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We develop a quantum harmonic analysis framework for the 
affine group. This encapsulates several examples in the liter-
ature such as affine localization operators, covariant integral 
quantizations, and affine quadratic time-frequency represen-
tations. In the process, we develop a notion of admissibility 
for operators and extend well known results to the operator 
setting. A major theme of the paper is the interaction between 
operator convolutions, affine Weyl quantization, and admissi-
bility.
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1. Introduction

The affine group and the Heisenberg group play prominent roles in wavelet theory 
and Gabor analysis, respectively. As is well-known, the representation theory of the 
Heisenberg group is intrinsically linked to quantization on phase space R2n. Similarly, 
the relation between quantization schemes on the affine group and its representation 
theory has received some attention and several schemes have been proposed, e.g. [18,5,21]. 
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However, there are still many open questions awaiting a definite answer in the case of 
the affine group.

As has been shown by two of the authors in [36], the theory of quantum harmonic 
analysis on phase space introduced by Werner [46] provides a coherent framework for 
many aspects of quantization and Gabor analysis associated with the Heisenberg group. 
Based on this connection, advances in the understanding of time-frequency analysis have 
been made [37–39]. In this paper we aim to develop a variant of Werner’s quantum 
harmonic analysis in [46] for time-scale analysis. This is based on unitary representations 
of the affine group in a similar way to the Schrödinger representation of the Heisenberg 
group being used in Werner’s framework. We will refer to this theory on the affine group 
as affine quantum harmonic analysis.

Affine operator convolutions
In Werner’s quantum harmonic analysis on phase space, a crucial component is ex-

tending convolutions to operators. Recall that the affine group Aff has the underlying 
set R ×R+ and group operation modeling composition of affine transformations. A key 
feature of this group is that the left Haar measure a−2dx da and the right Haar measure 
a−1dx da are not equal, making the group non-unimodular. Both measures play a role 
in affine quantum harmonic analysis, making the theory more involved than the case of 
the Heisenberg group. In addition to the standard function (right-)convolution on the 
affine group

f ∗Aff g(x, a) :=
∫

Aff

f(y, b)g((x, a) · (y, b)−1) dy db
b

,

we introduce the following operator convolutions for operators on L2(R+) := L2(R+,

r−1 dr) in Section 3:

• Let f ∈ L1
r(Aff) := L1(Aff, a−1dx da) and let S be a trace-class operator on L2(R+). 

We define the convolution f �Aff S between f and S to be the operator on L2(R+)
given by

f �Aff S :=
∫

Aff

f(x, a)U(−x, a)∗SU(−x, a) dx da
a

,

where U is the unitary representation of Aff on L2(R+) given by

U(x, a)ψ(r) := e2πixrψ(ar).

• Let S be a trace-class operator and let T be a bounded operator on L2(R+). Then 
we define the convolution S �Aff T between S and T to be the function on Aff given 
by
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S �Aff T (x, a) := tr(SU(−x, a)∗TU(−x, a)).

The three convolutions are compatible in the following sense: Let f, g ∈ L1
r(Aff) and 

denote by S a trace-class operator and by T a bounded operator, both on L2(R+). Then

(f �Aff S) �Aff T = f ∗Aff (S �Aff T ),

f �Aff (g �Aff S) = (f ∗Aff g) �Aff S.

Interplay between affine Weyl quantization and convolutions
Integral to the theory in this paper is the affine Wigner distribution and the associated 

affine Weyl quantization. The affine (cross-)Wigner distribution Wψ,φ
Aff of φ, ψ ∈ L2(R+)

is the function on Aff given by

Wψ,φ
Aff (x, a) =

∞∫
−∞

ψ(aλ(u))φ(aλ(−u))e−2πixu du, (1.1)

where λ : R → R is explicitly given by

λ(u) := 1
1F1(1, 2;−u) = ueu

eu − 1 ,

where 1F1 is Kummer’s confluent hypergeometric function. The function λ will play a 
central role throughout the paper. Although at first glance the definition (1.1) might look 
unnatural, it can be motivated through the representation theory of the affine group as 
illustrated in [3]. We will elaborate on this viewpoint in Section 5. One defines the affine 
Weyl quantization of f ∈ L2

r(Aff) := L2(Aff, a−1dx da) as the operator Af given by

〈Afφ, ψ〉L2(R+) =
〈
f,Wψ,φ

Aff

〉
L2

r(Aff)
, for all φ, ψ ∈ L2(R+).

We will explore the intimate relation between the convolutions and the affine Weyl 
quantization. The following theorem, being a combination of Proposition 3.6 and Propo-
sition 3.7, highlights this relation.

Theorem A. Let f, g ∈ L2
r(Aff), where g is additionally in L1

r(Aff) and square integrable 
with respect to the left Haar measure. Then

g �Aff Af = Ag∗Afff ,

Ag �Aff Af = f ∗Aff ǧ,

where ǧ(x, a) := g((x, a)−1).
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We will exploit the previous theorem to define the affine Weyl quantization of tem-
pered distributions in Section 3.3. To do this rigorously, we will utilize a Schwartz space 
S (Aff) on the affine group introduced in [5]. An important example we prove in Theo-
rem 3.10 is the affine Weyl quantization of the coordinate functions:

Theorem B. Let fx(x, a) := x and fa(x, a) := a be the coordinate functions on Aff. The 
affine Weyl quantizations Afx and Afa satisfy the commutation relation

[Afx , Afa ] = 1
2πiAfa .

This is, up to re-normalization, precisely the infinitesimal structure of the affine group.

We define affine parity operator PAff as

PAff = Aδ(0,1) ,

where δ(0,1) denotes the Dirac distribution at the identity element (0, 1) ∈ Aff. The 
following result, which will be rigorously stated in Section 3.5, builds on these definitions.

Theorem C. The affine Weyl quantization Ag of g ∈ S (Aff) can be written as

Ag = g �Aff PAff .

Moreover, for φ, ψ such that φ(ex), ψ(ex) ∈ S (R), the affine Weyl symbol Wψ,φ
Aff of the 

rank-one operator ψ ⊗ φ can be written as

Wψ,φ
Aff = (ψ ⊗ φ) �Aff PAff .

Operator admissibility
One of the key features of representations of non-unimodular groups is the concept of 

admissibility. Recall that the Duflo-Moore operator D−1 corresponding to the representa-
tion U is the densely defined positive operator on L2(R+) given by D−1ψ(r) = r−1/2ψ(r). 
We will often use that D−1 has a densely defined inverse given by Dψ(r) = r1/2ψ(r). A 
function ψ is said to be an admissible wavelet if ψ ∈ dom(D−1). It is well known [13]
that admissible wavelets satisfy the orthogonality relation∫

Aff

|〈φ,U(−x, a)∗ψ〉L2(R+)|2
dx da

a
= ‖φ‖2

L2(R+)‖D−1ψ‖2
L2(R+). (1.2)

We extend the definition of admissibility to operators as follows:

Definition. Let S be a non-zero bounded operator on L2(R+) that maps dom(D) into 
dom(D−1). We say that S is admissible if the composition D−1SD−1 is bounded on 
dom(D−1) and extends to a trace-class operator D−1SD−1 on L2(R+).
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Note that the rank-one operator S = ψ ⊗ ψ for ψ ∈ L2(R+) is admissible precisely 
when ψ is an admissible wavelet. In Section 4.2 we show that a large class of admissible 
operators can be constructed from Laguerre bases. The following result, which we prove 
in Corollary 4.5, is motivated by [46, Lemma 3.1] and extends (1.2) to the operator 
setting.

Theorem D. Let S be an admissible operator on L2(R+). For any trace-class operator T
on L2(R+), we have that T �Aff S ∈ L1

r(Aff) with

∫
Aff

T �Aff S(x, a) dx da
a

= tr(T ) tr(D−1SD−1).

Determining whether an operator is admissible or not can be a daunting task. We 
managed in Corollary 4.9 to find an elegant characterization in terms of operator con-
volutions of admissible operators that are additionally positive trace-class operators.

Theorem E. Let S be a non-zero, positive trace-class operator. Then S is admissible if 
and only if S �Aff S ∈ L1

r(Aff).

The following result is derived in Section 4.4 and uses the affine Weyl quantization 
to show that admissibility is an operator manifestation of the non-unimodularity of the 
affine group.

Theorem F.

• Let f ∈ L1
r(Aff) be such that Af is a trace-class operator on L2(R+). Then

tr(Af ) =
∫

Aff

f(x, a) dx da
a

.

• Let g ∈ L1
l (Aff) := L1(Aff, a−2dx da) be such that Ag is an admissible Hilbert-

Schmidt operator. Then

tr
(
D−1AgD−1) =

∫
Aff

g(x, a) dx da
a2 .

Relationship with Fourier transforms
For completeness, we will also investigate how notions of Fourier transforms on the 

affine group fit into the theory, and use known results from abstract harmonic analysis to 
explore the relationship between affine Weyl quantization and affine Fourier transforms. 
Recall that the integrated representation U(f) of f ∈ L1

l (Aff) is the operator on L2(R+)
given by
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U(f)ψ :=
∫

Aff

f(x, a)U(x, a)ψ dx da

a2 , ψ ∈ L2(R+).

We define the following operator Fourier transform in the affine setting.

Definition. The affine Fourier-Wigner transform is the isometry FW sending a Hilbert-
Schmidt operator on L2(R+) to a function in L2

r(Aff) such that

F−1
W (f) = U(f̌) ◦ D, f ∈ Im(FW ) ∩ L1

r(Aff).

The following result is proved in Proposition 5.7 and provides a connection between 
the affine Fourier-Wigner transform and admissibility.

Theorem G. Let A be a trace-class operator on L2(R+). The following are equivalent:

1) FW (AD−1) ∈ L2
r(Aff).

2) AD−1 extends from dom(D−1) to a Hilbert-Schmidt operator on L2(R+).
3) A∗A is admissible.

Another Fourier transform of interest is the (modified) Fourier-Kirillov transform on 
the affine group FKO given by

(FKOf)(x, a) =
√
a

∫
R2

f

(
v

λ(−u) , e
u

)
e−2πi(xu+av) du dv√

λ(−u)
, f ∈ Im(FW ).

As in quantum harmonic analysis on phase space, we have that the affine Weyl quanti-
zation is the composition of these Fourier transforms, see Proposition 5.8. In the affine 
setting we have in general that

FW (f �Aff S) �= FKO(f)FW (S), FKO(S �Aff T ) �= FW (S)FW (T ).

This contrasts the analogous result in Werner’s original quantum harmonic analysis, see 
(5.5). In spite of this, not all properties typically associated with the Fourier transform 
are lost: In Section 5.2 we prove a quantum Bochner theorem in the affine setting.

Main applications
In Section 6 we show that affine quantum harmonic analysis provides a conceptual 

framework for the study of covariant integral quantizations and a version of the Cohen 
class for the affine group. In addition, we show in Section 6.1 that if S is a rank-one 
operator, then the study of operators f �Aff S for functions f on Aff reduces to the study 
of time-scale localization operators [12].

We have seen that affine Weyl quantization is given by f → f �AffPAff for f ∈ S (Aff). 
Inspired by this, we consider a whole class of quantization procedures: For any suitably 
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nice operator S on L2(R+) we define a quantization procedure ΓS for functions f on Aff
by

ΓS(f) := f �Aff S.

This class of quantization procedures coincides with the covariant integral quantizations
studied by Gazeau and his collaborators motivated by applications in physics, see e.g. 
[21,20,19]. Our results on affine quantum harmonic analysis are therefore also results on 
covariant integral quantizations. In particular, the abstract notion of admissibility of an 
operator S implies that ΓS satisfies the simple property

ΓS(1) = c · IL2(R+),

where c is some constant, IL2(R+) is the identity operator on L2(R+), and 1(x, a) = 1
for all (x, a) ∈ Aff.

As the name suggests, covariant integral quantizations ΓS satisfy a covariance prop-
erty, namely

U(−x, a)∗ΓS(f)U(−x, a) = ΓS(R(x,a)−1f),

where R denotes right translations of functions on Aff. In Theorem 6.5 we point out that, 
by a known result on covariant positive operator valued measures [34,9], this covariance 
assumption together with other mild assumptions completely characterize the covariant 
integral quantizations. We have also seen that the affine cross-Wigner distribution is 
given for sufficiently nice ψ, φ by Wψ,φ

Aff = (ψ ⊗ φ) �Aff PAff . Inspired by this and the 
description in [37] of the Cohen class of time-frequency distributions on R2n, we make 
the following definition.

Definition. A bilinear map Q : L2(R+) ×L2(R+) → L∞(Aff) belongs to the affine Cohen 
class if Q = QS for some operator S on L2(R+), where

QS(ψ, φ)(x, a) := (ψ ⊗ φ) �Aff S(x, a) = 〈SU(−x, a)ψ,U(−x, a)φ〉L2(R+).

We will show how properties of S (such as admissibility) influence properties of QS, 
and obtain an abstract characterization of the affine Cohen class. Readers familiar with 
the Cohen class on R2n [11] will know that it is defined in terms of convolutions with 
the Wigner function. In the affine setting, we have the analogous result

QAf
(ψ, φ) = Wψ,φ

Aff ∗Aff f̌ .

As we explain in Proposition 6.14, the affine class of quadratic time-frequency represen-
tations from [41] may be identified with a subclass of the affine Cohen class.
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Structure of the paper
In Section 2 we recall necessary background material for completeness. In particular, 

Section 2.2 should serve as a brief reference for quantum harmonic analysis on phase 
space. We define affine operator convolution in Section 3.1 and show the relationship 
with the affine Weyl quantization in Section 3.2. The affine parity operator will be in-
troduced in Section 3.4, and its relationship to affine Weyl quantization will be explored 
in Section 3.5. We have dedicated the entirety of Section 4 to operator admissibility. 
Section 5 discusses affine Weyl quantization from the viewpoint of representation the-
ory. In particular, in Section 5.2 we derive a Bochner type theorem for our setting. In 
Section 6.1 and Section 6.2 we relate our work to time-scale localization operators and 
covariant integral quantizations, respectively. Finally, in Section 6.3 we define the affine 
Cohen class and derive some basic properties.

2. Preliminaries

Notation: Given a Hilbert space H we let L(H) denote the bounded operators on 
H. The notation Sp(H) for 1 ≤ p < ∞ will be used for the Schatten-p class operators
on H. We remark that S1(H) and S2(H) are respectively the trace-class operators and 
the Hilbert-Schmidt operators on H. The space S∞(H) is by definition L(H) for duality 
reasons. When the Hilbert space in question is H = L2(R+) := L2(R+, r−1 dr), we will 
simplify the notation to Sp := Sp(L2(R+)) for readability. We will denote by S (Rn)
the space of Schwartz functions on Rn. For a function f on a group G, the function f̌ is 
defined by f̌(g) = f(g−1) for all g ∈ G.

2.1. Basic constructions on the affine group

We begin by giving a brief introduction to the affine group and relevant constructions 
on it. The (reduced) affine group (Aff, ·Aff) is the Lie group whose underlying set is the 
upper half plane Aff := R ×R+ := R × (0, ∞), while the group operation is given by

(x, a) ·Aff (y, b) := (ay + x, ab), (x, a), (y, b) ∈ Aff.

We will often neglect the subscript in the group operation to improve readability. More-
over, we use the notation L(x,a) and R(x,a) to denote respectively the left-translation and 
right-translation by (x, a) ∈ Aff, acting on a function f : Aff → C by

(
L(x,a)f

)
(y, b) := f((x, a)−1 ·Aff (y, b)),

(
R(x,a)f

)
(y, b) := f((y, b) ·Aff (x, a)).

Recall that the translation operator Tx and the dilation operator Da are respectively 
given by

Txf(y) := f(y − x), Daf(y) := 1√ f
(y)

, x, y ∈ R, a ∈ R+. (2.1)

a a
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The following computation motivates the group operation on the affine group:

(TxDa)(TyDb) = TxTayDaDb = Tx+ayDab.

