snow properties that are present in
slab avalanches. The thesis further tries to implement the method on GPUs in
order to acquire the performance benefits from a high degree of parallelism.

1.2 Previous Work

This section describes previous work that has been conducted within the field of
snow simulation. The section first looks at previous work on the NTNU HPC-Lab
snow simulator before examining work related specifically to the use of SPH and
simulation of elastoplastic materials.

1.2.1 The HPC-Lab Snow Simulator at NTNU

This section describes what has previously been accomplished throughout the
work on the HPC-Lab snow simulator at NTNU.

Snowfall and Accumulation Saltvik et al. [1] laid the ground work for the HPC-
Lab snow simulator when he implemented a model for snow fall and accumula-
tion. The method modeled snow flakes as particles and the terrain was modeled as
a height map, in which accumulation values where computed when snow particles
intersected the terrain. In order to have a more physically correct snow fall model
he implemented a wind model using the method of Stam [8] to simulate the move-
ment of air as a fluid.

Eidissen [2] improved upon the work by Saltvik et al. [1] by implementing the
work on GPUs using Nvidia’s CUDA (Compute Unified Device Architecture). This
greatly improved the performance of the simulator and paved a way for future
work to use similar techniques.
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Avalanches Krog [3] laid the ground work for simulating avalanches by im-
plementing a fluid model on GPUs using SPH. This work modeled the flow of
avalanches through terrain as a fluid. His implementation utilized a fast parallel
neighborhood search algorithm by Green [9]. This work was not initially integ-
rated in the HPC-Lab snow simulator, but was later integrated during the work of
Sandvik [4].

As simulating avalanches as fluids does not capture the properties of slab ava-
lanches, which are the most dangerous types of avalanches, Boge [5] implemented
a method for modeling fracture dynamics in snow slab covers. This method does
however only model the stresses within a slab and is, at the moment, completely
disconnected from the other aspects of the HPC-Lab snow simulator.

1.2.2 Snow Simulation and Smoothed Particle Hydrodynamics

This section covers previous work done on snow simulation, with a focus on work
that model snow as an elastoplastic material. The section will further look at work
on SPH that has lead up to enabling its use for snow simulation.

Snow Simulation While most earlier work on snow simulation model snow as
fluids or granular materials, the method by Stomakhin et al. [10] uses a material
point method to model snow as an elastoplastic material. Their work lay much
of the ground work for modeling snow as elastoplastic materials in later works.
Their method is however implemented with the purpose of animating snow for
the Disney movie Frozen and thus prioritizes visual results.

Gaume et al. [6] takes the work by Stomakhin et al. [10] and utilizes it to
model full scale slab avalanches. They do however find that the method can not
properly model a weak snow layer with fracture properties that are required to
propagate large avalanches. They thus implement their own method of dynamic
anticrack propagation in specialized snow layers.

The work of Gissler et al. [7] takes the physical models from Stomakhin et al.
[10], but implements them using an SPH method. This enables individual snow
particles to be modeled properly and enables better interactions with other ma-
terials. As snow particles can be modeled individually, their method can simulate
both the properties of snow fall and accumulated snow and its properties, thus
enabling a single model for the whole life cycle of snow, with the exception of
snow melting into water.

Smoothed Particle Hydrodynamics Gingold and Monaghan [11] initially de-
rived the SPH method for simulating the physical properties stars and the gravity
acting between them. The method has since been widely used for simulating fluid
as it enables a simulation where one only requires computationally expensive cal-
culations in the space occupied by the fluid.

As the method has seen such a wide use, many improvements have been de-
veloped throughout various papers. Akinci et al. [12] developed a method for
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letting fluid simulations, using SPH, interact with rigid bodies from other simula-
tion methods. Their method replaces rigid bodies with a set of boundary particles
that forms a shell around the edge of the rigid body. These boundary particles
further enable forces that pushes the fluid away from the rigid body and friction
between the rigid body and the fluid. This method was further improved by Band
et al. [13], where they implemented a method that modeled the pressure around
boundary particle more physically correct.

While much of the earliest work on SPH focuses on its use for fluid simulations,
more recent work uses it to model more complex and solid materials. Peer et al.
[14] uses SPH to simulate elastic solid in which internal forces due to stress are
captured in the method. The snow model of Gissler et al. [7] utilizes much of
the work by Peer et al. [14], but also integrates a method for modeling plastic
behavior, thus enabling the simulation of elastoplastic materials using SPH.

1.3 Contribution

This section describes what this thesis has contributed to the continued work on
snow simulation at the NTNU HPC-Lab.

In-Depth Background Research Understanding how to implement SPH as well
as the physical properties of elastoplastic materials are both complex and chal-
lenging tasks. A great amount of time and work has been put down in order to
more fully understand them. The amalgamation of this research has resulted in
Chapter 2. This chapter will hopefully serve as a decent starting point and ref-
erence for those those interested in how to develop SPH simulations, especially,
those that are interested in simulating the properties of snow, including the prop-
erties apparent in avalanche simulations.

Implementations This thesis has resulted in two complete implementations of
snow simulated as an elastoplastic material using SPH.

The first implementation [15] is a serial implementation implemented on CPUs.
It it thus not very high performant. It does, however, implement nine different
methods for simulating snow, three different stress decouplings and three differ-
ent ways of solving for the forces resulting from stress. As there is a lack of open
source implementation of complete elastoplastic SPH simulations, this implement-
ation will hopefully be a great reference for understanding the implementation
details at a general level.

The second implementation is a parallel implementation utilizing GPUs. This
implementation is integrated into the existing HPC-Lab snow simulator, but does
require some more work to work in conjunction with previously implemented
methods, like terrain and wind. This implementation is thus a starting point for
simulating complete full scale slab avalanches in the HPC-Lab snow simulator.
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1.4 Outline

This section outlines the content of the rest of this thesis by describing what is
contained withing each chapter and section.

Chapter 2 This chapter goes into detail on all the background research done
during the work on this thesis.

Section 2.1 introduces the chapter by describing what snow is and its proper-
ties, followed by a description of various types of avalanches.

Section 2.2 describes what partial differential equations are, which is the math-
ematical basis of numerical simulations, followed by a description of certain meth-
ods for solving them.

Section 2.3 begins by a derivation of SPH and some of its discretizations, be-
fore describing a process for using it in practice and ends with a description of
boundary handling.

Section 2.4 gives an introduction to the physics behind elastic materials and
the mathematical equations that arise from it, in addition to describing how one
can modify these equations in order to model plastic properties.

Section 2.5 ends this chapter by describing what GPUs are and how they op-
erate with a focus on the Compute Unified Device Architecture by Nvidia.

Chapter 3 This chapter goes further into detail on how snow can be modeled as
an elastoplastic material using SPH.

Section 3.1 describes a method quite similar toe the method by Gissler et al.
[7] and all the mathematical equations that the method requires.

Section 3.2 describes eight alternative solvers that slightly differs in various
ways from the method described in the preceding section.

Chapter 4 This chapter describes the details of the implementations that where
implemented during the work on this thesis.

Section 4.1 describes in detail the serial implementation implemented on cent-
ral processing units.

Section 4.2 describes in detail the parallel implementation which utilizes GPUs.

Chapter 5 This chapter presents the various results acquired from running the
simulation implementations.

Section 5.1 presents the results from the serial implementation. It first presents
some general result, before presenting results with a focus on the simulations
ability to model slab avalanches.

Section 5.2 presents results from running the parallel implementation.These
results have a higher focus on the performance of the implementation.
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Chapter 6 This chapter concludes this thesis by reciting what has been accom-
plished and paving a way for future work on snow simulation.

Section 6.1 describes what has been accomplished in terms of both work and
results.

Section 6.2 points to certain aspects of snow simulation that was not accom-
plished during the work on this thesis, but would be interesting to see more work
towards.



Chapter 2

Background

This chapter goes into detail on the various background material that has been
used during the work on this thesis. The chapter starts off by describing snow and
its various properties, with a special focus on how it relates to avalanches and the
reasons for their occurrences. Then the chapter begins the mathematical back-
ground of the thesis by first describing partial differential equations and various
methods of solving them, as they the fundamental mathematical background with
which numerical simulations are built on, before going in depth into the derivation
and use of smoothed particles hydrodynamics, which is the numerical framework
this thesis uses for its simulations. The mathematical sections are ended with a
look at the physics of elastoplastic material, and lastly the chapter describes what
graphical processing units are.

2.1 Snow

Snow is a very complex material with a variety of different characteristics depend-
ing on its construction. All forms of snow are essentially a mass consisting of snow
crystals of various sizes and various configurations. When the not strongly bound
to each other, they are free to move around and the snow will exhibit properties
similar to granular materials like sand or properties similar to fluids like water,
depending on the sizes of the snow crystals. However, when the snow crystals are
bound to each other, the snow acts more like an elastoplastic material, being able
deform or form cracks and break up into solid chunks.

2.1.1 Snowfall

Snow typically develop when moisture in the air condenses into water droplets,
which are then frozen and turned into snow crystals, or snow flakes. As they fall
from the sky, their paths are influences by the wind. To which degree they are
affected by wind is highly dependent on the sizes and weight of the snow flakes,
which again is dependent on temperatures and humidity in the air.

7
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2.1.2 Accumulation

When snow land on the ground, it accumulates and form a snow cover. As external
effects like temperature changes the snow covers properties, more snow may fall
on top of it, creating a new layer with other properties. Various environmental ef-
fects affect the development of these layers. Warm temperatures make them melt
into a more sludgy substance and colder temperatures may freeze these layers into
ice sheets, or enable growth of larger snow crystals. Pressure from newer snow
layers compresses the layers below, making them more dense. When snow is com-
pressed it tends to harden, making it exhibit properties that are more similar to
solids.

Grain Forms The shape of snow crystals can vastly affect the properties of snow.
However, inspecting snow as such a microscopic level is not always feasible. Thus,
snow is typically categorized into a set of grain forms, as can be seen in Table 2.1,
which includes density data from Geldsetzer and Jamieson [16], Calonne et al.
[17] and Glen [18]. The last two rows of the table are not typically considered
grain forms as they are typically not considered when evaluating avalanche danger,
but they are added to show a wider variety of properties snow can exhibit.

Table 2.1: Grain forms and their approximate density.

Grain Form Approximate Density Range
�

kg
m3

�

Precipitation Particles 60-180
Decomposing and Fragmented Particles 80-240
Rounded Grains 170-420
Faceted Crystals 125-315
Depth Hoar 200-270
Melt Forms 470-550
Melt-Freeze Crust 270-330
Wet Grains 45-310
Firn 400-830
Glacier Ice 830-920

When snow layers on the ground experience temperature and pressure changes,
either from layers above or from external forces like wind, their composition of
grains changes [19]. Understanding how the snow changes due to external effects
is highly important when evaluating the danger of avalanches but is not relevant
for this thesis.

2.1.3 Avalanches

Snow avalanches are a very typical phenomenon in alpine areas and one can often
see traces of when visiting the mountains of Norway. Some avalanches occur nat-
urally due to buildup of certain types of snow or due melting, which gives it less
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strength making it unable to hold its own wight. However, in certain situations,
the snow can lay stable when undisturbed, but external forces like humans can
trigger avalanches. This can pose a great danger for people touring in the area and
understanding when these situations occur and avoiding them is a key to making
mountaineering safe. This section will thus describe four types of avalanches and
their properties [20, 21].

Powder Avalanches Powder avalanches occur when great amounts of snow has
fallen and its been undisturbed by wind. These avalanches typically only occur in
terrain steeper than 50◦ [22] and can be triggered both naturally and by external
forces. While these avalanches occur right after snow fall, the snow can stabilize
quite quickly after the snow fall and thus not form these types of avalanches.
As the newly fallen snow consists of smaller non-compacted particles, powder
avalanches behaves quite similar to fluids or granular materials when they flow
down mountain sides.

Wet Snow Avalanches Wet snow avalanches occurs when the snow is highly
saturated with water, such as after heavy rain fall. This makes the snow both
more malleable and heavier, such that it can not hold its own wight. Due to the
presence of water in the snow, these avalanches behaves very similar to fluids and
they typically occur in terrain with a steepness of only 5◦ to 25◦. As the addition of
water due to rain fall happens over a short period of time, these avalanches usually
occur naturally. Due to the density of this type of snow, wet snow avalanches can
cause more environmental damage compared to powder avalanches.

Slab Avalanches Slab avalanches are the most dangerous avalanches for people
touring the mountain sides, as their causes are hard to spot and their consistency
can cause great amounts of damage. They form when snow is transported by
wind and compacted into a solid layer with a density of around 400 kg

m3 and the
layer directly below is a weaker layer with lower density, typically consisting of
rounded grains or faceted crystals. As the above layer is solid, these avalanches
does not typically trigger naturally. However, when an external force, like a person,
compresses the snow, is can form fractures in the weak layer which propagates and
breaks off massive chunks from the solid layer which slides down the mountain
side. These avalanches typically occurs in terrain with a steepness of 30◦ to 45◦.
As the snow in these avalanches have a high density and compactness it exhibit
properties quite similar to elastoplastic materials.

Gliding Avalanches Gliding avalanches behaves similar to slab avalanches, but
does not contain a weak layer and instead only consists of a solid layer on top of
the ground. These avalanches typically occur naturally at the end of the winter,
when the snow heats up and the friction between the snow and the ground can
not hold the weight of the snow. The process that forms these avalanches is slow
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and forms large cracks in the snow layer, which makes them easily noticeable and
avoidable.

2.2 Partial Differential Equations

Most physical problems can be expressed as a relationship between how things are
and how they change. This is the exact purpose of differential equations, which
are equations expressing the relationship between functions and their derivatives.
As stated by Alan Turing: “Science is a differential equation. Religion is a boundary
condition.” [23]

Most problems does however require quite complex function, thus Partial Dif-
ferential Equations, or PDEs, are used. PDEs are equations which expresses rela-
tionships between multivariable functions and their derivatives. An example of a
PDE is the Poisson equation in three dimensions

∇2u=
∂ 2u2

∂ x2
+
∂ 2u2

∂ y2
+
∂ 2u2

∂ z2
= f , (2.1)

where u is a multivariable function and the sum of its second derivatives with
respect to the three spacial directions, x , y and z, is equal to some function f . A
solution to this PDE is any function u that satisfies this equation.

While some PDEs can be solved analytically, giving results as mathematical
functions. Solving more complex PDEs analytically, like the PDEs arising from the
physics of elastoplastic materials, is usually unfeasible. Thus they are typically
solved numerically, giving an approximation of a solution to the PDE. This section
will hence explain some ways of solving PDEs numerically.

2.2.1 Explicit Methods

Explicit methods are methods for solving time dependent problems by expressing
an equation for a later point in time only given the current time of the problems
system. Given the current state of the problems system St and one wants to find
the state of the system St+∆t at a later point in time, an explicit method would
use a function F such that

St+∆t = F(St). (2.2)

The advantage of explicit methods is that every advancement in time only
requires one to compute the result of the function F once, which can be highly
performant. However, explicit methods have the disadvantage that the accuracy
of the solution is highly dependent on the size of the time advancement ∆t.

2.2.2 Implicit Methods

While explicit methods expresses an equation for the problems system St+∆t at
a later point in time given the system St at the current time, implicit methods
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instead expresses a requirement function G that has to hold for the two times of
the system such that

G(St , St+∆t) = 0. (2.3)

Thus, solving the problem amounts to solving Equation (2.3) for St+∆t .
The advantage of implicit methods is that one can achieve a higher precision

with larger time advancements compared to explicit methods. However, they have
the disadvantage that they are difficult to formulate and may have a higher com-
putational cost for a singe time advancement.

2.2.3 Iterative Methods for Solving Systems of Linear Equations

When numerically solving partial differential equations with implicit methods, the
problem tend to result in a system of linear equations

Ax= b. (2.4)

Solving the problem thus equates to solving the resulting system of linear equa-
tions. Many methods for solving such systems have been developed for various
situations.

Systems of linear equations (2.4) can be solved directly, using for instance
Gaussian elimination. However, for most practical uses, when matrices are large
and sparse, using iterative methods tend to be more efficient. Iterative methods
starts of with an initial guess for the vector x and iteratively updates the vector
until it converges to some correct solution.

Jacobi Method The most basic iterative method is the Jacobi method, which
splits the matrix A into a diagonal matrix D, a strictly lower-triangular matrix
L and a strictly upper-triangular matrix U such that A = D + L + U . Then x is
iteratively improved using the formula

xk+1 = D−1
�

b− (L + U)xk
�

. (2.5)

The simplicity of these matrices makes computing the matrix vector products
quite easy. Thus the above equation can be written in its element form as

xk+1
i =

1
aii

 

bi −
∑

j 6=i

ai j x
k
j

!

, (2.6)

where x i and bi is the i-th element of its respective vector and ai j is the j-th
element of the i-th row of the matrix A.
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Gauss-Seidel Method The Gauss-Seidel method improves upon the aforemen-
tioned Jacobi Method by realizing that if x is updated element wise from the first
element to the last element, then already calculated elements can be used in the
current iteration to speed up the process, giving the formula

xk+1 = D−1
�

b− Lxk+1 − Uxk
�

. (2.7)

This method can also be expressed in element form as

xk+1
i =

1
aii

 

bi −
i−1
∑

j=1

ai j x
k+1
j −

n
∑

j=i+1

ai j x
k
j

!

. (2.8)

Over and Under Relaxation As mentioned above, iterative methods iteratively
improves x until it converges to a solution. This can also be tough of as taking a
step from x towards the solution. Equation (2.7) can be rewritten to emphasize
this as

xk+1 = xk +
�

D−1
�

b− Lxk+1 − Uxk
�− xk

�

, (2.9)

where
�

D−1
�

b− Lxk+1 − Uxk
�− xk

�

is the step in the direction towards the solu-
tion. Using this formulation, one could change the size of the step by multiplying
the step length by some factor ω, giving

xk+1 = xk +ω
�

D−1
�

b− Lxk+1 − Uxk
�− xk,

�

= (1−ω)xk +ωD−1
�

b− Lxk+1 − Uxk
�

.
(2.10)

When 1 < ω < 2 this method is called successive over relaxation, or SOR,
which typically converges to the solution faster than the Gauss-Seidel method.
When 0 < ω < 1, this method is called successive under relaxation, which does
converge slower, but may find solutions in situations where Gauss-Seidel does not
converge.
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Bi-Conjugate Gradient Stabilized Method As mentioned above, many iterat-
ive methods has been developed. Gissler et al. [7] uses one such method called
Bi-Conjugate Gradient Stabilized Method, or BiCGSTAB, hence it will be described
here. This thesis will however not delve into this methods derivation or workings.
BiCGSTAB have been implemented many times, but one implementation that has
been widely used, is the implementation by Nuentsa-Wakam and Guennebaud
[24] for the Eigen library, thus this thesis will try to stick to their method of im-
plementation as seen in Algorithm 2.1.

