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A B S T R A C T   

Deep learning-based methods, in particular, convolutional neural networks and fully convolutional networks are 
now widely used in the medical image analysis domain. The scope of this review focuses on the analysis using 
deep learning of focal liver lesions, with a special interest in hepatocellular carcinoma and metastatic cancer; and 
structures like the parenchyma or the vascular system. Here, we address several neural network architectures 
used for analyzing the anatomical structures and lesions in the liver from various imaging modalities such as 
computed tomography, magnetic resonance imaging and ultrasound. Image analysis tasks like segmentation, 
object detection and classification for the liver, liver vessels and liver lesions are discussed. Based on the 
qualitative search, 91 papers were filtered out for the survey, including journal publications and conference 
proceedings. The papers reviewed in this work are grouped into eight categories based on the methodologies 
used. By comparing the evaluation metrics, hybrid models performed better for both the liver and the lesion 
segmentation tasks, ensemble classifiers performed better for the vessel segmentation tasks and combined 
approach performed better for both the lesion classification and detection tasks. The performance was measured 
based on the Dice score for the segmentation, and accuracy for the classification and detection tasks, which are 
the most commonly used metrics.   

1. Introduction 

Liver cancer is the sixth most frequently diagnosed cancer and the 
third most frequent cause of cancer death worldwide [1]. Hepatocellular 
carcinoma (HCC) is a primary tumor occurring in the liver and com-
prises a diverse group of cancer varying genetically as well as molecu-
larly and accounting for 70 % to 85 % of the total liver cancer burden 
worldwide [2]. Cancer in the liver can also be secondary cancer due to 
metastasis of other primary tumors e.g., from colorectum, breast or 
pancreas. In terms of clinical outcomes, variations in the liver tumor 
subclasses are significant. In post-operative control, the tissue archi-
tecture also differs significantly, which leads to alteration in vascular 
supply and surge in cellularity. This variation in tissue architecture of 
the liver delivers a root for non-invasive detection of liver tumors in 

imaging despite variable structures and shapes [3]. The irregular shape 
and texture of the liver and its lesions in the medical images are initial 
biomarkers of hepatic tumor disease diagnosis. Both computed tomog-
raphy (CT) and magnetic resonance imaging (MRI) are well suited to 
detect vessel structures and lesions and are used by surgeons for surgical 
planning. Intraoperative ultrasound (US) imaging is used to detect lesion 
depth and position for precise resection by sparing as much healthy liver 
volume as possible (parenchyma sparing technique). 

Precise segmentation and classification are of utmost importance in 
computer-aided diagnosis, treatment planning, surgical guidance and 
post-operative surveillance (Fig. 1). Especially in pre-operative plan-
nings, precise segmentation and classification of the lesions can lead to a 
smaller resection margin, hence sparing more tissue. However, due to 
artifacts in liver images such as heterogeneity in the intensity 
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information within the liver, varying shape, low contrast between liver 
parenchyma and lesions, weak boundaries between liver and other 
abdominal organs; automatic segmentation of liver, liver vessels, and 
lesions becomes challenging. In addition, due to varying acquisition 
protocols, different contrast agents, varying scanner resolution and 
different enhancement techniques; robust and automatic segmentation 
and classification of liver parenchyma, vessels, and lesions still remains 
an open challenge and has recently attracted considerable research 
attention. 

In clinical practice, manual and semi-automatic methods are used by 
radiologists to detect, delineate and classify the lesions and other 
structures in medical images. These methods are time-consuming, 
operator-dependent and cost-ineffective. In the past, various determin-
istic and probabilistic approaches have been proposed to achieve ac-
curate segmentation and analysis of the liver, its vessels, and also 
quantification of liver fat from different medical images [4–9]. Other 
extensively studied methods include region growing, active contour, 
level set, graph cuts, clustering and methods based on thresholding, 
deformable models, statistical shape models, sigmoid edge modeling 
and learning-based approaches like Support Vector Machine (SVM) 
[10–15]. 

Associated with the Medical Image Computing and Computer- 
Assisted Intervention (MICCAI) conference in 2007 [16] and 2008 
[17], two grand challenges were conducted to segment liver and lesions. 
The majority of the works presented in these two challenges were based 
on traditional approaches. However, a new trend could be observed in 
the 2017 edition of the Liver Tumor Segmentation challenge (LiTS) of 
MICCAI [18], where a great majority of submitted works were based on 
deep learning (DL) and machine learning methods, reporting higher 
accuracy than the previous challenges. Recent studies have shown the 
diverse application of DL based liver image analysis [19–26]. In this 
paper, we present a comprehensive review of recent methods for auto-
matic detection, segmentation and classification of liver parenchyma, 
liver vessels and liver lesions using DL. 

Our contribution: In this work, the state-of-the-art in DL-based 
detection, segmentation and classification of liver, vessels and lesions 
with a focus on malignant liver tumors is presented. In total, 91 papers 
are reviewed, summarized (Fig. 7) and categorized based on the meth-
odology (Section 8). The top three methods for each of the five tasks 
(liver segmentation, lesion segmentation, vessel segmentation, lesion 
classification and lesion detection) are ranked based on the DICE score 

for segmentation and accuracy for classification and detection tasks. The 
best performing DL architectures/methodology, data handling and 
research lines are discussed. 

The literature review performed for the present work is based on a 
structured search for articles in the databases Google Scholar, Web of 
Science, PubMed, Oria, Research Gate, research books and conference 
proceedings using the keywords “liver”, “liver lesion”, “liver vessels”, 
“deep learning”, “segmentation”, “detection” and “classification”. The 
review articles are excluded and the last update to the included papers 
was on February 15, 2022. 

The present review paper is organized in such a way that Sections 2 
to 7 give a general introduction to the anatomy of the liver, imaging 
techniques for liver lesion diagnostics, image analysis tasks, artificial 
neural network architectures, challenge datasets and evaluation metrics 
for liver image analysis. Then Section 8 deals with the review of the 
selected articles, followed by the discussion in Section 9, list of future 
research lines in Section 10, and conclusion in Section 11. 

2. Anatomy and function of the liver 

The liver is both the largest internal organ and the largest gland in 
the human body. Hepatocytes, bile canaliculi and hepatic sinusoids are 
the main components of the liver. Being the most common cell type, the 
hepatocytes form close to 80 % of the liver [27]. The hepatocytes and 
sinusoids form the lobules, which are considered the functional unit of 
this organ [28]. The liver is positioned in the upper right part of the 
abdomen. It has multiple vital roles including vital metabolism, 
glycogen storage regulation, detoxification of drugs, red blood cells 
decomposition and hormone production. The liver also produces bile, 
which helps in the breakdown of fat. The hepatic vascular system 
comprises the hepatic artery, the hepatic vein and the portal vein. The 
hepatic artery carries blood from the aorta to the liver, the hepatic vein 
drains deoxygenated blood from the liver into the inferior venacava, and 
the portal vein carries blood containing the digested nutrients from the 
gastrointestinal tract, spleen and pancreas to the liver [27]. 

The liver has four lobes known as left, right, caudate and quadrate. 
Based on Couinaud classification [30], the liver is divided into eight 
functionally independent segments, each of them having its own 
vascular inflow, outflow and lymph drainage, as shown in Fig. 2. Ac-
cording to Bismuth [31], Segment IV is sometimes divided into segments 

Fig. 1. Role of liver image analysis.  

Fig. 2. Anatomy of liver. 
Adapted from Orcutt et al. [29]. 
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IVa and IVb. Segment I is located posteriorly and it is not visible in the 
frontal view. The periphery of each segment has a vascular outflow 
through the hepatic veins. The middle hepatic vein partitions the liver 
into the right and left lobes. The right hepatic vein partitions the right 
lobe into anterior and posterior segments. The falciform ligament par-
titions the left lobe into a medial part consisting of Segment IV, and a 
lateral part consisting of segments II and III. The portal vein divides the 
liver into upper and lower segments. 

Readers interested in more details about the liver are referred to 
Betts et al. [27]; Lorente et al. [28]. 

3. Imaging techniques for liver lesion diagnostics 

Medical imaging enables the detection, characterization and diag-
nosis of tumorous masses in the organ. It is less traumatic than a biopsy 
[32] and provides a quick and reliable way for doctors to analyze the 
lesion. Especially in HCC, imaging aims to detect the presence of 
metastasis. CT, MRI and US are the most used imaging modalities for 
liver lesions [33–37]. Out of these, CT and MRI are the preferred mo-
dalities for screening, detection and characterization, because of higher 
specificity and sensitivity [33,35,36,38]. That is, diagnosis based on CT 
and MRI images, with better resolution and level of detail than US, 
present a higher precision when discerning healthy and non-healthy 
patients, and identifying ailments. Despite ionizing radiation exposure, 
CT and more specifically contrast-CT [36], remains the preferred mo-
dality due to its low cost, short scanning time, and highly detailed im-
ages [33,37]. 

In this context, special attention should be given to multiphase CT 
angiography, where images are acquired before, during and after the 
administration of contrast agents, allowing the detection of changes in 
blood supply and the possibility to study the hemodynamics of the liver 
tumor (Fig. 3). Unlike conventional CT angiography, in multiphase CT 
angiography, the images are acquired during a specific arterial interval. 

With the advancements in CT techniques such as dynamic multi-
detector CT, Volume Perfusion CT (VPCT), Dual Energy CT (DECT) and 
Cone Beam CT (CBCT); high-resolution images can be acquired easing 
the diagnosis and staging of HCC. The majority of the studies analysed in 
this review use CT images. 