We can represent the affine group Aff and its Lie algebra aff in matrix form

Aff =
{(

a x
0 1

) ∣∣∣ a > 0, x ∈ R

}
, aff =

{(
u v
0 0

) ∣∣∣u, v ∈ R

}
.

The Lie algebra structure of aff is completely determined by

[(
1 0
0 0

)
,

(
0 1
0 0

)]
=
(

0 1
0 0

)
. (2.2)

An important feature of the affine group is that it is non-unimodular; the left and right 
Haar measures are respectively given by

μL(x, a) = dx da

a2 , μR(x, a) = dx da

a
.

As such, the modular function on the affine group is given by Δ(x, a) = a−1. The affine 
group is exponential, meaning that the exponential map exp : aff → Aff given by

exp
(
u v
0 0

)
=
(
eu v(eu−1)

u
0 1

)

is a global diffeomorphism. Hence we can write the left and right Haar measures in 
exponential coordinates by the formulas

μL(x, a) = du dv

λ(u) , μR(x, a) = du dv

λ(−u) , λ(u) := ueu

eu − 1 . (2.3)

Elementary properties of the function λ can be found in [18, Section 3]. Throughout 
the paper, we will use the spaces Lp

l (Aff) := Lp(Aff, μL) and Lp
r(Aff) := Lp(Aff, μR) for 

1 ≤ p ≤ ∞. Using that (x, u) → (x, eu) maps Aff to R2 we can define the Schwartz space 
on Aff.

Definition 2.1. Let S (Aff) denote the smooth functions f : Aff → C such that

(x, ω) −→ f(x, eω) ∈ S (R2).

We refer to S (Aff) as the space of rapidly decaying smooth functions (or Schwartz 
functions) on the affine group.
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There is a natural topology on S (Aff) induced by the semi-norms

‖f‖α,β := sup
x, ω∈R

|x|α1 |ω|α2
∣∣∂β1

x ∂β2
ω f(x, eω)

∣∣ , (2.4)

for α = (α1, α2) and β = (β1, β2) in N0 ×N0. With these semi-norms, the space S (Aff)
becomes a Fréchet space. The space of bounded, anti-linear functionals on S (Aff) is 
denoted by S ′(Aff) and called the space of tempered distributions on Aff.

2.2. Quantum harmonic analysis on the Heisenberg group

Before delving into quantum harmonic analysis on the affine group, it is advantageous 
to review the Heisenberg setting, originally introduced by Werner [46]. There are three 
primary constructions that appear: (a) A quantization scheme, (b) an integrated repre-
sentation, and (c) a way to define convolution that incorporates operators. We give a 
brief overview of these three constructions and refer the reader to [46,23,36] for more 
details.

2.2.1. Weyl quantization
The cross-Wigner distribution of φ, ψ ∈ L2(Rn) is given by

W (φ, ψ)(x, ω) :=
∫
Rn

φ

(
x + t

2

)
ψ

(
x− t

2

)
e−2πiωt dt, (x, ω) ∈ R2n.

When φ = ψ we refer to Wφ := W (φ, φ) as the Wigner distribution of φ ∈ L2(Rn). The 
cross-Wigner distribution satisfies the orthogonality relation

〈W (φ1, ψ1),W (φ2, ψ2)〉L2(R2n) = 〈φ1, φ2〉L2(Rn)〈ψ1, ψ2〉L2(Rn), φ1, φ2, ψ1, ψ2 ∈ L2(Rn).

Moreover, the Wigner distribution satisfies the marginal properties∫
Rn

Wφ(x, ω) dω = |φ(x)|2,
∫
Rn

Wφ(x, ω) dx = |φ̂(x)|2,

for φ ∈ S (Rn).
Our primary interest in the cross-Wigner distribution stems from the following con-

nection: For each f ∈ L2(R2n) we define the operator Lf : L2(Rn) → L2(Rn) by the 
formula

〈Lfφ, ψ〉L2(Rn) = 〈f,W (ψ, φ)〉L2(R2n), φ, ψ ∈ L2(Rn).

Then Lf is the Weyl quantization of f , see [23, Ch. 14] for details. It is a non-trivial fact, 
see [42], that the Weyl quantization gives a well-defined isomorphism between L2(R2n)
and S2(L2(Rn)), the space of Hilbert-Schmidt operators on L2(Rn).



E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327 11
2.2.2. Integrated Schrödinger representation
Recall that the Heisenberg group Hn is the Lie group with underlying manifold Rn×

Rn ×R and with the group multiplication

(x, ω, t) · (x′, ω′, t′) :=
(
x + x′, ω + ω′, t + t′ + 1

2 (x′ω − xω′)
)
.

The Heisenberg group is omnipresent in modern mathematics and theoretical physics, 
see [27]. For a Hilbert space H we let U(H) denote the unitary operators on H. The 
most important representation of the Heisenberg group is the Schrödinger representation
ρ : Hn → U(L2(Rn)) given by

ρ(x, ω, t)φ(y) := e2πite−πixωMωTxφ(y),

where Tx is the n-dimensional analogue of the translation operator defined in (2.1) and 
Mω is the modulation operator given by

Mωφ(y) := e2πiωyφ(y), φ ∈ L2(Rn).

The Schrödinger representation is both irreducible and unitary. Let us use the abbrevi-
ated notation z := (x, ω) ∈ R2n and π(z) = MωTx. Ignoring the central variable t, we 
can consider the integrated Schrödinger representation ρ : L1(R2n) → L(L2(Rn)) given 
by

ρ(f) =
∫

R2n

f(z)e−πixωπ(z) dz, (2.5)

where L(L2(Rn)) denotes the bounded linear operators on L2(Rn). We remark that the 
integral in (2.5) is defined weakly. It turns out, see [15, Thm. 1.30], that the integrated 
representation ρ extends from L1(R2n) ∩ L2(R2n) to a unitary map ρ : L2(R2n) →
S2(L2(Rn)).

2.2.3. Operator convolution
Given a function f ∈ L1(R2n) and a trace-class operator S ∈ S1(L2(Rn)), their 

convolution is the trace-class operator on L2(Rn) defined by

f � S :=
∫

R2n

f(z)π(z)Sπ(z)∗ dz.

The convolution f � S satisfies the estimate ‖f � S‖S1 ≤ ‖f‖L1‖S‖S1 .
One can also define the convolution between two operators: For two trace-class op-

erators S, T ∈ S1(L2(Rn)) we define their convolution to be the function on R2n given 
by
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S � T (z) := tr(Sπ(z)PTPπ(z)∗),

where Pψ(t) := ψ(−t) is the parity operator. The convolution S �T satisfies the estimate 
‖S � T‖L1 ≤ ‖S‖S1‖T‖S1 , and the important integral relation [46, Lem. 3.1]

∫
R2n

S � T (z) dz = tr(S) tr(T ). (2.6)

To see the connection with the Wigner distribution, we note that the cross-Wigner 
distribution of ψ, φ ∈ L2(Rn) can be written as

W (ψ, φ) = ψ ⊗ φ � P, (2.7)

where ψ ⊗ φ denotes the rank-one operator on L2(Rn) given by

(ψ ⊗ φ)(ξ) := 〈ξ, φ〉L2(Rn)ψ for ξ ∈ L2(Rn).

Similarly, the Weyl quantization of f ∈ L1(R2n) may be expressed in terms of operator 
convolutions:

Lf = f � P. (2.8)

Hence convolution with the parity operator P gives a convenient way to represent the 
Wigner distribution and the Weyl quantization.

Finally, there is a Fourier transform for operators: Given a trace-class operator S ∈
S1(L2(Rn)) we define the Fourier-Wigner transform FW (S) of S to be the function on 
R2n given by

FW (S)(z) := eiπxω tr(Sπ(z)∗), z ∈ R2n. (2.9)

The Fourier-Wigner transform extends to a unitary map FW : S2(L2(Rn)) → L2(R2n), 
where it turns out to be inverse of the integrated Schrödinger representation given in 
(2.5). By [15, Prop. 2.5] it is related to the Weyl transform by the elegant formula

f = Fσ(FW (Lf )), (2.10)

where Fσ denotes the symplectic Fourier transform.

2.3. Affine Weyl quantization

We briefly describe affine Weyl quantization and how this gives rise to the affine 
Wigner distribution. There is a unitary representation π of the affine group Aff on 
L2(R+, r−1 dr) given by
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U(x, a)ψ(r) := e2πixrψ(ar) = 1√
a
MxD 1

a
ψ(r), ψ ∈ L2(R+, r

−1 dr). (2.11)

Since r−1 dr is the Haar measure on R+ we will write L2(R+) := L2(R+, r−1 dr). Later 
we also consider another measure on R+ and will be more explicit when the situation 
requires it.

To define the quantization scheme we will utilize the Stratonovich-Weyl operator on 
L2(R+) given by

Ω(x, a)ψ(r) := a

∫
R2

e−2πi(xu+av)U

(
veu

λ(u) , e
u

)
ψ(r) du dv. (2.12)

The following result was shown in [18] and provides us with an affine analogue of Weyl 
quantization.

Proposition 2.2 ([18]). There is a norm-preserving isomorphism between L2
r(Aff) and the 

space of Hilbert-Schmidt operators on L2(R+). The isomorphism sends f ∈ L2
r(Aff) to 

the operator Af on L2(R+) defined weakly by

Afψ(r) :=
∞∫

−∞

∞∫
0

f(x, a)Ω(x, a)ψ(r) da dx
a

, ψ ∈ L2(R+).

We will refer to the association f → Af as affine Weyl quantization, while f is called 
the affine (Weyl) symbol of Af . To emphasize the correspondence between a Hilbert-
Schmidt operator A and its affine symbol f we use the notation fA := f . The affine 
Weyl symbol of an operator A is explicitly given by

fA(x, a) =
∞∫

−∞

AK (aλ(u), aλ(−u)) e−2πixu du, (2.13)

where AK : R+ ×R+ → C is the integral kernel of A defined by

Aψ(r) =
∞∫
0

AK(r, s)ψ(s) ds
s
, ψ ∈ L2(R+).

By taking the affine Weyl symbol of the rank-one operator ψ ⊗ φ on L2(R+) given by

ψ ⊗ φ(ξ) = 〈ξ, φ〉L2(R+)ψ

for ψ, φ, ξ ∈ L2(R+), we obtain the following definition.
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Definition 2.3. For φ, ψ ∈ L2(R+) we define the affine (cross-)Wigner distribution Wψ,φ
Aff

to be the function on Aff given for (x, a) ∈ Aff by

Wψ,φ
Aff (x, a) :=

∞∫
−∞

ψ(aλ(u))φ(aλ(−u))e−2πixu du

=
∞∫

−∞

ψ

(
aueu

eu − 1

)
φ

(
au

eu − 1

)
e−2πixu du.

When φ = ψ we refer to Wψ
Aff := Wψ,ψ

Aff as the affine Wigner distribution of ψ. The 
weak interpretation of the integral defining Af means that we have the relation

〈Afφ, ψ〉L2(R+) =
〈
f,Wψ,φ

Aff

〉
L2

r(Aff)
, (2.14)

for f ∈ L2
r(Aff) and φ, ψ ∈ L2(R+). The affine Wigner distribution satisfies the orthog-

onality relation

∞∫
−∞

∞∫
0

Wψ1,ψ2
Aff (x, a)Wφ1,φ2

Aff (x, a) da dx
a

= 〈ψ1, φ1〉L2(R+)〈ψ2, φ2〉L2(R+), (2.15)

for ψ1, ψ2, φ1, φ2 ∈ L2(R+). Moreover, the affine Wigner distribution also satisfies the 
marginal property

∞∫
−∞

Wψ
Aff(x, a) dx = |ψ(a)|2, (x, a) ∈ Aff, (2.16)

for all rapidly decaying smooth functions ψ on R+. We remark that a rapidly decaying 
smooth function (also called a Schwartz function) ψ : R+ → C is by definition a smooth 
function such that x → ψ(ex) is a rapidly decaying function on R. The space of all rapidly 
decaying smooth functions on R+ will be denoted by S (R+). We will later also need 
the space S ′(R+) of bounded, anti-linear functionals on S (R+) called the tempered 
distributions on R+. For more information regarding the affine Wigner distribution the 
reader is referred to [5].

3. Affine operator convolutions

In this part we introduce operator convolutions in the affine setting. We show that 
this notion is intimately related to affine Weyl quantization in Section 3.2. In Section 3.4
we will introduce the affine Grossmann-Royer operator, which will be essential in Sec-
tion 3.5 where we prove the main connection between the affine Weyl quantization and 
the operator convolutions in Theorem 3.20.
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3.1. Definitions and basic properties

We begin by defining operator convolutions in the affine setting and derive basic 
properties. Recall that the usual convolution on the affine group with respect to the 
right Haar measure is given by

f ∗Aff g(x, a) :=
∫

Aff

f(y, b)g((x, a) · (y, b)−1) dy db
b

.

Remark. Other sources, e.g. [16], use the left Haar measure and define the convolution 
to be

f ∗AffL
g((x, a)) := f̌ ∗Aff ǧ((x, a)−1),

where f̌(x, a) := f((x, a)−1). We will mainly work with the right Haar measure, and our 
definition ensures that

‖f ∗Aff g‖L1
r(Aff) ≤ ‖f‖L1

r(Aff)‖g‖L1
r(Aff).

Additionally, we have that

R(x,a)(f ∗Aff g) = (R(x,a)f) ∗Aff g.

Definition 3.1. Let f ∈ L1
r(Aff) and let S be a trace-class operator on L2(R+). We define 

the convolution f �Aff S between f and S to be the operator on L2(R+) given by

f �Aff S :=
∫

Aff

f(x, a)U(−x, a)∗SU(−x, a) dx da
a

,

where U is the unitary representation given in (2.11). The integral is a convergent 
Bochner integral in the space of trace-class operators.

Remark.

1. As we will see later, using U(−x, a) instead of U(x, a) in Definition 3.1 ensures that 
the convolution is compatible with the following covariance property of the affine 
Wigner distribution:

W
U(−x,a)φ,U(−x,a)ψ
Aff (y, b) = Wφ,ψ

Aff ((y, b) · (x, a)).

2. The notation � has a different meaning in [18], where it is used to denote the so-called 
Moyal product of two functions defined on Aff.
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Definition 3.2. Let S be a trace-class operator and let T be a bounded operator on 
L2(R+). Then we define the convolution S �Aff T between S and T to be the function 
on Aff given by

S �Aff T (x, a) := tr(SU(−x, a)∗TU(−x, a)).

Remark. Recently, [10] defined another notion of convolution of trace-class operators. 
Unlike our definition, this convolution produces a new trace-class operator, with the aim 
of interpreting the trace-class operators as an analogue of the Fourier algebra.

It is straightforward to check that if f is a positive function and S, T are positive 
operators, then f �AffS is a positive operator and S�AffT is a positive function. Moreover, 
we have the elementary estimate

‖f �Aff S‖S1 ≤ ‖f‖L1
r(Aff)‖S‖S1 (3.1)

and

‖S �Aff T‖L∞(Aff) ≤ ‖S‖S1‖T‖L(L2(R+)). (3.2)

The following result is proved by a simple computation.

Lemma 3.3. For ψ, φ ∈ L2(R+) and S ∈ L(L2(R+)), we have

(ψ ⊗ φ) �Aff S(x, a) = 〈SU(−x, a)ψ,U(−x, a)φ〉L2(R+).

In particular, for η, ξ ∈ L2(R+) we have

(ψ ⊗ φ) �Aff (η ⊗ ξ)(x, a) = 〈ψ,U(−x, a)∗ξ〉L2(R+)〈φ,U(−x, a)∗η〉L2(R+),

and

(ψ ⊗ ψ) �Aff (ξ ⊗ ξ)(x, a) = |〈ψ,U(−x, a)∗ξ〉L2(R+)|2.

A natural question to ask is whether the three different notions of convolution we 
have introduced are compatible. The following proposition gives an affirmative answer 
to this question.

Proposition 3.4. Let f, g ∈ L1
r(Aff), S ∈ S1, and let T be a bounded operator on L2(R+). 