Algorithm 2.1: Bi-CGSTAB as implemented by the Eigen library, without restarts
and preconditioning.

function BiCGSTAB(A, x, b, ε, imax)
r = b− Ax
r0 = r
if b2 == 0

x = 0
return x

ρ = 1
α = 1
ω = 1
v = 0
p = 0
i = 0
while r 2 > ε2b2 and i < imax

ρold = ρ
ρ = r0 · r
β = ρα/ρoldω
p = r + β(p −ωv)
v = Ap
α = ρ/r0 · v
s = r −αv
t = As
if t 2 > 0

ω = t · s/t 2

else
ω = 0

x += αp +ωs
r = s −ωt
i += 1

error =
p

r 2/b2

return x

Matrix-Free Methods As seen in Algorithm 2.1, there are three places where
one is required to multiply the matrix A with some vector. Sometimes it is however
unfeasible to explicitly express the matrix A for a linear system. In those cases, one
can use a matrix-free approach. The idea behind matrix-free methods is to replace
the matrix product Ax with some function A(x ) which gives the same result as the
theoretical matrix product would have given. Thus the iterative method can call
that function instead of computing a matrix product.
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2.3 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics, or SPH for short, is essentially a numerical
method for solving partial differential equations. The method was first introduced
by Gingold and Monaghan [11], when they used it to model astrophysical bodies.
The method has been further developed quite a bit since their work, and is today
used for simulating a all kinds of continuum materials, like fluids or solids.

SPH differs from typical numerical methods by using a Lagrangian discretiz-
ation of the problem domain. In other words, the continuum media in question
is modeled as a set of point masses. Each of these points also contain the val-
ues of all relevant continuous fields at their positions. These points are in SPH
called particles, as they contain more than just position information. This kind
of discretization has the advantage that the problem domain can be localized to
withing continuum media, needing no calculations outside the media.

2.3.1 Derivation of Smoothed Particle Hydrodynamics

Discretization of Scalar Fields The goal of SPH is to give approximations of
values of relevant fields at various positions within these fields. Monaghan [25]
begins his derivation of SPH form the mathematical identity

f (x) =

∫

D
f (x′)δ(x− x′)dx′, (2.11)

where f is any continuous scalar function defined over some n-dimensional vector
space Rn, such that x ∈ Rn, D is the domain of the scalar function and δ is the
Dirac delta function, defined as

δ(x) =

¨

∞, x= 0

0, x 6= 0
,

∫

Rn

δ(x)dx= 1. (2.12)

As the Dirac delta function lends itself badly to discretization, Monaghan [25]
uses a generalized continuous function W with the properties

lim
h→0

W (x, h) = δ(x),

∫

Rn

W (x, h)dx= 1, (2.13)

where the function W is called a smoothing kernel and h is known as its smooth-
ing radius. Using Taylor series expansion it can then be shown that when the
smoothing kernel is symmetric, meaning it is invariant to the direction of its first
argument, then

f (x)≈
∫

D
f (x′)W (x− x′, h)dx′. (2.14)



Chapter 2: Background 15

This integral can then be discretized to give an approximation of any scalar
function value at any position within the SPH domain. As an integral can be dis-
cretized as a sum of products of volumes and their respective function values, this
integral is discretized as

f (x)≈
∑

i

Vi fiW (x− xi , h), (2.15)

where the sum is over all particles, Vi is the volume of particle i, fi is the scalar
functions value at the position of particle i and xi is the position of particle i.

Expressing the Smoothing Kernel The Dirac delta function δ can be said to be
equal to a Gaussian distribution with zero variance, hence it would be reasonable
to use a Gaussian distribution with a variance of h as the smoothing kernel. One
should however note that, in order to not violate the second property of Equa-
tion (2.13), one has to integrate over the whole SPH domain. However, in prac-
tice, as the contribution from particles far away from the point of integration x is
negligible, one would want to limit the required domain of integration in order
to improve performance. The smoothing kernel is therefore typically expressed as
a compact function which closely resembles a Gaussian distribution. Due to com-
putations mentioned later in this chapter, it should be noted that the smoothing
kernel is required to have a well defined continuous first derivative.

There are numerous choices for the smoothing kernel that adhere to the men-
tioned requirements, like the polynomial kernel used by previous work on the
HPC-Lab Snow simulator [4], which is created specifically for high computational
efficiency. This thesis does however use the more widely adopted cubic spline ker-
nel as it is used by most of the relevant works on elastoplasticity. The cubic spline
kernel is defined as

W (x, h) = σn











1− 3
2q2 + 3

4q3, 0≤ q ≤ 1
1
4 (2− q)3 , 1≤ q ≤ 2

0, q ≥ 2

: q =
‖x‖
h

, (2.16)

where σn is a normalization factor for the kernel.

−2h −h 0 h 2h
0

0.5

1

x

W
(x

,h
)

Figure 2.1: Cubic spline smoothing kernel with normalization factor set to one.
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Normalization is required because the integral of the smoothing kernel over
its whole domain is dependent on both the value of h and the dimensionality of
the vector space where x is defined. Thus the normalization factor is set such that

∫

Rn

W (x, h)dx= 1. (2.17)

As the smoothing kernel is symmetric, the normalization factor for the smooth-
ing kernel, over a two dimensional vector space, can be calculated as the recip-
rocal of the integral of the smoothing kernel over a circle with radius 2h, which
amounts to

σ2 =

�

∫ h

0

2πr
�

1− 3
2

� r
h

�2
+

3
4

� r
h

�3�

dr +

∫ 2h

h
2πr

�

1
4

�

2
r
h

�3�

dr

�−1

=
10

7πh2
.

(2.18)
Similarly the normalization factor for the smoothing kernel over a three dimen-
sional vector space can be calculated as the reciprocal of the integral of the smooth-
ing kernel over a sphere with radius 2h, which becomes

σ3 =

�

∫ h

0

4πr2
�

1− 3
2

� r
h

�2
+

3
4

� r
h

�3�

dr +

∫ 2h

h
4πr2

�

1
4

�

2− r
h

�3�

dr

�−1

=
1
πh3

.

(2.19)

Gradients of Scalar Fields Many uses of SPH requires computation of gradients
at points within scalar fields. Given a scalar field f , its gradient at some position
x can easily be extrapolated from Equation (2.15) as

∇ f (x)≈∇
�

∑

i

Vi fiW (x− xi , h)

�

=
∑

i

Vi fi∇W (x− xi , h). (2.20)

This formulation depends on the gradient of the smoothing kernel, which comes
up often enough in SPH computations that it should be explicitly expressed. As
the smoothing kernel is symmetric, its gradient amounts to the gradient of the
length of x multiplied with the derivative of the smoothing kernel with respect to
the length of x, which in turn equates to
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∇W (x, h) =
d‖x‖
dx

dW (x, h)
d‖x‖

=
x
‖x‖σ

′
n











9
4q2 − 3q, 0< q ≤ 1

−3
4 (2− q)2 , 1≤ q ≤ 2

0, q ≥ 2

: q =
‖x‖
h

. (2.21)

It should be noted that this kernel formulation is not defined when x= 0.

−2h −h 0 h 2h
−1

−0.5

0

x

∇W
(x

,h
)

Figure 2.2: Cubic spline smoothing kernel gradient with normalization factor set
to one.

Again there is a normalization factorσ′n which is dependent on the dimension-
ality of the vector field. The normalization factor is computed by differentiating
the smoothing kernels with their respective normalization factors, which gives

σ′2 =
10

7πh3
, (2.22)

σ′3 =
1
πh4

. (2.23)

Support Radius, Particle Neighborhood and Points of Interest The smoothing
kernel as it is defined with cubic spline is, as mentioned above, a compact function.
This has the property that any vector x with a length greater than some radius will
amount to a kernel value of zero. For the cubic spline smoothing kernel, this radius
is equal to twice the smoothing radius,

ħh= 2h. (2.24)

This radius ħh is called the support radius of the SPH, and should not be confused
with the smoothing radius h. It should however be noted that for many other
choices of smoothing kernels the support radius may be equal to the smoothing
radius.

As any particle further than ħh away from some vector x will not contribute to
the computation of field values at x, Equation (2.15) can be rewritten with this in
mind, which gives
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f (x)≈
∑

i:‖x−xi‖≤ħh
Vi fiW (x− xi , h). (2.25)

These particles within radius ħh are referred to as the particle neighborhood around
x. See Figure 2.3.

ħhh

Figure 2.3: Example of particle neighborhood with radius equal to the support
radius ħh which is twice the smoothing radius h.

Similarly, the kernel gradient at positions outside the neighborhood will be
zero, in addition to this the kernel is not defined for the position zero, thus Equa-
tion (2.20) becomes

∇ f (x)≈
∑

i:0<‖x−xi‖≤ħh
Vi fi∇W (x− xi , h). (2.26)

Equation (2.25) shows approximation of f at the position x. However, for
most use cases of SPH, one is only interested in field values at particle positions.
Thus, for the rest of this chapter, SPH discretization formulations will be rewritten
to approximate the field value fi at the position xi of particle i. Furthermore will
the summation over the neighborhood be rewritten as

∑

j , where j are particle
neighbors of i, including i itself. Lastly, the smoothing kernel will be rewritten to
only mention the respective particles whose positions are used, such that W (xi −
x j , h) =Wi j . Rewriting Equation (2.25) with this in mind, it becomes

fi ≈
∑

j

Vj f jWi j . (2.27)



Chapter 2: Background 19

The kernel gradient, Equation (2.26), can be rewritten in the same manner. Al-
though, as the kernel gradient is undefined for zero, the particle i can not be in-
cluded in its own neighborhood, this will however be excluded from the notation
when summarizing over kernel gradients. Thus the kernel gradient is expressed
as

∇ fi ≈
∑

j: j 6=i

Vj f j∇Wi j =
∑

j

Vj f j∇Wi j . (2.28)

Differentiating Vector Fields The gradient of a vector field equates to a mat-
rix where each row is equal to the gradient of the respective vector component,
thus Equation (2.28) can be used to compute each row of the resulting matrix.
Compacting this into one equation gives

∇fi ≈
∑

j

Vjf j ⊗∇Wi j , (2.29)

where f is an n-dimensional vector field and ⊗ is the outer product which can be
expressed in matrix form as v⊗ u= vu>.

On the other hand, the divergence of a vector field equates to differentiating
the vector field in each cardinal direction and adding the results. The derivative
of the vector field along one of the cardinal directions can be computed with
Equation (2.28) by using only the component of f and ∇W for the respective
cardinal direction. Thus the divergence of a vector field can be expressed as

∇ · fi ≈
∑

j

Vjf j · ∇Wi j . (2.30)

Alternative Representations of The Differential Operators Although the pre-
viously mentioned approximations of differential operators are easily constructed,
they are not always the appropriate choice. Hence many alternative formulations
have been created. Monaghan [26] discussed the error arising from the use of
Equation (2.28) and derives an alternative formulation from the use of the chain
rule on gradients. By multiplying the argument of a function with one, the chain
rule says that ∇ f (1 ·x) = 1 ·∇ f (x)+ f (x)∇1. This can further be extrapolated to
give the alternative formulation

∇ fi =∇ fi − fi∇1

≈
∑

j

Vj f j∇Wi j − fi

∑

j

Vj∇Wi j

≈
∑

j

Vj

�

fi − f j

�∇Wi j

. (2.31)

Using very similar logic [27], the differential operators for vector fields can be
constructed as the alternative representations
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∇fi ≈
∑

j

Vj

�

f j − fi

�⊗∇Wi j , (2.32)

∇ · fi ≈
∑

j

Vj

�

f j − fi

� · ∇Wi j . (2.33)

Generalization of Gradients In certain situations, like when computing the
gradient of pressure, even the aforementioned alternative formulation of gradi-
ent is inappropriate. However, one can generalize the method above by using the
chain rule on the gradient of a scalar field times density to some power [25],
which gives the generalized identity

∇( f ρn) = nf ρn−1∇ρ +ρn∇ f . (2.34)

When computing gradients of pressure, one typically prefers a pair-wise symmet-
ric equation. Such an expression can be derived from Equation (2.34) by setting
n= −1, which gives

∇ fi ≈ ρi

∑

j

ρ jVj

�

fi

ρ2
i

+
f j

ρ2
j

�

∇Wi j . (2.35)

Correcting for Rotation A problem with the aforementioned representation of
gradients of vector fields , Equation (2.32), is its inability to correctly handle rota-
tions. Bonet and Lok [28]writes about how rotations within vector fields will only
be preserved if the gradient of the particle position field is equal to the identity
matrix, ∇x= I . In order to accommodate this fact, a correction matrix Li , for the
smoothing kernel at the position of particle i, is computed such that

∇xi =
∑

j

Vj

�

x j − xi

�⊗ Li∇Wi j = I . (2.36)

Reordering this formulation gives the expression for the correction matrix

Li =

 

∑

j

Vj

�

x j − xi

�⊗∇Wi j

!−1

. (2.37)

The correction matrix can furthermore be used to construct a new smoothing ker-
nel gradient which accommodates rotations in vector fields. This corrected kernel
gradient is expressed as

∇W̃i j = Li∇Wi j . (2.38)

It should however be noted that given certain configurations of the SPH particles,
the resulting matrix ∇x from the gradient of the particle positions, is not invert-
ible. Thus the tensor field governed by the correction matrices will neither be well
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defined nor continuous. Peer et al. [14] solves this problem by using the Moore-
Penrose pseudoinverse in the cases where the matrix is not invertible.

Divergence of the Stress Tensor Field Section 2.4.2 discusses how the internal
forces in an elastic material can be computed as the divergence of the stress tensor
field σ. Bonet and Lok [28] explains how to derive a discretization of this diver-
gence, which becomes

∇σ =
∑

j

ViVi

�

σi∇W̃i j −σ j∇W̃ji

�

. (2.39)

As the forces due to stress not only contribute to linear force but also shear force,
the rotationally corrected gradient kernel is used in this formulation.

2.3.2 Smoothed Particle Hydrodynamics in Practice

Although the previous section shows how Smoothed Particle Hydrodynamic dis-
cretizes various mathematical concepts, using SPH for numerical simulations may
still pose a big challenge. Hence, this section goes through a general setup for nu-
merical simulations of continuum medias.

Particle Spacing and Mass The spacing between SPH particles is entirely de-
pendent on the material one wants to simulate and the simulation resolution
one wants to achieve. The spacing between individual particles will also change
throughout the simulation as the particles move around. However, for further
computations, one needs a reference spacing. Therefore, a particle spacing ∆s, is
defined such that particles placed in a Cartesian grid with distance ∆s between
particles in the cardinal directions, see Figure 2.4, will be exactly at rest.

s∆s

Figure 2.4: Particles placed in a square with spacing ∆s and side length s.

Given a configuration where particles have been placed in a Cartesian grid
such that they form an d-dimensional cube, also called a square in two dimensions,
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with side length s, see Figure 2.4. These particles will take up a d-dimensional
volume, or area, equal to sd . As defined, these particles are at rest, and thus have
a density equal to the rest density ρ0 of their respective material. For instance,
the rest density of water it approximately thousand kilograms, giving ρ0 = 1000.
Furthermore, density is defined as mass per volume, thus the mass M of the whole
particles configuration can be expressed as

M =
sd

ρ0
. (2.40)

As the distance between particles is ∆s, each side of this d-dimensional cube
will have s

∆s particles. Thus the total number of particles n in this configuration
will be

n=
� s
∆s

�d
. (2.41)

Dividing the mass of the particle configuration among all the particles gives
the particle mass m as

m=
M
n
=

sd∆sd

ρ0sd
=
∆sd

ρ0
. (2.42)

It should be noted that the mass of a particle is defined at the particles creation
and stays constant throughout the simulation.

From the definition of density, one can also see that the rest volume V0 of each
particle is defined as

V0 =∆sd . (2.43)

Support and Smoothing Radius Choosing the right value for the support ra-
dius is a crucial part of any use of SPH. Choosing a to small support radius will
result in inaccurate approximations as there will be too few data points in each
particles neighborhood. Choosing a too large support radius will however increase
the computational cost of iterating over particle neighborhoods. Therefore one
needs to find an optimal compromise between these factors. Most previous work
on SPH [26] seems to agree that there is an optimal number Nd of particles within
each particle neighborhood, which is dependent on the dimensionality d of the
simulation domain. For two and three dimension, the agreed upon numbers are

N2 ≈ 20, (2.44)

N3 ≈ 50. (2.45)

The particle neighborhood around some point are all particles within a d-
dimensional sphere with radius equal to the support radius ħh. Thus, assuming
all particles are at rest, the number of particles within the neighborhood can be
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computed as the number of particle rest volumes that fit within the volume of the
particle neighborhood, giving

Nd =

∫

‖x‖≤ħh: x∈Rd 1dx

V0
, (2.46)

where the integral represent the volume of a d-dimensional sphere with radius ħh.
Using the formula for the area of a circle and substituting in the definition of

rest volume, Equation (2.43), the support radius in two dimensions becomes

ħh=∆s

√

√N2

π
. (2.47)

Similarly, the formula for the volume of a sphere gives the support radius in three
dimensions as

ħh=∆s
3

√

√3N3

4π
. (2.48)

As expressed in Equation (2.24), this thesis’s choice of smoothing kernel gives
the smoothing radius as

h=
ħh
2

. (2.49)

Computing Density and Volume While the mass of the particles stays constant
throughout the simulation, the same can not be said for density and volume. The
definition of density is mass per volume. However, using Equation (2.27), one can
see that density can be computed independently of volume, giving

ρi =
∑

j

m j

Vj
VjWi j =

∑

j

m jWi j . (2.50)

It should also be specified that the density ρi and the volume Vi are the density
and volume of particle i, and should not be confused with the rest density and
volume using the subscript zero.