On the other hand, MRI provides a better characterization of small 
lesions (≤3 cm) than CT, and so it is used as a supplementary modality 
to the former [37]. However, its complexity and long acquisition times 
make it inadequate for routine examinations. In Europe, between 2013 
and 2018, the average increase in the number of acquisitions has been 
14.48 per 1000 people. In T2-weighted imaging, the lesion tissue is 
hyperintense or isointense compared to the surrounding parenchyma. 
Therefore, to characterize liver lesions, T2-weighted imaging alone is 
not always sufficient because it can be isointense in some cases. On the 
other hand, on T1-weighted images liver lesion tissue is mostly hypo-
intense. However, lesions smaller than 1.5 cm tends to be isointense in 
T1-weighted images. Examples of T1 and T2 weighted, as well as 
Diffusion-Weighted MRI images, are shown in Fig. 4. 

Diffusion-Weighted MRI (DW-MRI) provides insight information 
about the tumor viability at the cellular level and is well suited to 
differentiate HCC from dysplastic nodules [39]. However, contrast- 

enhanced MRI (CE-MRI) outperforms DW-MRI in the detection and 
characterization of HCC. Dynamic Contrast-Enhanced MRI (DCE-MRI) 
improves the detection of blood vessels in tissues, thus is well suited for 
the assessment of HCC lesions since these lesions are highly vascular-
ized. A combination of DW-MRI and CE-MRI shows improved perfor-
mance in the detection of HCC tissue in chronic liver diseases [40]. In 
addition, MR spectroscopy and MR elastography are used for detection, 
staging and differentiation between benign and malignant liver lesions. 
Besides HCC, MRI has been found to be effective in characterizing 
different types of benign and malignant FLLs. For instance, several 
research works report dynamic gadolinium-enhanced MRI to perform 
best in this regard Zhang et al. [41]. Long Time to Echo (TE) T2 MRI is 
very accurate in discriminating haemangiomas from solid lesions, 
whereas DWI precisely classified 89.5 % malignant and 88 % benign 
lesions. 

US provides a cheap and reliable method for a routine examination, 
which can be performed as often as required [33]. US is a radiation-free 
modality often suitable for children, pregnant women and patients 
recommended to go through repetitive diagnostic scanning. Nonethe-
less, the use of this modality highly depends on the experience of the 
user, as well as the interpretation of the images, unlike CT or MRI [33]. 
Contrast-enhanced US (CEUS) has been shown to provide a better 
characterization of the lesion, especially small tumor masses [33,42]. 
CEUS uses microbubbles as the contrast agent. These are administered 
into the intravascular space, which is soon cleared from the blood pool 
and moved into the extracellular space [43]. The diagnosis of liver tu-
mors based on CEUS is carried out using arterial phase hypervascularity 
and portal or delayed phase washout. 

In CEUS, the scanning of the entire liver is not possible and it is less 
sensitive to diagnose small lesions, compared to the aforementioned 
imaging modalities. In addition, CEUS image interpretation is highly 
dependent on the experience of the operator, has a limited field of view 
and the body characteristics of patients can limit the visualization of the 
entire liver in the contrast phase. So, CEUS is used to characterize the 
previously identified liver lesions and can be used as a supporting 
diagnostic tool (Fig. 5). Furthermore, US elastography [44] and Acoustic 

Fig. 3. CT of metastatic malignancy a) arterial phase b) portal venous phase c) 
delayed phase. Case courtesy of Dr. Ahmed Abdrabou, Radiopaedia.org, rID: 
22888. https://radiopaedia.org/cases/22888. 

Fig. 4. MRI of metastatic malignancy a) T1-weighted unenhanced b) T2- 
weighted c) DW-MRI. Case courtesy of Dr. Mohammad A. ElBeialy, Radiop 
aedia.org, rID: 28994. https://radiopaedia.org/cases/28994. 

Fig. 5. CEUS of metastatic malignancy. Case courtesy of Dr. Balint Botz, Radiop 
aedia.org, rID: 70877. https://radiopaedia.org/cases/70877. 
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Radiation Force Impulse [45] are new US technologies used to study the 
characteristics of biological tissue, which helps to differentiate benign 
and malignant lesions. US elastography is being used for quantitative 
evaluation of liver stiffness. Besides, image analysis on US variants 
shows promising performance to study diffuse liver diseases, monitoring 
steatosis staging, fatty liver staging yielding moderate to high sensitivity 
[20,46–49]. CEUS is frequently integrated with locoablative therapies to 
determine the response of the treatment. 

The intraoperative US is of high value for intraoperative navigation 
in minimally invasive surgery. This modality enables the examination of 
the organ during the intervention to locate the lesions and relevant 
structures [50,51]. The increase in interest in minimally invasive sur-
gery comes hand-to-hand with the introduction of navigation platforms 
in the operating room (OR), and thus, an increase in the use of intra-
operative modalities. Furthermore, hybrid ORs bring together radiolo-
gists and surgeons as it allows the use of intraoperative CT scanners as 
well as MRI scanners in the surgical workflow [52]. This market is ex-
pected to grow in the next years, increasing the use of CT images in liver 
surgery, for examination and navigation, as well as laparoscopic US for 
navigation [50,51]. Also, with the rise of ablation as a treatment for 
smaller lesions [53,54], the use of intraoperative modalities like CT or 
US, for the location of lesions, needle placement, and evaluation of the 
ablation, can be expected to increase in the coming years. 

The following trends were observed regarding the use of CT and MRI. 
The use of US was not reported, the authors understand the use of US is 
widely extended and used in routine examinations. In Europe, the 
number of abdominal CT scans has doubled in the span of seven years, 
from 2008 to 2015; from 14.4 to 28.9 procedures per 1000 population 
[55,56]. And in a broader scope, in Europe, there has been an average 
increase in the number of CT scans of 25.15 ± 20.75 per 1000 in-
habitants between 2013 and 2018 [57]. In this same time span, the 
number of MRI scans has increased on average 14.48 ± 13.51 per 1000 
inhabitants [57]. Regarding these same technologies, countries of the 
Organisation for Economic Co-operation and Development (OECD) re-
ported an increase of 53.2 CT acquisitions per 1000 inhabitants in the 
span of 2007 to 2017 [58]. In this same time span, the number of MRI 
scans increased by 31.3 per 1000 inhabitants [58]. Hence, there is a 
preference in the use of CT as a primary examination tool, leaving MRI 
as a supplementary modality together with US [36,37,59]. 

4. Image analysis tasks 

Analysis and interpretation of images involve four main tasks, which 
have been traditionally called classification, localization, detection and 
segmentation (Fig. 6). Despite this distinction, image analysis applica-
tions are usually implemented in a combined fashion, making it difficult 
to sort them into one of these four categories. Classification is the pro-
cess of identifying the class or label to which the object in the image 
belongs to. In liver image analysis, classification tasks are generally 
focused on classifying the liver from other organs, classifying the liver 
tissue as a lesion or healthy, or classifying lesions as benign or malig-
nant. Image classification is often combined with localization, which is 
defined as the process of finding the coordinates of the desired object in 
the image. The object localization task returns a bounding box that 
circumscribes the location of the main object in the image. In some 
medical image analysis tasks, localization is used as a preliminary step 
for more complex tasks like segmentation. By identifying the area most 
likely to contain the desired anatomical structure, and thus, reducing the 
search space, the computational complexity and processing time of these 
latter tasks can be improved. Detection is the process of determining all 
the target objects in the image, that can be of multiple categories, 
typically identified by bounding boxes and associated labels. Object 
detection aims at finding anomalies from medical or pathological im-
ages and can also be used for tracking purposes. Segmentation is the 
most important and complex part of medical image analysis, as it focuses 
on detecting the boundaries of the object (liver, vessels, tumor) either 

automatically, semi-automatically, or manually within 2D or 3D medi-
cal data. To do so, the segmentation algorithm maps each pixel to its 
rightful class i.e. the correct type of tissue or organ. There are two types 
of segmentation namely semantic and instance segmentation. Semantic 
segmentation assigns the same label to all pixels/objects of the same 
class (e.g. lesion) whereas instance segmentation provides a unique label 
to each object of a given class (e.g. lesion number 1, lesion number 2). 
That is, it differentiates between instances of the same label. In liver 
resection surgery and radiotherapy treatment, reliable segmentation 
guides the radiologists to treat the diseased part, sparing as much 
healthy tissue as possible. 

5. Artificial neural networks 

Artificial Neural Networks (ANN) are inspired by the human nervous 
system. Like the human brain, ANNs are composed of several individual 
processing units called artificial neurons [60]. These units are inter-
connected in a similar way as biological neurons through axons, which 
transmit information between the neurons. In the nervous system, this 
information is coded in electric-chemical impulses, while in ANNs it is in 
the numerical value returned by the activation function of the neuron 
that is passed on. The activation function operates over the weighted 
sum of all the inputs to the neuron. The weights together with a bias 
factor are the learnable parameters of the neuron. 

In ANNs, neurons are arranged in layers. Stacking several of these 
layers result in a Multi-Layered Perceptron (MLP). The generic archi-
tecture comprises an input layer, several hidden layers and an output 
layer. The training observations or inputs are fed through the input 
layer. The hidden layers learn and encode the relationships and patterns 
in the data, by adjusting the input weights of the neurons. The result of 
the hidden layers is then passed on to the output layer which formats the 
output according to the given task e.g. numerical for regression tasks, or 
probabilities for classification tasks. 