Then we have the compatibility equations

(f �Aff S) �Aff T = f ∗Aff (S �Aff T ),

f �Aff (g �Aff S) = (f ∗Aff g) �Aff S.
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Proof. The first equality follows from the computation

(f ∗Aff (S �Aff T )) (x, a) =
∫

Aff

f(y, b) tr(SU(−y, b)U(−x, a)∗TU(−x, a)U(−y, b)∗) dy db
b

=
∫

Aff

f(y, b) tr(U(−y, b)∗SU(−y, b)U(−x, a)∗TU(−x, a)) dy db
b

= tr

⎛
⎝∫

Aff

f(y, b)U(−y, b)∗SU(−y, b) dy db
b

U(−x, a)∗TU(−x, a)

⎞
⎠

= ((f �Aff S) �Aff T ) (x, a).

We are allowed to take the trace outside the integral since the second to last line is essen-
tially the duality action of the bounded operator U(−x, a)∗TU(−x, a) on a convergent 
Bochner integral in the space of trace-class operators.

For the second equality, we use change of variables and obtain

(f ∗Aff g) �Aff S =
∫

Aff

∫
Aff

f(x, a)g((z, c) · (x, a)−1)U(−z, c)∗SU(−z, c) dx da
a

dz dc

c

=
∫

Aff

∫
Aff

f(x, a)g(y, b)U(−x, a)∗U(−y, b)∗SU(−y, b)U(−x, a) dy db
b

dx da

a

=
∫

Aff

f(x, a)U(−x, a)∗
∫

Aff

g(y, b)U(−y, b)∗SU(−y, b) dy db
b

U(−x, a) dx da
a

= f �Aff (g �Aff S).

Changing the order of integration above is allowed by Fubini’s theorem for Bochner 
integrals [32, Prop. 1.2.7]. Fubini’s theorem is applicable since

∫
Aff

∫
Aff

|f(x, a)| · |g((z, c) · (x, a)−1)| · ‖U(−z, c)∗SU(−z, c)‖S1

dx da

a

dz dc

c

is bounded from above by

‖S‖S1

∫
Aff

|f(x, a)| dx da
a

∫
Aff

|g(z, c)| dz dc
c

< ∞. �

3.2. Relationship with affine Weyl quantization

The goal of this section is to connect the affine Weyl quantization described in Sec-
tion 2.3 with the convolutions defined in Section 3.1. We first establish a preliminary 
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result describing how right multiplication on the affine group affects the affine Weyl 
quantization.

Lemma 3.5. Let Af ∈ S2 with affine Weyl symbol f ∈ L2
r(Aff). For (x, a) ∈ Aff, the 

affine Weyl symbol of U(−x, a)∗AfU(−x, a) is R(x,a)−1f .

Proof. The result follows from (2.14) and the computation

〈U(−x, a)∗AfU(−x, a)ψ, φ〉L2(R+) = 〈AfU(−x, a)ψ,U(−x, a)φ〉L2(R+)

= 〈f,WU(−x,a)φ,U(−x,a)ψ
Aff 〉L2

r(Aff)

= 〈f,R(x,a)W
φ,ψ
Aff 〉L2

r(Aff)

= 〈R(x,a)−1f,Wφ,ψ
Aff 〉L2

r(Aff). �
We are now ready to prove the first result showing the connection between convolution 

and affine Weyl quantization.

Proposition 3.6. Assume that Af ∈ S2 with affine Weyl symbol f ∈ L2
r(Aff), and let 

g ∈ L1
r(Aff). Then the affine Weyl symbol of g �Aff Af is g ∗Aff f , that is,

g �Aff Af = Ag∗Afff .

Proof. The operator g �Aff Af is defined as the S2-convergent Bochner integral

g �Aff Af =
∫

Aff

g(x, a)U(−x, a)∗AfU(−x, a) dx da
a

.

By Proposition 2.2, the map W : S2 → L2
r(Aff) given by W(Af ) = f is unitary. 

Since bounded operators commute with convergent Bochner integrals, we have using 
Lemma 3.5 that

W (g �Aff Af ) =
∫

Aff

g(x, a)W (U(−x, a)∗AfU(−x, a)) dx da

a

=
∫

Aff

g(x, a)R(x,a)−1W (Af ) dx da

a

= g ∗Aff f. �
We can also express the convolution of two operators in terms of their affine Weyl 

symbols.

Proposition 3.7. Let Af , Ag ∈ S2 with affine Weyl symbols f, g ∈ L2
r(Aff). If additionally 

g ∈ L2
l (Aff), then we have
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Af �Aff Ag = f ∗Aff ǧ,

where ǧ(x, a) = g((x, a)−1) for (x, a) ∈ Aff.

Proof. Using Proposition 2.2 and Lemma 3.5 we compute that

(Af �Aff Ag)(x, a) = tr(AfU(−x, a)∗AgU(−x, a))

= 〈Af , U(−x, a)∗A∗
gU(−x, a)〉S2

= 〈f,R(x,a)−1g〉L2
r(Aff)

=
∫

Aff

f(y, b)g((y, b) · (x, a)−1) dy db
b

=
∫

Aff

f(y, b)ǧ((x, a) · (y, b)−1) dy db
b

= f ∗Aff ǧ(x, a).

The result follows as ǧ ∈ L2
r(Aff) if and only if g ∈ L2

l (Aff). �
3.3. Affine Weyl quantization of coordinate functions

Of particular interest is the affine Weyl quantization of the coordinate functions 
fx(x, a) := x and fa(x, a) := a for (x, a) ∈ Aff. Due to the fact that the coordinate 
functions are not in L2

r(Aff), we first need to interpret the quantizations Afx and Afa in 
a rigorous manner.

Lemma 3.8. For any f ∈ S ′(Aff) we can define Af as the map Af : S (R+) → S ′(R+)
defined by the relation

〈Afψ, φ〉S ′,S =
〈
f,Wφ,ψ

Aff

〉
S ′,S

, ψ, φ ∈ S (R+).

Additionally, the map f → Af is injective.

Proof. It was shown in [5, Cor. 6.6] that for any φ, ψ ∈ S (R+) then Wφ,ψ
Aff ∈ S (Aff). 

Hence the pairing 
〈
f,Wφ,ψ

Aff

〉
S ′,S

is well defined.
For the injectivity it suffices to show that Af = 0 implies that f = 0. Let us first 

reformulate this slightly: If Af = 0, then we have that

〈Afψ, φ〉S ′,S =
〈
f,Wφ,ψ

Aff

〉
S ′,S

= 0

for all ψ, φ ∈ S (R+). We could conclude that f = 0 if we knew that any g ∈ S (Aff)
could be approximated (in the Fréchet topology) by linear combinations of elements on 
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the form Wφ,ψ
Aff for ψ, φ ∈ S (R+). To see that this is the case, we translate the problem 

to the Heisenberg setting.
The Mellin transform M is given by

M(φ)(x) = Mr(φ)(x) :=
∞∫
0

φ(r)r−2πix dr

r
.

Define the functions Ψ and Φ to be Ψ(x) := ψ(ex) and Φ(x) := φ(ex) for ψ, φ ∈ L2(R+). 
A reformulation of [5, Lem. 6.4] shows that we have the relation

Wψ,φ
Aff (x, a) = M−1

y ⊗Mb

⎡
⎣(√

b log(b)
b− 1

)2πiy

FσW (Ψ,Φ)
(
log(b), y

)⎤⎦ (x, a),

where W is the cross-Wigner distribution. The correspondence preserves Schwartz func-
tions, due to the term

(√
b log(b)
b− 1

)2πiy

being smooth with polynomially bounded derivatives. This gives a bijective correspon-
dence between Wψ,φ

Aff ∈ S (Aff) and W (Ψ, Φ) ∈ S (R2). As such, the injectivity question 
is reduced to asking whether the linear span of elements on the form W (f, g) for 
f, g ∈ S (R) is dense in S (R2). One way to verify this well-known fact is to note 
that the map f ⊗ g → W (f, g), where f ⊗ g(x, y) = f(x)g(y), extends to a topological 
isomorphism on S (R2), see for instance [23, (14.21)] for the formula of this isomorphism. 
The density of elements on the form W (f, g) for f, g ∈ S (R) therefore follows as the 
functions hm ⊗ hn, where {hn}∞n=0 are the Hermite functions, span a dense subspace of 
S (R2) by [43, Thm. V.13]. �
Example 3.9. Consider the constant function on the affine group given by 1(x, a) = 1 for 
all (x, a) ∈ Aff. Then the quantization A1 is the identity operator since for ψ, φ ∈ S (R+)

〈A1ψ, φ〉S ′,S = 〈1,Wφ,ψ
Aff 〉S ′,S

=
∫

Aff

Wφ,ψ
Aff (x, a) da dx

a

=
∞∫
0

ψ(a)φ(a) da
a

= 〈ψ, φ〉L2(R+).
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Notice that we used a straightforward generalization of the marginal property of the 
affine Wigner distribution given in (2.16), see the proof of [5, Prop. 3.4] for details.

To motivate the next result, consider the coordinate functions σx(x, ω) := x and 
σω(x, ω) := ω for (x, ω) ∈ R2n. The Weyl quantizations Lσx

and Lσω
are the well-known 

position operator and momentum operator in quantum mechanics. In particular, the 
commutator

[Lσx
, Lσω

] := Lσx
◦ Lσω

− Lσω
◦ Lσx

is a constant times the identity by [26, Prop. 3.8]. This is precisely the relation for the 
Lie algebra of the Heisenberg group. In light of this, the following proposition shows that 
the affine Weyl quantization has the expected expression for the coordinate functions.

Theorem 3.10. Let fx and fa be the coordinate functions on the affine group. The affine 
Weyl quantizations Afx and Afa are well-defined as maps from S (R+) to S ′(R+) and 
are explicitly given by

Afxψ(r) = 1
2πirψ

′(r), Afaψ(r) = rψ(r), ψ ∈ S (R+).

In particular, we have the commutation relation

[Afx , Afa ] = 1
2πiAfa .

This is, up to re-normalization, precisely the Lie algebra structure of aff given in (2.2).

Proof. Let us begin by computing Afx . We can change the order of integrating by Fu-
bini’s theorem and obtain for ψ, φ ∈ S (R+) that

〈Afxψ, φ〉S ′,S =
〈
fx,W

φ,ψ
Aff

〉
S ′,S

=
∞∫

−∞

∞∫
0

x

∞∫
−∞

φ(aλ(u))ψ(aλ(−u))e−2πixu du
da dx

a

=
∞∫

−∞

∞∫
0

⎛
⎝ ∞∫
−∞

xe2πixu dx

⎞
⎠ ψ(aλ(u))φ(aλ(−u)) da du

a
.

Notice that the inner integral is equal to

∞∫
xe2πixu dx = 1

2πiδ
′
0(u),
−∞
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where
∞∫

−∞

δ′0(u)ψ(u) du = ψ′(0).

Hence we have the relation

〈Afxψ, φ〉S ′,S = 1
2πi

∞∫
0

∂

∂u

(
ψ(aλ(u))φ(aλ(−u))

) ∣∣∣
u=0

da

a
.

By using the formulas λ(0) = 1 and λ′(0) = 1/2 we can simplify and obtain

〈Afxψ, φ〉S ′,S = 1
4πi

∞∫
0

a ·
(
ψ′(a)φ(a) − ψ(a)φ′(a)

) da

a
.

Using integration by parts we obtain the claim since

〈Afxψ, φ〉S ′,S =
∞∫
0

[
1

2πiaψ
′(a)
]
φ(a) da

a
.

For Afa we have by similar calculations as above that

〈Afaψ, φ〉S ′,S =
∞∫

−∞

∞∫
0

⎛
⎝ ∞∫
−∞

1 · e2πixu dx

⎞
⎠ a · ψ(aλ(u))φ(aλ(−u)) da du

a

=
∞∫

−∞

∞∫
0

δ0(u)
(
a · ψ(aλ(u))φ(aλ(−u))

) da du

a

=
∞∫
0

aψ(a)φ(a) da
a
.

The commutation relation follows from straightforward computation. �
3.4. The affine Grossmann-Royer operator

In this section we introduce the affine Grossmann-Royer operator with the aim of 
obtaining an affine parity operator analogous to the (Heisenberg) parity operator P in 
Section 2.2.3. The main reason for this is to obtain affine version of the formulas (2.7) and 
(2.8) so that we can describe the affine Weyl quantization through convolution. Recall 
that the (Heisenberg) Grossmann-Royer operator R(x, ω) for (x, ω) ∈ R2n is defined by 
the relation
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W (f, g)(x, ω) = 〈R(x, ω)f, g〉L2(Rn) , f, g ∈ L2(Rn).

Analogously, we have the following definition.

Definition 3.11. We define the affine Grossmann-Royer operator RAff(x, a) for (x, a) ∈
Aff by the relation

Wψ,φ
Aff (x, a) = 〈RAff(x, a)ψ, φ〉S ′,S , ψ, φ ∈ S (R+).

We restrict our attention to Schwartz functions for convenience since then Wψ,φ
Aff ∈

S (Aff) by [5, Cor. 6.6], and hence have well-defined point values. The Grossmann-
Royer operator RAff(x, a) is precisely the affine Weyl quantization of the point mass 
δAff(x, a) ∈ S ′(Aff) for (x, a) ∈ Aff defined by

〈δAff(x, a), f〉S ′,S := f(x, a), f ∈ S (Aff).

Since this is also true for the Stratonovich-Weyl operator Ω(x, a) given in (2.12), it 
follows that RAff(x, a) = Ω(x, a) for all (x, a) ∈ Aff. From [18, p. 12] it follows that we 
have the affine covariance relation

U(−x, a)∗RAff(0, 1)U(−x, a) = RAff(x, a).

The following result, which is a straightforward computation, shows that RAff(x, a) is 
an unbounded and densely defined operator on L2(R+).

Lemma 3.12. Fix ψ ∈ S (R+) and (x, a) ∈ Aff. The affine Grossmann-Royer operator 
RAff(x, a) has the explicit form

RAff(x, a)ψ(r) =
e2πixλ−1( r

a

)
λ−1 ( r

a

) (
1 − eλ

−1( r
a

))
1 + λ−1

(
r
a

)
− eλ

−1
(
r
a

) · ψ
(
re−λ−1( r

a

))
,

where λ is the function given in (2.3).

We will be particularly interested in the affine parity operator PAff given by the affine 
Grossmann-Royer operator at the identity element, that is,

PAff(ψ)(r) := RAff(0, 1)ψ(r) = λ−1(r)(1 − eλ
−1(r))

1 + λ−1(r) − eλ−1(r)ψ
(
re−λ−1(r)

)
,

for ψ ∈ S (R+). The affine parity operator PAff is symmetric as an unbounded operator 
on L2(R+). Moreover, we see from the relation

eλ
−1(r) − 1 = λ−1(r)eλ−1(r)
r
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that we have the alternative formula

PAff(ψ)(r) = λ−1(r)
1 − re−λ−1(r)ψ

(
re−λ−1(r)

)
. (3.3)

An important commutation relation for the (Heisenberg) Grossman-Royer operator 
R(x, ω) for (x, ω) ∈ R2n is given by

P ◦R(x, ω) = R(−x,−ω) ◦ P. (3.4)

The following proposition shows that the analogue of (3.4) breaks down in the affine 
setting due to Aff being non-unimodular. As the proof is a straightforward computation, 
we leave the details to the reader.

Proposition 3.13. The commutation relation

PAff ◦RAff(x, a) = RAff
(
(x, a)−1) ◦ PAff

holds precisely for those (x, a) ∈ Aff such that Δ(x, a) = 1
a = 1.

We will now show that both the function λ in (2.3) and the affine parity operator PAff
are related to the Lambert W function. Recall that the (real) Lambert W function is the 
multivalued function defined to be the inverse relation of the function f(x) = xex for 
x ∈ R. The function f(x) for x < 0 is not injective. There exist for each y ∈ (−1/e, 0)
precisely two values x1, x2 ∈ (−∞, 0) such that

x1e
x1 = x2e

x2 = y.