Furthermore, the volume of a particle can be computed as

Vi =
mi

ρi
. (2.51)

Time Differentials, Forces and Integration Until this point, time has been left
out of all formulations. Time is however an integral part of most SPH simulations.
As time moves forward, the simulated continuum media moves around in space
and thus the particles representing its discretization also moves around. Time will
in this thesis be indicated by a superscript, thus the position of particle i at time t
will be represented as
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xt
i . (2.52)

By differentiating the position of a particle with respect to time, one gets the
velocity of the particle, expressed as

vt
i =

dxt
i

d t
. (2.53)

Similarly, the velocity can be differentiated with respect to time to give the particle
acceleration

at
i =

dvt
i

d t
. (2.54)

Acceleration of a particle can be computed from Newton’s second law of mo-
tion. Given a force Ft

i acting on particle i at time t, its acceleration becomes

at
i =

Ft
i

mi
. (2.55)

When the SPH simulation advances in time, time dependent particle properties
are integrated forward in time by a time step∆t. Various methods for integration
exists, for instance the higher order leap-frog method used in previous SPH imple-
mentations on the HPC-Lab snow simulator [4]. However, due to the first order
nature of the integration of the deformation gradient, explained in Section 2.4.2,
there is no benefit to using any higher order method when simulating elastoplastic
materials. This thesis chooses to use the same method as Gissler et al. [7], which is
the Euler-Chromer method [29]. This method first integrates the velocity forward
by one time step using the Euler method, giving the next time steps velocity

vt+∆t
i = vt

i +∆tat
i . (2.56)

Then the position is integrated forward by one time step using the newly acquired
velocity, giving the new position

xt+∆t
i = xt

i +∆tvt+∆t
i . (2.57)

2.3.3 Boundary Handling

Boundary handling tackles how SPH should handle the interaction between the
simulated medium and external materials e.g. rigid bodies. Boundary handling
is said to be the most difficult aspect of the SPH method [30], and a variety of
methods has been developed for this.

Previous implementations of SPH in the HPC-Lab Snow Simulator [3] used
a simple method for boundary handling where forces was explicitly added to
particles near or within boundaries. This method is quite performant for simple
boundaries, however it does come with a lot of disadvantages. More complex
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boundary shapes are hard to implement accompanied by a high computational
cost. This method also neglects the effect pressure variance has on the boundary
interaction.

For this thesis it was instead chosen to implement boundary handling with
the more widely used method of representing boundaries as a set of boundary
particles. This method lends itself well to use with SPH as interactions with the
boundary can use the same smoothing kernel and neighbor search as is used
between other particles.

Boundary particles in general The general idea of boundary particles is to
represent a volume that continuum material particles will not be able to move
through. Thus, a boundary particle b has to represent some volume Vb.

Akinci et al. [12] derives an equation for the boundary volume by first assum-
ing that the boundary particles has a theoretical mass mb and a theoretical density
ρb. Thus the volume of the boundary particle can be represented as Vb =

mb
ρb

. By
using Equation (2.50) for discretizing density and assuming that all boundary
particles have the same theoretical mass, the volume discretization simplifies to

Vb =
mb

ρb
=

mb
∑

k mkWbk
=

1
∑

k Wbk
, (2.58)

which is no longer dependant on the theoretical mass and density. As this equa-
tion shows, the volume of a boundary particle gets smaller as more particles are
occupying the same space. This makes it such that overlapping boundary particles
will cancel out and represent the same volume.

In order to compute densities of particles, one is required to know the mass of
all particles interacting with the particle in question. Boundary particles does not
have a specific mass, however, Akinci et al. [12] uses a method in which boundary
particles acts as a continuum material particle at rest. Thus, a mass equivalent Ψb
for a boundary particle b is computed as

Ψb = ρ0Vb. (2.59)

Using this mass equivalent, Equation (2.50) for discretizing the density of
particles, can be extended to incorporate boundary particles as

ρi =
∑

j

m jWi j +
∑

k

ΨkWik. (2.60)

Note that boundary particles are represented as the sum over k, which is how they
will be represented throughout this thesis.

Boundary Shells As mentioned above, boundary particles taking up the same
space cancel out, thus one can easily fill complex structures with boundary particles
without any problems. However, one typically wants to limit the number of bound-
ary particles in order to limit their computational cost. Akinci et al. [12] and Band
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et al. [13] thus only places a shell of boundary particles along the edge of the
boundary volumes.

Although these boundary shells are only one particle thick, they represents
a boundary volume completely filled with boundary particles. Therefore, their
volumes has to account for these missing boundary particles.

Assuming the boundary shell is a perfectly flat line in a two dimensional simu-
lation and a continuum material particle lies as close to the boundary as possible.
The neighborhood of the continuum material particle will only contain a certain
amount of boundary particles from the flat line, these boundary particles are how-
ever supposed to represent a whole minor segment, see Figure 2.5, of the circular
neighborhood.

r
d

AA

c = 2
p

r2 − d2

A= r2 cos−1 d
r − d

p
r2 − d2

c

Figure 2.5: Length of chord and area of minor segment distance d from circle
center.

Using the same logic as in Section 2.3.2, the particle distance is ∆s and the
volume of a continuum material particle is∆s2. Furthermore, the continuum ma-
terial particle lies on top of the boundary particles, thus it has a distance of ∆s
from the line crossing the centers of the boundary particles, while it has a distance
of ∆s

2 from the actual boundary.

Thus the section of the line crossing the centers of the boundary particles
which is contained within the particles neighborhood is equal to the chord, see
Figure 2.5, distance ∆s from the center of the neighborhood circle with radius ħh.
This chord has a length of c, see Figure 2.6, and a width of one particle distance,
assuming it has the same volume as continuum material particles, its volume is
c∆s.

The volume this boundary chord is supposed to represent is however the minor
segment outside the chord with distance ∆s

2 from the center of the particle neigh-
borhood circle with radius ħh, see Figure 2.6. This minor segment has a volume,
actually area in two dimensions, of A.

Lastly the area of the chord of boundary particles is multiplied with a factor φ
such that it equals the area of the minor segment, φc∆s = A. Using the formulas
for the length of chords and area of minor segments, the factor in two dimensions
becomes
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∆s

c

ħh

AA

∆s
∆s
2
∆s
2

Figure 2.6: Boundary shell and the volume it represents.

φ =
ħh2 cos−1 ∆s

2ħh − ∆s
2

Ç

ħh2 − ∆s2

4

2∆s
p

ħh2 −∆s2
. (2.61)

Multiplying the volume of a boundary particle, Equation (2.58), with this cor-
rection factor gives a new corrected formulation of the boundary particle volume
as

Vb =
φ

∑

k Wbk
. (2.62)

Boundary Shells in Three Dimensions Assuming the boundary shell is a per-
fectly flat plane in a three dimensional simulation and a continuum material
particle lies as close to the boundary as possible. The neighborhood of the particle
will only contain a certain area of boundary plane, which is however supposed to
represent a spherical cap of the neighborhood sphere.

While in two dimensions a circle chord of the boundary line is contained with-
ing a particles neighborhood, in three dimensions a cross sectional disk with area A
distance ∆s from the neighborhoods sphere center is contained within the neigh-
borhood. This disk has a width of one particle distance, thus, assuming the bound-
ary particles have the same volume as continuum material particles, it will have
a volume of A∆s. The area Ad of a cross sectional disk distance d from the center
of a sphere with radius r can be computed as

Ad = π(r
2 − d2). (2.63)

In two dimensions the boundary particles within the neighborhood of a particle
is supposed to represent the area of a minor segment. However, in three dimen-
sions the boundary particles within the neighborhood of a particle is supposed
to represent a spherical cap with volume Vc distance ∆s

2 from the center of the
neighborhood sphere. The volume Vc,d of a spherical cap distance d for the center
of a sphere with radius r can be computed as



28 Mathias Chunnoo: Simulating Snow as an Elastoplastic Material on the GPU

Vc,d =
π

3
(r − d)2(d + 2r). (2.64)

Thus, the volume of boundary particles can be multiplied by a factor φ such
that the volume of the disk is equal to the volume of the spherical cap,φA∆s = Vc .
This gives the formula for the volume correcting factor in three dimensions as

φ =
(2ħh−∆s)2(∆s+ 4ħh)

24∆s(ħh2 −∆s2)
. (2.65)

Friction Friction is the idea that materials in contact with a surface experience
a force in the opposite direction of their velocity. Viscosity is a property typic-
ally present in fluids, where different parts of the fluid experience a force which
smooths out the velocity across the fluid such that the fluid tends to having less
varying velocity. These two properties are very closely related and thus, in the case
of continuum material particles interacting with boundary particles, the friction
force on a particle is typically modeled as a viscous force between the particles.

The Navier-Stokes equations [8] is set of partial differential equations that
are typically used when modeling fluids. This thesis will not go into details on
these equations, however, they state that the acceleration due to viscous forces in
a material can be expressed as

a=
µ

ρ
∇2v, (2.66)

where µ is a factor stating how viscous the material in question is and ∇2v is the
Laplacian of the velocity field, which is equal to the divergence of the gradient of
the velocity field.

Various methods for discretizing the Laplacian of a vector field with SPH exists.
Band et al. [31] states that in the case of friction, the discretization of the Laplacian
has to take into account particles moving tangentially to the boundary. They thus
discretize the Laplacian of the velocity of an SPH particle as

∇2vi = 2(d + 2)
∑

j

Vj
xi − x j

‖xi − x j‖
· ∇Wi j(vi − v j), (2.67)

where d is the dimensionality of the SPH domain. However, in the case of station-
ary boundaries, one can assume that v j is always equal to zero. Thus the equation
can be simplified by pulling the velocity vi out of the summation. This assumption
will be made throughout this thesis.

Using Equation (2.66) and Equation (2.67) in conjunction with Equation (2.56),
one can construct an implicit formulation of the velocity of a continuum mater-
ial particle after taking into account the viscous forces between it and boundary
particles. This formulation becomes
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vt+∆t
i = vt

i +∆taother,i +∆tvt+∆t
i

2(d + 2)µ
ρ t

i

∑

k

Vk
xt

i − xk

‖xt
i − xk‖

· ∇Wi j , (2.68)

where, aother,i are all other accelerations on the particle computed up until the
addition of friction.

Although this is an implicit formulation, because the friction force on a particle
is not dependent on other particles in the continuum material system, this implicit
formulation can actually be solved explicitly as

vt+∆t
i =

vt
i +∆taother,i

1−∆t 2(d+2)µ
ρ t

i

∑

k Vk
xt

i−xk

‖xt
i−xk‖ · ∇Wi j

. (2.69)

Typically one is interested in the acceleration a f due to friction as opposed
to the velocity like this equation gives. The acceleration can thus be found by
substituting in Equation (2.56), vt+∆t

i = vt
i +∆tai , which gives

a f ,i =
vt

i +∆taother,i

∆t −∆t2 2(d+2)µ
ρ t

i

∑

k Vk
xt

i−xk

‖xt
i−xk‖ · ∇Wi j

− vt
i +∆taother,i

∆t
, (2.70)

where d is the dimensionality of the SPH domain and µ is a friction coefficient
which states how much friction there should be between the continuum material
and the boundary particles.

2.4 Elastoplastic Materials

Elastoplastic materials are materials which exhibit both elastic and plastic proper-
ties, see Figure 2.7. When the material is deformed slightly it will it will behave as
an elastic material and return to its original form. However, when it is deformed
beyond a certain threshold it behaves as a plastic material and keeps some of its
deformation.

2.4.1 Generalized Hooke’s Law for Elastic Materials

Elastic materials are materials which return to their original form after having
been deformed. This operates similarly to how springs in one dimension return to
their original form after being deformed. Springs follow Hooke’s law

F = k∆x , (2.71)

where a spring is compressed or stretched by a length ∆x , the force F returns it
to its original shape where k is a constant which depends on the springs strength.
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fex t
Elastic deformation

fint

fex t
Plastic deformation

fex t
Elastoplastic
deformation

fint

Figure 2.7: Comparison of materials deformed by an external force fex t and their
internal force fint responding to the deformation.

When an elastic material is isotropic, independent of spacial direction, it can
be thought of as if a set of infinitesimal small springs holding the material together
and compressing or stretching depending on the materials deformation. However,
these internal forces withing the material pull and bush in all possible directions.
As an example, take a point within an elastic material, where the surrounding
material is compressed along one axis and stretched along an orthogonal axis.
This would result in the point experiencing two orthogonal forces, thus the forces
at points within elastic materials can not be expressed as single forces.

Stress and Strain One way to understand internal forces in elastic materials is
to think of an infinitesimal point mass with a corresponding infinitesimal volume.
All forces acting on this point mass will thus act on its surface. In addition to this
can any vector in a d-dimensional vector space can be linearly composed of d basis
vectors. Thus, the internal forces acting on an infinitesimal point mass within a d-
dimensional elastic material, can be uniquely expressed as an d×d-matrix where
each row is the force acting on a part of the surface of the point mass with a
normal along one of the cardinal directions. Thus for a three dimensional elastic
material, this can be expressed as

σ =







dFx
dSx

dFy

dSx

dFz
dSx

dFx
dSy

dFy

dSy

dFz
dSy

dFx
dSz

dFy

dSz

dFz
dSz






=





σx x σx y σxz
σy x σy y σyz
σzx σz y σzz



 , (2.72)
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where Fi is a scalar force acting in the cardinal direction i onto a surface, S j is the
area of the respective surface with normal in the cardinal direction j. The resulting
matrix σ is called the stress in the material at the respective point. The reason for
the differentiation, is due to the fact that this is the stress for an infinitesimal point
mass, in other words the limit as the surface of the point mass gets infinitesimally
small.

While stress represents the force of Hooke’s law, Equation (2.71), one has to
find an equivalent for the deformation ∆x . Referring to the infinitesimal point
mass volume from above, the cross-sectional length of the original volume along
the cardinal direction i is expressed as Ui while the amount this length has been
compressed or stretched is expressed as ui . This deformation is called normal
strain. One may also deform the volume by shearing it, which has the effect of
deforming the material without changing the length of its cross-section. This can
be thought of as deforming the length Ui in an orthogonal direction j, expressed
as u j . However this deformation alone would result in a rotation of the volume,
hence a deformation in the direction i of the cross section along j is added to
counteract this rotation. Thus, representing all deformations of a three dimen-
sional volume results in the matrix

ε=









dux
dUx

dux
2dUy

+
duy

2dUx

dux
2dUz

+ duz
2dUx

duy

2dUx
+ dux

2dUy

duy

dUy

duy

2dUz
+ duz

2dUy
duz

2dUx
+ dux

2dUz

duz
2dUy

+
duy

2dUz

duz
dUz









=





εx x εx y εxz
εy x εy y εyz
εzx εz y εzz



 , (2.73)

where the resulting matrix ε is referred to as the strain of the material at the
respective point. The reason for the division by two of the shear components is
due to the symmetry of the matrix representing the same deformation twice.

With these stress and strain formulations Hooke’s law, Equation (2.71), can
be reformulated as the generalized Hooke’s law for elastic materials

σ = Kε, (2.74)

where K is a constant matrix representing the strength of the material.

Young Modulus and Poisson’s Ratio To use the generalized Hooke’s law one
has to express the strength matrix K in Equation (2.74). Isotropic elastic materials
typically have different strengths depending on whether the experienced stress is
normal stress or shear stress. How these strengths are defined can vary depending
on usage, but for elastic materials their strengths are typically defined by their
Young Modulus and their Poisson’s Ratio.

The Young Modulus E, or the modulus of elasticity, is a constant describing
the materials ability to withstand normal stress. It is defined as the relationship
between the normal strain εii and the resulting normal stress σii for some dir-
ection i, the direction of this stress is irrelevant as the material is isotropic. The
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young modulus for an elastic material in three dimensions can thus be expressed
as

E =
σx x

εx x
=
σy y

εy y
=
σzz

εzz
. (2.75)

Poisson’s Ratio ν is a constant describing how the material deforms perpen-
dicularly to the applied force. One would for instance expect that when an elastic
ball is pressed against the floor, it would be compressed heightwise while it would
expand in all other directions, hence the balls Poisson’s Ratio is positive.

fex t

fint

Figure 2.8: Ball pressed against the ground by an external force fex t showing the
internal forces fint acting in the perpendicular directions due to the Poisson effect.

Poisson’s Ratio is defined as the proportional relationship between the in normal
strain in the direction of the acting force and the in normal strain in any of the
perpendicular directions. Poisson’s ratio for an elastic material in three dimensions
can thus be expressed as

ν= −εy y

εx x
= − εzz

εx x
= −εx x

εy y
= − εzz

εy y
= −εx x

εzz
= −εy y

εzz
. (2.76)

Lamé Parameters Using the definitions of the Young Modulus ans Poisson’s Ra-
tio, a formulation of the strength in the Generalized Hooke’s Law, Equation (2.74),
can be derived. Deriving this formulation, for a tree dimensional material, begins
by expressing the normal strains of the material.

Using Equation (2.75), one can see that given a normal stress in the x direc-
tion, the resulting strain in the same direction will become σx x

E . Using both Equa-
tion (2.75) and Equation (2.76), one can see that normal stress in the y direction
induces the normal strain −νσy y

E in the x direction. Similarly normal stress in the
z direction induces the normal strain −νσzz

E in the x direction. Similar logic can be
used for the other cardinal direction and thus the normal strains can be expressed
as
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εx x =
σx x

E
− νσy y

E
− νσzz

E
=
(1+ ν)σx x

E
− ν(σx x +σy y +σzz)

E
,

εy y =
σy y

E
− νσx x

E
− νσzz

E
=
(1+ ν)σy y

E
− ν(σx x +σy y +σzz)

E
,

εzz =
σzz

E
− νσx x

E
− νσy y

E
=
(1+ ν)σzz

E
− ν(σx x +σy y +σzz)

E
.

(2.77)

By summarizing these normal strain definitions, one can derive an expression for
the sum of the normal stresses as

εx x + εy y + εzz =
(1+ ν)(σx x +σy y +σzz)

E
− 3ν(σx x +σy y +σzz)

E

=
1− 2ν

E
(σx x +σy y +σzz),

(2.78)

σx x +σy y +σzz =
E

1− 2ν
(εx x + εy y + εzz). (2.79)

With this expression for the sum of the normal stresses, the Equations (2.77) can
reformulated into equations for the normal stresses as

σx x =
E

1+ ν
εx x +

Eν
(1+ ν)(1− 2ν)

(εx x + εy y + εzz)

σy y =
E

1+ ν
εy y +

Eν
(1+ ν)(1− 2ν)

(εx x + εy y + εzz)

σzz =
E

1+ ν
εzz +

Eν
(1+ ν)(1− 2ν)

(εx x + εy y + εzz).

(2.80)

The stress and strain independent parts of these equations can be extracted as

G =
E

2(1+ ν)
, λ=

Eν
(1+ ν)(1− 2ν)

, (2.81)

where λ and G are called Lamé Parameters. Furthermore, by substituting in the
Lamé Parameters and combining Equations (2.80) into a matrix form, the Gener-
alized Hooke’s Law, Equation (2.74), can be expressed as,

σ = 2Gε+λt r(ε)I , (2.82)

where t r(ε) is the trace of the strain matrix, or the sum of its diagonal, and I is
the identity matrix. It should be noted that the above derivation does not account
for shear tress and shear strain. It can however be shown that Equation (2.82)
still holds for these components.
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2.4.2 Solving for Internal Forces

In order to numerically simulate an elastic material, one is required to compute
the forces that arise from the stress and strain within the material. This how this
can be derived.