There are three different types of learning schemes for ANN i.e., 
supervised, unsupervised and reinforcement learning. Supervised 
learning is a task-driven method. It is normally used for classification or 
regression tasks, based on historical data. In supervised learning, the 
network is trained by providing the input data along with the corre-
sponding correct output or ground truth. This way, the parameters of the 
ANN (weights and biases) are iteratively tuned based on the difference 
between the prediction and the ground truth. Backward propagation 
(backpropagation) training falls within this category of training 

Fig. 6. Liver/lesion recognition task. a) Liver image classification b) Liver 
localization c) Liver lesion detection d) Liver lesion segmentation. Case courtesy 
of Dr. Ahmed Abdrabou, Radiopaedia.org, rID: 22888. 
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methods. Related to supervised training a new strategy named semi- 
supervised learning has gained momentum recently. This is also data- 
driven, but unlike supervised training, the ground truth is not avail-
able. Instead, the output is evaluated based on a priori information on 
the expected output [26]. Unsupervised learning is a data-driven 
method used to train descriptive models for a given dataset, where no 

a priori target is provided and all features are equally important. These 
ANNs are generally used for clustering problems. Reinforcement 
learning differs from supervised learning in which the former involves 
learning by interacting with the environment. 

Though there are many ANN architectures, the following designs 
(Fig. 8) have been proved to be very powerful for solving liver imaging 

Fig. 7. Applications of deep learning in liver image analysis. (a) Year of the publication; (b) modality (LV - laparoscopic videos); (c) ROI - Region of interest; (d) 
dimensionality; (e) methodology (SA - single-step approach or end-to-end learning, CA - combined approach, HM - hybrid model, EC - ensembled classifier, AR - atlas 
registration, DG - detection guidance, CM - cascaded model, DA - domain adaptation) (Section 8). 

Fig. 8. ANN Architectures a) Convolutional Neural Network, b) Autoencoder, c)Deep Belief Network, d) Generative Adversarial Network.  
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related tasks. 

5.1. Convolutional neural network 

Convolutional Neural Networks (CNN) LeCun et al. [61]; Lecun et al. 
[62] are architecture composed of convolutional layers, which are 
responsible for detecting certain local features throughout the input 
images. The convolutional layers comprise a set of stacked filters, each 
composed of neurons, which generate a unique activation or feature 
map of the input. Each neuron takes a subregion of the input image as 
input, which can overlap until the whole image is sampled. Unlike MLPs, 
each neuron or perceptron in the filter is connected to its neighboring 
neurons, sharing the input weights. This allows the neurons to react to 
the same local features throughout the input channels. Each set of shared 
weights are known as kernels or convolutional kernels. Thus, a con-
volutional layer with N convolutional kernels produces N feature maps 
by learning to detect N local features. Each sequence of convolutional 
layers is typically followed by a pooling layer, which reduces the size of 
the feature maps by selecting and combining features from the over-
lapping or non-overlapping local neighborhoods. For example, max- 
pooling layers select the features with the highest response level, and 
can further improve translation invariance. A CNN consists of several 
pairs of convolutional and pooling layers followed by several fully 
connected layers or MLP, and a softmax layer or regression layer as the 
output layer to generate the desired outputs. This way, the set of con-
volutional and pooling layers becomes the equivalent of the feature 
extractor step in more classic approaches, while the MLP relates to the 
classification step. 

5.2. Auto encoders 

Autoencoders (AEs) are unsupervised ANNs that efficiently learn 
how to compress and encode the data, and then reconstruct the com-
pressed data back to a representation similar to the original input [63]. 
AEs generally consist of three main parts namely: encoder, bottleneck, 
decoder. The encoder learns how to reduce and compress the input data 
into the encoded representation. The bottleneck is the hidden layer that 
contains the compressed representation which is the smallest possible 
representation of the input data. The decoder learns to reconstruct the 
encoded representation of the input data to be as close to the original 
data as possible. The similarity between the original data and the 

reconstruction is evaluated during training by the reconstruction loss. 
To minimize the reconstruction loss the backpropagation method is used 
during training. The ideal AE model should be sensitive enough to 
accurately build a reconstruction, and insensitive enough to memorize 
or overfit the training data. This tradeoff holds the model to maintain 
only the variations in the data required to reconstruct the input data 
while ignoring the noise. Due to dimensionality reduction, the AEs can 
be regarded as a more powerful generalization of principal component 
analysis (PCA). 

The PCA tries to discover a lower-dimensional hyperplane that best 
describes the original data and the AEs are accomplished in learning 
non-linear manifolds. Deep autoencoders are a type of AEs typically 
consisting of a large number of layers for both the encoder and decoder. 

5.3. Deep belief networks 

Deep Belief Networks (DBN) are probabilistic generative models 
composed of multiple layers of stochastic and latent variables [64]. The 
latent variables are often called hidden units or feature detectors and 
they typically have binary values. The hidden units represent features 
that captures the correlation present in the input data. DBN is a stack of 
Restricted Boltzmann Machines (RBM) or AEs. The top two layers are 
undirected, have symmetric connections between them and form an 
associative memory. The connections between all the lower layers are 
directed acyclic connections that convert the associative memory into 
observed variables. The states of the units in the lowest layer represent a 
data vector. The lower layer or the visible units receive input data that 
are either binary or real. The layers are connected by a matrix of sym-
metrical weights. Each unit in every layer is connected to each unit in 
every neighboring layer. DBNs are trained using a greedy learning al-
gorithm where one layer is trained at a time in an unsupervised manner. 
It is easier to train a shallow network than a deeper network. A multi-
layer DBN is divided into simpler RBMs models that are learned 
sequentially. The greedy algorithm allows each model in the sequence to 
receive a different representation of the data. This is an efficient layer- 
by-layer procedure for learning top-down generative weights that 
determine how the variable in one layer is dependent on the variables in 
the layer above. Each layer takes the output of the previous layer as 
input and produces an output which is a representation of the data with 
a simpler distribution. In DBNs, individual layers are trained in an un-
supervised manner whereas the final fine-tuning is done by adding a 

Fig. 9. Summary of the preprocessing, patch processing, DL methodology and post-processing methods used in the papers reviewed.  
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linear classifier to the top layer of the DBN and performing a supervised 
optimization. 

5.4. Generative Adversarial Network 

Generative Adversarial Networks (GANs) consist of two main com-
ponents: a generative neural network and a discriminator neural 
network [65]. The generator network produces synthetic data in line 
with the properties of the original real dataset. The output from the 
generator is directly connected to the input of the discriminator. The 
discriminator network is fed data either from the training set or the data 
produced by the generator network, and it is tasked with predicting 
whether the data belongs to the training dataset or not. The classifica-
tion performed by the discriminator provides a signal that the generator 
uses to update its weights through backpropagation. Training GANs is 
done as a competition between the generator and the discriminator. The 
discriminator network tries to maximize the difference between the real 
and the generated data, whereas the generator network tries to minimize 
the difference between the real and generated data. 

6. Liver, lesion and vessel segmentation challenges 

Several global competitions also known as segmentation challenges 
were organized by a few multidisciplinary organizations applying image 
processing techniques on medical images. In some of the earliest chal-
lenges such as SLiver07 [16] and LiTS 2008 [17], the participants 
applied traditional segmentation methods such as deformable models, 
statistical shape models followed by machine learning approaches 
including AdaBoost and SVM classifiers to liver and lesion segmentation 
tasks. However, DL-based methods were applied in LiTS 2017, the 
Combined Healthy Abdominal Organ Segmentation (CHAOS) and 
Medical Segmentation Decathlon (MSD) challenge. In this section, we 
first summarize the challenges dedicated to the DL-based liver, vessels 
and lesion segmentation. Next, we introduce a well-known publicly 
available dataset (3D-IRCADb) related to the liver, liver lesion, and 
vessel data along with ground truth. 

6.1. LiTS 2017 

LiTS [18] challenge was organized in conjunction with ISBI 2017 and 
MICCAI 2017. In ISBI 2017, the challenge was to segment lesions in the 
liver from CT images using automatic methods. In MICCAI 2017, in 
addition to lesion segmentation, liver segmentation and tumor burden 
estimation tasks were added. The dataset used in the challenge consisted 
of 170 contrast-enhanced abdominal CT scans, 130 were used for 
training and 40 for testing. Most of the methods proposed in ISBI 2017 
and MICCAI 2017 were DL-based. Dice score was used as the main 
metric to evaluate the segmentation performance in addition to other 
metrics. Overall, the liver segmentation approaches achieved higher 
dice scores (around 0.90), whereas lesion segmentation approaches 
attained comparatively lower dice scores (0.70s). 

6.2. CHAOS 2019 

CHAOS challenge [66] was held in conjunction with ISBI 2019. The 
CHAOS challenge aims to provide the DL-based solution for five 
different tasks including segmentation of liver from CT, segmentation of 
the liver from MRI, Segmentation of liver from both CT and MRI, seg-
mentation of abdominal organs from MRI and segmentation of abdom-
inal organs from both CT and MRI. The CHAOS challenge dataset 
consists of abdominal CT and MRI images (T1-Dual and T2 SPIR se-
quences) from different patients. The CT dataset consists of 20 training 
set with the ground-truth mask for the liver and 20 testing sets. The MRI 
dataset consists of 20 training sets and 20 testing sets. The ground-truth 
mask for the liver, kidney and spleen is provided for the training dataset. 

The task-specific conclusion of the CHAOS challenge revealed that 

the DL methods applied to liver segmentation performed as well as their 
semi-automatic counterparts on a single modality (both MRI and CT) 
when evaluated using the DICE score. However, the methods did not 
perform comparably for distance-based measures such as Maximum 
symmetric surface distance(MSSD). Furthermore, the performance of 
liver segmentation methods deteriorated in cross-modal approaches. 