As the solutions appear in pairs, we can define σ to be the function that permutes these 
solutions, that is, σ(x1) = x2 and σ(x2) = x1. For y = −1/e there is only one solution to 
the equation xex = y, namely x = −1. Hence we define σ(−1) = −1. We can represent 
the function σ as

σ(x) =

⎧⎪⎪⎨
⎪⎪⎩
W0(xex), x < −1
−1, x = −1
W−1(xex), −1 < x < 0

,

where W0, W−1 are the two branches of the Lambert W function satisfying

W0(xex) = x, for x ≥ −1

and

W−1(xex) = x, for x ≤ −1.
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Lemma 3.14. The inverse of λ is given by

λ−1(r) = log
(

−r

σ(−r)

)
= σ(−r) + r, r > 0.

Proof. To find the inverse of λ we solve the equation

r = λ(u) = ueu

eu − 1 = −u

e−u − 1 .

A simple computation shows that −r = −u − re−u. Making the substitution v = e−u

together with straightforward manipulations shows that

−re−r = −rve−rv. (3.5)

The trivial solution to (3.5) is given by solving the equation −r = −rv. Checking with 
the original equation, this can not give the inverse of λ. We get the first equality from 
the definition of σ together with recalling that u = − log(v). The final equality follows 
from

log
(

−r

σ(−r)

)
= log

(
−r

σ(−r)
σ(−r)eσ(−r)

−re−r

)
= σ(−r) + r. �

Remark. A minor variation of the function σ appeared in [18, Section 3] where it was 
defined by the relation in Lemma 3.14. The advantage of understanding the connection 
to the Lambert W function is that properties such as σ(σ(x)) = x for every x < 0
become trivial in this description.

Corollary 3.15. The affine parity operator PAff can be written as

PAff(ψ)(r) = σ(−r) + r

σ(−r) + 1ψ(−σ(−r)), ψ ∈ S (R+).

In particular, we have PAff(ψ)(1) = 2ψ(1).

Proof. The formula for PAff(ψ) is obtained from Lemma 3.14 together with (3.3). To 
find the value PAff(ψ)(1), we use (3.3) and the fact that

ψ
(
re−λ−1(r)

) ∣∣∣
r=1

= ψ(1).

Hence the claim follows from L’Hopital’s rule since

lim λ−1(r)
−1 = (λ−1)′(1)

−1 ′ = 2. �

r→1 λ (r) + 1 − r (λ ) (1) − 1
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3.5. Operator convolution for tempered distributions

This section is all about expressing the affine Weyl quantization of a function f ∈
S (Aff) by using affine convolution. To be able to do this, we will first define what it 
means for Af to be a Schwartz operator.

Definition 3.16. We say that a Hilbert-Schmidt operator A : L2(R+) → L2(R+) is a 
Schwartz operator if the integral kernel AK of A satisfies AK ∈ S (R+ ×R+), that is, if

(x, ω) −→ AK(ex, eω) ∈ S (R2).

Proposition 3.17. A Hilbert-Schmidt operator A ∈ S2 is a Schwartz operator if and only 
if A = Af for some f ∈ S (Aff).

Proof. Assume that A is a Schwartz operator. In [18, Equation (4.8)] it is shown that 
the integral kernel AK of A is related to the affine Weyl symbol fA of A by the formula

AK(r, s) =
∞∫

−∞

fA

(
x,

r − s

log(r/s)

)
e2πix log(r/s) dx.

Since the inverse-Fourier transform preserves Schwartz functions, together with the def-
inition of S (R+ ×R+), we have that

(r, s) −→ fA

(
log(r/s), r − s

log(r/s)

)
∈ S (R+ ×R+).

By performing the change of variable x = log(r/s) and s = eω for ω ∈ R we obtain

(x, ω) −→ fA

(
x, eω

ex − 1
x

)
∈ S (R2).

Finally, by letting u = log((ex − 1)/x) + ω we see that

(x, u) −→ fA (x, eu) ∈ S (R2),

due to the fact that x → log((ex − 1)/x) has polynomial growth.
Conversely, assume that A = Af for f ∈ S (Aff). The integral kernel AK is then given 

by

AK(r, s) = F−1
1 (f)

(
log(r/s), r − s

log(r/s)

)
.

By using that the inverse-Fourier transform F−1
1 in the first component preserves S (Aff)

together with similar substitutions as previously, we have that AK ∈ S (R+ ×R+). �
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We will use the notation S (L2(R+)) for all Schwartz operators on L2(R+). There is 
a natural topology on S (L2(R+)) induced by the semi-norms ‖Af‖α,β := ‖f‖α,β where 
‖ · ‖α,β are the semi-norms on S (Aff) given in (2.4).

Proposition 3.18. The affine convolution gives a well-defined map

S (Aff) �Aff S (L2(R+)) → S (L2(R+)).

Moreover, for fixed A ∈ S (L2(R+)) the map

S (Aff) � f −→ f �Aff A ∈ S (L2(R+))

is continuous.

Proof. Let f ∈ S (Aff) and A ∈ S (L2(R+)). Then A = Ag for some g ∈ S (Aff) and 
we have by Proposition 3.6 that

f �Aff A = f �Aff Ag = Af∗Affg. (3.6)

Hence the first statement reduces to showing that the usual affine group convolution is 
a well-defined map

S (Aff) ∗Aff S (Aff) → S (Aff).

After a change of variables, the question becomes whether the map

(x, u) −→ (f ∗Aff g)(x, eu) =
∫
R2

f(y, ez)g(x− yeu−z, eu−z) dy dz (3.7)

is an element in S (R2). It is straightforward to check that (3.7) is a smooth function. 
Moreover, since f and g are both in S (Aff), it suffices to show that (3.7) decays faster 
than any polynomial towards infinity; we can then iterate the argument to obtain the 
required decay statements for the derivatives.

We claim that

sup
x,u

|x|k|u|l|g(x− yeu−z, eu−z)| ≤ Ag
k,l (1 + |y|)k (1 + |z|)l , (3.8)

where Ag
k,l is a constant that depends only on the indices k, l ∈ N0 and g ∈ S (Aff). To 

show this, we need to individually consider three cases:

• Assume that we only take the supremum over x and u satisfying 2|z| ≥ |u| and 
2|y| ≥ |x|. Then clearly (3.8) is satisfied with Ag

k,l = 2k+l max |g|.
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• Assume that we only take the supremum over u satisfying 2|z| ≤ |u| and let x ∈ R

be arbitrary. Then eu−z is outside the interval [e−|u|/2, e|u|/2]. Since g ∈ S (Aff)
the left-hand side of (3.8) will eventually decrease when increasing u. When y ≤ 0
the left hand-side of (3.8) will also obviously eventually decrease by increasing x. 
When y > 0 then any increase of x would necessitate an increase of u on the scale of 
u ∼ ln(x) to compensate so that the first coordinate in g does not blow up. However, 
this again forces the second coordinate to grow on the scale of x and we would again, 
due to g ∈ S (Aff), have that the left hand-side of (3.8) would eventually decrease.

• Finally, we can consider taking the supremum over x and u satisfying 2|z| ≥ |u| and 
2|y| ≤ |x|. As this case uses similar arguments as above, we leave the straightforward 
verification to the reader.

Using (3.8) we have that

sup
x,u

|xkul(f ∗Aff g)(x, eu)| ≤ Ag
k,l

∫
R2

|f(y, ez)| (1 + |y|)k (1 + |z|)l dy dz < ∞, (3.9)

where the last inequality follows from that f ∈ S (Aff). Finally, the continuity of the 
map f → f �Aff A follows from (3.6) and (3.9). �
Remark. Notice that the proof of Proposition 3.18 shows that affine convolution between 
f, g ∈ S (Aff) satisfies f ∗Aff g ∈ S (Aff). This fact, together with Proposition 3.17, 
strengthens the claim that S (Aff) is the correct definition for Schwartz functions on the 
group Aff.

The main result in this section is Theorem 3.20 presented below. To state the result 
rigorously, we first need to make sense of the convolution between Schwartz functions 
g ∈ S (Aff) and the affine parity operator PAff . As motivation for our definition we 
will use the following computation: Let S, T ∈ S2 with affine Weyl symbols fS , fT ∈
L2
r(Aff). Fix g ∈ S (Aff) and consider the affine Weyl symbol fg�AffS corresponding to 

the convolution g �Aff S. Then

〈fg�AffS , fT 〉L2
r(Aff) = 〈g �Aff S, T 〉S2

=
〈
S,

∫
Aff

g(x, a)U(−x, a)TU(−x, a)∗ dx da

a

〉
S2

=
〈
fS ,

∫
Aff

g(x, a)R(x,a)fT
dx da

a

〉
L2

r(Aff)

.

With this motivation in mind we get the following definition.
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Definition 3.19. Let S : S (R+) → S ′(R+) be the operator with affine Weyl symbol 
fS ∈ S ′(Aff) and let g ∈ S (Aff). Then g �Aff S is defined by its Weyl symbol fg�AffS ∈
S ′(Aff) satisfying

〈fg�AffS , h〉S ′,S :=
〈
fS ,

∫
Aff

g(x, a)R(x,a)h
dx da

a

〉
S ′,S

,

for all h ∈ S (Aff).

Recall that the injectivity in Lemma 3.8 ensures that the operator S in Definition 3.19
is well-defined. The argument to show fg�AffS ∈ S ′(Aff) is similar to the one presented 
in Proposition 3.18. Hence g �Aff S is well-defined.

Remark. We could similarly have defined S �Aff Af for S ∈ S (L2(R+)) and f ∈ S ′(Aff)
by using Proposition 3.7. For brevity, we restrict ourselves in the next theorem to the 
case where S = φ ⊗ ψ for ψ, φ ∈ S (Aff). In this case, we can extend Lemma 3.3 and 
define

(φ⊗ ψ) �Aff Af := 〈AfU(−x, a)ψ,U(−x, a)φ〉S ′,S .

We can now finally state the main theorem in this section.

Theorem 3.20. The affine Weyl quantization Ag of g ∈ S (Aff) can be written as

Ag = g �Aff PAff ,

where PAff is the affine parity operator. Moreover, for ψ, φ ∈ S (R+) we have that the 
affine Weyl symbol Wψ,φ

Aff of the rank-one operator ψ ⊗ φ can be written as

Wψ,φ
Aff = (ψ ⊗ φ) �Aff PAff .

Proof. Recall that the affine parity operator PAff is the affine Weyl quantization of the 
point measure δ(0,1) ∈ S ′(Aff). As such, the convolution g �Aff PAff is well-defined with 
the interpretation given in Definition 3.19. The affine Weyl symbol fg�AffPAff of g�AffPAff
is acting on h ∈ S (Aff) by

〈fg�AffPAff , h〉S ′,S :=
〈
δ(0,1),

∫
Aff

g(x, a)R(x,a)h
dx da

a

〉
S ′,S

=
∫

g(x, a)h((0, 1) · (x, a)) dx da
a

Aff
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=
∫

Aff

g(x, a)h(x, a) dx da
a

= 〈g, h〉L2
r(Aff).

Since S (Aff) ⊂ L2
r(Aff) is dense, we can conclude that fg�AffPAff = g and thus Ag =

g �Aff PAff .
For the second statement, we get that

((ψ ⊗ φ) �Aff PAff) (x, a) = 〈PAffU(−x, a)ψ,U(−x, a)φ〉S ′,S

= 〈RAff(x, a)ψ, φ〉S ′,S

= Wψ,φ
Aff (x, a). �

4. Operator admissibility

For operator convolutions on the Heisenberg group, we have from (2.6) the important 
integral relation

∫
R2n

S � T (z) dz = tr(S) tr(T ).

A similar formula for the integral of operator convolutions will not hold generally in the 
affine setting. We therefore search for a class of operators where such a relation does hold: 
the admissible operators. As a first step, we recall the notion of admissible functions.

Definition 4.1. We say that ψ ∈ L2(R+) is admissible if

∞∫
0

|ψ(r)|2
r

dr

r
< ∞.

This definition of admissibility is motivated by the theorem of Duflo and Moore [13], 
see also [24]. The Duflo-Moore operator D−1 in our setting is formally given by

D−1ψ(r) := ψ(r)√
r
.

It is clear that the Duflo-Moore operator D−1 is a densely defined, self-adjoint positive 
operator on L2(R+) with a densely defined inverse, namely

Dψ(r) :=
√
rψ(r).

Hence a function ψ ∈ L2(R+) is admissible if and only if D−1ψ ∈ L2(R+). We will on 
several occasions use the commutation relations
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DU(x, a) =
√

1
a
U(x, a)D, U(x, a)∗D−1 =

√
aD−1U(x, a)∗, (x, a) ∈ Aff. (4.1)

The following orthogonality relation is a trivial reformulation of the classic orthogo-
nality relations for wavelets, see for instance [25].

Proposition 4.2. Let φ, ψ, ξ, η ∈ L2(R+) and assume that ψ and η are admissible. Then
∫

Aff

〈φ,U(−x, a)∗ψ〉L2(R+)〈ξ, U(−x, a)∗η〉L2(R+)
dx da

a

= 〈φ, ξ〉L2(R+)〈D−1η,D−1ψ〉L2(R+).

In particular, we have
∫

Aff

〈φ,U(−x, a)∗ψ〉L2(R+)〈ξ, U(−x, a)∗ψ〉L2(R+)
dx da

a
= 〈φ, ξ〉L2(R+)‖D−1ψ‖2

L2(R+).

Remark. By Proposition 4.2, admissibility of ψ ∈ L2(R+) is equivalent to the condition
∫

Aff

|〈ψ,U(−x, a)∗ψ〉L2(R+)|2
dx da

a
< ∞.

4.1. Admissibility for operators

Our goal is now to extend the notion of admissibility to bounded operators on L2(R+), 
with the aim of obtaining a class of operators where a formula for the integral of operator 
convolutions similar to (2.6) holds. We will often use that any compact operator S on 
L2(R+) has a singular value decomposition

S =
N∑

n=1
snξn ⊗ ηn, N ∈ N ∪ {∞}, (4.2)

where {ξn}Nn=1 and {ηn}Nn=1 are orthonormal sets in L2(R+). The singular values {sn}Nn=1
with sn > 0 will converge to zero when N = ∞. If S is a trace-class operator we have 
{sn}Nn=1 ∈ �1(N) with ‖S‖S1 = ‖sn‖�1 . Since the admissible functions in L2(R+) form 
a dense subspace, we can always find an orthonormal basis consisting of admissible 
functions.

The next result concerns bounded operators DSD for a trace-class operator S. To be 
precise, this means that we assume that S maps dom(D−1) into dom(D), and that the 
operator DSD defined on dom(D) extends to a bounded operator.

Theorem 4.3. Let S ∈ S1 satisfy that DSD ∈ L(L2(R+)). For any T ∈ S1 we have that 
T �Aff DSD ∈ L1

r(Aff) with
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‖T �Aff DSD‖L1
r(Aff) ≤ ‖S‖S1‖T‖S1 ,

and ∫
Aff

T �Aff DSD(x, a) dx da
a

= tr(T ) tr(S). (4.3)

Proof. We divide the proof into three steps.
Step 1: We first assume that T = ψ ⊗ φ for ψ, φ ∈ dom(D). Recall that S can be 

written in the form (4.2). From Lemma 3.3 and (4.1) we find that

T �Aff DSD(x, a) = 〈SDU(−x, a)ψ,DU(−x, a)φ〉L2(R+)

= 1
a
〈SU(−x, a)Dψ,U(−x, a)Dφ〉L2(R+)

=
N∑

n=1
sn

1
a
〈U(−x, a)Dψ, ηn〉L2(R+)〈ξn, U(−x, a)Dφ〉L2(R+).