Elastic Deformation Gradient While the previously mentioned strain tensor,
Equation (2.73), represents deformations in the material, it is preferable to repres-
ent deformations in a way that is easier to integrate and, as seen in Section 2.4.3,
is able to handle plasticity. Thus, one defines the elastic deformation gradient FE ,
which represents the amount a point within the material has deformed from its
initial configuration.

Before defining the deformation gradient, one can define the displacement u
of a material point, which is the amount a point has moved within the material
from its original position within the material. It is defined as

u= x− x0 =∇x0
u+ I , (2.83)

where x0 is the initial position of the point with respect to the material as a whole,
thus x0 moves along as the whole material is moved or rotated, see Figure 2.9.

xt

xt
0

xt+∆t

xt+∆t
0∆tvt

ut+∆t

Figure 2.9: Displacement of a point within an elastic material.

The elastic deformation gradient FE is defined as the gradient of the position of
points within the deformed material with respect to their original position within
the undeformed material,

FE =
∂ x
∂ x0

=∇x0
x. (2.84)

Furthermore, the time derivative of the deformation gradient can be expressed
as



Chapter 2: Background 35

dFE

d t
=

d∇x0
x

d t
=∇x0

dx
d t
=∇x0

v, (2.85)

where the time derivative of the position is equal to the velocity, as seen in Equa-
tion (2.53).

This formulation of the time derivative requires one to compute the gradient of
velocity with respect to the initial shape of the material. This is however unfeasible
in many situations, like in this thesis’s implementation of SPH. One can however,
as done by Sulsky et al. [32] for their particle in cell method, derive an alternative
formulation of the time derivative. As the velocity of a point within the material
is dependent on the position of the point, one can hence use the chain rule to
express the time derivative of the deformation gradient as

dFE

d t
=∇x0

v= (∇xv)(∇x0
x) =∇vFE , (2.86)

where ∇xv is the gradient of the velocity with respect to the spacial position of
material points. This is further replaced by the standard gradient operator as it is
equivalent to the spacial gradient.

Using this formulation of the time derivative of the deformation gradient, an
integration scheme for the deformation can be constructed as

F t+∆t
E = F t

E +∆t(∇vt)F t
E . (2.87)

Note that in the method by Peer et al. [14] for simulating elastic solids, they
keep a reference to the initial particle configuration x0 throughout the simulation
and use it to compute the deformation gradient. The methods by Stomakhin et
al. [10] and Gissler et al. [7] does however not use any initial particle configura-
tion, as the plasticity of snow makes it irrelevant, thus they instead solely rely on
integration and velocity gradients to compute the deformation gradient.

Strain Since the elastic material as a whole is allowed to move freely around in
space without experiencing any stress, any pure rotations of the material should
not induce any strain. Given a pure rotation R, it will be canceled out when mul-
tiplying it with its transpose, as RR> = R>R= I . Therefore multiplying the deform-
ation gradient with its transpose, FE F>E , will cancel out its rotational component.
Substituting in the definition of deformation gradient given displacement, Equa-
tion (2.83), this becomes

FE F>E = (∇x0
u+ I)(∇x0

u+ I)> =∇x0
u+ (∇x0

u)> + (∇x0
u)(∇x0

u)> + I , (2.88)

which is typically referred to as the Cauchy-Green deformation tensor. Although
this multiplication cancels out the rotational component of the deformation, it
also clearly affects non-rotational deformations. One way to compensate for this
is to use the Lagrangian finite strain tensor, defined as
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E=
1
2
(FE F>E − I) =

1
2

�∇x0
u+ (∇x0

u)> + (∇x0
u)(∇x0

u)>
�

. (2.89)

This formulation is however mostly useful for larger deformations, while in a nu-
merical simulation of continuum medias, where point masses tend toward infint-
essimal, all displacements are very small ‖∇x0

u‖ � 1. Because of this, the for-
mulation can be simplified by assuming that (∇x0

u)(∇x0
u)> ≈ 0. This simplified

definition is called the infinitesimal strain tensor and is defined as

ε=
1
2

�∇x0
u+ (∇x0

u)>
�

=
1
2

�

FE + F>E
�− I . (2.90)

Internal forces due to stress This thesis will not go into details on the deriv-
ation of forces due to stress, but will use the Cauchy momentum equation. The
Cauchy momentum equation, Anderson [33], states that the internal forces due
to stress acting on an infinitesimal volume in a material is equal to the divergence
of the stress tensor for the same volume,

Fσ =∇ ·σ = ρaσ. (2.91)

This can further be transformed to give an equation for the acceleration of a point
in a material due to internal stress as

aσ =
1
ρ
∇ ·σ. (2.92)

This formulation can further be used to give an expression of the velocity at
the next time step. In addition to the forces due to internal stress, every point
in the material will also be affected by external forces like gravity, these external
forces gives an acceleration aex t . Thus a formulation for the velocity at the next
time step can be expressed as

vt+∆t = vt +∆taex t +
∆t
ρ
∇ ·σ, (2.93)

By substituting Equation (2.82), Equation (2.90) and Equation (2.87) into the
version of Equation (2.93), the formulation becomes

vt+∆t = vt +∆taex t

+
G t∆t
ρ t
∇ · �F t

E + (F
t
E)
> +∆t(∇vt)F t

E +∆t((∇vt)F t
E)
> − 2I

�

+
λt∆t
2ρ t

∇ · t r
�

F t
E + (F

t
E)
> +∆t(∇vt)F t

E +∆t((∇vt)F t
E)
> − 2I

�

I .

(2.94)
Note how this formulation is explicit, Section 2.2.1. Expressing an impllicit for-
mulation, Section 2.2.2, requires one to use the stress at time ∆t + t, thus giving
Equation (2.94) with ∇vt replaced by ∇vt+∆t .
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2.4.3 Handling Plasticity with Singular Value Decomposition

Elastoplastic materials exhibit plastic behaviors when experiencing stress beyond
a certain threshold. More specifically, the elastic force opposing deformations in
the material should be limited as to not fully return the material to its original
shape when the stress is large enough. One way to do this is to limit the change of
the deformation gradient. However, as with the formulation of strain, the material
should be allowed freely rotate without experiencing stress. Hence any rotations
in the material should be left out of the deformation gradient. To do this, the
deformation gradient has to be decomposed into its rotational component and its
scaling component. One way to do this is with Singular Value Decomposition [10],
or SVD, which decomposes a matrix A into two pure rotation matrices U and V>

and a positive diagonal matrix Σ, such that

A= UΣV> = U





σ1 0 0
0 σ2 0
0 0 σ3



V>, (2.95)

where the diagonal values ofΣ are the singular values of the decomposition. From
this decomposition the rotational component of the matrix can be expressed as
UV>, while the scaling component can be expressed as Σ.

Using this formulation of rotational and scaling components, the deformation
gradient can be integrated leaving out the rotational component and limiting the
amount of deformation.

First the elastic deformation gradient is integrated using Equation (2.87), giv-
ing

F t+∆t
E = F t

E +∆t(∇vt)F t
E . (2.96)

Note that in implicit formulatins one typically integrates the elastic deformation
gradient using the velocity gradient ∇vt+∆t .

Then this elastic deformation gradient is decomposed as

F t+∆t
E = UEΣEV>E = UE





σE,1 0 0
0 σE,2 0
0 0 σE,3



V>E , (2.97)

where UEV>E is the rotational component and ΣE is the scaling component. The
scaling component can be limited to a range between the critical compression and
the critical stretch of the material, giving a new elastoplasic scaling component
ΣEP by clamping the singular values as

ΣEP =





σEP,1 0 0
0 σEP,2 0
0 0 σEP,3



 : σEP,i = clamp(σE,i , [1− θc , 1+ θs]), (2.98)
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where θc is the critical compression of the material and θs is the critical stretch of
the material.

Lastly the rotational component can be canceled out by multiplying with the
transpose of the rotational component, giving the final integrated elastoplastic
deformation gradient

F t+∆t
EP = (UEV>E )

>UEΣEP V>E = VEΣEP V>E . (2.99)

One should note that the subscript of the elastoplastic deformation gradient
FEP is used in this section to clearify the its difference from the elastic deformation
gradient FE . However, throughtout this thesis, FE will be used to represent all
deformation gradients.

2.5 Graphics Processing Unit

Graphics processing units, or GPUs, or more commonly known as graphics cards,
are a type of chip used in computers that are specifically designed to compute
graphics related operations at a high speed. Historically, GPUs have been very spe-
cialized, thus only being useful for graphics related tasks. However, throughout
the last two decades, GPUs have become widely more generalized and custom-
izeable, thus enabling the use of GPUs on non-graphics related tasks, known as
general purpose computing on GPUs, or GPGPU. With the widespread use of ma-
chine learning and neural networks the last decade, which benefits greatly from
GPGPU, GPU vendors have been focusing even more on the GPGPU side of their
products, specifically on tensor computations, which has initiated the develop-
ment of tensor specific hardware like TPUs and CUDA Tensor Cores [34, 35].

2.5.1 Parallelism in General

With the end of Moore’s Law [36] becoming a reality, the field of computing have
seen more advancement into parallelism as a means of improving performance.
This includes central processing units, CPUs, with more cores, CPUs with vector-
ized instructions and more use of GPGPU.

The parallelism seen in multi-core CPUs and in GPUs, operates quite differ-
ently and is therefore not always useful in the same situations. As an introduction
to various methods of parallelism, this section will describe Flynn’s Taxonomy
[37], which is a scheme for classifying methods of computation in serial and in
parallel. The class of Multiple Instructions, Single Data stream, MISD, will not be
described as it it typically only used as a means of added security in highly critical
systems.

Single Instruction, Single Data Stream Single Instruction, Single Data Stream,
or SISD, is the workings of a typical single threaded processor. Programs that
are only using SISD are called serial programs and is how the implementation
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described in Section 4.1 is written. SISD works such that every clock tick, the
processor performs one instruction on one set of data. An example if this it the
x86 instruction add, which computes the sum of two integer values.

Multiple Instructions, Multiple Data Streams Multiple Instructions, Multiple
Data Streams, or MIMD, is the typical workings of multi-core CPUs and programs
that utilizes this are called multi threaded or parallel programs. In this case, every
processor core works as its own independent SISD processor, the system as whole
can thus perform multiple independent instructions on multiple sets of data. The
advantage of this type of parallelism is that each processor core can perform its
own independent job, such a dedicating one processor core to handling graphics
and dedicating one core to physical simulations.

Single Instruction, Multiple Data Streams Single Instruction, Multiple Data
Streams, or SIMD, is used by GPUs and by CPU vectorized instructions. With SIMD,
the processing unit performs one instruction on multiple sets of data and will
produce the same result as performing the equivalent SISD instruction multiple
times. An example of SIMD is the x86 instruction paddd, which computes four
sums of of two sets of four integer values, located consecutively in memory. paddd
is equivalent to performing the add instruction four times, but only requiring one
processor cycle. GPUs also works this way, such that they can perform one task
multiple times on multiple sets of data. The advantage of this is that the GPUs
hardware is specialized in such a way that many invocations of the same task can
be performed simultaneously and thus result in a faster overall run time compared
to performing the same task multiple times in series.

2.5.2 Compute Unified Device Architecture

Compute Unified Device Architecture [38], or CUDA, is Nvidia’s application pro-
gramming interface, API, for utilizing their GPUs for GPGPU computations. In
general CUDA enables allocating to, and writing and reading from memory on
the GPU and allows for defining functions in the code as GPU Kernels, which are
sections of code that gets compiled to run on the GPU. In addition to this, CUDA
has a system for executing these GPU Kernels from the code running on the CPU.

CUDA GPU Structure At the highest level, Nvidia GPUs contain a set of Graphics
Processing Cluster, GPCs. The GPCs contain a set of Texture Processing Clusters,
TPCs. The TPCs contain a set of Streaming Multi-processors, SMs. When kernels
are executed they are first queued in the GPU’s GigaThread Scheduler, which di-
vides the threads needed for executing the kernel into blocks of at most 1024
threads and further decides which SM should handle each block. Each SM is fur-
ther divided into SM Partitions, SPs, which each has the ability to execute at a set
of threads called a warp in parallel. When the GigaThread Scheduler has decided
which SMs should handle a kernel execution, the SMs themselves schedule warps
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of their blocks amongst available SPs, which again schedule and issue warps for
parallel execution. [39]

When executing kernels from the CPU on the GPU using CUDA, one configures
a kernel grid, which is a specification of how threads should be divided into blocks.
This grid configuration can be crucial for performance as GPUs contains caches
at the TPC level, the SM Level and the SP Level. The GPU also has the ability to
synchronize the execution of threads across blocks.

Cache, Shared Memory and Localization Caching is the idea that larger sec-
tions of memory can be loaded into a cache, which has a lower access time, such
that future memory accesses withing the same section can be more performant.
By localizing memory used by one thread, one can achieve great performance be-
nefits as there is a higher chance of needed memory being cached, thus enabling
lower access time for future memory uses. However, while memory localization
and caching can improve performance, it is quite difficult to control, thus CUDA
enables a more user controllable form of memory, called shared memory. Shared
memory is the idea that one dedicates a section of the SM-wide data cache for
the programmer to explicitly utilize. Thus shared memory is a highly performant
memory which can be accessed by all threads across a single block.



Chapter 3

Smoothed Particle
Hydrodynamics for Snow
Simulation

This chapter describes how smoothed particle hydrodynamics can be utilized in
order to simulate snow. It describes both certain aspects of how one would struc-
ture a general program for performing these simulations and the mathematical
formulas that are required.

The chapter first describes a method that is almost identical to the method
by Gissler et al. [7], before describing certain alternative formulations of similar
methods.

3.1 An Implicit Compressible SPH Solver for Snow Simu-
lation

This thesis is for the most part inspired entirely by the paper for an implicit com-
pressible SPH solver for snow simulation by Gissler et al. [7]. Thus this chapter
begins by explaining this thesis’s way of implementing their method.

3.1.1 Overview

This method start off by initializing all aspects of the simulation. This includes
simulation wide parameters, snow particle properties and boundary particle prop-
erties as can be seen in Algorithm 3.1.

After having initialized the simulation the simulation is run by iteratively com-
puting the properties of the snow particles at the next time step of the simulation.
During this computation, first properties independent of other particles are com-
puted. Then the correction matrix, Equation (2.37), and accelerations aex t due
to external forces are computed for each particle. Then two separate solvers are

41
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Algorithm 3.1: Initializing the simulation.

function initializeSimulation
initialize simulation parameters
for all snow particles i

initialize time independent properties of i
for all boundary particles k

initialize all properties of k

used to solve for the accelerations aλ due to pressure differences and the accel-
erations aG due to shear stress. Finally the velocities, deformation gradients and
positions are numerically integrated for each particle. The integration of the de-
formation gradient is however dependent on the positions of all particles and the
velocity gradient at each particle, thus the integrations have to be performed sep-
arately for all particles and in their respective order. The general structure of the
computation of new time steps can be seen in Algorithm 3.2.

Algorithm 3.2: Computing the next time step.

function computeNextTimeStep
for all snow particles i

compute kernel independent properties of i
for all snow particles i

compute L t
i

compute aex t,i
solve for aλ
solve for aG
for all snow particles i

integrate vt
i

for all snow particles i
compute ∇vt+∆t

i
integrate F t

E,i
for all snow particles i

integrate xt
i

3.1.2 Initialization

Initializing Simulation Parameters Most of the simulation parameters are user
defined and thus need no further initialization. A couple parameters does however
have be computed. All snow particles are initialized to have the same mass, there-
fore a simulation wide particle mass is computed from the simulation wide rest
density and particle spacing using Equation (2.42) with d set to the respective di-
mensionality of the simulation. Lastly the support radius and smoothing radius for
the smoothing kernel used by the simulation is computed using Equation (2.47)
or Equation (2.48), depending on the dimensionality of the simulation, and Equa-
tion (2.49), respectively.
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Initializing Snow Particle Properties Most snow particle properties are recom-
puted each time step and thus does not need to be initialized, but they are typically
initialized to zero in the implementations. As mentioned above, the particle mass
is initialized to the as the simulation wide particle mass. The other properties
that has to be initialized are the ones that are integrated every time step. The
deformation gradients are initialized to the identity matrix as the snow particles
are assumed to be at rest at the beginning of the simulation. The positions and
velocities are user defined depending on the initial particle configuration.

Initializing Boundary Particles The boundary particle properties Vb andΨb, for
all boundary particles b are initialized as described in Section 2.3.3. The boundary
particle volumes Vb are computed using Equation (2.62), where the volume cor-
rection factor φ is computed using Equation (2.61) or Equation (2.65) depending
on the dimensionality of the simulation. The boundary particle mass equivalents
Ψb are computed using Equation (2.59).

This way of handling boundary particles is not the same method used by
Gissler et al. [7]. They do however not explicitly state how they configure their
boundaries, which makes it difficult to know how they made their method work.
This method should however result in a boundary contribution that is approxim-
ately equal to their method.

3.1.3 Snow Particle Properties

Density, Volume Rest Density The density and volume of each particle is simply
computed by Equation (2.60) and Equation (2.51), respectively.

As mentioned in Section 2.1.2, snow hardens as it is compressed, making it act
more like a solid and keep its compression, thus its rest density consequently gets
larger. As the deformation gradient of the snow particles handles the amount of
compression experienced by the snow, its determinant represents how much each
particle is compressed in reference to its rest density. Thus this method computes
a new rest density for each particle i as

ρ t
0,i = ρ

t
i |det(F t

E,i)|, (3.1)

where |det(F t
E,i)| is the absolute value of the determinant of the deformation

gradient matrix of the respective snow particle.

Lamé Parameters The initial Lamé Parameters G0 and λ0 are defined by Equa-
tion (2.81), where the Young Modulus and Poisson Ratio are user defined de-
pending on the type of snow one wants to simulate. However, as snow hardens its
Young Modulus and Poisson Ratio changes. The method by Stomakhin et al. [10]
handles this change as an exponential growth depending on a plastic hardening
coefficient ξ and the amount of plastic deformation. Contrary to this method, the
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method by Gissler et al. [7] does not use a dedicated plastic deformation gradi-
ent, thus they compute the amount of plastic deformation from the particles rest
density, giving the particles Lamé Parameters as

G t
i = G0e

ξ
ρt

0,i−ρ0

ρt
0,i , (3.2)

λt
i = λ0e

ξ
ρt

0,i−ρ0

ρt
0,i , (3.3)

where ρ0,i is the respective particles rest density, while ρ0 is the simulation wide
rest density.