6.3. MSD dataset and challenge 

MSD [67] dataset aims to provide an open-source comprehensive 
benchmark to solve different segmentation tasks for several organs. MSD 
challenge was held during MICCAI 2018. The MSD dataset consists of 10 
labeled datasets including two dedicated to the liver, liver tumor, and 
liver vessel annotated data. Out of these, one dataset (liver and tumor 
annotations) consists of 201 contrast-enhanced CT images collected 
from various clinical sites in Europe and America. The patients included 
in this dataset had primary and metastatic liver cancers. The other 
dataset comprising 443 liver CT scans was acquired from Memorial 
Sloan Kettering Cancer Center. However, the annotations (vessels and 
tumors) are not very accurate. Statistics indicate that nearly 65.5 % of 
vessel pixels are unlabeled while about 8.5 % are mislabeled in this 
dataset Xu et al. [68]. 

6.4. 3D-IRCADb 

3D Image Reconstruction for Comparison of Algorithm Database 
(3D-IRCADb) [69] is a well-known database administered by the French 
Institute of Digestive Cancer Treatment. It comprises various organs’ 
data along with the corresponding segmentation of important struc-
tures. This database contains a relatively smaller quantity of liver data, 
that is only 20 abdominal CT scans with the liver and vessel annotation, 
however, the annotation quality is sufficiently high. 

7. Evaluation metrics 

In this section we describe a collection of relevant metrics used for 
evaluating the methods of the selected article. Some of the metrics dis-
cussed here could be derived from the four basic cardinalities of the 
confusion matrix namely true positive (TP), true negative (TN), false 
positive (FP) and false-negative (FN). 

7.1. Accuracy (ACC) 

Accuracy is the number of all correct predictions divided by the total 
number of samples in the dataset. 

ACC =
TP + TN

TP + TN + FP + FN
=

TP + TN
P + N

(1)  

where P and N are real positive and negative cases respectively. 

7.2. Sensitivity (SN) 

Sensitivity is the number of true positive predictions divided by the 
total number of positives. It is also called as true positive rate (TPR) or 
recall (REC) and it is given by 

SN =
TP

TP + FN
=

TP
P

(2)  

7.3. Specificity (SP) 

Specificity is the number of correct negative predictions divided by 
the total number of real negatives. It is also called a true negative rate 
(TNR) and it is given by 
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SP =
TN

TN + FP
=

TN
N

(3)  

7.4. Precision (PREC) 

Precision is the number of correct positive predictions divided by the 
total number of positive predictions. It is also called a positive predictive 
value (PPV) and it is given by 

PREC =
TP

TP + FP
(4)  

7.5. Dice score (DICE) 

DICE or F-measure is one of the most commonly used evaluation 
metrics in metrical image segmentation [70]. It is also called an over-
lapping index. In addition, to compare the segmentation result with 
ground truth data, DICE also measures reproducibility. The value of 
DICE lies in the interval [0, 1] where 1 is the perfect segmentation. A and 
B are the segmentation and ground truth respectively. 

DICE(A,B) =
2|A ∩ B|
|A| + |B|

(5)  

7.6. Jaccard similarity coefficient (Jaccard) 

Jaccard coefficient also referred as Intersection over Union (IoU) is a 
similarity measure that estimates the common number of voxels be-
tween the segmentation result and the ground truth regions over their 
union. 

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(6)  

7.7. Volumetric overlap error (VOE) 

VOE is the complement of Jaccard similarity coefficient. 

VOE(A,B) = 1 −
|A ∩ B|
|A ∪ B|

(7)  

7.8. Relative volumetric difference (RVD) 

RVD is a asymmetric metric and it is given by 

RVD(A,B) =
|B| − |A|

|A|
(8)  

7.9. Average symmetric surface distance (ASD) 

ASD is defined as the average of all the distances from the points on 
the boundary of segmentation to the boundary of ground truth and from 
the points on the boundary of ground truth to the boundary of seg-
mentation, S(A) and S(B) respectively. 

ASD(A,B) =
1

|S(A)| + |S(B)|

(
∑

sAϵS(A)

d

(

sA , S(B)

)

+
∑

sBϵS(B)

d

(

sB , S(A))

)

(9)  

7.10. Root mean square symmetric surface distance (RMSD) 

RMSD is commonly used as a statistical measure to show the 
magnitude of a varying quantity. The Smaller the RMSD value is the 
higher the similarity between the ground-truth and the segmentation is. 

RMS D(A,B) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

|S(A)| + |S(B)|

√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

sAϵS(A)

d2(sA, S(B) ) +
∑

sBϵS(B)

d2(sB, S(A) )
√

(10)  

7.11. Hausdorff distance (HD) 

HD provides a metric related to the degree to which two boundaries 
match. Hence it allows evaluating the adjustment of the boundary of the 
predicted segmentation and the ground truth. It is defined as shown in 
Eq. (12), which computes the maximum distance between the closest 
points of the two boundaries. However, because the lack of symmetry, 
the generalized form is used instead (see Eq. (11)) [71,72]. This is also 
known in the literature as the Maximum symmetric surface distance 
(MSSD). 

HD(A,B) = max{h(A,B) , h(B,A)} (11)  

where 

h(A,B) = max
a∈A

(

min
b∈B

d(a, b)
)

(12) 

In practice, the modified 95 % HD is used instead. This is the 95th 
percentile of the computed distances. Thus, limiting the sensibility of the 
HD to outliers [73,74]. 

7.12. Area under curve (AUC) 

The ROC curve (Receiver Operating characteristic) is a plot that vi-
sualizes the tradeoff between the true positive rate and the false-positive 
rate of a classifier. In the case of probability classifiers, whose ROC curve 
has different points for different thresholds, the Area Under the ROC 
Curve (AUC) is a scalar used to summarize the performance of such 
classifier. It can be computed using the trapezoidal method to integrate 
the ROC curve [75]. 

8. Selected articles survey 

This section reviews the selected collection of publications. For 
convenience, a summary table with the best performing solutions for 
each task i.e., classification, detection, and segmentation of liver, lesions 
or vessels, is included here (see Table 1). The complete list of articles can 
be found in Tables A.1 to A.5, in Appendix A. In these tables, the papers 
have been grouped based on the task: detection, classification, seg-
mentation of the liver, segmentation of lesions or segmentation of 
vascular structures. However, for the analysis of the state of the art, the 
articles have been classified, based on the pipeline design (Fig. 9). Fig. 9 
gives an overview of the pre-processing techniques, DL methodologies, 
patch processing and post-processing methods used in the papers 
reviewed. The vast majority of the published research operates on CT 
images and few works with MRI and ultrasound modalities. Most of the 
published works deal with the segmentation or classification of the liver 
parenchyma and/or lesions. Few groups work on segmenting the vessels 
like Huang et al. [139]; Ibragimov et al. [140]; Kitrungrotsakul et al. 
[82,141]; Lee et al. [165]; Yu et al. [147]; Mishra et al. [142], which we 
believe is of high relevance for surgical navigation. 

8.1. Pre-processing 

In the pre-processing step, the aim is to alter the nature of the image 
to highlight relevant features or adapt its intensity range to more 
manageable values for the model to process. 

As aforementioned, the majority of the published research focuses on 
CT images. Hence, clipping the Hounsfield units (HU) to the relevant 
range for the anatomical structure to be segmented is common to these 
publications [77,91,92,110,121,125,127,129,130,132,134,166]. 
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However, the HU range is subject to the presence or not of contrast 
during the scan. The intensity clipped images can be further used to crop 
or extract patches from the regions of interest, e.g. Ahmad et al. [91,92]. 

Other techniques are commonly observed, e.g. isotropic resample 
[123], noise reduction [91,92,125], zero mean normalization 
[91–93,103] or min-max normalization [129,130]. 

Contrast enhancement techniques are mostly observed when work-
ing with MRI, e.g. in the work of Mulay et al. [104] where Contrast- 
Limited Adaptive Histogram Equalization is used to improve the 
contrast of abdominal MRI images. Though these techniques can also be 
found applied on CT images, like in Abdalla et al. [79]; Ahmad et al. [92] 
where histogram equalization is used. 

During training, the data augmentation techniques like rotation, 
flipping, shifting, scaling were commonly used 
[81,120,125,126,129,133,139,147,155] to get more training data and 
prevent overfitting specific to the dataset. The other augmentation 
techniques were also observed, e.g. sharpening [104], adding Gaussian 
noise [81], changing the aspect ratio [156], elastic distortions 
[104,147], cutout augmentation techniques [93]. 

8.2. Methodology based categorization 

The articles have been classified, based on the methodology of how 
the DL models are adapted into their developed frameworks (Fig. 9: DL 
Methodology). The main categories are: 

1. Cascaded models: a two-steps pipeline where two models are con-
nected sequentially. In this, the output of the first model is fed onto 
the second model. Both models use the same network architecture.  

2. Hybrid models: a combination of different architectures, where each 
model is responsible for a different task.  

3. Combined approach: a combination of DL approach and more 
traditional computer vision models for image analysis. 

4. Ensemble classifier: three models with the same or diverse archi-
tecture are trained to analyze the slices along each of the anatomical 
axes or features independently. The result is then combined through 
a fully connected layer.  

5. End-to-end learning / single-step approach: a single model is trained 
to perform series of tasks in one step. 

6. Atlas-registration: a segmented anatomical atlas is used as a refer-
ence to segment the images by registering both together.  

7. Detection guidance: an object detection model provides a heat map 
of the target regions to segment to the segmentation model.  

8. Domain adaptation: the main goal here is to transfer knowledge from 
source (S) to target (T) to perform a specific task on T that is being 
shared by S and T [167]. 

The papers using multiple approaches/methodology are classified in 
the most relevant category. 