Integrating with respect to the right Haar measure and using that (x, a) → (x, a)−1

interchanges left and right Haar measure, we get
∫

Aff

|〈U(−x, a)Dψ, ηn〉L2(R+)〈ξn, U(−x, a)Dφ〉L2(R+)|
1
a

dx da

a

=
∫

Aff

|〈U(−x, a)∗Dψ, ηn〉L2(R+)〈ξn, U(−x, a)∗Dφ〉L2(R+)|
dx da

a

≤

⎛
⎝∫

Aff

|〈U(−x, a)∗Dψ, ηn〉L2(R+)|2
dx da

a

⎞
⎠

1/2

×

⎛
⎝∫

Aff

|〈ξn, U(−x, a)∗Dφ〉L2(R+)|2
dx da

a

⎞
⎠

1/2

= ‖ψ‖L2(R+)‖φ‖L2(R+),

where the last line uses Proposition 4.2. It follows that the sum in the expression for 
T �Aff DSD(x, a) converges absolutely in L1

r(Aff) with

‖T �Aff DSD‖L1
r(Aff) ≤

(
N∑

n=1
sn

)
‖ψ‖L2(R+)‖φ‖L2(R+) = ‖S‖S1‖T‖S1 .

Equation (4.3) follows in a similar way by integrating the sum expressing T �Aff DSD
and using Proposition 4.2.
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Step 2: We now assume that T = ψ ⊗ φ for arbitrary ψ, φ ∈ L2(R+). Pick sequences 
{ψn}∞n=1, {φn}∞n=1 in dom(D) converging to ψ and φ, respectively, and let Tn = ψn⊗φn. 
It is straightforward to check that Tn converges to T in S1. By (3.2) this implies that 
Tn �Aff DSD converges uniformly to T �Aff DSD. On the other hand, Tn �Aff DSD is a 
Cauchy sequence in L1

r(Aff): for m, n ∈ N we find by Step 1 that

‖Tn �Aff DSD − Tm �Aff DSD‖L1
r(Aff)

≤ ‖ψn ⊗ φn �Aff DSD − ψm ⊗ φn �Aff DSD‖L1
r(Aff)

+ ‖ψm ⊗ φn �Aff DSD − ψm ⊗ φm �Aff DSD‖L1
r(Aff)

= ‖(ψn − ψm) ⊗ φn �Aff DSD‖L1
r(Aff)

+ ‖ψm ⊗ (φn − φm) �Aff DSD‖L1
r(Aff)

≤ ‖S‖S1‖ψn − ψm‖L2(R+)‖φn‖L2(R+)

+ ‖S‖S1‖ψm‖L2(R+)‖φm − φn‖L2(R+)

which clearly goes to zero as m, n → ∞. This means that Tn �Aff DSD converges in 
L1
r(Aff), and the limit must be T �AffDSD as we already know that Tn�AffDSD converges 

uniformly to this function. In particular, this implies

‖T �Aff DSD‖L1
r(Aff) = lim

n→∞
‖Tn �Aff DSD‖L1

r(Aff)

≤ lim
n→∞

‖ψn‖L2(R+)‖φn‖L2(R+)‖S‖S1

= ‖ψ‖L2(R+)‖φ‖L2(R+)‖S‖S1 .

Equation (4.3) also follows by taking the limit of 
∫
Aff Tn �Aff DSD(x, a) dx da

a .
Step 3: We now assume that T ∈ S1. Consider the singular value decomposition of T

given by

T =
M∑

m=1
tmψm ⊗ φm

for M ∈ N ∪ {∞}. By (3.2) we have, with uniform convergence of the sum, that

T �Aff DSD =
M∑

m=1
tmψm ⊗ φm �Aff DSD. (4.4)

Notice that Step 2 implies that the convergence is also in L1
r(Aff), since

M∑
m=1

tm‖ψm ⊗ φm �Aff DSD‖L1
r(Aff) ≤

M∑
m=1

tm‖ψm‖L2(R+)‖φm‖L2(R+)‖S‖S1

= ‖T‖S1‖S‖S1 .
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In particular, T �Aff DSD ∈ L1
r(Aff). Finally, (4.3) follows by integrating (4.4) and using 

that the sum converges in L1
r(Aff) and Step 2. �

The integral relation (4.3) is somewhat artificial in the sense that it introduces D in 
the integrand. We will typically be interested in the integral of T �AffS, not of T �AffDSD. 
This motivates the following definition.

Definition 4.4. Let S be a non-zero bounded operator on L2(R+) that maps dom(D)
into dom(D−1). We say that S is admissible if the composition D−1SD−1 is bounded on 
dom(D−1) and extends to a trace-class operator D−1SD−1 ∈ S1.

Assume now that S is admissible, and define R := D−1SD−1. Clearly R maps 
dom(D−1) into dom(D) as we assume that S maps dom(D) into dom(D−1). The fol-
lowing corollary is therefore immediate from Theorem 4.3. We also note that it extends 
[34, Cor. 1] to non-positive, non-compact operators.

Corollary 4.5. Let S ∈ L(L2(R+)) be an admissible operator. For any T ∈ S1 we have 
that T �Aff S ∈ L1

r(Aff) with

‖T �Aff S‖L1
r(Aff) ≤ ‖D−1SD−1‖S1‖T‖S1 ,

and ∫
Aff

T �Aff S(x, a) dx da
a

= tr(T ) tr(D−1SD−1).

Example 4.6. A rank-one operator S = η ⊗ ξ for non-zero η, ξ is an admissible operator 
if and only if η, ξ ∈ L2(R+) are admissible functions. Requiring that S maps dom(D)
into dom(D−1) clearly implies that η ∈ dom(D−1), i.e. η is admissible. For D−1SD−1 to 
be trace-class, the map

ψ → ‖D−1SD−1ψ‖L2(R+) = |〈D−1ψ, ξ〉L2(R+)| · ‖D−1η‖L2(R+), ψ ∈ dom(D−1),

must at least be bounded for ‖ψ‖L2(R+) ≤ 1. This is bounded if and only if

ψ → 〈D−1ψ, ξ〉L2(R+)

is bounded, which is precisely the condition that ξ ∈ dom
((

D−1)∗) = dom(D−1). 
Hence our notion of admissibility for operators naturally extends the classical function 
admissibility. In the case of rank-one operators, it follows from Lemma 3.3 and the 
computation

tr(D−1(η ⊗ ξ)D−1) = 〈D−1η,D−1ξ〉L2(R+)
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that Corollary 4.5 reduces to Proposition 4.2.

When both S and T are admissible trace-class operators, their convolution T �Aff S

behaves well with respect to both the left and right Haar measures.

Corollary 4.7. Let S and T be admissible trace-class operators on L2(R+). Then the 
convolution T �Aff S satisfies T �Aff S ∈ L1

r(Aff) ∩ L1
l (Aff) and

∫
Aff

T �Aff S(x, a) dx da
a

= tr(T ) tr(D−1SD−1),

∫
Aff

T �Aff S(x, a) dx da
a2 = tr(S) tr(D−1TD−1).

Proof. The first equation and the claim that T �Aff S ∈ L1
r(Aff) is Corollary 4.5. The 

second equation and the claim that T �Aff S ∈ L1
l (Aff) follows since

T �Aff S(x, a) = S �Aff T ((x, a)−1). �
We now turn to the case where S is a positive compact operator. We first note that 

admissibility in this case becomes a statement about the eigenvectors and eigenvalues 
of S.

Proposition 4.8. Let S be a non-zero positive compact operator with spectral decomposi-
tion

S =
N∑

n=1
snξn ⊗ ξn

for N ∈ N ∪ {∞}. Then S is admissible if and only if each ξn is admissible and

N∑
n=1

sn‖D−1ξn‖2
L2(R+) < ∞.

Proof. We first assume that S is admissible. By linearity and Lemma 3.3 we get for 
ξ ∈ L2(R+) with ‖ξ‖L2(R+) = 1 that

ξ ⊗ ξ �Aff S(x, a) =
N∑

n=1
sn|〈ξ, U(−x, a)∗ξn〉L2(R+)|2. (4.5)

Integrating (4.5) using the monotone convergence theorem and Proposition 4.2, we obtain



36 E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327
∫
Aff

ξ ⊗ ξ �Aff S(x, a) dx da
a

=
N∑

n=1
sn‖D−1ξn‖2

L2(R+).

The claim now follows from Corollary 4.5.
For the converse, it is clear by the assumption that the operator

N∑
n=1

sn(D−1ξn) ⊗ (D−1ξn) (4.6)

is a trace-class operator. It only remains to show that S maps dom(D) into dom(D−1)
and that D−1SD−1 is given by (4.6). This is easily shown when N is finite, so we do the 
proof for N = ∞.

The partial sums for ψ ∈ L2(R+) are denoted by

(Sψ)M :=
M∑
n=1

sn〈ψ, ξn〉L2(R+)ξn,

and converge in the sense that (Sψ)M → Sψ as M → ∞. Furthermore, it is clear that 
(Sψ)M is in the domain of D−1 for each M as each ξn is admissible. We also have that

D−1(Sψ)M =
M∑
n=1

sn〈ψ, ξn〉L2(R+)D−1ξn.

The sequence of partial sums D−1(Sψ)M also converges in L2(R+), since by using 
Hölder’s inequality and Bessel’s inequality we obtain

∞∑
n=1

sn|〈ψ, ξn〉L2(R+)|‖D−1ξn‖L2(R+)

≤
( ∞∑

n=1
|〈ψ, ξn〉L2(R+)|2

)1/2( ∞∑
n=1

s2
n‖D−1ξn‖2

L2(R+)

)1/2

� ‖ψ‖L2(R+)

( ∞∑
n=1

sn‖D−1ξn‖2
L2(R+)

)1/2

.

Since D−1 is a closed operator, we get that Sψ belongs to the domain of D−1 and

D−1Sψ =
∞∑

n=1
sn〈ψ, ξn〉L2(R+)D−1ξn.

For any φ ∈ dom(D−1), we have that

D−1SD−1φ =
∞∑

sn〈D−1φ, ξn〉L2(R+)D−1ξn =
∞∑

sn〈φ,D−1ξn〉L2(R+)D−1ξn,

n=1 n=1
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so D−1SD−1 agrees with (4.6) on this dense subspace. In fact, they agree on all of 
L2(R+) since

‖D−1SD−1φ‖L2(R+) ≤ ‖φ‖L2(R+)

∞∑
n=1

sn‖D−1ξn‖2
L2(R+),

shows that D−1SD−1 extends to a bounded operator. �
As a consequence of Proposition 4.8, we obtain a compact reformulation of admissi-

bility for positive trace-class operators.

Corollary 4.9. Let T be a non-zero positive trace-class operator on L2(R+), and let S be 
a non-zero positive compact operator. If

∫
Aff

T �Aff S(x, a) dx da
a

< ∞,

then S is admissible with

tr(D−1SD−1) = 1
tr(T )

∫
Aff

T �Aff S(x, a) dx da
a

.

In particular, if S is a non-zero, positive trace-class operator, then S is admissible if and 
only if S �Aff S ∈ L1

r(Aff).

Proof. Let

S =
N∑

n=1
snξn ⊗ ξn

be the spectral decomposition of S. An argument similar to the one giving in the proof 
of Proposition 4.8 shows that

∫
Aff

T �Aff S(x, a) dx da
a

= tr(T )
N∑

n=1
sn‖D−1ξn‖2

L2(R+).

The claims now follow immediately from Proposition 4.8. �
4.2. Admissible operators from Laguerre functions

Although we derived several basic properties of admissible operators in Section 4.1, 
we have not given any way to construct such operators in practice. Our construction is 
based on the following observation: From Proposition 4.8 we know that if
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S =
∞∑

n=1
snϕn ⊗ ϕn

is a non-zero positive compact operator with

∞∑
n=1

sn‖D−1ϕn‖2
L2(R+) < ∞,

then S is admissible. So if we can find an orthonormal basis {ϕn}∞n=1 of admissible 
functions such that we can control the terms ‖D−1ϕn‖L2(R+), then we can construct 
admissible operators as infinite linear combinations of rank-one operators. It turns out 
that the Laguerre basis works extremely well in this regard.

Definition 4.10. For fixed α ∈ R+ we define the Laguerre basis
{
L(α)
n

}∞

n=0
for L2(R+)

by

L(α)
n (r) :=

√
n!

Γ(n + α + 1)r
α+1

2 e−
r
2L(α)

n (r), n ∈ N0, r ∈ R+,

where Γ denotes the gamma function and L(α)
n denotes the generalized Laguerre polyno-

mials given by

L(α)
n (r) := r−αer

n!
dn

drn
(
e−rrn+α

)
=

n∑
k=0

(−1)k
(
n + α

n− k

)
rk

k! .

The classical orthogonality relation

∞∫
0

xαe−xL(α)
n (x)L(α)

m (x) dx = Γ(n + α + 1)
n! δn,m, (4.7)

for the generalized Laguerre polynomials ensures that the Laguerre bases are orthonormal 
bases for L2(R+) for any fixed α ∈ R+. The following result shows that the Laguerre 
basis is especially compatible with the Duflo-Moore operator D−1.

Proposition 4.11. For any α ∈ R+ and n ∈ N0 we have

∥∥∥D−1L(α)
n

∥∥∥2

L2(R+)
= n!

Γ(n + α + 1)

∞∫
0

e−rrα−1
(
L(α)
n (r)

)2
dr = 1

α
. (4.8)

Proof. The first equality in (4.8) follows from unwinding the definitions. For the second 
equality in (4.8), we will use the well-known identity
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L(α)
n (r) =

n∑
j=0

L
(α−1)
j (r)

together with the orthogonality relation (4.7). This gives

∞∫
0

e−rrα−1
(
L(α)
n (r)

)2
dr =

n∑
i,j=0

∞∫
0

e−rrα−1L
(α−1)
i (r)L(α−1)

j (r) dr

=
n∑

i=0

Γ(i + α)
i!

= 1
α

Γ(n + α + 1)
n! ,

where the last equality follows from a straightforward induction argument. �
The following consequence from Proposition 4.8 shows that we can explicitly construct 

admissible operators by using the Laguerre basis.

Corollary 4.12. Let {sn}∞n=0 ∈ �1(N) be a sequence of non-negative numbers and let 
α ∈ R+. Then

S :=
∞∑

n=0
snL(α)

n ⊗ L(α)
n

is an admissible operator with

tr(D−1SD−1) = 1
α

∞∑
n=0

sn.

Remark. The corollary may be considered a reformulation with slightly different proof 
of the calculations in [21, Section 3.3], where a resolution of the identity operator is 
constructed from thermal states that are diagonal in the Laguerre basis. We will return 
to resolutions of the identity operator and the relation to admissibility in Section 6.2.

4.3. Connection with convolutions and quantizations

We will now see how admissibility relates to the convolution of a function with an 
operator. The following result shows that we can use convolutions to generate new ad-
missible operators from a given admissible operator.

Proposition 4.13. Let f ∈ L1
l (Aff) ∩ L1

r(Aff) be a non-zero positive function. If S is a 
positive, admissible trace-class operator on L2(R+), then so is f �Aff S with



40 E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327
tr
(
D−1(f �Aff S)D−1) =

∫
Aff

f(x, a) dx da
a2 tr(D−1SD−1).

Proof. It is clear from (3.1) that f �Aff S is a trace-class operator, and positivity follows 
from the definition of the convolution f �Aff S. Let T be a non-zero positive trace-class 
operator on L2(R+). It suffices by Corollary 4.9 to show that

∫
Aff

T �Aff (f �Aff S)(y, b) dy db
b

= tr(T )
∫

Aff

f(x, a) dx da
a2 tr(D−1SD−1).

We have that

T �Aff (f �Aff S)(y, b) = tr

⎛
⎝TU(−y, b)∗

∫
Aff

f(x, a)U(−x, a)∗SU(−x, a) dx da
a

U(−y, b)

⎞
⎠

=
∫

Aff

f(x, a) tr(TU((−x, a) · (−y, b))∗SU((−x, a) · (−y, b)) dx da
a

=
∫

Aff

f(x, a)T �Aff S((x, a) · (y, b)) dx da
a

.