Correction Matrix As mentioned in Section 2.3.1, to properly handle gradients
and divergence in rotating vector fields, one has to compute a correction matrix.
This correction matrix L t

i is computed for every particle using Equation (2.37).
One can see that this equation is dependent on the volume of all neighbor particles,
thus the correction matrix is computed after all particle volumes have been com-
puted, as can be seen in Algorithm 3.2.

3.1.4 Acceleration due to External Forces

Gravity This implementation assumes that the gravity g is constant across the
simulation. The gravity is a user defined vector, but is typically set to earths gravity
of −9.81 in the vertical direction.

Friction The acceleration due to friction between snow and boundary particles
is computed using Equation (2.70), where the acceleration aother is set to the
acceleration g of gravity.

Combined External Forces Before the various internal forces in the snow are
computed, the acceleration due to external forces are combined into one acceler-
ation

at
ex t,i = g+ at

f ,i . (3.4)

It should be mentioned that Gissler et al. [7] includes an acceleration due to
adhesion as derived by Akinci et al. [40]. This was implemented during the work
on this thesis, but was left out due to its low relevance to the types of simulations
this thesis focuses on.

3.1.5 Solving for Acceleration due to Pressure Differences

While elastoplastic materials relies on stress for computing their internal forces, a
lot of other SPH simulations, especially fluid simulations, relies on pressure for in-
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ternal forces. In such simulations, the simulated medium will experience internal
forces from areas with high pressure onto areas with lower pressure.

One of the goals of Gissler et al. [7] was to create a method for snow simu-
lation that could interact with other SPH simulations, thus they create a solver
which solves for accelerations arising from pressure differences in the snow. This
solver can further be interlaced with other SPH solvers to compute normal forces
between various materials. Only using this solver would amount to simulating
an inviscid fluid, like a gas, and would mathematically equate to setting Lamé’s
second parameter G to zero, thus solving a simplified generalized Hooke’s law,
Equation (2.82), as σ = λt r(ε)I .

Pressure Pressure is a scalar value defined as force per area, p = F
A . This is quite

similar to the definition of normal stress in elastic materials, Equation (2.72). One
can therefore say that pressure is a scalar value describing a symmetric normal
stress in all directions. Using a derivation similar to Equation (2.92), one can
derive that the acceleration aλ due to pressure difference in the material is equal
to gradient from high pressure to low pressure divided by density, giving

aλ,i = −
∇pi

ρi
. (3.5)

By intuition one can see that a material at rest should have zero pressure, while
a material with density higher than its rest density should have positive pressure.
Thus, pressure is typically expressed as a proportional relationship between the
amount the materials density differs from its rest density

pi = k
ρi

ρ0,i
. (3.6)

This equation is called an equation of state [27], where k is called the materials
stiffness constant. It should be noted that most equations of state are expressed
in a way that keeps the pressure positive, Gissler et al. [7] does however allow
negative pressure.

Conservation of Mass It is widely known that in physics, energy has to be con-
served. This law is commonly referred to as the Law of Conservation of Mass-
Energy, on account of, when one disregard chemical reactions and sub-atomic
effects, the law states that mass has to be conserved. This law thus relates to con-
tinuum materials in the sense that mass within the material can not disappear
nor come into existence. This fact is modeled simply by SPH as all particles have
constant mass. However, for use in the following derivation, this law is mathem-
atically expressed as [8]

dρi

d t
+ρi∇ · vi = 0, (3.7)
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which states that mass, referred to by the particles density, moving along the velo-
city field into some point, should be equal to the mass moving along the velocity
field out of that same point. It should noted that the derivative in the equation
is typically expressed as a material derivative Dρ

Dt . The use of SPH particles does
however make this distinction irrelevant.

Deriving an Implicit System for Pressure Gissler et al. [7] uses the formula
for acceleration due to pressure differences (3.5), in conjunction with the already
computed external acceleration, to derive an implicit formulation of the velocity
at the next time step as

vt+∆t
i = vt

i +∆tat
ex t,i −∆t

∇pt+∆t
i

ρ t+∆t
i

, (3.8)

where velocity changes are integrated using the Euler method (2.56).
Furthermore, Gissler et al. [7] expresses the mass conservation law using this

implicit formulation of velocity (??), by first approximating

ρ t+∆t
i ∇ ·

�∇pt+∆t
i

ρ t+∆t
i

�

≈∇2pt+∆t
i , (3.9)

where ∇2 is the Laplacian operator, which is equivalent to taking the divergence
of the gradient. Using this approximation, the divergence term on the left hand
side of the mass conservation law (3.7) can be expressed as

ρ t+∆t
i ∇ · vt+∆t

i = ρ t+∆t
i ∇ ·

�

vt
i +∆tat

ex t,i −∆t
∇pt+∆t

i

ρ t+∆t
i

�

= ρ t+∆t
i ∇ ·

�

vt
i +∆tat

ex t,i

�

−∆t∇2pt+∆t
i .

(3.10)

Then the time derivative of density can be expressed using the Euler method
(2.56), giving

dρ t+∆t
i

d t
≈ ρ

t+∆t
i −ρ t

i

∆t
. (3.11)

Substituting Equation (3.10) and Equation (3.11) into the mass conservation
law (3.7) and reordering the equation, gives the equation

ρ t+∆t
i −∆t2∇2pt+∆t

i = ρ t
i −∆tρ t+∆t

i ∇ ·
�

vt
i +∆tat

ex t,i

�

. (3.12)

Thereafter Gissler et al. [7] uses Lamé’s first parameter λ as the stiffness of
the material. Thus the equation of state (3.6) can be used to express density as

ρ t+∆t
i = ρ t+∆t

0,i

�

pt+∆t
i

λt+∆t
i

+ 1

�

. (3.13)
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Lastly, they use the following approximations ρ t+∆t
0,i ≈ ρ t

0,i , λ
t+∆t
i ≈ λt

i and

ρ t+∆t
i ∇·

�

vt
i +∆tat

ex t,i

�

≈ ρ t
i∇·

�

vt
i +∆tat

ex t,i

�

, which turns Equation (3.12) into

the final implicit pressure equation, where pt+∆t
i is the only unknown parameter,

ρ t
0,i

�

pt+∆t
i

λt
i
+ 1

�

−∆t2∇2pt+∆t
i = ρ t

i −∆tρ t
i∇ ·

�

vt
i +∆tat

ex t,i

�

−
ρ t

0,i

λt
i

pt+∆t
i +∆t2∇2pt+∆t

i = ρ t
0,i −ρ t

i +∆tρ t
0,i∇ ·

�

vt
i +∆tat

ex t,i

�

.

(3.14)

Expressing the Implicit Pressure Equation as a System of Equations The im-
plicit pressure equation (3.14) is essentially a system of equations, Ax= b, where
x is a vector of all particle pressures and b is a vector of the right hand side of
the equation for all particles, but expressing the matrix A is not feasible. However,
as Gissler et al. [7] have decided to use the Jacobi method (2.5), one only has
to compute the diagonal elements of the theoretical matrix and the matrix-vector
product between the matrix, without its diagonal, and the pressure vector. They
further simplify this by approximating the aforementioned matrix-vector product
as the product between the whole matrix, including its diagonal, and the pressure
vector. The matrix-vector product thus amounts to computing the left hand side
of Equation (3.14).

Discretizing the Implicit Pressure Equation Before solving the system, one
needs a way of computing the differentials appearing in Equation (3.14). The right
hand side requires one to compute the divergence of a vector field, while the left
hand side requires one to compute the Laplacian of the pressure field. As stated
before, the Laplacian is equivalent to taking the divergence of the gradient. There-
fore, one is required to compute divergence of vector fields and gradients of scalar
fields. The divergence of a vector field can be computed using Equation (2.33).
The gradient of the pressure field can be computed using Equation (2.35). How-
ever, Gissler et al. [7] simplifies this equation by assuming particles have the same
density. Finally the boundary contribution to the pressure gradient is added, which
gives the equation

∇pi =
∑

j

Vj

�

pi + p j

�∇Wi j + pi

∑

k

Vk∇Wi b. (3.15)

The last requirement before solving the system is to compute the diagonal
elements aii of the system matrix. This thesis will not go into details on how this
is derived, but Gissler et al. [7] computes it as
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aii =−
ρ t

0,i

λt
i
−∆t2

∑

j

ViVj‖∇Wi j‖2

−∆t2

 

∑

j

Vj∇Wi j +
∑

k

Vk∇Wik

!

·
∑

k

Vk∇Wik.

(3.16)

It should be noted that in both Equation (3.15) and Equation (3.16), Gissler
et al. [7] multiplies the boundary terms by a constant factor. This is however not
needed due to the choice of boundary volume computation in this thesis.

Solving the Implicit Pressure System To solve for the pressure, Gissler et al.
[7] uses the Jacobi Method (2.5). However, as they want their system to interact
with other SPH simulations, they use a under relaxed (2.10) version of the Jacobi
method, such that this solver will be slow enough that other solvers can be inter-
laced between its iterations. They use the relaxation factor ω = 0.5. This thesis
does however not interact the snow with other materials and thus does not require
relaxation. The method starts off by computing properties that are independent
of pressure, which includes the system matrix diagonals and the right hand side
of Equation (3.14), before iteratively updating the pressure to some chosen tol-
erance and lastly computing the resulting acceleration using Equation (3.5). It
should also be noted that, at the first time step, all pressures are initialized to
zero, while for all proceeding time steps the pressure from the preceding times
step is kept. In addition to this the time notation of the pressure is left out as
the same particle property is used across time steps. The method can be seen in
Algorithm 3.3.

Algorithm 3.3: Implicit pressure solver.

function pressureSolver(ω, ε, imax)
for all snow particles i

compute ∇ · (v t
i +∆tat

ex t,i)
for all snow particles i

bi = right hand side of Equation (3.14)
compute aii

i = 0
e = ∞
while e2 > ε2 and i < imax

e = 0
for all snow particles i

compute ∇pi
for all snow particles i

Api = left hand side of Equation (3.14)
pi = pi +

ω
aii
(bi − Api)

e += bi − Api
i += 1

for all snow particles i
compute ∇pi
aλ,i = ∇pi
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3.1.6 Solving for Acceleration due to Shear Stress

The acceleration aλ due to pressure differences, computed in the previous section,
essentially captures acceleration due to normal stress. In other words, it handles
the λ-term of the generalized Hooke’s law (2.82). The next step is to solve for
the acceleration aG due to shear stress, arising from the G-term of the generalized
Hooke’s law (2.82). It should be noted that, while this will be referred to as accel-
eration due to shear stress, the formulation still encompasses some acceleration
due to normal stress, which will be further discussed in Section 3.2.1.

Deriving an Implicit System for Acceleration due to Shear Stress To derive
an implicit system for aG , the generalized Hooke’s law (2.82) is first simplified by
removing the λ-term, giving the new shear stress formulation

σ t+∆t
G,i = 2G tεt+∆t

i . (3.17)

Using the same method as used used in Section 2.4.2, in addition to assuming
the acceleration aλ is an acceleration due to external forces, an implicit velocity
equation can be derived, which becomes

vt+∆t
i = vt

i +∆t
�

aex t,i + aλ,i

�

+
∆t
ρ t

i
∇ ·

�

G t
i

�

F t
E,i + (F

t
E,i)
> +∆t(∇vt+∆t

i )F t
E,i +∆t((∇vt+∆t

i )F t
E,i)
> − 2I

��

,

(3.18)
where the Lamé parameter G is included in the divergence as it may be vary-
ing across the material. This equation can be reordered such that the unknown
velocity only appears on the left hand side of the equation

vt+∆t
i − ∆t2

ρ t
i
∇ ·

�

G t
i

�

(∇vt+∆t
i )F t

E,i + ((∇vt+∆t
i )F t

E,i)
>��

= vt
i +∆t

�

aex t,i + aλ,i

�

+
∆t
ρ t

i
∇ ·

�

G t
i

�

F t
E,i + (F

t
E,i)
> − 2I

��

.
(3.19)

By substituting Equation (2.56), vt+∆t
i = vt

i + ∆tat+∆t
i , into this equation and

moving all constants over to the right hand side, one arrives at the following
formulation of implicit acceleration.

at+∆t
G,i −

∆t2

ρ t
i
∇ ·

�

G t
i

�

(∇at+∆t
G,i )F

t
E,i + ((∇at+∆t

G,i )F
t
E,i)
>��

=
1
ρ t

i
∇ ·

�

G t
i

�

F∗E,i + (F
∗
E,i)
> − 2I

��

,
(3.20)

where F∗E,i is a new deformation gradient encompassing the current velocity and
external acceleration. It is computed as
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F∗E,i = F t
E,i +∆t∇ �vt

i +∆t
�

aex t,i + aλ,i

��

F t
E,i . (3.21)

A Side Note on Mistakes in Papers In version five, which seems to be the latest
version, of the paper by Gissler et al. [7], they have mistakenly written∆t instead
of ∆t2 on the left hand side of Equation (3.20). This mistake was not found until
the last couple of weeks of writing this thesis and is the main reason this theses
delves into alternative solvers, Section 3.2.

Rotation and Volume Corrected Gradients Solving the above equation (3.20)
requires one to compute the gradient of vector fields. As explained in Section 2.3.1,
computing vector field gradients in rotating materials requires the use of the cor-
rected kernel gradient, Equation (2.38), to avoid divergence over time. However,
Gissler et al. [7] found that this gradient formulation over estimates the volume
changes. Hence they compute a new velocity gradient, which takes the gradient
component due to volume changes from the uncorrected gradient and the gradi-
ent components due to rotation and shear from the corrected gradient.

First two uncorrected velocity gradients are computed as

∇v′i,s =
∑

j

�

v j − vi

�⊗ Vj∇Wi j ,

∇v′i,b =
∑

k

(−vi)⊗ Vk∇Wik,
(3.22)

where ∇v′i,s is the uncorrected velocity gradient at particle i with respect to only
other snow particles, while∇v′i,b is the uncorrected velocity gradient with respect
only to boundary particles. It should be noted that the latter one is simplified in
this thesis as boundaries are stationary.

Then a rotation corrected velocity gradient is computed from the two uncor-
rected ones using the correction matrix, such that

∇̃vi =∇v′i,s L>i +
1
d

t r
�

∇v′i,b L>i
�

I , (3.23)

where d is the number of dimensions in the simulation, t r is the trace function
and I is the identity matrix.

The velocity gradient component V′i coming from the change in volume is
computed as the normal component of the uncorrected velocity gradient, giving

V′i =
1
d

t r
�

∇v′i,s +∇v′i,b
�

I . (3.24)

The velocity gradient component R̃i due to rotations in the material is com-
puted as a normalization of the corrected velocity gradient minus its transpose,
giving
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R̃i =
1
2

�∇̃vi − (∇̃vi)
>� . (3.25)

The velocity gradient component S̃i due to shear of the material is computed as
a symmetrization of the corrected velocity gradient minus its normal component,
giving

S̃i =
1
2

�∇̃vi + (∇̃vi)
>�− 1

d
t r
�∇̃vi

�

I . (3.26)

Lastly the volume, rotation and shear components are combined to give the
fully corrected velocity gradient

∇vi = V′i + R̃i + S̃i (3.27)

Divergence of Stress Tensor Fields As described in Section 2.3.1, the forces
due to stress can be discretized as Equation (2.39). However, in this situation,
one is not computing force, but instead computing an acceleration. As force is
equal to mass times acceleration, one can divide Equation (2.39) by the mass mi
of particle i which gives the equation

ρiai =
∑

j

Vj

�

σi∇W̃i j −σ j∇W̃ji

�

. (3.28)

The density on the left hand side of this equation is however handled by the de-
rivation of Equation (3.20).

Lastly, Gissler et al. [7] adds a stress component for all boundary particles
which is equal to the normal stress of the particle in question,

σk,i =
1
d

t r(σi)I . (3.29)

Thus, all divergences of stress tensors are discretized as

∇ ·σi =
∑

j

Vj

�

σi∇W̃i j −σ j∇W̃ji

�

+σk,i

∑

k

Vk∇W̃ik. (3.30)

Solving the Implicit Acceleration System Like with the implicit pressure sys-
tem (3.14), the implicit acceleration system due to shear stress (3.20) essentially
represents a system of equations, Ax = b, Where x represents a vector of all
particle accelerations aG,i and b represents a vector of the right hand side of Equa-
tion (3.20) for all particles. It can therefore be solved using an iterative method.
Gissler et al. [7] decides to use a matrix free version of the BiCGSTAB method,
Algorithm 2.1, to solve the system. The full implementation of this implicit shear
stress solver can be seen in Algorithm 3.4.
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Algorithm 3.4: Implicit shear stress solver

function computeRightHandSide
for all snow particles i

compute ∇ �v t
i +∆t(aex t,i + aλ,i)

�

for all snow particles i
compute F∗E,i
σb,i = G t

i (F
∗
E,i + (F

∗
E,i)
> − 2I)

for all snow particles i
compute ∇ ·σb,i
bi = 1

ρi
∇ ·σb,i

return b

//Note that x is a set of generic vectors, not the particle positions
function computeLeftHandSide(x)

for all snow particles i
compute ∇x i

for all snow particles i
σx ,i = G t

i

�

(∇x i)F t
E,i + ((∇x i)F t

E,i)
>
�

for all snow particles i
compute ∇ ·σx ,i
Ax i = x i − ∆t

ρi
∇ ·σx ,i

return Ax

function shearStressSolver(ε, imax)
b = computeRightHandSide()
// See Algorithm 2.1
aG = BiCGSTAB(computeLeftHandSide, aG, b, ε, imax)

3.1.7 Integrating Time Dependent Particle Properties

Integrating Velocities The velocity of each particle is numerically integrated
using Euler’s method, Equation (2.56), where the acceleration of each particle is
the sum of the previously computed accelerations. Thus the new velocity at the
next time step is computed as

vt+∆t
i = vt

i +∆t
�

at
ex t,i + at+∆t

G,i + at+∆t
λ,i

�

(3.31)

Integrating Deformation Gradients The integration of the deformation gradi-
ents is dependent on the velocity gradient. Thus, the gradient of the newly ac-
quired velocity vt+∆t

i is first computed using the rotation and volume corrected
method by Gissler et al. [7], explained in Section 3.1.6. Then the deformation
gradient F t

E,i is integrated with the method explained in Section 2.4.3, giving the
new deformation gradient F t+∆t

E,i

Integrating Positions The final step of the computation is to integrate the posi-
tion of each particle. This method used the Euler-Chromer method of integration,
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thus the positions are numerically integrated using Equation (2.57), giving the
new position xt+∆t

i .

3.2 Alternative Solvers for Snow Simulation

This section describe certain alternative formulations of the method described in
the preceding section. All these alternative formulations aim to produce the same
results, but differ in the way they solve for the acceleration of snow particles.