8.2.1. Cascaded models 
Christ et al. [125], Bi et al. [121], Vorontsov et al. [137], Kaluva 

et al. [130], Chlebus et al. [123] and Ouhmich et al. [81] are examples of 
cascaded networks, where the liver and lesions are segmented/detected 
in a sequential multi-step pipeline. In these cases, the method was 
tailored for CT images. A joint liver and lesion segmentation method 
based on the fully convolutional network (FCN) [168] model is proposed 
by Vorontsov et al. [137]. The network consists of two U-net like FCN 
models with long and short skip connections. The axial CT slices are 
given as the input to the first FCN which segments the liver region of 
interest (ROI). Unlike Christ et al. [125], for the second FCN, the axial 
slice along with the predicted liver ROI is given as the input and outputs 
the segmented lesions. In Christ et al. [125] the liver ROI segmented 
from the first FCN alone is given as the input to the second FCN. The 
method was further extended in Christ et al. [126] to segment liver and 
lesions from both CT and MR images. Segmented lesions from the MR 
images are further classified for malignancy and used for HCC survival 
prediction. Ouhmich et al. [81] proposed a cascaded FCN architecture 
based on Christ et al. [126] to segment liver parenchyma, liver lesions 
and necrosis hierarchically from 2D CT scans. Firstly, the method in 
which all structures are segmented simultaneously from the input is 
compared with the cascaded approach to segment structures hierar-
chically, and the cascaded approach performs better by reducing the 
false positives. Secondly, considering the cascaded architecture, the 
performance based on single-phase and multiphase CT scans are 
compared in which the multiphase approach has a better segmentation 
DICE score compared to the single-phase approach. 

Kaluva et al. [130] proposed a two-step cascaded approach to 
segment the liver and tumors using densely connected FCN (DenseNet) 
[169]. In step 1, the liver model was trained to segment the liver. In step 
2, the tumor model uses the first stage segmentation for the localization 
of the liver and hence performs tumor segmentation inside the liver 
region. In Chlebus et al. [123], the 2D U-net model is trained using axial, 
sagittal and coronal slices. To refine the liver mask, a 3D U-net is used. 
The liver segmentation has been achieved by classification of all voxels 
in the CT volume, tumor segmentation by classification of liver voxels 
and tumor candidate filtering using random forest (RF). Bi et al. [121] 
proposed a cascaded deep residual net (Cascaded ResNet) with multi- 
scale fusion to segment the liver and lesions from CT slices. ResNet 
[170] has skip connections between the convolution layers, which 
overcomes the training problem occurring in deep nets and makes it 
possible to add more layers to learn additional discriminative features. 
To further refine the segmentation output, Vorontsov et al. [137], 
Kaluva et al. [130] and Chlebus et al. [123] used connected component 

Table 1 
Top ranking methods in the five analysed tasks: classification (C), detection (D), and segmentation (S) of liver parenchyma (Li), lesions (Le) and vessels (Ve) (Modal - 
modality, Dim - dimension, DSC - DICE score, ACC - Accuracy).  

Author Tasks Method Modality Dim Metrics Dataset 

Li et al. [76] LiS HM CT, MR 2D DSC(CT)-98.1, DSC(MR)-93.5 LiTS, CHAOS 
Qin et al. [77] LiS CA CT 2D DSC-97.3 LiTS 
Hu et al. [78] LiS HM CT 3D DSC-97.25 SLiver07, Clinical 
Abdalla et al. [79] LeS,LiS HM CT 2.5D DSC-96.2 LiTS 
Jiao et al. [80] LeS CM CT 2.5D DSC-96 TCGA-LIHC 
Ouhmich et al. [81] LeS, LiS CM CT 2D DSC(Li)-89.9, DSC(Le)-90.5 Clinical 
Kitrungrotsakul et al. [82] VeS EC CT 2D DSC-96 3DIRCAD, VascuSynth 
Kazami et al. [83] VeS HM CT 3D DSC(HV)-90, DSC(PV)-94 Clinical 
Kitrungrotsakul et al. [84] VeS EC CT 3D DSC-87.9 Clinical 
Mostafiz et al. [85] LeC CA US 2D ACC-98.4 Clinical 
Hassan et al. [86] LeC CA US 2D ACC-97.2 Clinical 
Mitrea et al. [87] LeC EC US 2D ACC-97 Clinical 
Fabijańska et al. [88] LeD CA MR 2D ACC-98.5 Clinical 
Todoroki et al. [89] LeD CA CT 2D ACC-84 Clinical 
Wojciechowska et al. [90] LeD CA MR 2D ACC-83 UK BioBank  
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analysis. In addition to the segmentation refinement, Christ et al. [125] 
used 3D conditional random field(CRF) to account for the 3D 
information. 

Roth et al. [108] and Jiao et al. [80] proposed a two-step coarse to 
fine segmentation method. In Roth et al. [108], a multi-class FCN seg-
ments multiple organs including the liver from abdominal CT volumes. 
The search space of the first step FCN is reduced by using the mask of the 
body using simple thresholding to roughly delineate the structures. Then 
the prediction from the first step FCN is hierarchically fine-tuned by the 
second and it focuses more on the boundary regions. This method is 
based on the 3D U-net architecture by Çiçek et al. [171]. A 2.5D 
approach to segment liver tumors in CT images using a combination of 
two CNNs was proposed by Jiao et al. [80]. Three-phase images, i.e. 
arterial, portal vein phase and delayed phase are fed to the network as 
input. The input data is converted to CNN compliant values. True tags 
are created and stored as segmented tags for training. All the pixels in 
the training set are marked according to the true label. The first CNN 
outputs the probability value of tumor or non-tumor for each input. The 
second CNN thoroughly evaluates the pixels coming from the first CNN 
and assigns a class to each pixel. The method was evaluated using the 
cancer genome atlas liver hepatocellular carcinoma (TCGA-LIHC) 
dataset [172]. 

In Ben-Cohen et al. [120], the two visual geometry group (VGG) 
based FCN models were used where the first FCN segments the liver and 
the second FCN detects the lesions from the segmented liver. Three 
consecutive slices are given as input to provide spatial information in the 
three anatomical axes. Experiments conducted proved that the network 
learned the lesion texture and is most likely relying on the intensity 
difference between the liver and the lesions. 

8.2.2. Hybrid models 
Combining the features from different DL architectures, hybrid 

models were proposed for the segmentation 
[76,78,79,83,93,94,104,111,112,114,127,129,132,134,142,147] and 
classification [150,153,155] tasks. The U-net based models were pro-
posed in Li et al. [132]; Han [127]; Yu et al. [147]; Wang et al. [111]; Li 
et al. [76]; Yan et al. [146]. Li et al. [132] proposed a hybrid densely 
connected U-net (H-DenseUNet) to segment liver and liver tumors from 
CT volumes. The simple ResNet architecture is used to get the coarse 
liver segmentation. The patches from the segmented liver are used as 
input to the hybrid net. The H-DenseUNet consists of a 2D Dense U-net 
that receives the advantages of both densely connected paths and U-net, 
which extracts the features from the intra-slices. Then, an auto-context 
algorithm hierarchically aggregates 3D volumetric information from 
the inter-slice correlations by integrating high-level visual features. In 
Han [127] the network architecture has two Deep CNN (DCNN) models 
that use long-range concatenation connections from U-net [173] and 
short-range residual connections from ResNet [170]. The proposed 
method segments the liver and lesions from CT. The model has 32 layers 
taking a stack of five consecutive CT slices as input, which provides 
significant information also in the axial depth direction in addition to 
the contextual information from the orthogonal slice. The models pro-
duce the output segmentation map corresponding to the center slice. The 
first model segments the liver from the input images whereas the second 
model segments the lesions from the segmented liver. To refine the 
segmentation, a 3D connected component labeling method is applied. 
Though the architecture performance is good for the liver, the perfor-
mance on lesion segmentation is rather low Table A.2. Similar to Han 
[127], Yu et al. [147] proposed a 3D Residual U-net for portal and he-
patic vein segmentation in CT scans. The residual block is incorporated 
into all convolution layers to propagate global and local information 
efficiently across the network. The residual module in ResNet is included 
in the 3D U-net for feature extraction in an effective way. Wang et al. 
[111] proposed a liver segmentation method using a 2D U-net and 
transfer learning approach. In the initial phase, the 2D U-net was trained 
with 300 unenhanced multi-echo spoiled recalled gradient echo (SPGR) 

MR images. The second phase consists of a transfer learning approach 
for generalizing the network to be applied for other imaging methods 
and tissue contrasts with 30 contrast-enhanced CT and MR images. The 
liver volume is computed from the segmentations and further used to 
estimate hepatic proton density fat fraction (PDFF). 