We may then use Fubini’s theorem, which applies by our assumptions on f and S, to 
show that∫

Aff

T �Aff (f �Aff S)(y, b) dy db
b

=
∫

Aff

f(x, a)
∫

Aff

T �Aff S((x, a) · (y, b)) dy db
b

dx da

a

=
∫

Aff

f(x, a) dx da
a

Δ(x, a)
∫

Aff

T �Aff S(y, b) dy db
b

=
∫

Aff

f(x, a) dx da
a2 tr(T ) tr

(
D−1SD−1) ,

where we used the admissibility of S and Theorem 4.5 in the last line. �
Remark. We can give a simple heuristic argument for Proposition 4.13 by ignoring that 
D−1 is unbounded as follows: We have by using (4.1) that

D−1(f �Aff S)D−1 =
∫

Aff

f(x, a)D−1U(−x, a)∗SU(−x, a)D−1 dx da

a

=
∫

Aff

f(x, a)U(−x, a)∗D−1SD−1U(−x, a) dx da
a2 .
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Since D−1SD−1 is a trace-class operator, the integral above is a convergent Bochner 
integral and we obtain the desired equality.

4.4. Admissibility as a measure of non-unimodularity

In this section we will delve more into how the non-unimodularity of the affine group 
affects the affine Weyl quantization. As we will see, both the left and right Haar measures 
take on an active role in this picture.

Proposition 4.14. Let S be an admissible Hilbert-Schmidt operator on L2(R+) such that 
its affine Weyl symbol fS satisfies fS ∈ L1

l (Aff). Then

tr
(
D−1SD−1) =

∫
Aff

fS(x, a) dx da
a2 .

Proof. Let T = ϕ ⊗ϕ for some non-zero ϕ ∈ S (R+). Then the affine Weyl symbol of T
is fT = Wϕ

Aff ∈ S (Aff). We know by Corollary 4.5 that
∫

Aff

T �Aff S(x, a) dx da
a

= tr(T ) tr
(
D−1SD−1) .

On the other hand, Fubini’s theorem together with Proposition 3.7 allows us to calculate 
that ∫

Aff

T �Aff S(x, a) dx da
a

=
∫

Aff

fT ∗Aff f̌S(x, a) dx da
a

=
∫

Aff

fT (y, b)
∫

Aff

fS((y, b)(x, a)−1) dx da
a

dy db

b

=
∫

Aff

fT (y, b) dy db
b

∫
Aff

fS(x, a) dx da
a2 .

The marginal properties of the affine Wigner distribution (2.16) show that
∫

Aff

fT (y, b) dy db
b

= ‖ϕ‖2
L2(R+) = tr(T ).

The claim now follows from combining the calculations we have done. �
Remark. Assuming that T is a trace-class operator we have that

tr(T ) =
∫

fT (x, a) dx da
a

,

Aff
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which follows from a similar proof to the one in Proposition 4.14. This gives the inter-
esting heuristic interpretation that taking D−1TD−1 of an operator T coincides with 
multiplying fT by 1

a .

The following result shows that the affine Wigner distribution satisfies both left and 
right integrability when more is assumed of the input. This should be compared with 
the Heisenberg case where the Heisenberg group Hn is unimodular.

Theorem 4.15. Assume that φ, ψ, Dφ, Dψ ∈ L2(R+). Then the affine Wigner distribution 
satisfies

Wφ,ψ
Aff ∈ L2

r(Aff) ∩ L2
l (Aff).

Proof. We already know that Wφ,ψ
Aff is in L2

r(Aff) by the orthogonality relations (2.15). 
Using the definition of the affine Wigner distribution and Plancherel’s theorem, we have 
that

‖Wφ,ψ
Aff ‖L2

l (Aff) =
∫

Aff

∣∣φ(aλ(x))|2|ψ(aλ(−x))
∣∣2 dx da

a2

=
∞∫
0

∞∫
0

|φ(v)|2|ψ(w)|2 v − w

log(v/w)
dw dv

vw
,

where we used the change of variables v = aλ(x) and w = aλ(−x) in the last line. By 
our assumptions on φ and ψ, it will suffice to show that for all v, w ∈ R+ we have the 
upper bound

v − w

vw log(v/w) ≤ 2 · max
{

1, 1
v
,

1
w
,

1
vw

}
.

It will be enough by symmetry to consider Λ = {(v, w) ∈ R+ × R+ : v > w}. We 
have the decomposition Λ = C1 ∪ C2 ∪ C3, where

C1 :=
{

(v, w) ∈ Λ : w ≤ −2σ(−v/2)
}
,

C2 :=
{

(v, w) ∈ Λ : w ≥ −1
σ(−1/v)

}
,

C3 :=
{

(v, w) ∈ Λ : −2σ(−v/2) ≤ w ≤ −1
σ(−1/v)

}
,

where σ is the function appearing in Lemma 3.14. (See Fig. 1.)
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Fig. 1. A drawing marking the beginning and end of the different domains.

• The level surface g(v, w) = (v−w)/ log(v/w) = C for C > 0 is given by the equation

w = −Cσ
(
− v

C

)
. (4.9)

On C1 we are below the level surface (4.9) with C = 2. Notice that (1, 0.5) ∈ C1 with 
g(1, 0.5) = log(

√
2) < 2. The continuity of g forces the inequality g(v, w) ≤ 2 for all 

(v, w) ∈ C1. Hence

v − w

vw log(v/w) ≤ 2
vw

.

• Notice that

v − w

vw log(v/w) =
1
v − 1

w

log((1/v)/(1/w)) .

Hence the case of C2 follows from the previous the argument for C1 by considering 
the level surface of

g(1/v, 1/w) = 1.

• It is straightforward to verify that v > 2 and w < 1 when (v, w) ∈ C3. Hence we 
obtain for any (v, w) ∈ C3 that

v − w

wv log(v/w) ≤ v

wv log(2) ≤ 2/w. �
Remark. The connection from this result to admissibility is that the assumptions boil 
down to S = Dψ ⊗Dφ being an admissible operator.
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Remark. Let A be a Hilbert-Schmidt operator on L2(R+) with integral kernel AK . Then 
one can gauge from the proof of Theorem 4.15 that the affine Weyl symbol fA satisfies 
fA ∈ L2

r(Aff) ∩ L2
l (Aff) if and only if the integral kernel AK satisfies

AK ∈ L2
(
R+ ×R+,

s− t

st log(s/t)dt ds
)
∩ L2

(
R+ ×R+,

1
st
dt ds

)
.

4.5. Extending the setting

Except for Section 3.5, we have so far considered convolutions between rather well-
behaved functions and operators and obtained norm estimates for the norms of L1

r(Aff), 
L∞(Aff), S1 and L(L2(R+)). We have seen that

‖f �Aff S‖S1 ≤ ‖f‖L1
r(Aff)‖S‖S1 ,

‖T �Aff S‖L∞(Aff) ≤ ‖T‖L(L2(R+))‖S‖S1 .

This generalizes these inequalities to other Schatten classes and Lp spaces.

Proposition 4.16. Let 1 ≤ p ≤ ∞ and let q be its conjugate exponent given by p−1+q−1 =
1. If S ∈ Sp, T ∈ Sq, and f ∈ L1

r(Aff), then the following hold:

1. f �Aff S ∈ Sp with ‖f �Aff S‖Sp
≤ ‖f‖L1

r(Aff)‖S‖Sp
.

2. T �Aff S ∈ L∞(Aff) with ‖T �Aff S‖L∞(Aff) ≤ ‖S‖Sp
‖T‖Sq

.

Proof. For p < ∞, we can clearly interpret the definition of f �Aff S as a convergent 
Bochner integral in Sp. Hence the first inequality follows from [32, Prop. 1.2.2]. For 
p = ∞, we avoid the unpleasantness of Bochner integration in non-separable Banach 
spaces by interpreting f �Aff S weakly by

〈f �Aff Sψ, φ〉L2(R+) =
∫

Aff

f(x, a)〈SU(−x, a)ψ,U(−x, a)φ〉L2(R+)
dx da

a
,

for ψ, φ ∈ L2(R+). A standard argument shows that f �Aff S is a bounded operator with

‖f �Aff S‖L(L2(R+)) ≤ ‖f‖L1
r(Aff)‖S‖L(L2(R+)).

Inequality 2. follows from the Hölder type inequality [45, Thm. 2.8]. �
We have already seen in Section 4.1 that we can say more about operator convolutions 

when one of the operators is admissible. As the next lemma shows, admissibility is 
also the correct condition to ensure that f �Aff S defines a bounded operator for all 
f ∈ L∞(Aff).
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Lemma 4.17. Let S ∈ S1 and f ∈ L∞(Aff). Define the operator f �Aff DSD weakly for 
ψ, φ ∈ Dom(D) by

〈f �Aff DSDψ, φ〉L2(R+) =
∫

Aff

f(x, a)〈SDU(−x, a)ψ,DU(−x, a)φ〉L2(R+)
dx da

a
. (4.10)

Then f �Aff DSD uniquely extends to a bounded linear operator on L2(R+) satisfying

‖f �Aff DSD‖L(L2(R+)) ≤ ‖f‖L∞(Aff)‖S‖S1 .

In particular, if R is an admissible operator, then f �Aff R ∈ L(L2(R+)) with

‖f �Aff R‖L(L2(R+)) ≤ ‖f‖L∞(Aff)‖D−1RD−1‖S1 .

Proof. By using (4.1) we get that

〈f �Aff DSDψ, φ〉L2(R+) =
∫

Aff

f(x, a)〈SU(−x, a)Dψ,U(−x, a)Dφ〉L2(R+)
dx da

a2

=
∫

Aff

f̌(x, a)〈SU(−x, a)∗Dψ,U(−x, a)∗Dφ〉L2(R+)
dx da

a

=
∫

Aff

f̌(x, a)(S �Aff (Dψ ⊗Dφ))(x, a) dx da
a

.

Clearly Dψ ⊗Dφ is an admissible operator with

| tr(D−1(Dψ ⊗Dφ)D−1)| = |〈ψ, φ〉|L2(R+) ≤ ‖ψ‖L2(R+)‖φ‖L2(R+).

By Corollary 4.5 we therefore get

∣∣〈f �Aff DSDψ, φ〉L2(R+)
∣∣ ≤ ‖f‖L∞(Aff)‖S‖S1‖ψ‖L2(R+)‖φ‖L2(R+).

The density of dom(D) implies that f �Aff DSD extends to a bounded operator on 
L2(R+). �

Armed with Lemma 4.17 and Corollary 4.5, we prove the following result describing 
Lp and Sp properties of convolutions with admissible operators. The proof is essentially 
an application of complex interpolation: we refer to [45, Thm. 2.10] and [8, Thm. 5.1.1]
for the interpolation theory of Sp and Lp

r(Aff).

Proposition 4.18. Let 1 ≤ p ≤ ∞ and let q be its conjugate exponent given by p−1+q−1 =
1. If R ∈ Sp, g ∈ Lp

r(Aff), and S is an admissible trace-class operator, then:
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1. g �Aff S ∈ Sp with ‖g �Aff S‖Sp
≤ ‖S‖1/p

S1
‖D−1SD−1‖1/q

S1
‖g‖Lp

r(Aff).
2. R �Aff S ∈ Lp

r(Aff) with ‖R �Aff S‖Lp
r(Aff) ≤ ‖S‖1/q

S1
‖D−1SD−1‖1/p

S1
‖R‖Sp

.

Proof. For g ∈ L1
r(Aff) ∩ L∞(Aff), we have for p = ∞ that Lemma 4.17 gives

‖g �Aff S‖L(L2(R+)) ≤ ‖D−1SD−1‖S1‖g‖L∞(Aff).

Since we also have ‖g �Aff S‖S1 ≤ ‖g‖L1
r(Aff)‖S‖S1 , the first result follows by complex 

interpolation. For the second claim, if R ∈ S1 we know from Corollary 4.5 that

‖R �Aff S‖L1
r(Aff) ≤ ‖D−1SD−1‖S1‖R‖S1 .

The result follows by complex interpolation since

‖R �Aff S‖L∞(Aff) ≤ ‖S‖S1‖R‖L(L2(R+)). �
5. From the viewpoint of representation theory

We will for completeness investigate how various notions of affine Fourier transforms 
fit into our framework. As we will see, known results from abstract wavelet analysis give 
connections between affine Weyl quantization, affine Fourier transforms, and admissibil-
ity for operators.

5.1. Affine Fourier transforms

Definition 5.1. For f ∈ L1
l (Aff) we define the (left) integrated representation U(f) to be 

the operator on L2(R+) given by

U(f)ψ :=
∫

Aff

f(x, a)U(x, a)ψ dx da

a2 , ψ ∈ L2(R+).

The inverse affine Fourier-Wigner transform F−1
W (f) of f ∈ L1

r(Aff) is given by

F−1
W (f) := U(f̌) ◦ D, f̌(x, a) := f((x, a)−1).

The inverse affine Fourier-Wigner transform F−1
W (f) of f ∈ L1

r(Aff) is explicitly given 
by

F−1
W (f)ψ(s) =

∞∫
0

√
rF1(f)(r, s/r)ψ(r) dr

r
,

where F1 denotes the Fourier transform in the first coordinate and ψ ∈ L2(R+). Hence 
the integral kernel of F−1

W (f) is given by
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Kf (s, r) =
√
r(F1f)(r, s/r), s, r ∈ R+. (5.1)

It is straightforward to verify that we have the estimate

‖F−1
W (f)‖S2 ≤ ‖f‖L2

r(Aff),

for every f ∈ L1
r(Aff) ∩L2

r(Aff). Hence we can extend F−1
W to be defined on L2

r(Aff) and 
we have that F−1

W (f) ∈ S2 for any f ∈ L2
r(Aff).

Proposition 5.2. The inverse affine Fourier-Wigner transform is a unitary transforma-
tion F−1

W : Q1 → S2, where

Q1 := {f ∈ L2
r(Aff) | ess supp(F1(f)) ⊂ R+ ×R+}.

Proof. Any function K ∈ L2(R+ ×R+) can be written uniquely on the form Kf in (5.1)
for some f ∈ Q1. Moreover, we have

‖Kf‖L2(R+×R+) =

√√√√√
∞∫
0

∞∫
0

|F1f(r, s/r)|2 dr ds

s
= ‖f‖L2

r(Aff).

Since there is a norm-preserving correspondence between integral kernels in L2(R+×R+)
and Hilbert-Schmidt operators on L2(R+), the claim follows. �

It is straightforward to check that the inverse affine Fourier-Wigner transform F−1
W

satisfies for f, g ∈ Q1 the properties

• F−1
W (f)∗ = F−1

W (Δ1/2f∗), f∗(x, a) := f((x, a)−1);
• F−1

W (f ∗Aff g) = F−1
W (f) ◦ D−1 ◦ F−1

W (g) = U(f̌) ◦ F−1
W (g);

• U(x, a) ◦ F−1
W (f) = F−1

W (R(x,a)(f));
• F−1

W (f) ◦ U(x, a) = F−1
W

(√
aL(x,a)−1(f)

)
.

Definition 5.3. The affine Fourier-Wigner transform FW : S2 → Q1 is defined to be the 
inverse of F−1

W |Q1 .

Remark.

• To avoid overly cluttered notation, we have used the symbol FW for both the classical 
Fourier-Wigner transform in Section 2.2.3, and the affine Fourier-Wigner transform. 
It should be clear from the context which operator we are referring to.

• Recall that the right multiplication R acts on elements in L2
r(Aff) by

R(y,b)f(x, a) = f((x, a)(y, b))
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for (x, a), (y, b) ∈ Aff. For a closed subspace H ⊂ L2
r(Aff) invariant under R, we 

write R|H ∼= U if there exists a unitary map T : H → L2(R+) satisfying

T ◦R(x, a)f = U(x, a) ◦ Tf,

for all f ∈ H and (x, a) ∈ Aff. Define

L2
U (Aff) := span{H ⊂ L2

r(Aff) : R|H ∼= U}.

From [13, Lem. 3] we deduce that

L2
U (Aff) = Q1,

as both spaces are the image of the Hilbert-Schmidt operators under the Fourier-
Wigner transform. Note that [13] uses left Haar measure, but translating to right 
Haar measure is an easy exercise using that f → f̌ is a unitary equivalence from the 
left regular representation on L2

l (Aff) to the right regular representation on L2
r(Aff).