3.2.1 Fully Decoupled Solver

When simulating snow in the way explained in Section 3.1,the implicit pressure
solver is supposed to handle all accelerations due to normal stress, while the im-
plicit shear stress solver is supposed to handle all accelerations due to shear stress.
This is however not the case, as mentioned by Gissler et al. [7]. The shear stress
solver solves Equation (3.17), σ = 2Gε, one can see that this does in fact contrib-
ute to normal stress, as it will tend to produce a non-zero diagonal in the resulting
stress matrix.

Deriving a Fully Decoupled Implicit System for Shear Stress To fully decouple
the shear stress solver from the pressure solver, one has to remove all normal stress
from the stress equation (3.17) solved by the shear stress solver. This equates to
the equation

σ t+∆t
G,i = 2G t

i

�

εt+∆t
i − 1

d
t r(εt+∆t

i )
�

, (3.32)

where d is the number of dimensions in the simulation and t r is the trace function.
Following the same method as in Section 3.1.6, one can derive an implicit

equation for acceleration due to fully decoupled shear stress, which becomes
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(3.33)
where F∗E,i is the same deformation gradient as seen in Equation (3.21).

This equation can further be solved with the BiCGSTAB method to give accel-
eration aG , using the same approach as Algorithm 3.4.

Bulk Modulus and Material Stiffness When Gissler et al. [7] solved the implicit
pressure system, they set the stiffness of the material equal to the first Lamé para-
meter λ, as the acceleration due to pressure differences is supposed to represent
the normal stress of the λ-term of the generalized Hooke’s law (2.82). However,



54 Mathias Chunnoo: Simulating Snow as an Elastoplastic Material on the GPU

when the two solvers are fully decoupled, the acceleration from the implicit pres-
sure solver has to represent all normal stress in the material.

As mentioned in Section 2.4.1, there are many ways to describe the strength
of an elastic material, and the section further describes the Young Modulus and
Poisson’s Ratio. The Bulk Modulus K is one such description, which represents the
materials resistance to volume change when experiencing pressure. It is defined
as

K = ρ
dp
dρ

. (3.34)

This thesis will not go into detail of how other equations for the Bulk Modulus are
derived, but one can derive an equation for a particles Bulk Modulus given the
particles Lamé Parameters as

Ki = λi +
2Gi

3
. (3.35)

This can further be used as the stiffness in Equation (3.6) to give an implicit pres-
sure solver which solves for an acceleration given all normal stress in the material.

3.2.2 Combined Solver

Gissler et al. [7] uses two solvers to compute acceleration, one implicit pressure
solver and one implicit shear stress solver. Their reason for doing this is so that the
implicit pressure solver can interact with solvers for other materials. However, the
HPC-Lab Snow Simulator is, at the moment, for the most part only interested in
snow itself and hence does not need the snow to interact with other materials. For
this purpose, a single combined solver can be formulated, which simultaneously
solves for normal stress and shear stress.

Deriving an Implicit Equation for Acceleration due to Stress As normal stress
is handled by the implicit stress solver, the implicit pressure solver, Algorithm 3.3,
can be removed from the system. Then, to handle normal stress, the implicit stress
solver has to be based on the entirety of the generalized Hooke’s law (2.82),

σ t+∆t
i = 2G t

i ε
t+∆t
i +λt

i t r(εt+∆t
i )I . (3.36)

Using the same derivation method as used in Section 3.1.6, one can derive an
implicit equation for acceleration aσ due to stress, giving

at+∆t
σ,i −

∆t2

ρ t
i
∇ ·

�

G t
i

�

(∇at+∆t
σ,i )F

t
E,i + ((∇at+∆t

σ,i )F
t
E,i)
>�+

λt
i

2
t r
�

(∇at+∆t
σ,i )F

t
E,i + ((∇at+∆t

σ,i )F
t
E,i)
>� I

�

=
1
ρ t

i
∇ ·

�

G t
i

�

F∗E,i + (F
∗
E,i)
> − 2I

�

+
λt

i

2
t r
�

F∗E,i + (F
∗
E,i)
> − 2I

�

I

�

.

(3.37)
This equation can further be solved using the BiCGSTAB method to give the ac-
celeration aσ, using the same approach as Algorithm 3.4.
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3.2.3 Solving for Velocity

All the previously mentioned stress solvers, like the solver used by Gissler et al. [7],
solves an equation for an acceleration due to stress. However, like in the method
by Peer et al. [14] for simulating elastic solids, one can instead solve the equations
for the resulting velocity vt+∆t .

Deriving an Implicit Velocity Equation The derivation of an implicit velocity
equation is the exact same derivation as seen in Section 3.1.6, with the exception
of not expressing the final derivative. The implicit velocity due to shear stress is
thus Equation (3.19). The equation can then be solved for the velocity vt+∆t using
the BiCGSTAB method in the same way as seen in Algorithm 3.4.

As this method results in the velocity for the next time step, one is not required
to numerically integrate the velocities. This integration can thus be removed from
Algorithm 3.2.

This method of solving directly for the resulting velocity can similarly be used
with the fully decoupled solver, Section 3.2.1, and the combined solver, Section 3.2.2.

3.2.4 Explicit Solver

Gissler et al. [7]mentions the reason for choosing an implicit solver over an expli-
cit solver. When simulating stiff materials, the simulation has to be quite precise in
order to result in a stable material. For explicit solutions this requires pretty small
time steps, while for an implicit solution one can get by using larger time steps.
It also turns out that for a wide variety of numerical simulations, the perform-
ance increase of having larger time steps outweighs the performance decrease of
iteratively solving an implicit system.

This section will describe an explicit method for computing the combined ac-
celeration due to stress, as seen in Section 3.2.2. However, explicit methods can
be used in conjunction with the implicit pressure solver, as used in Section 3.1
and Section 3.2.1.

Deriving the Explicit Acceleration due to Stress As with the combined solver,
the explicit derivation starts off from the generalized Hooke’s law (2.82), with the
exception that one computes the stress at the current time step. Thus the particles
stress can be expressed as

σ t
i = 2G t

i ε
t
i +λ

t
i t r(εt

i )I . (3.38)

The strain of a particle can, as seen in Equation (2.90), be computed as

εt
i =

1
2

�

F t
E,i +

�

F t
E,i

�>�− I . (3.39)

The acceleration on the particle due to this internal stress can, as seen in Equa-
tion (2.91), can be computed as
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at
σ,i =

1
ρ t

i
∇ ·σ t

i , (3.40)

where the computation of the divergence of stress follows the same method as
Equation (3.30).

Using this explicit formulation, the acceleration due to internal stress can be
computed by iterating through all particles twice, as seen in Algorithm 3.5, which
replaces the two implicit solvers seen in Algorithm 3.2.

Algorithm 3.5: Computing explicit acceleration due to stress

function computeAccelerationDueToStress
for all snow particles i

compute εi
compute σi

for all snow particles i
compute ∇ ·σi
compute aσ,i



Chapter 4

Implementation

This chapter describes in detail aspects of the code needed to implement a numer-
ical simulation of snow using smoothed particle hydrodynamics.

The chapter first describes a serial implementation which has been implemen-
ted on central processing units, before describing a parallel implementation that
utilizes graphics processing units.

4.1 Serial Implementation

During implementation of the methods described previously in this thesis, the
methods where first implemented as a serial implementation [15], with no regards
to performance. This was done to make sure the implementation was correct as
the only reference used for implementation was previously written papers.

Implemented Methods In the serial implementation all nine methods men-
tioned throughout Chapter 3 where implemented. This includes the methods lis-
ted in Table 4.1.

Table 4.1: Implemented methods for the serial implementation

Normal and shear stress relation Stress solver
Lamé decoupled Implicit acceleration
Fully decoupled Implicit acceleration
Combined Implicit acceleration
Lamé decoupled Implicit velocity
Fully decoupled Implicit velocity
Combined Implicit velocity
Lamé decoupled Explicit acceleration
Fully decoupled Explicit acceleration
Combined Explicit acceleration

57
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In order to simplify this implementation, all of the above methods where imple-
mented as two dimensional simulations.

It should further be mentioned that all floating point values in this implement-
ation, including vector and matrix components, are 64-bit IEEE 754 floating point
values [41].

4.1.1 Neighborhood Lookup

Iterating over particle neighborhoods is an essential aspect of SPH. Although per-
formance is not the focus of this implementation, having a neighborhood lookup
with a complexity of O(n) makes the implementation virtually unusable for any
practical amount of particles. Thus a lookup method with an asymptotic complex-
ity of O(1) was implemented.

The neighborhood lookup method is based on splitting the simulation domain
into a regular Cartesian grid and placing particles into their respective grid cells.
When one wants to iterate over some particles neighborhood, it amounts to iter-
ating through particles in the cells that could contain neighbors.

Grid Size As described in Section 2.3.1, the neighborhood of a particle in two
dimensions is any particle within a circle of radius equal to the support radius ħh of
the simulation. If one split the simulation domain into a grid with very large grid
cells compared to the support radius, one would usually only need to look through
one grid cell to find neighbors. However, in the worst case, when a particle is at
the very corner of a grid cell, its neighborhood would cover four grid cell. On the
other hand, a small cell size compared to the support radius would require one
to look through a large amount of cells, which would have a greater performance
cost. Thus the most optimal choice is the largest possible grid cell which still only
requires one to look through four grid cells in the worst case. This turns out to be
a grid where each cell has a side length of two times the support radius, 2ħh.

2ħh

ħh

Figure 4.1: Grid with cell side length of two times support radius showing that
in the worst case a neighborhood covers four grid cells.
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Implementation Every particle in the simulation and their properties are first
and foremost stored in an array. At the start of the simulation every particle is
stored in their respective grid cell as a list of indices referring to the particle array.
Before the position xi of a particle is integrated to give particles position at the
next time step, it is stored as the particles previous position x∗i . At the end of every
time step, every particle is first removed from the index list of the respective grid
cell for its previous position, then the particle is inserted into the index list of the
respective grid cell for its new position.

It should also be noted that in this implementation, although it is not optimal,
the snow particles and the boundary particles are both placed into the same grid,
requiring their particle type to be checked on use.

The method for updating the particle positions within the lookup grid and the
method for finding all neighbors of a particle can be seen in Algorithm 4.1.

Algorithm 4.1: Lookup table functions.

function update(i)
previousCell = lookup table cell containing x ∗i
newCell = lookup table cell containing x i
remove i from previousCell
insert i into newCell

function getNeighbors(i)
gridCorner = x i rounded to nearest grid cell corner
possibleNeighbors = all indices in cells touching gridCorner
return all j from possibleNeighbors filtered by ‖x i − x j‖ ≤ ħh

4.1.2 Singular Value Decomposition and Pseudoinverse

Singular Value Decomposition, SVD, is used for handling plasticity when integ-
rating the deformation gradient. This implementation is required to compute the
SVD of a two by two matrix. It was chosen to follow the method by Blinn [42],
which can be seen in Algorithm 4.2.

When computing the correction matrices for particles one is required to in-
vert a matrix. As stated in Section 2.3.1, when the matrices are not inevitable,
one instead computes the Moore-Penrose Psudoinverse of the matrix. As stated by
Golub et al. [43], the Moore-Penrose Pseudoinverse of a matrix can be computed
by first computing the SVD of the matrix as UΣV>, then replacing the non-zero
singular values of Σ with their reciprocals, giving Σ+ and lastly combing the de-
composition to give the pseudo inverse as VΣ+U>. It should also be noted that
when the derivative of a matrix or the singular values of a matrix are close to zero,
the inverse of the matrix or the reciprocal of the singular values, might cause a
floating point overflow. Thus, instead of checking whether or not values are equal
to zero, one checks whether or not the absolute value is smaller than some small
value ε. In this implementation ε= 10−16. Both the psudoinverse and safe inverse
methods can be seen in Algorithm 4.3.
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Algorithm 4.2: Singular value decomposition of two by two matrices.

function singularValueDecomposition(A)
E =

A0,0+A1,1

2

F =
A0,0−A1,1

2

G =
A0,1+A1,0

2

H =
A0,1−A1,0

2

Q =
p

E2 +H2

R =
p

F2 + G2

a1 = tan−1 G
F

a2 = tan−1 H
E

θ = a2−a1
2

φ = a2+a1
2

Σ =
hQ+ R 0

0 |Q− R|
i

U =
h

cosφ − sinφ
sinφ cosφ

i

V> =
h

cosθ − sinθ
sinθ cosθ

i

return U, Σ, V>

Algorithm 4.3: Moore-Penrose pseudoinverse and safe inverse of two by two
matrices.

function moorePnerosePseudoinverse(A)
U, Σ, V> = singularValueDecomposition(A);

Σ+ =





if |Σ0,0|< ε then 0 else 1
Σ0,0

0

0 if |Σ1,1|< ε then 0 else 1
Σ1,1





return VΣ+U>

function safeInverse(A)
det(A) = A0,0A1,1 − A0,1A1,0

if |det(A)| > ε
return 1

det(A)

h A1,1 −A0,1−A1,0 A0,0

i

else
return moorePnerosePseudoinverse(A)
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4.2 Parallel Implementation

This section describes the parallel implementation which focuses more on per-
formance. This implementation was implemented in the HPC-Lab snow simulator
and utilizes GPU programming through the CUDA platform for parallelism and
improved performance.

Integration with the HPC-Lab Snow Simulator As this implementation has the
same structure of other SPH implementations, large amounts of previously written
code from the HPC-Lab snow simulator was reused. However, due to lack of name
spacing, this implementation ran into problems with name collisions, thus all the
code specific to this implementation was compiled as its own library before it was
linked with the rest of the simulator.

While this implementation utilizes much of the rendering implementation that
existed in the HPC-Lab snow simulator, it does not utilize any other aspects of
the simulator, such as terrains. It is however implemented in such a way that
integrating these aspects should pose no apparent problems.

Implemented Method Due to time limitations and mistakes that where made
during development of the serial implicit methods, only the method for combined
explicit stress was used in this implementation. The method was implemented as
a three dimensional simulation and utilizes 32-bit IEEE 745 floating point values
[41] as GPUs typically are tailored to operate on these values.

Algorithm 4.4: Parallel implementation for computing next time step.

function runKernel(kernel, grid)
run with grid configuration

kernel
synchronize threads

function computenextTimeStep()
particleReorderingWithPrefixSumAndCountingSort()

runKernel(precomputeNeighbors, precomputeGrid)
runKernel(densityVolumeAndRestDensity, generalGrid)
runKernel(lameParameters, generalGrid)
runKernel(correctionMatrix, matrixGrid)
runKernel(predictedVelocity, generalGrid)
runKernel(predictedVelocityGradient, generalGrid)
runKernel(stress, matrixGrid)
runKernel(accelerationDueToStress, matrixGrid)
runKernel(integrateVelocity, generalGrid)
runKernel(integrateDeformationgradient, matrixGrid)
runKernel(integratePosition, matrixGrid)

The general structure of computation of time steps can be seen in Algorithm 4.4.
All grid values seen in this algorithm will be further discussed in Section 4.2.3.
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Note that predicted velocity in this context refers to the integration of velocity
given only external acceleration, v +∆taex t .

Simulation Parameters The simulation parameters in this implementation are
stored in what CUDA refers to as constant memory. This is a highly performant
read-only section of memory on the GPU. As there are not many simulation para-
meters, their storage overhead is negligible and will thus not be further discussed
in this thesis.

Particle Storage Throughout the simulation all properties required by particles
are stored in separate arrays allocated on the GPU. These properties can be seen
in Table 4.2 with their respective type and memory usage.

Table 4.2: Properties stored on the GPU for each particle.

Property Type Memory usage
position float3 12B
velocity float3 12B
acceleration float3 12B
mass float 4B
density float 4B
restDensity float 4B
volume float 4B
correctionMatrix matrix3 36B
lambda float 4B
G float 4B
deformationGradient matrix3 36B
predictedVelocity float3 12B
predictedVelocityGradient matrix3 36B
stress matrix3 36B
color float 4B
particleCell unsigned int 4B
particleCellOffset unsigned int 4B
searchFrom unsigned int 4B
neighbors precomputedNeighbor<128> 2564B
boundaryNeighbors precomputedNeighbor<32> 644B

One should note that the acceleration property is reused for both the external
acceleration and the final acceleration of particles. The color property is used to
color particles by their density when visualized by the simulator. The last five
properties in the table will be further discussed in Section 4.2.1.

The properties of the boundary in the simulation are similarly stored and can
be seen in Table 4.3.
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Table 4.3: Properties stored on the GPU for each boundary particle.

Property Type Memory usage
position float3 12B
psi float 4B
volume float 4B
color float 4B
particleCell unsigned int 4B
particleCellOffset unsigned int 4B
searchFrom unsigned int 4B

4.2.1 Neighborhood Lookup

The neighborhood lookup method used in this implementation is the same as
used by Sandvik [4] in a previous SPH implementation on the HPC-Lab Snow
Simulator, with a slight modification that allows one to search through fewer cells.
The method is inspired by the work of Green [9].

The method is similar to the grid method used in the serial implementation,
Section 4.1.1. However, while the serial method stores particle indices in each
grid cell, and extract particle properties from a single particle array, this lends
itself badly to high performance, as the random access in the particle array can
not easily be cached. The parallel implementation instead first computes which
cell each particle belongs to, then sorts the arrays containing particle properties
such that the properties of particles belonging to the same cell lies consecutively
in the memory. This way, looking up properties of particles within a cell can be
done by iterating through a section of the respective array, which again can give
performance advantages as the array section can be cached.

In addition to the use of this method, this implementation pre-computes kernel
values between particles and their neighbors, as an added means of achieving
higher performance.

Memory Usage Similarly to how the particle properties are stored in separate
arrays on the GPU, the properties required by each grid cell are stored in their
dedicated arrays on the GPU. The grid cells each require two properties which
can be seen in Table 4.4.

Table 4.4: Properties stored on the GPU for each grid cell.

Property Type Memory usage
gridCount unsigned int 4B
gridOffset unsigned int 4B

Grid Size As explained in Section 4.1.1, the optimal grid cell size, in a two di-
mensional simulation, is a grid where cells have side lengths of two times the
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support radius of the simulation, 2ħh, such that in the worst case one must look
through four grid cells in order to find all neighbors. The same logic follows in
three dimensions, where the optimal cell size length is two times the support ra-
dius, which requires one to look through eight cells in the wort case.

Particle Insertion The first step of this lookup method is first to insert particles
into their respective cells. This is done by going through each particle, computing
which cell they belong to and storing the index of this cell as the particle property
particleCell, then atomically incrementing the respective cells property grid-
Count in order to keep track of how many particles are contained within the cell.
Atomic increment in this case, is an increment which avoids race conditions when
performed in parallel across multiple threads. Finally, the value of gridCount be-
fore it was incremented is set as the particles particleCellOffset such that every
particle within the same cell has a unique value for this property.