Li et al. [76] proposed attention-based nested U-net (ANU-net) for 
abdominal segmentation where the nested U-net with encoder and 
decoder are arranged symmetrically on both sides of the network. For 
extracting more efficient hierarchical features, the context information 
extracted by the encoder is propagated along with the decoder through 
the dense skip connections. The model integrates an attention gate and 
deep supervision mechanism to focus on the target organ suppressing 
the irrelevant tissue. The dense skip connections of ANU-net obtain the 
feature maps at semantic levels. The proposed method was evaluated on 
both CT and MRI images. Similar to Li et al. [76], Dou et al. [94]; Yan 
et al. [146]; Mishra et al. [142] proposed deep FCN with the deep su-
pervision for the robust segmentation of the liver and liver vessels 
respectively. In Dou et al. [94], supervision is applied in the 3rd and 6th 
layers of the FCN. The CRF is used as a post-processing step to improve 
the 3D liver segmentation. The 3D Deep Supervision Network (DSN) 
converges much faster than the regular 3D CNN and achieves fewer 
training or validation errors. It overcomes the vanishing gradient 
problem as well as improves optimization and enhances the discrimi-
native capability of the model. This method has been further evaluated 
in Dou et al. [95] with many other experiments analyzing the underlying 
design principles and evaluated to segment the whole heart and the 
great vessels from the MICCAI 2007 HVSMR challenge volumes. With 
the objective of liver vessel segmentation, Yan et al. [146] proposed a 
novel liver vessel segmentation (LVSnet) architecture that employs 
special designs to accurately extract vessel structure. The attention- 
guided concatenation (AGC) module was developed to select useful 
context features from low-level features guided by high-level features. 
An innovative multi-scale fusion block has been introduced by con-
structing hierarchical residual-like connections within a single residual 
block. An automatic stratification method to split major and minor liver 
vessels was proposed to evaluate the effectiveness of this method in 
minor vessels. With base architecture as U-net, the attention-guided 
concatenation module was introduced between corresponding encod-
ing and decoding layers. The multi-scale feature fusion block replaced 
the basic encoder and decoder blocks of the U-net. The study also pre-
sents a new dataset that consists of 40 different CT volumes for training 
and evaluation of liver vessel extraction algorithms. The proposed 
method in Mishra et al. [142] solves the problem of vessel segmentation 
from US images by decomposing it into two sub-problems. The first was 
the discrimination of object of interest from the background; coarse 
layers in the network in combination with auxiliary layers were trained 
to accomplish this task. Secondly, core layers with fine resolution were 
trained to learn the boundary of objects. The method was robust in 
retaining broken vessel boundaries, an issue frequently encountered in 
US image segmentation. The integration of the attention mechanism in 
the network enabled it to learn contextual information without 
enlarging the receptive field. Kazami et al. [83] presented a comparative 
study between the tracking-based (TA) algorithm and the supervised 
deep-learning-based algorithm (DLA) in extracting portal vein and he-
patic vein from CT images. The multitasked 3D FCN method comprised 
vessel extraction, center voxel detection, and tree reconstruction. The 
method uses one encoder and three decoders for the above tasks. All the 
vessels from the image are extracted using a vessel decoder where the 
centerness decoder is allocated for extracting center-voxels in the vessel 
regions, and a topologic distance decoder is designed to learn the con-
nectivity between center-voxels (topologic metric learning). The results 
from this study exhibit greater efficiency of DLA over TA algorithm in 
terms of sensitivity, specificity, and Dice coefficient. 

Tian et al. [134] and Liang et al. [150] used the combination of a 
CNN and a long short-term memory (LSTM) for two different purposes. 
In Tian et al. [134] the authors proposed a novel multimodal data and 
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knowledge sharing framework between CT slices and textual reports 
with a semi-supervised attention mechanism. This method employed 
both a segmentation model and a language model, where the segmen-
tation model is an FCN network for segmenting CT slices and a LSTM 
model is used as the language model for generating captions. In the FCN, 
segmentation predictions for the liver and tumor masks are done sepa-
rately using two different branches. The segmentation masks generated 
by the FCN model will be passed on to a CNN to embed the visual fea-
tures. The attention mechanism combines these features with the hidden 
state of the LSTM. In Liang et al. [150] the framework was proposed for 
the classification of focal lesions from multi-phase CT scans. This is an 
extension of Liang et al. [151] where they proposed a method using 
residual convolutional neural networks with global and local pathways 
(ResGLNet) to classify focal liver lesions only from a single-phase CT. In 
Liang et al. [150] the first ResGLNet part of the framework consists of 
three ResNet blocks that extract local and global information from the 
three respective CT phases. A random-walk-based segmentation algo-
rithm is used to segment healthy and focal lesions. Patches are obtained 
from the segmented focal lesions corresponding to the four labels cyst, 
focal nodular hyperplasia (FNH), HCC and hemangioma (HEM). The 
second bi-direction LSTM (BD-LSTM) part consists of two LSTM layers 
that work in the opposite direction to extract enhancement patterns and 
anti-enhancement patterns from the sequential data. The ResGLNet and 
BD-LSTM are combined to employ multi-phase CT images as sequential 
data and to classify the focal lesions. The output of the three ResGLNet 
blocks serves as input to the BD-LSTM. The output from the BD-LSTM 
layers representing patches constitutes inputs to the fully connected 
layer. The softmax layer after the last fully connected layer gives the 
result of the patch-based classification. 

Meng et al. [153] and Mulay et al. [104] developed hybrid models by 
incorporating VGG models into their framework. A method for liver 
Fibrosis classification in US images based on transfer learning and an 
FCN is proposed in Meng et al. [153]. The network has two stages. In the 
deep feature extraction stage, transfer learning using the VGG model 
trained on the ILSVRC dataset [174] is used to fine-tune the net for the 3- 
way liver fibrosis classification. The heat maps are the feature maps 
generated as output from the first stage. In the classification stage, the 
FCN is used to classify the feature maps into three classes normal liver, 
early-stage fibrosis and late-stage fibrosis. A method to segment the liver 
in 2D multimodal images was proposed by Mulay et al. [104]. This FCN 
based method combines holistically nested edge detection (HED) with 
mask-region-based convolutional neural networks (mask-RCNNs) 
[175]. The HED network is capable of capturing significant hierarchical 
representations from the multimodal data and is better able to 
discriminate organ contours. The HED network is initialized using VGG 
[176] model weights. The preprocessed images are input to the HED 
network that outputs refined edge maps; these maps are multiplied with 
enhanced images and input to mask-RCNN which finally segments the 
liver from the edge map images. A ResNet 101 FPN was used for feature 
extraction in mask-RCNN. 

DenseNet based frameworks were developed in Chung et al. [93] and 
Abdalla et al. [79]. For liver segmentation and to address the volumetric 
image segmentation problem from CT scans, Chung et al. [93], proposed 
a method using a self-supervising scheme concerning the edge and 
contours. The authors utilized the properties of V-net [177], deep su-
pervision mechanism and DenseNet. The proposed method applies two 
different deep supervision mechanisms for shape and contour. Depth- 
wise separable convolutions are introduced in densely connected 
blocks. The method implied that the use of critical and partial contour 
features instead of fully supervised contours could improve the seg-
mentation process. Hu et al. [78] also incorporated the shape informa-
tion into the CNN pipeline using a hybrid model. The segmented liver 
using CNN is thresholded and acts as a shape prior. To refine the initial 
segmentation a novel energy function that learns the multiple intensity 
distribution and appearances from the shape prior in the form of global 
and local statistics is proposed and globally optimized in a surface 

evolution way. In Abdalla et al. [79] the proposed hybrid network uti-
lizes the features extracted from a 2D DenseUNet and 3D DenseUNet for 
segmenting liver and liver tumors from CT scans. The 2D dense network 
focuses on the slice features whereas the 3D dense network incorporates 
the spatial information. This enables the network to extract the inter- 
slice and intra-slice features. 

Romero et al. [155] implemented a hybrid architecture by incorpo-
rating the Inception model within the CNN for classification. The 
method classified colorectal metastasis in liver CTs. The lesions are 
segmented using Vorontsov et al. [137]. All volumes are cropped to the 
size of the bounding box generated by the segmentation. The proposed 
method leverages the feature extraction capabilities from Inception V3 
and Inception ResNet-V2. The patches from three adjacent orthogonal 
slices are used as input and the features extracted from multi-scale 
patches are concatenated at the end of the inception model. Two fully 
connected layers are used for classification. The method was evaluated 
using UK Biobank dataset [178]. 

The adversarial network is combined with a convolutional encoder- 
decoder in Yang et al. [114] and with DeepLab in Xia et al. [112] to 
segment the liver from CT data. In Yang et al. [114] a deep image-to- 
image network (DI2IN), a convolutional encoder-decoder model is 
trained with multi-level feature concatenation and deep supervision end 
to end. Then the GAN is used as a discriminator to differentiate the 
output generated from a DI2IN and the ground truth. The adversarial 
network is no longer required during inference after the training pro-
cess. The network uses both the local and global contextual information 
to train the model and proved to be better than U-net and DSN for 3D 
segmentation with substantially faster processing speeds. Pix2pix is used 
as GAN in Xia et al. [112]. Deep features and semantic features are used 
to realize the segmentation model. The proposed segmentation frame-
work comprises three components: the semantic segmentation model 
realized using DeepLabv3, the generator to reconstruct the image from 
training data and the discriminator to identify the real and reconstructed 
image. The generator is built as a codec network. Skip connections are 
added among the layers to cascade features of one layer with the other. 
This combination not only yields better segmentation outcomes; more-
over, it shows stability in terms of convergence while training. Jiang 
et al. [129] designed an Attention Hybrid Connection Network archi-
tecture (AHCNet) which combines soft and hard attention mechanisms 
with long and short skip connections. A AHCBlock consists of the 
attention gate (AG) module and the hybrid connection module. The AG 
module performs feature selection on the coarse-scale context infor-
mation obtained by the long skip connections to improve the sensitivity 
of the model to the foreground pixels. AHCNet integrates the higher- 
level semantic features and the lower-level location information by 
combining both long and short skip connections and soft attention 
mechanisms to complete the fine-grained in-formation recovery of the 
medical image. It is a cascaded approach based on the liver localization 
network, liver segmentation network, and tumor segmentation network. 
Xu et al. [113], proposed a different strategy using a growing teacher 
assistant network (GTAN). It is a DL-based real-time 3-D liver CT seg-
mentation method using the knowledge distillation (KD) also known as 
knowledge transfer from teacher to student models. It is incorporated to 
compress the model while preserving the performance. To avoid the KD 
training being stuck at the local minimum when the disparity of teacher 
and student model sizes is large, the self-distillation modules were 
incorporated. The proposed method was compared to the student model 
without KD and shows a significant improvement of 1.2 % in the Dice 
coefficient. The inference time reported for the GTAN model is 13 ms per 
a 3D image and is proposed to have a great potential for intervention in 
liver surgery as well as in many real-time applications. 