Example 5.4. Let φ, ψ ∈ L2(R+) with ψ ∈ dom(D). If f(x, a) = 〈φ, U(x, a)∗Dψ〉L2(R+), 
one finds using Proposition 4.2 that f ∈ L2

r(Aff) and

〈F−1
W (f)ξ, η〉L2(R+) = 〈(φ⊗ ψ)ξ, η〉L2(R+)

for η ∈ L2(R+) and ξ ∈ dom(D). This implies that F−1
W (f) = φ ⊗ ψ, in other words for 

(x, a) ∈ Aff that

FW (φ⊗ ψ)(x, a) = 〈φ,U(x, a)∗Dψ〉L2(R+).

For the Heisenberg group, the Fourier-Wigner transform has a very convenient ex-
pression for trace-class operators, see (2.9). The corresponding expression on the affine 
group is FW (A)(x, a) = tr(ADU(x, a)), and the next result shows that it holds as long 
as the objects in the formula are well-defined. The result is due to Führ in this generality 
[17, Thm. 4.15], and builds on an earlier result due to Duflo and Moore [13, Cor. 2].

Proposition 5.5 (Führ, Duflo, and Moore). Let A ∈ S1 be such that AD−1 extends to a 
Hilbert-Schmidt operator. Then

FW (AD−1)(x, a) = tr(AU(x, a)).

Proof. To see how the result follows from [17, Thm. 4.15], we need some terminology 
regarding direct integrals, see [17, Section 3.3]. Recall that the Plancherel theorem [17, 
Thm. 3.48] supplies a measurable field of Hilbert spaces indexed by the dual group 
{Hπ}[π]∈Ĝ. For the affine group G = Aff, the Plancherel measure is counting mea-
sure supported on the two irreducible representations π1(x, a) = U(x, a) on L2(R+)
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and π2(x, a) = U(x, a) on L2(R−) := L2(R−, r−1 dr). So we can construct an element 
{A[π]}[π]∈Ĝ of the direct integral

⊕∫
Ĝ

HS(Hπ)dμ̂([π])

by choosing A[π1] = AD−1 and A[π] = 0 for [π] �= [π1]. Inserting this measurable field of 
trace-class operators into [17, Thm. 4.15] then gives the conclusion. �

For f, g ∈ L2(R) we denote by SCALgf the scalogram of f with respect to g given by 
SCALgf(x, a) := |Wgf(x, a)|2 where Wgf is the continuous wavelet transform

Wgf(x, a) := 1√
a

∫
R

f(t)g
(
t− x

a

)
dt.

The following result, which follows from Lemma 3.3 and Example 5.4, gives a connection 
between the affine Fourier-Wigner transform, affine convolutions, and the scalogram.

Corollary 5.6. Let f, g ∈ L2(R) such that ψ := f̂ and φ := ĝ are supported in R+ and 
are in L2(R+). If ψ is admissible then

|FW (φ⊗D−1ψ)(x, a)|2 = (φ⊗ φ) �Aff (ψ ⊗ ψ)(−x, a) = 1
a
SCALgf(x, a). (5.2)

Remark. The condition that ψ is admissible in Corollary 5.6 is only necessary for the first 
equality in (5.2). Recall that the affine Wigner distribution Wψ

Aff is the affine Weyl symbol 
of the rank-one operator ψ ⊗ ψ. If we use Proposition 3.7 together with Corollary 5.6, 
then we recover [5, Thm. 5.1].

Corollary 5.6 shows that we have the simple relation

|FW (AD−1)(x, a)|2 = A �Aff A(−x, a) (5.3)

for positive rank-one operators A. By Corollary 4.9, admissibility therefore means that 
FW (AD−1) ∈ L2

r(Aff) in this case. For more general operators, (5.3) will no longer hold. 
However, we still obtain a result relating admissibility to the Fourier-Wigner transform. 
Note that in the first statement in Proposition 5.7 if A ∈ S1 we interpret FW (AD−1) :=
tr(AU(x, a)) if we do not know that AD−1 extends to a Hilbert-Schmidt operator.

Proposition 5.7. Let A be a trace-class operator on L2(R+). Then the following are equiv-
alent:

1) FW (AD−1) ∈ L2
r(Aff).
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2) AD−1 extends from dom(D−1) to a Hilbert-Schmidt operator on L2(R+).
3) A∗A is admissible.

Proof. The equivalence of 1) and 2) follows from [17, Thm. 4.15], by applying that 
theorem to the element {A[π]}[π]∈Ĝ of the direct integral (see proof of Proposition 5.5)

⊕∫
Ĝ

HS(Hπ)dμ̂([π])

given by choosing A[π1] = A and A[π] = 0 for [π] �= [π1].
The equivalence of 2) and 3) is clear apart from technicalities resulting from the 

unboundedness of D−1. If we assume 2), then [44, Thm. 13.2] gives that (AD−1)∗ =
D−1A∗, where the equality includes equality of domains. As the domain of the left term 
is all of L2(R+) by assumption, this means that the range of A∗ is contained in dom(D−1). 
In particular, A∗A maps dom(D) into dom(D−1), and as we also have D−1A∗AD−1 =
(AD−1)∗AD−1 where AD−1 is Hilbert-Schmidt, A∗A satisfies all requirements for being 
admissible.

Conversely, if A∗A is admissible, then we have for ψ ∈ dom(D−1)

‖AD−1ψ‖2
L2(R+) = 〈D−1A∗AD−1ψ,ψ〉L2(R+) ≤ ‖D−1A∗AD−1‖L(L2(R+))‖ψ‖2

L2(R+).

So AD−1 extends to a bounded operator, and as this operator satisfies that

(AD−1)∗AD−1 = D−1A∗AD−1

is trace-class, AD−1 is a Hilbert-Schmidt operator. �
Remark. Recall that we consider FW a Fourier transform of operators. The inequality 
‖FW (AD−1)‖L∞(Aff) ≤ ‖A‖S1 and the equality ‖A‖S2 = ‖FW (A)‖L2

r(Aff) might therefore 
be interpreted as the endpoints p = ∞ and p = 2 of a Hausdorff-Young inequality, where 
the appearance of D−1 suggests that the definition of the Fourier-Wigner transform must 
depend on p. In fact, a Hausdorff-Young inequality of this kind—formulated in the other 
direction, i.e. for maps from functions on Aff to operators—was shown in [14, Thm. 1.41]
for 1 ≤ p ≤ 2.

There is a second Fourier transform related to the affine group that comes from 
representation theory. We define the affine Fourier-Kirillov transform as the map FKO :
Q1 → L2

r(Aff) given by

(FKOf)(x, a) =
√
a

∫
R2

f

(
v

λ(−u) , e
u

)
e−2πi(xu+av) du dv√

λ(−u)
, (x, a) ∈ Aff.
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More information about the Fourier-Kirillov transform can be found in [33]. The 
following result, which is motivated by (2.10) and is a slight generalization of [3, Section 
VIII.6], shows that the affine Weyl quantization is intrinsically linked with the Fourier 
transforms on the affine group.

Proposition 5.8. Let Af be a Hilbert-Schmidt operator on L2(R+) with affine symbol 
f ∈ L2

r(Aff). Then the following diagram commutes:

S2

Q1 L2
r(Aff)

FW

FKO

f �−→Af

Proof. Recall from (5.1) that the integral kernel of F−1
W (g) for g ∈ Q1 is given by

Kg(s, r) =
√
r(F1g)(r, s/r), s, r ∈ R+.

Hence by using (2.13) and a change of variables, we see that the affine Weyl symbol of 
F−1

W (g) is given at the point (x, a) ∈ Aff by

∞∫
−∞

√
aλ(−u)F1(g)(aλ(−u), eu)e−2πixu du

=
∫
R2

√
aλ(−u)g(v, eu)e−2πi(xu+avλ(−u)) du dv

=
√
a

∫
R2

g

(
v

λ(−u) , e
u

)
e−2πi(xu+av) du dv√

λ(−u)
= (FKOg)(x, a). �

Remark.

• In [40] the authors define an alternative quantization scheme on general type 1 
groups. Their quantization scheme together with the affine Weyl quantization is 
used in [40] to define a quantization scheme on the cotangent bundle T ∗Aff.

• Consider Af for some f ∈ L2
r(Aff). Inserting f = FKOFW (Af ) into Proposition 4.14

allows us to obtain a formal expression for tr(D−1AfD−1) in terms of FW (Af ): a 
formal calculation gives that for sufficiently nice operators Af we have

tr(D−1AfD−1) =
∞∫
0

[F1FW (Af )](a, 1) da

a3/2 , (5.4)

where F1 is the Fourier transform in the first coordinate. This is similar to a condition 
in [21, Cor. 5.2], where finiteness of (5.4) is used as a necessary condition for 1 �Aff



52 E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327
Af = IL2(R+) to hold, where 1(x, a) = 1 for all (x, a) ∈ Aff. We will see in Section 6.2
that this is closely related to admissibility of Af . Unfortunately, the formal calcula-
tion leading to (5.4) does not give clear conditions on Af for the equality to hold.

5.2. Affine quantum Bochner theorem

On the Heisenberg group, the Fourier-Wigner transform behaves in many ways like 
the Fourier transform on functions. In particular, for f ∈ L1(R2n) and S, T ∈ S1(Rn)
we get the decoupling equations

FW (f � S) = Fσ(f)FW (S), Fσ(S � T ) = FW (S)FW (T ), (5.5)

where Fσ denotes the symplectic Fourier transform and FW denotes the classical Fourier-
Wigner transform introduced in Section 2.2.3. Although the affine version of (5.5) does 
not hold, one can develop as a special case of [17, Thm. 4.12] a version of Bochner’s the-
orem for the affine Fourier-Wigner transform. This is analogous to the quantum Bochner 
theorem [46, Prop. 3.2] for the Heisenberg group.

Bochner’s classical theorem [16, Thm. 4.19] characterizes functions that are Fourier 
transforms of positive measures. The Bochner theorem for the affine Fourier-Wigner 
transform answers the following question: Which functions on Aff are of the form FW (S), 
where S is a positive trace-class operator? As in Bochner’s classical theorem, it turns out 
that the correct notion to consider is functions of positive type. Recall that a function 
f : Aff → C is a function of positive type if for any finite selection of points Ω :=
{(x1, a1), . . . , (xn, an)} ⊂ Aff the matrix AΩ with entries

(AΩ)i,j := f((xi, ai)−1(xj , aj))

is positive semi-definite. Before stating the general result we consider an illuminating 
special case.

Example 5.9. Assume that A = φ ⊗ ψ is a rank-one operator where φ, ψ ∈ L2(R+). We 
will show that

FW (AD−1)(x, a) = 〈U(x, a)φ, ψ〉L2(R+) (5.6)

is a function of positive type on Aff if and only if A is a positive operator. If A is 
positive, then a standard fact [16, Prop. 3.15] shows that (5.6) is a function of positive 
type. Conversely, we have from [16, Cor. 3.22] that

FW (φ⊗ ψD−1)((x, a)−1) = FW (ψ ⊗ φD−1)(x, a) = FW (φ⊗ ψD−1)(x, a).

Hence 〈U(x, a)φ, ψ〉L2(R+) = 〈U(x, a)ψ, φ〉L2(R+) and it follows from [22, Thm. 4.2] that 
φ = c · ψ for some c ∈ C. We can conclude from [16, Cor. 3.22] that c ≥ 0 since
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FW (cψ ⊗ ψD−1)(0, 1) = c · ‖ψ‖L2(R+) ≥ 0.

We are now ready to state the main result regarding positivity. This result is actually, 
when interpreted correctly, a special case of the general result [17, Thm. 4.12].

Theorem 5.10. Let A be a trace-class operator on L2(R+). Then A is a positive operator 
if and only if the function

FW (AD−1)(x, a) = tr(AU(x, a))

is of positive type on Aff.

Proof. We use the same notation as in the proof of Proposition 5.5. For G = Aff, the 
abstract result in [17] says that if

{A[π]}[π]∈Ĝ ∈
⊕∫

Ĝ

HS(Hπ)dμ̂([π])

consists of trace-class operators, then A[π] is positive a.e. with respect to μ̂ if and only 
if the function 

∫
Ĝ

tr(A[π]π(g)∗)dμ̂([π]) is of positive type.
As in the proof of Proposition 5.7, we pick A[π1] = A and A[π] = 0 for [π] �= [π1]. The 

resulting section consists of positive operators for a.e. [π] if and only if A is positive. By 
the abstract result in [17], this happens if and only if

∫
Ĝ

tr(A[π]π(g)∗)dμ̂([π]) = tr(AU(x, a)∗)

is a function of positive type. The definition of functions of positive type gives that this 
is equivalent to tr(AU(x, a)) being of positive type. �
6. Examples

In this section, we show how the theory developed in this paper provides a common 
framework for various operators and functions studied by other authors. We also in-
troduce an analogue of the Cohen class of time-frequency distributions for the affine 
group, and deduce its relation to the previously studied affine quadratic time-frequency 
representations.

6.1. Affine localization operators

There is no general consensus of a localization operator in the affine setting. We will 
use the following definition based on the convolution framework.
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Definition 6.1. Let f ∈ L1
r(Aff) and ϕ ∈ L2(R+). We say that

A = f �Aff (ϕ⊗ ϕ)

is an affine localization operator on L2(R+).

Inequality (3.1) shows that an affine localization operator A is a trace-class operator 
on L2(R+) with

‖A‖S1 ≤ ‖f‖L1
r(Aff)‖ϕ‖2

L2(R+).

Moreover, Proposition 4.13 implies that A is admissible whenever ϕ is admissible and 
f ∈ L1

l (Aff) ∩ L1
r(Aff).

We will now see that the affine localization operators are naturally unitarily equivalent 
to the more commonly defined localization operators on the Hardy space H2

+(R). Recall 
that the space H2

+(R) is the subspace of L2(R) consisting of elements ψ whose Fourier 
transform Fψ is supported on R+. Note that the composition DF is a unitary map from 
H2

+(R) to L2(R+). An admissible wavelet ξ ∈ H2
+(R) satisfies by definition that

cξ :=
∞∫
0

|F(ξ)(ω)|2
ω

dω < ∞.

In other words, DFξ ∈ L2(R+) is an admissible function in the sense of Definition 4.1. 
In [47, Thm. 18.13] the localization operator Aξ

f on H2
+(R), given an admissible wavelet 

ξ ∈ H2
+(R) and f ∈ L1

l (Aff), is defined by

Aξ
fψ = cξ

∫
Aff

f(x, a)〈ξ, π(x, a)ξ〉H2
+(R)π(x, a)ξ dx da

a2 , ξ ∈ H2
+(R),

where π acts on H2
+(R) by

π(x, a)ξ(t) = 1√
a
ξ

(
t− x

a

)
, ξ ∈ H2

+(R). (6.1)

The next proposition is straightforward and relates operators on the form Aξ
f with affine 

localization operators.

Proposition 6.2. Consider f ∈ L1
l (Aff) and an admissible wavelet ξ ∈ H2

+(R). Then

(DF)Aξ
f (DF)∗ = cξ · f̌ �Aff (DFξ ⊗DFξ).

Remark.

1. From Proposition 6.2 it follows that Proposition 4.18 is a generalization of the result 
[47, Thm. 18.13].
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2. In [12], Daubechies and Paul define localization operators in the same way as in [47], 
except that they use π(−x, a) instead of π(x, a) in (6.1) and consider symbols f on the 
full affine group AffF = R × R∗. The eigenfunctions and eigenvalues of the resulting 
localization operators acting on L2(R) are studied in detail in [12] when the window 
is related to the first Laguerre function, and f = χΩC

where

ΩC := {(x, a) ∈ Aff : |(x, a) − (0, C)|2 ≤ (C2 − 1)}.

The corresponding inverse problem, i.e. conditions on the eigenfunctions of the local-
ization operator that imply that Ω = ΩC , is studied in [1].