Simple In-Place Prefix Sum In order to perform the sorting described below,
one has to compute the prefix sum of the array containing the grid cell property
gridCount. The prefix sum of a list of n numbers, is a new list of n numbers
where a number with index i in the new list is the sum of the i first numbers in
the original list.

Prefix sums is a well discussed subject within parallel computing [44]. One of
the more common methods for computing in-place prefix sums in parallel is used
for as the basis in this implementation.

Algorithm 4.5: Parallel In-place prefix sum of array of length 2t running on t
threads where the number of threads is a power of two.

device function inPlacePrefixSum(array)
t = number of threads

for s in {20, 21, 22, . . . , t}
i = 2*s*(threadId + 1) - 1
if i < 2*s

array[i] = array[i] + array[i - s]
synchronize threads

for s in { t
2 , . . . , 22, 21, 20}

i = 2*s*(threadId + 1) - 1
if i + s < 2*s

array[i + s] = array[i + s] + array[i]
synchronize threads

The in-place prefix sum method runs n
2 threads, where n is the number of

values in the input list. Then each thread is responsible for iteratively adding two
and two elements together in such a way that separate threads do not interfere
with each other. In order to compute the whole prefix sum without interference
between threads, the threads are synchronized between every addition iteration.
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With the structure implemented in this implementation, seen in Algorithm 4.5
and Figure 4.2, each thread is required to perform at most 2 log2(n)+1 additions.
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Figure 4.2: Computation of in-place prefix sum on an array with the numbers
from one to eight.

Optimized Prefix Sum Although the aforementioned method is theoretically
optimal, in practice one can achieve a more performant algorithm by more optim-
ally utilizing cache or, in the case of CUDA, shared memory.

The idea behind the optimized prefix sum method is to divide the full array
into, sections, or blocks, which are small enough to fit into shared memory and
thus be optimally run through the in-place prefix method. The results from run-
ning the in-place prefix sum on a block is shifted one element to the right and
the first element is set to zero. As the last elements is shifted out of the array, it
is stored in a new array, referred to as blockSums. Thereafter, one computes the
prefix sum of the blockSums array before adding these block sum prefix sums to
every element of the corresponding block.

This results in a prefix sum of the whole array shifted one element over, with
the first element being equal to zero. However, this only works is the block sum
array fits into shared memory. If the block sum array does not fit into shared
memory, one can recursively use this algorithm to compute the prefix sum of the
block sum array until one has to compute the prefix sum of an array that fits
into shared memory. In this implementation the method was implemented with
a maximum recursive depth of three in order to more easily account for memory
usage.

This optimized prefix sum method can be seen in Algorithm 4.6 and an ex-
ample of its use can be seen in Figure 4.3.
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Algorithm 4.6: Optimized parallel prefix sum shifted one element right.

device function blockPrefixSum(input, output, blockSums, inputSize)
prefixSums = shared array of length two times threads per block

t = number of threads per block
i = threadId + 2 * blockId * t
j = i + t

prefixSums[threadId] = if i < inputSize then input[i] else 0
prefixSums[threadId + t] = if j < inputSize then input[j] else 0

synchronize threads
inPlacePrefixSum(prefixSums)

if i + 1 < inputSize
output[i + 1] = prefixSums[threadId]

if j + 1 < inputSize
output[j + 1] =

if threadId == t - 1 then 0 else prefixSums[j + t]
if threadId == 0

output[0] = 0
if blockSums != undefined

blockSums[blockId] = prefixSums[2*t - 1]

device function combineBlocks(output, blocksPrefixSum, inputSize)
t = number of threads per block
i = threadId + 2*blockId*t

if i < inputSize
output[i] += blocksPrefixSum[blockId]

if i + t < inputSize
output[i + t] += blocksPrefixSum[blockId]

function prefixSum(input, output, threadsPerBlock)
inputSize = length of input
blockSize = 2*threadsPerBlock
blockCount =

� inputSize
blockSize

�

+ 1

if blockCount == 1
run on blockCount blocks with threadsPerBlock threads

blockPrefixSum(input, output, undefined, inputSize)
else

blockSums = array of length blockCount
blocksPrefixSum = array of length blockCount

run on blockCount blocks with threadsPerBlock threads
blockPrefixSum(input, output, blockSums, inputSize)

prefixSum(blockSums, blocksPrefixSums, threadsPerBlock)

run on blockCount blocks with threadsPerBlock threads
combineBlocks(output, blocksPrefixSum, inputSize)
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input
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

inPlacePrefixSum computed on blocks of input
1 3 6 10 5 11 18 26 9 19 30 42 13 27 42 58

blockPrefixSum(input)
0 1 3 6 0 5 11 18 0 9 19 30 0 13 27 42

blockSums
10 26 42 58

prefixSum(blockSums)
0 10 36 78

combineBlocks(blockPrefixSum(input), prefixSum(blockSums))
0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Figure 4.3: Computation of the optimized prefix sum on an array with the num-
bers from one to sixteen.

Counting Sort The prefix sum, shifted one element over, of the gridCount array,
computed with the aforementioned optimized prefix sum method, is stored in
the grid cell property array gridOffset. Using this property, the particle property
arrays can be sorted, using counting sort, such that the sorted properties of the
particles within a single cell lie consecutively in memory.

The counting sort is performed by computing a new sorting index for each
particle i as
sortIndex[i] = gridOffset[particleCell[i]] + particleCellOffset[i].

(4.1)
Then the respective particle property array is copied to a temporary array and
each particle property in the temporary array is copied back to the original ar-
ray into their respective sorting index location. It should be noted that only the
position, velocity, deformationGradient, particleCell, particleCellOff-
set and searchFrom properties are sorted, as they are the only particle properties
that needs to be retained across time steps.

With the property arrays sorted by this method, the property of the first particle
in a cell will be located at the index which is equal to the cells gridOffset, while
the number of particles in the cell will be equal to the cells gridCount. Thus,
iterating through all properties within a cell c amounts to iterating from index
gridOffset[c] to, but not including, gridOffset[c] + gridCount[c].

Complete Particle Reordering The complete particle reordering method boils
down to first initializing the property array of gridCount and gridOffset to zero,
followed by inserting all particles into the grid, then computing the prefix sums
of the gridCount array and lastly copying relevant properties to temporary arrays
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and performing the counting sort reordering. This can be seen in Algorithm 4.7
and an example of its use can be seen in Figure 4.4.

Algorithm 4.7: Particle reordering.

function reorderParticles()
set gridCount to 0
set gridOffset to 0

runKernel(insertParticles, generalGrid)

blockPrefixSum(gridCount, gridOffset, threadsPerBlock)

copy relevant properties to temporary arrays

runKernel(countingSort, generalGrid)
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Figure 4.4: Example of particles reordered with counting sort.

It should further be mentioned that, during initialization of the simulator, the
boundary particles are reordered using the same method.

Neighbor Lookup As mentioned above, in order to find all neighbors of a particle,
one has to look through at most eight cells. Which eight cells one has to look
through, depends on which corner of its own cell the particle lies closes to. In or-
der to find these eight cells, the position of the one of these eight cells lying closes
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to the cell with index zero is computed for and stored in the particle property
searchFrom. This value is computes as

searchFrom[i]=







(xi − gridmin) ∗∆grid−




0.5
0.5
0.5











 , (4.2)

where gridmin and ∆grid is the smallest value corner of the grid and grid cell
side length, respectively. Further more, the index of this cell computed in the same
manner as the index of the cell containing the particle, as mentioned above.

The searchFrom cell is the cell with the smallest position in all the cardinal
directions, compared to the eight cells one has to look through. One can then com-
pute offsets from this cell index to the other seven cells one has to look through.

In order to then find all neighbors of a particle, one goes through all eight off-
sets, the first being zero, giving a cell index searchFrom[i] + searchOffset[k]
where k is the current offset. Then one looks through all particles within these
cells and checks whether or not they are in fact in the neighborhood of particle i.

Kernel Value Pre-Computation It was noticed quite early on that the neighbor-
hood lookup is, by an order of magnitude with respect to computation time, the
greatest bottleneck in the implementation. In order to improve the performance of
this are neighbors pre-computed at the beginning of every time step. In addition
to this, as the smoothing kernel values are computed by all neighbor dependent
kernels, these are also pre-computed.

In order to store these pre-computed values a pre-computed neighbors prop-
erty type has been constructed. The structure of this type can be seen in Table 4.5.

Table 4.5: Structure of the pre-computed neighbors type.

Field Type Memory usage
count unsigned int 4B
index unsigned int[N] N × 4B
W float[N] N × 4B
WGrad float3[N] N × 12B

As one can see, this type is dependent on some value N , this value is the
maximum allowed neighbors of a particle. This implementation has chosen to
allow a maximum of 128 snow particle neighbors and a maximum of 32 boundary
particle neighbors.

This type stores a count of how many neighbors a particle has, an array of
the indices of all neighbors and arrays for the smoothing kernel values and their
gradients between a particle and all its neighbors.

As the indices of all neighbors of a particle are stored in this property, iterating
through all neighbors of a particle amounts to iterating through the count first
indices in the index array.
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Optimized Pre-Computation Due to the workings of GPUs, if one thread within
a kernel grid block requires less work than other threads within the same block, it
will stall and wait for the other threads to complete. It is thus preferable to limit
this behavior.

As described earlier in this section, finding all neighbors of a particle requires
one to iterate through eight grid cells. If a thread iterates through all these eight
cells and the cells happen to not contain particles, while other threads in the same
kernel grid block does find particles in their cells, the thread would have to stall
and consequently lessen the performance of the whole system.

In order to mitigate this effect this implementation dedicates one thread to
each block needed to be searched through. However, since neighbors are depend-
ent on all eight cells the count field of a particles neighbors property has to be
incremented atomically. The value of this count, before its increment, is further
used as the index in which to place neighbor values in their respective arrays.

4.2.2 Singular Value Decomposition

As discussed in Section 4.1.2, Singular Values Decomposition is used both in the
integration of deformation gradients and in order to compute the Moore-Penrose
pseudoinverse, which is required in the computation of the correction matrices.

While the SVD of a two by two matrix can be computed explicitly, the situation
is more complex when dealing with three by three matrices. When computing the
SVD of a three by three matrix one has to iteratively find a numerical approxim-
ation of the decomposition.

This implementation uses the implementation by Wu [45], which is a CUDA
implementation of the method described by McAdams et al. [46].

4.2.3 CUDA Grids

Throughout the algorithms shown in this section certain grid values have been
mentioned. As described in Section 2.5.2, the performance of a GPU kernel is
highly dependent on kernel grid one uses when running kernels on the GPU.
Finding optimal configurations of these grids is a difficult task and has not been
properly explored during the work on this thesis. However, as matrix operations
require a higher degree of register usage from each thread, the kernels perform-
ing these operations where limited in their grid choice. Thus these kernels are run
with a grid configuration of 256 threads per grid block, which is referred to as the
matrixGrid. Most of the other kernels where however found to perform better
with a grid configuration of 512 threads per block, referred to as the general-
Grid. The pre-computation kernel was further found to perform best with a grid
configuration of 1024 threads per block, referred to as the precompueGrid.
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Results

This chapter presents the results that have been generated from the two imple-
mentations in this thesis.

The results from the serial implementation first show a selection of general
simulation with a focus on differentiating various methods and an inspection of
varying time step sizes. It further shows results from simulations with a focus on
aspects related to slab avalanches.

The results from the parallel implementation are generated with a focus on
inspecting the performance of the implementation.

5.1 Serial Results

This section describes various results from the serial implementation. This in-
cludes comparing various methods, comparing various time steps, a closer look
at boundary handling and two situations related to slab avalanches. These res-
ults are for the most part only visual, as they are generated with the purpose of
showing the simulators abilities.

While the following results have varying parameters, some parameters are
constant throughout all results. The gravity g of the simulation is set to earths
gravity,

g=

�

0
−9.81

�

. (5.1)

The particle spacing ∆s is set to

∆s = 0.00568181818m. (5.2)

The tolerance ε of both the BiCGSTAB method, Algorithm 2.1, and the implicit
pressure solver, Algorithm 3.3, it set to 0.001. Lastly, as the generation of particles
is quite uniform, while actual snow is less uniform, all simulations randomly place
particles within a square with side length of ∆s

8 around their intended position,
unless specified otherwise.

71
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5.1.1 Comparison of Methods

For the serial implementation nine methods were implemented, see Table 4.1. In
order to compare these methods, a simulation was configured where two snow
balls collide.

Setup The snow balls each have a radius 9.375cm. They are placed with their
centers 30cm apart in the horizontal direction and 5cm apart in the vertical direc-
tion. The leftmost snow ball has an initial velocity of 2 m

s2 in the right direction and
the rightmost snow ball has an initial velocity of 2 m

s2 in the left direction. Their
initial configuration can be seen in Figure 5.1.

Figure 5.1: Initial configuration of two snow balls colliding.

The snow balls are both configured with the same parameters, inspired by the
recommended values by Stomakhin et al. [10], which can be seen in Table 5.1.

Table 5.1: Parameters for two snow balls colliding.

Parameter Value
∆ t 0.0001s
ρ0 400 kg

m3

E 140000Pa
ν 0.2
ξ 10
θc 0.025
θs 0.0075

Lastly, the simulation is run for a simulation time of 0.1s, which is slightly after
the impact of the snow balls, whereas the position of all particles are captured as
the result.

Results The results of the of the two snowballs colliding, using all implemented
methods, can be seen in Figure 5.2. The computation time show with every result
is the combined computation time of all 0.1s

∆t = 1000 time steps. Where relevant,
the solver iterations per time step is shown, where “Min” is the minimum number
of iterations used by the respective solver for a single time step, “Max” is the
maximum number of iterations used by the solver for a single time step and “Avg”
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Implicit stress solved for acceleration

(a) Lamé decoupled
Computation time:
106.61s
aλ-solver iterations:
Min: 1, Max: 4, Avg: 2.64
aG-solver iterations:
Min: 0, Max: 2, Avg: 0.86

(b) Fully decoupled
Computation time:
108.05s
aλ-solver iterations:
Min: 1, Max: 5, Avg: 3.16
aG-solver iterations:
Min: 0, Max: 1, Avg: 0.70

(c) Combined
Computation time:
45.47s
aσ-solver iterations:
Min: 0, Max: 2, Avg: 0.72

Implicit stress solved for velocity

(d) Lamé decoupled
Computation time:
52.25s
aλ-solver iterations:
Min: 1, Max: 4, Avg: 2.64
aG-solver iterations:
Min: 0, Max: 1, Avg: 0.68

(e) Fully decoupled
Computation time:
56.11s
aλ-solver iterations:
Min: 1, Max: 5, Avg: 3.16
aG-solver iterations:
Min: 0, Max: 1, Avg: 0.68

(f) Combined
Computation time:
41.66
aσ-solver iterations:
Min: 0, Max: 1, Avg: 0.68

Explicit stress

(g) Lamé decoupled
Computation time:
34.66s
aλ-solver iterations:
Min: 1, Max: 4, Avg: 2.65

(h) Fully decoupled
Computation time:
37.51s
aλ-solver iterations:
Min: 1, Max: 5, Avg: 3.19

(i) Combined
Computation time:
19.31s

Figure 5.2: Two spheres colliding.
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is the combined total number of iterations for the solver divided by the number of
time steps. Note that the stress solvers can have an iteration count of zero, which
is due to the early stopping condition of the Bi-CGSTAB method, Algorithm 2.1.

The two first rows of Figure 5.2 show that the results from the stress solvers
that solve for implicit acceleration is equivalent to the result from the stress solv-
ers that solve for implicit velocity. However, the ones that solve for acceleration
requires slightly more solver iterations and is, both due to the increased number
of iterations and due to requiring more matrix operations, slower than the ones
that solve for velocity.

It should be noted that the Lamé decoupled and the Fully decoupled solvers
solving for implicit acceleration show a computation time about twice as large
as the ones that solve for implicit velocity. This is for the most part due to issues
with garbage collection and just in time compilation, and would not be the case
in an performance focused implementation of the methods. Thus the difference
in computation time between the combined solvers is a fairer comparison.

The explicit solvers show quite similar results, although they lack some of the
stiffness given by the implicit solvers, such that their particles have a tendency
to be more spread, thus not producing as clean chunks of snow as the implicit
solvers.

Choice of Methods As the solvers that solve for implicit acceleration are slower
but produce the same result as the ones that solve for velocity, they will be left out
of all the following results. As mentioned in Section 3.2.2, the decoupled solvers
are not necessary when simulating snow that does not interact with other materi-
als. The results also show that the combined solvers are the most performant, thus
all the following results will only utilize the method of combined stress solved for
implicit velocity and the method of combined explicit stress, which will further be
referred to a implicit stress and explicit stress.

5.1.2 Comparison of Time Steps

The size of the time step used in an SPH simulation can greatly affect on the
simulations correctness and stability. Thus this section compares a couple different
time step sizes.

The setup for these results are exactly the same as the setup in Section 5.1.1,
with the exception of the time step ∆t.

Results The first thing to note in the results, Figure 5.3, is that the explicit
method is unstable for this simulation at time steps larger than about 0.0005,
while the implicit method remains stable at a time step as large as 0.001.

One can further see that while the explicit method is stable at a time step
of 0.0005 it does not show a result that is in line with the expected result at
smaller time steps. The implicit solver on the other hand, while still not showing
a result close to the expected result at smaller time steps, it is more in line with
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Implicit stress

(a) Time step: 0.001
Computation time:
14.25s
aσ-solver iterations:
Min: 0, Max: 10, Avg:
6.24

(b) Time step: 0.0005
Computation time:
16.00s
aσ-solver iterations:
Min: 1, Max: 4, Avg: 2.74

(c) Time step: 0.00001
Computation time:
474.11s
aσ-solver iterations:
Min: 0, Max: 1, Avg: 0.58

Explicit stress

(d) Time step: 0.0005
Computation time:
4.00s

(e) Time step: 0.00001
Computation time:
179.55s

Figure 5.3: Comparison of various time step sizes.

the expected result, and one can assume that, given another simulation setup with
lower velocities and smaller forces, it could be viable to use the implicit solver with
larger time steps.

Choice of Time Step From the results in Figure 5.3, one can see that a time step
of 0.00001 does not contribute much more correctness than a time step of 0.0001
as seen in Figure 5.2. Thus, for the rest of the generated results a time step of
∆t = 0.0001 will be used.