8.2.3. Combined approach 
Traditional computer vision algorithms including Markov Random 

Fields (MRF), graph-cuts, deformable models, active contour were either 
used for initial segmentation ([77,86,88,89,159]) or used in the final 
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step for segmentation refinement [92,98–101,103,138,140,143]. Su-
pervised models like SVM have also been used for classification [85] in 
the combined pipeline. In Wu et al. [159], the sparse non-negative 
matrix factorization method is used to extract the Time Intensity 
Curve (TIC) from the pre-processed CEUS videos. Then, a DBN is used to 
classify benign and malignant focal lesions on these TICs. Ibragimov 
et al. [140] proposed a 3D CNN for the automatic segmentation of the 
portal vein (PV) from the CT images. The intensity patterns of the PV are 
quite distinguishable from other structures in the image, where the 
trained CNN extracts these patterns and uses them to enhance the vein in 
the target image. Using MRF the enhancement results from the CNN will 
be additionally smoothed for more precise enhancement. Finally, the 
CNN-MRF-based enhancement method is expanded with PV centerline 
detection based on the PV anatomical properties such as tubularity and 
branch composition. Mitta et al. [103] method aims to tackle the 
problem of relying on manual segmentations by addressing the problem 
using an unsupervised learning approach. The authors used modified W- 
net [179] architecture and introduced attention gates to the skip con-
nections to suppress the noise in segmentation. The network was 
modified to be applied on 3D volumes and utilizes conditional random 
fields for post-processing. 

Lu et al. [100]; Guo et al. [98]; Ahmad et al. [92] used active contour 
models to refine the initial segmentation from the DL models. Lu et al. 
[100] trained a CNN model to get the coarse segmentation of the liver 
volume. The active contour method was further used to refine the 
segmented liver. In Guo et al. [98], the label map is created such that the 
image carries manifold information such as if a pixel exists inside or 
outside the object of interest if it is located on the boundary of the object, 
and how distant it is from the border. Inspired by the FCN-8 architec-
ture, the proposed network uses an FCN and learns manifold category 
information corresponding to only one possible object class that is liver. 
The network output then guides the active contour model to regulate the 
evolution of the contour. The proposed architecture combines infor-
mation from the FCN and active contour models which is capable of 
steering the expansion of the contour and better conserves the geometry 
of the liver. Ahmad et al. [92] proposed a DBN-based method to auto-
matically segment the liver. The method is based on training a DBN for 
automatic feature learning by unsupervised pretraining and supervised 
fine-tuning named DBN-DNN collectively. After completing the unsu-
pervised training layer by layer, the network is fine-tuned concurrently 
in all layers. Finally, a 3D active contour method is used for liver seg-
mentation refinement. 

Qin et al. [77] proposed a superpixel-based and boundary-sensitive 
CNN pipeline for the automatic segmentation of the liver. At first, CT 
images are partitioned into superpixel regions. In this method, the 
conventional binary segmentation problem is converted into a multi-
nomial classification problem where the superpixels are labeled into the 
three classes; interior liver, liver boundary and non-liver background. 
The entropy-based saliency map is computed and leveraged to guide the 
sampling of image patches over the superpixels. This helps to explicitly 
identify the liver boundary. Finally, the CNN is trained to segment the 
liver. In Hassan et al. [86], a combined classification and segmentation 
approach is proposed to diagnose focal liver diseases using a combina-
tion of level sets, fuzzy-C-means and autoencoders. The level set method 
and fuzzy-C-means clustering are used to extract the contour and 
segment the lesions from the preprocessed images. The stacked sparse 
autoencoders (SSAE) are applied to extract high-level features from the 
segmented ROI in an unsupervised manner from the unlabeled dataset. 
Finally, the softmax classifier is used to classify the ROIs into different 
focal diseases. Similarly, Mishra et al. [143] proposed classification and 
segmentation workflow to segment vessels. The images were first 
divided into overlapping patches. A simple CNN then classified each 
patch into a positive vessel patch if it completely or partly covers the 
region of a vessel or a negative patch if it does not contain the vessel at 
all. Three methods were applied to do pixel-level segmentation later 
including thresholding, region growing, and k-means unsupervised 

clustering. Out of these methods, k-means clustering gave the best 
results. 

Irving et al. [99], Zheng et al. [138] employed FCN based models to 
segment the liver. In Irving et al. [99], the U-net like FCN is used fol-
lowed by the simple thresholding method to get the final segmentation. 
In Zheng et al. [138], in addition to the liver, the tumors in the liver are 
also segmented along. The trained FCN is used to segment the liver and 
tumor regions coarsely, thereafter the segmented tumor is refined by the 
3D deformable model. The deformable model is derived from a com-
bined NMF and local cumulative spectral histograms. Compared to the 
other approaches, Masoumi et al. [101] proposed a combined approach 
using MLP and the watershed algorithm. The traditional watershed al-
gorithm often causes over-segmentation in medical images. To over-
come this problem, the MLP is trained to extract features of the liver 
region. These extracted features are used to monitor the quality of the 
segmentation performed by the watershed algorithm. 

In Mostafiz et al. [85] the combination of a CNN and a SVM were 
used for the classification of fatty liver lesions. Deep CNN features were 
combined with local binary pattern and Gabor wavelet features in 
Mostafiz et al. [85] to extract features from liver ROI. A pre-trained 
VGG19 was fine-tuned and used for this purpose. Feature optimization 
was done to select the most relevant features and discard the irrelevant 
features. Besides, the Bayes rule selected the most informative image 
patches to improve processing time. The optimized feature set was then 
fed to a SVM classifier that classified the samples into two types: normal 
liver and liver lesions. 

Todoroki et al. [89]; Fabijańska et al. [88]; Wojciechowska et al. [90] 
proposed methods to detect lesions from the segmented liver. In 
Todoroki et al. [89], the combined random walk and computation 
anatomy models were used to segment the liver. The liver lesions that 
belong to multiple classes like Cyst, FNH, cholangio cellular carcinoma 
(CCC), HCC and metastasis (Meta) were detected using the DCNN 
model. Fabijańska et al. [88] employed the combination of statistical 
shape models, thresholding and using active contours to segment the 
liver and the U-net based model to detect the lesions. The DCE-MRI 
volumes processed by averaging all three phases (before contrast in-
jection, arterial phase, late phase) to a grayscale image is used as an 
input. Wojciechowska et al. [90] is distinct from Todoroki et al. [89]; 
Fabijańska et al. [88] by using a DL centered solution to segment the 
liver and traditional approaches to detect the lesions. In Wojciechowska 
et al. [90], the liver parenchyma excluding vessels is segmented using 
CNNs. Morphological operations are used to close holes such that the 
parenchyma includes the vessels and the cysts. The method employed 
intensity thresholding and circularity measures to detect the cysts inside 
the segmented liver region and differentiate the cysts from the blood 
vessels, bile ducts and other artifacts. 

The methods from Qin et al. [77], Lu et al. [100], Zheng et al. [138], 
Ahmad et al. [92], Guo et al. [98], Todoroki et al. [89] were evaluated 
on CT, the methods from Irving et al. [99], Mitta et al. [103], Masoumi 
et al. [101], Fabijańska et al. [88], Wojciechowska et al. [90] were 
evaluated on MRI and Wu et al. [159], Hassan et al. [86], Mishra et al. 
[143], Mostafiz et al. [85] on ultrasound images . 

8.2.4. Ensemble classifier 
Kitrungrotsakul et al. [141], Kitrungrotsakul et al. [84], Kitrun-

grotsakul et al. [82] proposed a 2D multi-pathway network for vessel 
segmentation where the method is trained for binary classification based 
on patches extracted from three planes: sagittal, coronal and axial. Three 
separate CNNs are used to extract features from each of the planes and 
then the features from all the three CNNs are concatenated using a fully 
connected layer. The trained DNN classifies each voxel into vessel or 
non-vessel. The final segmentation image is gathered from the classified 
pixels/voxels. Kitrungrotsakul et al. [84] and Kitrungrotsakul et al. [82] 
were evaluated on clinical CT data. In Kitrungrotsakul et al. [141], the 
raw CT images were used as the input but Kitrungrotsakul et al. [84] and 
Kitrungrotsakul et al. [82] use a vesselness probability map as input 
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rather than raw CT image, which makes it robust and insensitive to the 
intensity changes. Using vesselness probability as the input seems to 
improve the segmentation results. In Kitrungrotsakul et al. [82], the 
method was validated extensively with more experiments on multiple 
datasets including 3DIRCAD and VascuSynth [180,181]. 

Wang [37] and Chlebus et al. [124] proposed a similar method using 
a tri-planar FCN based network for the segmentation of the liver and 
liver tumors. The architectures consist of three FCNs in which the 
patches from slices of sagittal, coronal and axial planes from the image 
volume are fed as input. In Wang [37], the liver is segmented initially 
and the resultant liver regions from all three planes are given as input to 
the three different FCNs which outputs the liver lesions. In Chlebus et al. 
[124], both the liver and tumor regions are segmented simultaneously 
by the U-net like FCNs followed by the thresholding and largest con-
nected component analysis for the liver. In addition, the model uses 
different resolutions to accumulate the local and global features and 
employs skip connections. In both Wang [37] and Chlebus et al. [124], 
the outputs from the three FCNs are combined in the final step. Using the 
tri-planar approach shows a better segmentation performance for both 
the liver and the tumor in terms of DICE [124] and VOE [166]. The 
methods from Wang [37] and Chlebus et al. [124] were evaluated on the 
3DIRCAD CT dataset, and clinical MRI dataset respectively. 