3. Localization operators with windows related to Laguerre functions have also been 
extensively studied by Hutník, see for instance [29–31], with particular emphasis on 
symbols f depending only on either x or a. When f(x, a) = f(a), it is shown that 
the resulting localization operator is unitarily equivalent to multiplication with some 
function γf . This correspondence allows properties of the localization operator to be 
deduced from properties of γf .

6.2. Covariant integral quantizations

Operators of the form f �Aff S form the basis of the study of covariant integral quanti-
zations by Gazeau and his collaborators in [2,6,7,19–21]. Apart from differing conventions 
that we clarify at the end of this section, covariant integral quantizations on Aff are maps 
ΓS sending functions on Aff to operators given by

ΓS(f) = f �Aff S,

for some fixed operator S. By varying S we obtain several quantization maps Γ with 
properties depending on the properties of S. Examples of such quantization procedures 
with a different parametrization of Aff are studied in [21,7]. Their approach is to define 
S either by FW (S) or by its kernel as an integral operator, and deduce conditions on 
this function that ensures the condition

1 �Aff S = IL2(R+).

Example 6.3. The affine Weyl quantization is an example of a covariant integral quanti-
zation ΓS , where S is not a bounded operator. It corresponds to choosing S = PAff by 
Theorem 3.20.

Remark. The example above leads to a natural question: could there be other operators 
P such that f �Aff P behaves as an affine analogue of Weyl quantization? Since Weyl 
quantization on R2n is given by convolving with the parity operator, a natural guess is

Pψ(r) = ψ(1/r), ψ ∈ L2(R+).
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The resulting quantization ΓP (f) = f �Aff P has been studied by Gazeau and Murenzi 
in [21, Sec. 7]. It has the advantage that P is a bounded operator, but unfortunately by 
[21, Prop. 7.5] it does not satisfy the natural dequantization rule

f = ΓP (f) �Aff P.

We also mention that Gazeau and Bergeron have shown that this choice of P is merely a 
special case corresponding to ν = −1/2 of a class Pν of operators defining possible affine 
versions of the Weyl quantization [7, Sec. 4.5].

In quantization theory one typically wishes that the domain of ΓS contains L∞(Aff). 
This, by Lemma 4.17, leads us to chose S = DTD for some trace-class operator T . 
In particular, one requires that ΓS(1) = IL2(R+), which can be easily satisfied as the 
following proposition shows.

Proposition 6.4. Let T be a trace-class operator on L2(R+). Then

1 �Aff DTD = tr(T )IL2(R+).

Proof. Let ψ, φ ∈ dom(D). We have by (4.10) that

〈1 �Aff DTDψ, φ〉L2(R+) =
∫

Aff

〈U(−x, a)∗DTDU(−x, a)ψ, φ〉L2(R+)
dx da

a

=
∫

Aff

T �Aff (Dψ ⊗Dφ) dx da
a

= tr(T )〈ψ, φ〉L2(R+),

where the last equality uses Theorem 4.3. �
Following the terminology used by Gazeau et al., we have a resolution of the identity 

operator of the form

IL2(R+) = ΓDTD(1) =
∫

Aff

U(−x, a)∗DTDU(−x, a) dx da
a

,

where tr(T ) = 1 and the integral has the usual weak interpretation.
Given a positive trace-class operator T with tr(T ) = 1, we know that

ΓDTD(f) = f �Aff DTD

defines a bounded map ΓDTD : L∞(Aff) → L(L2(R+)) with ΓDTD(1) = IL2(R+). More-
over, ΓDTD maps positive functions to positive operators and by a variation of Lemma 3.5
satisfies the covariance property
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U(−x, a)∗ΓDTD(f)U(−x, a) = Γ(R(x,a)−1f).

The following result, which is a modification of the remark given at the end of [34], shows 
a remarkable converse to these observations.

Theorem 6.5. Let Γ : L∞(Aff) → L(L2(R+)) be a linear map satisfying

1. Γ sends positive functions to positive operators,
2. Γ(1) = IL2(R+),
3. Γ is continuous from the weak* topology on L∞(Aff) (as the dual space of L1

r(Aff)) 
to the weak* topology on L(L2(R+)),

4. U(−x, a)∗Γ(f)U(−x, a) = Γ(R(x,a)−1f).

Then there exists a unique positive trace-class operator T with tr(T ) = 1 such that

Γ(f) = f �Aff DTD.

Proof. The map Γ → Γl where Γl(f) = Γ(f̌) is a bijection from maps Γ satisfying the 
four assumptions to maps Γl satisfying

i) Γl sends positive functions to positive operators,
ii) Γl(1) = IL2(R+),
iii) Γl is continuous from the weak* topology on L∞(Aff) (as the dual space of L1

l (Aff)) 
to the weak* topology on L(L2(R+)),

iv) U(−x, a)∗Γl(f)U(−x, a) = Γl(L(x,a)−1f).

The remark in [34] applied to G = Aff and U(−x, a) says that if a map Γl satisfies i)-iv) 
then it must be given for ψ, φ ∈ dom(D) by

〈Γl(f)ψ, φ〉L2(R+) =
∫

Aff

f(x, a)〈U(−x, a)TU(−x, a)∗Dψ,Dφ〉L2(R+)
dx da

a
,

for some trace-class operator T as in the theorem. The relation (4.1) gives that

〈Γl(f)ψ, φ〉L2(R+) =
∫

Aff

f(x, a)〈U(−x, a)DTDU(−x, a)∗ψ, φ〉L2(R+)
dx da

a2

=
∫

Aff

f̌(x, a)〈U(−x, a)∗DTDU(−x, a)ψ, φ〉L2(R+)
dx da

a
.

Hence Γl(f) = f̌ �Aff DTD and the result follows. �
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Quantization using admissible trace-class operators
As we have mentioned, the properties of the quantization map Γ(f) = f �Aff S depend 

on the properties of S. From Lemma 4.17 we know that if S is admissible, i.e. we can 
write S = DTD for some trace-class operator T , then ΓS : L∞(Aff) → L(L2(R+)) is 
bounded. If we further assume that S is a trace-class operator, then Proposition 4.18
shows that ΓS is bounded from Lp

r(Aff) to Sp for all 1 ≤ p ≤ ∞. In this sense, the ideal 
class of covariant integral quantizations ΓS are those given by admissible trace-class 
operators.

Example 6.6. If ϕ ∈ L2(R+) is an admissible function, then ϕ ⊗ϕ is an admissible opera-
tor. The resulting quantization Γϕ⊗ϕ is then a special case of the quantization procedures 
introduced by Berezin [4]; Berezin calls f the contravariant symbol of Γϕ⊗ϕ(f). In this 
sense, the quantization procedures ΓS for admissible S generalize Berezin’s contravariant 
symbols.

Relation to the conventions of Gazeau and Murenzi
Gazeau and Murenzi [21] work with another parametrization of the affine group, 

namely Π+ := R+×R where the group operation between (q1, p1), (q2, p2) ∈ Π+ is given 
by

(q1, p1) · (q2, p2) := (q1q2, p2/q1 + p1).

There is a unitary representation UG : Π+ → U(L2(R+, dr)) given by

UG(q, p)ψ(r) =
√

1
q
eiprψ(r/q) =

√
1
q
U(p/2π, 1/q)ψ(r).

Given a function f̃ on Π+ and an operator S on L2(R+, dr), Gazeau and Murenzi 
define (note that the adjoint is now with respect to L2(R+, dr), not L2(R+))

AS
f̃

:= 1
CS

∞∫
−∞

∞∫
0

f̃(q, p)UG(q, p)SUG(q, p)∗ dq dp,

where we assume that S satisfies
∞∫

−∞

∞∫
0

UG(q, p)SUG(q, p)∗ dq dp = CS · IL2(R+,dr).

The next proposition is straightforward and shows that Gazeau and Murenzi’s framework 
is easily related to our affine operator convolutions.

Proposition 6.7. Let S be an operator on L2(R+, dr). Then D−1SD is an operator on 
L2(R+, r−1dr) and



E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327 59
DAS
f̃
D−1 = 2π

CS
f �Aff (DSD−1),

where f(x, a) = f̃(a, 2πxa ) for (x, a) ∈ Aff.

6.3. Affine Cohen class distributions

The cross-Wigner distribution W (ψ, φ) of ψ, φ ∈ L2(Rn) is known to have certain 
undesirable properties. A typical example is that one would like to interpret W (ψ, φ) as 
a probability distribution, but W (ψ, φ) is seldom a non-negative function as shown by 
Hudson in [28]. To remedy this, Cohen introduced in [11] a new class of time-frequency 
distributions Qf given by

Qf (ψ, φ) := W (ψ, φ) ∗ f, (6.2)

where f is a tempered distribution on R2n. In light of our setup, it is natural to investigate 
the affine analogue of the Cohen class.

Definition 6.8. We say that a bilinear map Q : L2(R+) ×L2(R+) → L∞(Aff) belongs to 
the affine Cohen class if Q = QS for some S ∈ L(L2(R+)), where

QS(ψ, φ)(x, a) := (ψ ⊗ φ) �Aff S(x, a) = 〈SU(−x, a)ψ,U(−x, a)φ〉L2(R+).

We will write QS(ψ) := QS(ψ, ψ).

By Proposition 3.7 we get for S = Af that

QS(ψ, φ) = Wψ,φ
Aff ∗Aff f̌ ,

which shows that our definition of the affine Cohen class is a natural analogue of (6.2). 
It is straightforward to verify that QS(ψ, φ) is a continuous function on Aff for all 
ψ, φ ∈ L2(R+) and S ∈ L(L2(R+)). Since the affine Cohen class is defined in terms of 
the operator convolutions, we get some simple properties: The statements 1 and 2 in 
Proposition 6.9 follow from Proposition 4.18 and Corollary 4.5. Statement 3 is a simple 
calculation and the last statement follows from a short polarization argument.

Proposition 6.9. Let S ∈ L(L2(R+)). Then for ψ, φ ∈ L2(R+) we have the following 
properties:

1. The function QS(ψ, φ) satisfies

‖QS(ψ, φ)‖L∞(Aff) ≤ ‖S‖L(L2(R+))‖ψ‖L2(R+)‖φ‖L2(R+).



60 E. Berge et al. / Journal of Functional Analysis 282 (2022) 109327
2. If S is admissible, then QS(ψ, φ) ∈ L1
r(Aff) and

∫
Aff

QS(ψ, φ)(x, a) dx da
a

= 〈ψ, φ〉L2(R+) tr(D−1SD−1).

3. We have the covariance property

QS(U(−x, a)ψ,U(−x, a)φ)(y, b) = QS(ψ, φ)((y, b) · (x, a)) (6.3)

for all (x, a), (y, b) ∈ Aff.
4. The function QS(ψ, ψ) is (real-valued) positive for all ψ ∈ L2(R+) if and only if S is 

(self-adjoint) positive.

Example 6.10.

1. For ψ, φ ∈ L2(R+) we have

Qφ⊗φ(ψ)(x, a) = |〈ψ,U(−x, a)∗φ〉L2(R+)|2,

which by Corollary 5.6 is simply a Fourier transform away from being a scalogram.
2. If we relax the requirement that S is bounded in Definition 6.8, then it follows from 

Theorem 3.20 that

QPAff (ψ) = Wψ
Aff

for ψ ∈ S (R+). Hence the affine Wigner distribution can be represented as a (gener-
alized) affine Cohen class operator. If we define an alternative affine Weyl quantization 
using an operator P as in Section 6.2, then it is clear that QP gives an alternative 
Wigner function. See [21, Sec. 7.2] for the case of Pψ(r) = ψ(1/r).

The covariance property (6.3) and some rather weak continuity conditions completely 
characterize the affine Cohen class, as is shown in the following result.

Proposition 6.11. Let Q : L2(R+) × L2(R+) → L∞(Aff) be a bilinear map. Assume that 
for all ψ, φ ∈ L2(R+) we know that Q(ψ, φ) is a continuous function on Aff that satisfies 
(6.3) and the estimate

|Q(ψ, φ)(0, 1)| � ‖ψ‖L2(R+)‖φ‖L2(R+).

Then there exists a unique S ∈ L(L2(R+)) such that Q = QS.

Proof. By assumption, the map (ψ, φ) → Q(ψ, φ)(0, 1) is a bounded bilinear form. Hence 
there exists a unique bounded operator S such that
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〈Sψ, φ〉L2(R+) = Q(ψ, φ)(0, 1).

To see that Q = QS , note that we have

Q(ψ, φ)(x, a) = Q(U(−x, a)ψ,U(−x, a)φ)(0, 1)

= 〈SU(−x, a)ψ,U(−x, a)φ〉L2(R+)

= QS(ψ, φ)(x, a). �
At this point we have seen that operators S define a quantization procedure ΓS(f) =

f �Aff S as in Section 6.2, and an affine Cohen class distribution QS. The connection 
between these concepts is provided by the next proposition.

Proposition 6.12. Let S be a positive, compact operator on L2(R+) and let f ∈ L1
r(Aff)

be a positive function. Then f �Aff S is a positive, compact operator. Denote by {λn}∞n=1
its eigenvalues in non-increasing order with associated orthogonal eigenvectors {φn}∞n=1. 
Then

λn = max
‖ψ‖=1

⎧⎨
⎩
∫

Aff

f(x, a)QS(ψ,ψ)(x, a) dx da
a

: ψ ⊥ φk for k = 1, . . . , n− 1

⎫⎬
⎭ .

Proof. The integral defining f �Aff S is a Bochner integral of compact operators converg-
ing in the operator norm, hence it defines a compact operator. It is straightforward to 
check that f �Aff S is also a positive operator. Furthermore, for ψ ∈ L2(R+) we have

〈f �Aff Sψ, ψ〉L2(R+) =
∫

Aff

f(x, a)〈SU(−x, a)ψ,U(−x, a)ψ〉L2(R+)
dx da

a

=
∫

Aff

f(x, a)QS(ψ,ψ)(x, a) dx da
a

.

The result therefore follows from Courant’s minimax theorem [35, Thm. 28.4]. �
Example 6.13. Let us consider a localization operator χΩ �Aff ϕ ⊗ϕ for ϕ ∈ L2(R+) and 
a compact subset Ω ⊂ Aff. The first eigenfunction φ0 of this operator maximizes the 
quantity

〈χΩ �Aff (ϕ⊗ ϕ)φ0, φ0〉L2(R+) =
∫
Ω

|〈ϕ0, U(−x, a)∗ϕ〉L2(R+)|2
dx da

a
.

Hence in this sense, the eigenfunctions are the best localized functions in Ω, which 
explains the terminology of localization operators.
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6.3.1. Relation to the affine quadratic time-frequency representations
The signal processing literature contains a wealth of two-dimensional representations 

of signals. Among them we find the affine class of quadratic time-frequency representa-
tions, see [41]. A member of the affine class of quadratic time-frequency representations 
is a map sending functions ψ on R to a function QA

Φ(ψ) on R2 given by

QA
Φ(ψ)(x, a) = 1

a

∞∫
−∞

∞∫
−∞

Φ(t/a, s/a)e2πix(t−s)ψ(t)ψ(s) dt ds

for some kernel function Φ on R2. There are clearly a few differences between our setup 
and the affine class of quadratic time-frequency representations. The domain of the affine 
class consists of functions on R, whereas the affine Cohen class acts on functions on R+. 
For a function ψ on R+ we therefore define

ψ0(t) =
{
ψ(t) t > 0
0 otherwise.

Finally, we recall that a function KS defined on R+ ×R+ defines an integral operator S
with respect to the measure dtt by

Sψ(s) =
∞∫
0

KS(s, t)ψ(t) dt
t
.

The following formal result is straightforward to verify.

Proposition 6.14. Let S be an integral operator with kernel KS and define

ΦS(s, t) =
{

KS(t,s)√
st

if s, t > 0,
0 otherwise.

For x > 0 and ψ defined on R+, we have

QS(Dψ,Dψ)(x, a) = QA
ΦS

(ψ0)(−x/a, a).
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