5.1.3 Boundaries

As many properties of snow is related to how it accumulates on the ground, the
boundary conditions of the simulation are very important. This section will thus
drop a snow ball on a flat boundary ground to see how it interacts with it.
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Setup In this simulation a snow ball with a radius of 9.375cm is placed such
that its center is 18.75cm above a flat line of boundary particles. In order to avoid
waiting for it to drop from higher, it is initialized with a downwards velocity of
5 m

s2 . This configuration can be seen in Figure 5.4, where the boundary particles
can be seen drawn as hollow circles.

Figure 5.4: Initial configuration of snow ball dropped on ground.

The parameters of the snow particles are set exactly like in Table 5.1. The
friction coefficient µ of the boundary particles is set to zero.

The simulation is run for a simulation time of 0.1s, which is slightly after the
snow ball has impacted the ground. Finally, the positions of all particles and their
density is captured as the result.

Implicit stress Explicit Stress

200 300 400 500 600

Density

(a) Computation time: 23.83s
aσ-solver iterations:
Min: 0, Max: 1, Avg: 0.81

200 300 400 500 600

Density

(b) Computation time: 10.97s

Figure 5.5: Snow ball dropped on ground.

Results The results from this simulation can be seen in Figure 5.5, where bound-
ary particles are drawn as hollow circles and the density of snow particles can be
seen as a gray scale gradient.

The fact that snow particles lies flat with the boundary line indicates that the
volume of the boundary particles is computed correctly.

With perfect boundary conditions, one should see a smooth density gradient
through the snow and onto the boundary. In this situation the difference between
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the density of the snow particles touching the boundary and the next layer of
snow particles is about 50 kg

m3 to 100 kg
m3 , which is not perfect, but is a quite smooth

gradient.

5.1.4 Crack Formation

Although the initial goal of this thesis was to simulate slab avalanches, Section 2.1.3,
configuring the simulation for a complete avalanche simulation turned out too
strenuous. However, inspired by Gaume et al. [6] which uses the material in point
method by Stomakhin et al. [10], in conjunction with their own implementation
of weak layers, to simulate slab avalanches, this section and the following section
simulates snow properties that are required for slab avalanches to form.

This section simulates a snow slab lying flat on the ground and shows its ability
to form cracks when loosing support from below.

Setup This simulation places a snow slab, with a height of 17.23cm and a width
of 41.57cm, flat on a boundary ground. Then a, one particle wide, 15.83cm long,
line of snow is removed from the bottom right corner of the slab. Furthermore,
as the cracking mechanics of the snow is very dependent on the uniformity of
the snow, the snow is made less uniform by randomly placing particles within a
square with side length of 3∆s

16 around their intended position. This results in the
configuration which can be seen in Figure 5.6. One should however note that the
figure does not show the left side of the slab as it is only used as support.

Figure 5.6: Initial configuration for crack formation.

The snow particles in the slab are configured with the parameters shown in
Table 5.2.

Table 5.2: Parameters for crack formation.

Parameter Value

ρ0 400 kg
m3

E 600000Pa
ν 0.2
ξ 20
θc 0.019
θs 0.0055
µ 10 N

m2
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Inspired by Stomakhin et al. [10], the young modulus and the hardening coeffi-
cient is increased and the critical stress and stretch coefficients and decreased in
relation to their recommended values, in order to produce a more solid piece of
snow with a higher tendency to produce cracks. Lastly, the friction coefficient µ is
set to a large value in order to avoid sliding which may affect the results.

The simulation is run for a simulation time of 0.1s and the position of all
particles are captured to give the results.

Implicit stress Explicit Stress

(a) Computation time: 83.91s
aσ-solver iterations:
Min: 1, Max: 6, Avg: 1.40

(b) Computation time: 28.84s

Figure 5.7: Crack formation in snow slab.

Results The results from the crack formation simulation can be seen in Fig-
ure 5.7. It shows that the section of the slab without support underneath experi-
ences rotational momentum until its corner collides with the ground. This rotation
subsequently makes a crack form through the whole slab.

This result indicates that given a simulation of a full scale avalanche, a fracture
propagation through a weak layer could lessen the support on the slab making it
crack. Being able to form cracks, and consequently breaking off slab blocks is the
initial requirement for a slab avalanche to occur.

5.1.5 Slab Sliding on Weak Layer

While the aforementioned crack formation is the snow behavior that triggers slab
avalanches in the first place. However, in order for them to travel down mountain
sides, the slabs requires the ability to slide on a weak layer, see Section 2.1.3.
Thus, inspired by Gaume et al. [6], this section simulates a snow slab on top of a
weaker snow layer and the slabs ability to slide down a slope. As slab avalanches
tends to occur in slopes of 30◦ to 45◦, this simulation places the slab and weak
layer on a slope of 37◦.

Setup First a line of boundary particles is placed such that it has an angle of 37◦

from the horizontal axis. Then a weak snow slab with a height of 3.13cm and a
width of 26.25cm is placed right on top of the boundary line with the same angle.
Lastly a stronger slab with a height of 12.5cm and the same width as the weaker
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slab is placed right on top of the weaker slab. This configuration can be seen in
Figure 5.8.

Figure 5.8: Initial configuration of slab sliding on weak layer.

The parameters for strong snow slab is in a similar fashion to the simulation
of crack formations. The rest density of the weak layer is set lower by changing
the rest density used in the computations of the Lamé parameters, Equation (3.2)
and Equation (3.3), and the weak layer is set to have a low young modulus and a
higher Poisson’s ratio in order to make the weak layer weaker and more granular,
respectively. The friction coefficient is set to a high value in order to make sure
that the sliding behavior is due to the weak layer and not a slippery boundary.
The parameters for the simulation can be seen in Table 5.3.

Table 5.3: Parameters for slab sliding on weak layer.

Weak layer Slab
Parameter Value Parameter Value

ρ0 100 kg
m3 ρ0 400 kg

m3

E 10000Pa E 600000Pa
ν 0.3 ν 0.2
ξ 10 ξ 10
θc 0.025 θc 0.019
θs 0.0075 θs 0.0055

Boundary
Parameter Value
µ 10 N

m2

The simulation is run for a simulation time of 0.2s and the position of all
particles are captured as the result.

Result The results of this simulation can be seen in Figure 5.9, in which the
weaker layer is unable to hold the weight of the slab and the slab thus slides
downhill. The slab as a whole ends up sliding 5.11cm.
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Implicit stress Explicit Stress

(a) Computation time: 89.30s
aσ-solver iterations:
Min: 1, Max: 1, Avg: 1.00

(b) Computation time: 37.43s

Figure 5.9: Slab sliding on weak layer.

While the previous result of crack formations show requirements for ava-
lanches to initiate, this result is a requirement for the avalanche to further propag-
ate. Given a simulation of a full scale avalanche and a mechanism to break off slab
blocks, this result show that such a slab block would be able to slide down moun-
tain sides and thus actually enable the full avalanche propagation.

It should further be mentioned that, while the recorded results does not show
it, the weak layer in this simulation is in fact stable on its own, meaning it remains
solid without the weight of the slab layer.

5.2 Parallel Results

While the results for the serial implementation focus various aspect of the snow
simulation and avalanche related snow properties, this section show results for
the parallel implementation and focuses on its performance aspects.

5.2.1 Setup

These results are almost identical to the snow ball dropped on the ground in the
serial results, Section 5.1.3. A sphere of snow particles with a radius of 9.38cm is
placed with its center 12.5cm above a flat boundary plane. The snow ball is initial-
ized with a downwards velocity of 5 m

s . The initial configuration of the simulations
can be seen in Figure 5.10.

Then all parameters of the simulation are set to the same values as in the
serial snow ball drop results, with the exception of particle spacing and the friction
coefficient. The friction coefficient is set to a higher values as to keep the snow
more centered in the simulation. All parameter values can be seen in Table 5.4.

This section has the goal of looking at the performance of the simulation. The
performance is entirely dependent on the amount of particles in the simulation
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(a) ∆s = 7.576mm

(b) ∆s = 5.682mm

(c) ∆s = 2.851mm

Figure 5.10: Initial configurations for parallel snow ball drop.
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Table 5.4: Parameters for parallel snow ball drop.

Parameter Value
∆ t 0.0001s
ρ0 400 kg

m3

E 140000Pa
ν 0.2
ξ 10
θc 0.025
θs 0.0075
µ 4

and the amount of particles is entirely dependent on the particle spacing. Thus, the
simulation is run three times with the particle spacings 0.007576m, 0.005682m
and 0.002851m.

The simulations are all run for a simulation time of 0.1s, which is right after
the snow ball has impacted the ground. During each time step the various GPU
kernels are timed and processed to give performance results.

Throughout the simulation the particles are all rendered as icosahedrons,
which does to some degree affect the total run time of the simulation.

The simulations were performed on an Nvidia RTX 2080 Ti [47].

5.2.2 Results

The final results of running the simulations can be seen in Figure 5.11, where
boundary particles are colored dark gray and the snow particles are colored in
such a way that they are darker the higher density they have. One can see from
these results that visualizing three dimensional particle clouds is difficult. They
do however show similar results to the ones seen in Section 5.1.3.

Recorded numbers and timings can furthermore be seen in Table 5.6. The ker-
nel timings in this table are run time per time step, where the maximum, minimum
and average kernel run time for a single time step has been recorded.

Memory Usage The memory usage in Table 5.6 is the allocated bytes on the GPU
used by the simulation. One can first note that the memory usage of particles is
strictly linearly dependent on the number particles. The memory usage of various
data structures can be seen in Table 5.5.

One can see that the number of snow particles and the number of grid cells
grows inverse cubically when the particle spacing is made smaller. As the decreas-
ing the particle spacing adds a computational cost similar to making the simula-
tion domain larger, one can see that the memory usage of a simulation is expected
to grow cubically with an increased resolution of the simulation, weather the res-
olution is increased due to a smaller particle spacing or an increased simulation
domain.



Chapter 5: Results 83

(a) ∆s = 7.576mm

(b) ∆s = 5.682mm

(c) ∆s = 2.851mm

Figure 5.11: Parallel snow ball drop.
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Table 5.5: GPU memory usage of data structures.

Data structure Memory usage
Snow particle 3440B
Boundary particle 36B
Grid cell 8B
Temporary snow particle 72B

While the number of snow particles grow cubically with a increased resolution,
the number of boundary particles only grow quadratically, this is due to the fact
that one only needs a shell of boundary particles along the boundary edge. Thus
boundaries can be added to the simulation at a much lower cost compared to
snow.

Table 5.5 shows a temporary snow particle. This temporary particle is used
for copying persistent particle properties during the counting sort kernel. As the
counting sort is performed each time step, this memory is kept allocated and add
an additional memory usage per particle. It should be noted that such an tem-
porary particle is also required when initializing the boundary particles, this can
however be deallocated after initialization and is thus not shown here.

During the execution of the prefix sum kernels, one is required to store block
sums and their prefix sums. This has an additional memory cost of 8

� n
b

�

+8 bytes
for each required call to the combine block kernel, where n is the number of block
sum elements and b is the block size, see Section 4.2.1. This implementation only
allows two calls to combine blocks, and uses a block size of 1024.

Timing It should first be noted that the total run time of the simulations, Table 5.6
is affected by rendering, thus the kernel timings are a better indicator of the per-
formance of the simulation.

It should further be mentioned that the timings “Prefix sum and counting sort”,
“Correction matrix and external forces” and “Integration” combine multiple ker-
nels calls into one timed function. Furthermore, during the writing of this section
it was noticed that the “Lamé parameters” kernel can and should definitely be a
part of the preceding kernel.

The results for the prefix sum and counting sort kernels show that they are
highly performant during all runs of the simulation and should not pose a problem
for more complex simulations.

The results for the neighborhood pre-computation kernel show that it is the
greatest bottle neck of the simulation. This was expected as it is the sole reason
for pre-computing kernel values in the first place. By analyzing this kernel with
the kernel profiler Nvidia Nsight Compute [48], it was found that the main dis-
crepancy of this kernel is its ability to load particle positions from memory.

For all other kernels, the main performance limiting aspect seems to be matrix
operations, as they are required for the computation of correction matrices, stress
and the integration of the deformation gradient.
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Table 5.6: Results from parallel snow ball drop.

∆s = 7.576mm ∆s = 5.682mm ∆s = 2.851mm
Numbers
Snow particles 7901 18656 150238
Boundary particles 9800 17423 69695
Grid cells 24389 59319 474552
GPU memory usage
Memory usage 28.30MB 66.62MB 533.95MB
Total run time
Run time 17.54s 28.17s 161.18s
Kernel run times
Prefix sum and counting sort

Min 0.09ms 0.10ms 0.33ms
Max 0.54ms 0.65ms 0.99ms
Avg 0.11ms 0.13ms 0.72ms

Neighborhood pre-computation
Min 3.91ms 8.56ms 54.83ms
Max 7.07ms 14.29ms 92.36ms
Avg 4.81ms 10.14ms 64.61ms

Density, volume and rest density
Min 0.25ms 0.36ms 4.56ms
Max 0.54ms 0.68ms 7.51ms
Avg 0.30ms 0.40ms 5.31ms

Lamé parameters
Min 0.01ms 0.01ms 0.04ms
Max 0.01ms 0.03ms 0.05ms
Avg 0.01ms 0.01ms 0.04ms

Correction matrix and external forces
Min 1.54ms 3.12ms 16.09ms
Max 3.36ms 4.76ms 19.84ms
Avg 2.60ms 3.88ms 17.28ms

Stress
Min 5.19ms 6.80ms 42.36ms
Max 7.15ms 10.84ms 60.90ms
Avg 6.14ms 7.97ms 47.23ms

Integration
Min 2.25ms 4.0ms 22.94ms
Max 3.16ms 9.05ms 27.20ms
Avg 2.62ms 4.50ms 23.93ms





Chapter 6

Conclusion and Future Work

This chapter concludes this thesis by first discussing what has been accomplished,
both in terms of work and the results it has produces through the implementations
that has been developed, before lastly describing certain aspects of snow simula-
tion that was not explored during the work on this theses, but would be beneficial
to see future work on.

6.1 Conclusion

This section discusses what has and has not been accomplished by this thesis, both
in terms of the knowledge acquired during the research behind the thesis and the
results the thesis has generated.

Research This thesis started out with an intention of re-implementing the method
by Gissler et al. [7] and seen what kind of performance benefits one would get
from using graphical processing units to parallelize the method. It however be-
came apparent that implementing such a method requires a great amount of back-
ground knowledge. A large portion of the work behind this thesis has thus been
allocated to understanding the mathematical basis behind both smoothed particle
hydrodynamic and elastoplasticity. All of this research has accumulated into the
chapters Chapter 2 and Chapter 3. This will hopefully be a decent starting point
and reference for anyone attempting to continue work on snow simulation.

Simulation Results The initial goal of this thesis was to simulate full scale slab
avalanches. This was unfortunately not accomplished as it turned out too difficult
to construct a global simulation configuration that allows for all aspects inherent
in a slab avalanche. This thesis has however shown that a snow simulation using
smoothed particle hydro dynamics have the ability to model certain aspects of
slab avalanches. The simulation results have shown that it is possible to model a
solid slab of snow with the ability to form cracks and fracture into chunks of snow,
which is the initial property a snow slab requires to enable the initiation of slab

87
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avalanches. The simulation results have further shown that it is able to model a
weaker layer of snow that exhibit a granular flow when compressed by a stronger
slab layer above. This is the property required for slab avalanches to travel down
mountain sides.

Performance Results The previous snow simulation work at the NTNU HPC-
Lab has had the goal of implementing real time simulations, this was never the
ambition of this thesis, but it was goal to see how close one could get with the per-
formance benefits of using graphical processing units. The serial results from this
thesis show that even with an implicit method, one is required to use quite small
time steps in order to achieve desired results. The parallel results have further
shown that, due to large amount of matrix operations and a high neighborhood
search cost for areas of compact snow, simulating large amounts of snow as an
elastoplastic material is very computationally costly, even for graphical processing
units. Thus, due to the number of time steps one would have to compute and the
computational cost of computing these time steps, achieving a real time simu-
lating of slab avalanches with smoothed particle hydrodynamics seem unfeasible
with current methods and hardware.

6.2 Future Work

This section discusses the many aspects the snow simulation that has yet to be
explored and tries to point anyone continuing this work in a direction for where
they could start their work.

Implicit Method As mentioned in Section 4.2, due to time limitations on writ-
ing this thesis, only the combined explicit method was implemented as a parallel
method on graphics processing units. It is however a desire to implement implicit
methods in the same fashion in order to investigate how well they would behave
and in order to compare their performance with respect to explicit methods more
properly.

Visualization As the results in Section 5.2 show, visualizing large amounts of
particles is a difficult task, and the result tend to not properly show the aspects
of the simulation one wants to investigate. With newer graphics processing units
supporting real time ray tracing [49], it would be quite interesting to implement
such a visualization for a snow simulation. Especially since snow has a high degree
of sub surface scattering, which is impractical to model with classical real time
visualization methods.

Snowfall One of the reasons Gissler et al. [7]mention for using smoothed particle
hydrodynamics in their snow simulation method is its ability to model individual
snow particles, which is required in order to simulate snow fall. As snow fall is
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what builds up and enable the occurrence of avalanches, this would enable a more
complete simulation of the whole life cycle of snow using only one method for
simulating all aspects of snow. In order to make the snow interact with wind, one
would however need to use one of the decoupled solvers described in Chapter 3.

Terrain Previous work on the HPC-Lab snow simulator has implemented ter-
rains which are used as boundaries in other avalanche models. This implement-
ation does however model boundaries more complexly, as it utilizes boundary
particles. In order to fully integrate this implementation in the existing solution
one has to develop a method for covering the terrain in a sheet of boundary
particles.

Memory Localization The results in Section 5.2 show that the biggest bottle
neck in the parallel implementation is the computation of kernel values between
particles and their neighbors. This is largely due to costly memory access times
when accessing particle positions. In order to mitigate this problem one could
investigate the use of shared memory in the pre-computation kernel. However
in order to better benefit from caching without the need of shared memory, one
could employ the method of data oriented design [50] in order to localize the
properties that are required for by one kernel.

Matrix Operations The results of Section 5.2 also show that the kernels with
matrix operations have a large computational cost. Thus one would greatly benefit
from improving the performance of these operations. As modern graphical pro-
cessing units have hardware accelerated tensor operations [35], it would valuable
to see weather or not utilizing such tensor operations could benefit the perform-
ance of matrix operations in the simulation.

Tailoring the Simulation for Avalanches While the goal of this thesis was to
simulate avalanches, it essentially only simulates the elastoplastic aspects of snow.
However, when Gaume et al. [6] implement their avalanche simulation, they de-
velop a method specifically for modeling crack formations in weak snow layers.
Thus it would be beneficial to look further into their work and investigate whether
or not the simulating, as implemented by this thesis, is able to model similar phe-
nomenons, or if one would have to develop a more avalanche specific implement-
ation.
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