Sun et al. [133] and Bi et al. [122] proposed a multi-channel FCN 
(MC-FCN) network for the purpose of segmentation. The network pro-
posed by Sun et al. [133] is based on AlexNet [182] and has three input 
channels that can be used to extract features from three CE-CT images 
with independent parameters. The output feature maps from the three 
FCN channels are given to a softmax classifier to obtain the final pre-
diction score. The method proposed in Bi et al. [122] works by 
embedding an FCN in a stacked architecture (stacked FCN architecture 
with multi-channel learning (SFCN-ML)) for learning the foreground 
ROI features and background non-ROI features separately and then 
integrating these different channels to produce the final segmentation 
result. The proposed method is said to apply to different types of ROIs 
including lesions and anatomical structures, various ROI locations, 
grayscale and color images, ROIs with varying contrasts/textures and 
regular as well as irregular shapes/boundaries. Mitrea et al. [87] com-
bined B-mode US and CEUS to classify HCC lesions. The experiments 
were done using multiple DL architectures or classifiers to analyze the 
impact of combining both images directly or performing fusion at the 
feature level, classification level or decision level. Best results were 
obtained when both modalities were combined compared to individual 
modalities. Moreover, the arithmetic mean of the probability values 
from the classifiers used at the decision level combination was found to 
be the best performing. The effects of preprocessing and enhancement 
were studied for the task of hepatic vessel segmentation in Survar-
achakan et al. [144]. The combination of conventional preprocessing 
techniques, hessian-based vesselness filters (Frangi, Hessian, Sato, 
Meijering) and gamma filtering techniques were studied. The 3D U-net 
model was trained on each vesselness filtered image separately and the 
outcome is ensembled. Fusing the outcome improved the segmentation 
results significantly. 

Meine et al. [102] investigated the performance of several 2D and 3D 
U-net based architectures for liver segmentation in CT images. It is 
possible to train and apply each of the FCN architectures mentioned in 
this paper on many voxels at once by feeding larger patches into the 
networks. The aforementioned methods were evaluated on a liver CT 
dataset and showed that an ensemble classifier of three 2D U-nets 
trained on orthogonal slices performed better than single 2D or 3D U- 
nets. 

8.2.5. End-to-end learning approach 
Li et al. [131], Frid-Adar et al. [163], Huang et al. [139], Tang et al. 

[110], Yu et al. [147], Schmauch et al. [156], Prasad et al. [107], 
Pandey et al. [105], and Gibson et al. [97] proposed Deep CNNs and 
Ahmad et al. [91] proposed deep-stacked auto-encoder (DSAE) for the 

purpose of segmentation. Li et al. [131] is a patch-based method in 
which patches containing lesions and normal tissues were used as pos-
itive and negative samples to train the seven-layer DCNN. The model 
segments liver tumors in CT images. Frid-Adar et al. [163] differs from Li 
et al. [131] by acquiring the patches of non-lesions extracted from the 
normal boundary and normal-interior as two classes. The probabilities 
from normal-boundary and normal-inside patches are combined and the 
final classification is lesion and non-lesion using a softmax classifier. 
This modeling seems to be more effective for learning from the patches. 
The images with different scales are used to obtain both the local fine 
details and global spatial information. 

The methods proposed in Prasad et al. [107]; Huang et al. [139]; 
Thomson et al. [145]; Pandey et al. [105] are based on U-net models. 
Prasad et al. [107] proposed a modified version of U-net architecture for 
liver parenchyma segmentation in CT images. The primary objective of 
the proposed work seems to be to develop a network trained with a 
limited amount of data. The network is trained using a 3Dircadb dataset 
avoiding overfitting by following certain strategies such as adding 
Gaussian noise and early stopping criteria. Huang et al. [139] proposed 
an automatic method for robust liver vessel extraction from CT images 
using a dense 3D U-net architecture and a variant of the dice coefficient 
cost function. The method uses a dense 3D U-net architecture and data 
augmentation for training with few samples and incomplete annota-
tions. 3D U-net was applied to vessel segmentation in the liver US and 
2D stacked US images in Thomson et al. [145]. The number of filters in 
the original U-net was reduced in their approach due to computational 
load. The method performed worse than 2D segmentation methods 
[143], particularly in segmenting small bifurcations and branches near 
the edge of the volume. Furthermore, the model was trained on a small 
dataset. Pandey et al. [105] proposed a semi-supervised contrastive 
learning (CL) [183] framework based on the attention U-net for 2D 
segmentation tasks. The model is trained for the semantic segmentation 
task and the class-wise patches are obtained via pseudo-labels (the pixels 
belonging to the prominent class are retained in each sampled patch and 
the rest of the pixels are masked). The framework is trained on pseudo- 
labels of patch-wise embeddings. For better feature clustering, consis-
tency regularization combined with CL is proposed. 

A study aimed at developing liver segmentation techniques for CT of 
selective internal radiation therapy (SIRT) patients was presented in 
Tang et al. [110]. The proposed network is a modification of the 3D CNN 
which processes data in a multi-resolution fashion. Tang et al. [110] has 
an additional pathway that makes the CNN learn contextual information 
from the abdomen. In Gibson et al. [97], the liver is automatically 
segmented from laparoscopic videos using deep fully convolutional re-
sidual networks with multi-resolution loss functions. A combination of 
unsupervised feature learning and fine-tuning was applied in Ahmad 
et al. [91]. The features from the images are learned using DSAE in an 
unsupervised learning approach and fine-tuned using a softmax layer. 
Patch-based learning was adopted instead of pixel-by-pixel mapping 
which contributed to the reduction in the complexity of the training 
algorithm. 

CNN based methods were proposed to classify liver lesions from CT 
[148,160], MR [158,161], and ultrasound [152,154,156] images. Ben- 
Cohen et al. [148] proposed a pixel-wise classification of CT images 
that included both benign and malignant hepatic lesions. The proposed 
model is U-net based which accepts a CT image as the input and outputs 
a per-pixel six class segmentation (background, interior liver, liver 
boundary, metastasis, hemangioma and cyst). Zhang et al. [161] pro-
posed a method for the classification of the liver tissue types on 3D MR 
images consisting of one T2 weighted MR image and three T1 weighted 
dynamic contrast-enhanced images. The method classifies the liver pa-
renchyma and the tissue that consists of viable tumors and necrosis. A 
novel CNN was introduced to capture the contextual information and 
perform classification of the local patch region. The method adopted a 
U-net architecture where the model takes the input patches sampled at 
different resolutions and predicts the output. The use of multi-resolution 
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input, auto context design and multi-phase training procedures 
improved the overall performance when compared with traditional U- 
net architecture. Trivizakis et al. [158] proposed a 3D CNN-based ar-
chitecture for the classification of liver tumors as primary or metastatic 
from DW-MRI volumes. The proposed 3D CNN shows a better perfor-
mance compared to 2D patch and slice-based methods. Yasaka et al. 
[160] investigated the diagnostic performance of CNNs for the differ-
entiation of liver masses on dynamic contrast-enhanced CT. The 
research included the following five categories of liver masses; classic 
HCCs; malignant liver tumors; indeterminate masses; liver hemangi-
omas and cysts. During training, five different models were obtained for 
un-enhanced, arterial, delayed phase, triphasic, combined arterial/ 
delayed CT images. The model trained on triphasic images showed 
better performance followed by combined arterial/delayed compared to 
the single-phase images. In Marya et al. [152], the ResNet50V2 initial-
ized with ImageNet weights was used for extracting features from ul-
trasound images to classify malignant and benign lesions. A 3D-CNN was 
proposed Pan et al. [154] to identify FNH and HCC using temporal 
features in US videos. By incorporating temporal information with 
spatial features, the receptive field of the proposed CNN could be 
enlarged which results in higher classification accuracy. Sîrbu et al. 
[157] applied DCNN to classify FLL into five categories [3]: three ma-
lignant including HCC, Hypervascular Metastases (HYPERM), Hypo-
vascular metastases (HYPOM) and two benign including Hemangioma 
and FNH. The authors performed empirical experiments to come up with 
optimal DCNN architecture by analyzing architecture complexity, 
hyper-parameters and optimization methods. This work was extended to 
diagnose FLLs using DNN and a hard voting scheme in Căleanu et al. 
[149]. A novel evaluation strategy leave-one-patient out (LOPO) was 
proposed in this work. Schmauch et al. [156] proposed a CNN-based 
approach to detect liver lesions, determine the malignancy and char-
acterize the lesion type. The model is trained for all three tasks at the 
same time. ResNet50 is used for feature extraction; The images are fed to 
ResNet50 that output features which are further fed to the “attention 
block”; this block learns to identify abnormalities in images. The same 
features are fed to another part of the network which takes an average of 
feature maps on the designated regions. Finally, the densely connected 
layer predicts to which of the seven categories the detected lesions 
belong. The categories include malignancy, metastasis, carcinoma, cyst, 
and a few others. The method was evaluated on Journees Francophones 
de Radiologie 2018 (JFR18) dataset [184]. 

8.2.6. Atlas registration 
Vivanti et al. [135] and Vivanti et al. [136] proposed a new approach 

for liver tumor segmentation in follow-up CT studies, which is quite 
essential in liver tumor therapy. As an initial step, the follow-up scans 
are non-rigidly registered to the baseline scans and the tumors were 
delineated from the follow-up scans after the registration. This is fol-
lowed by using a CNN as a voxel classifier, which classifies and segments 
the known liver tumor voxels in the follow-up scans. The morphological 
operations are used to post-process the segmentation. In addition to 
tumor segmentation, Vivanti et al. [136] addresses tumor burden 
quantification. The registration of baseline and follow-up scans detect 
changes and regions of new candidate tumors in the follow-up scans. The 
candidate tumors are detected and segmented using a Chan-Vese level 
set method. Finally, the RF method is used for the classification of new 
candidate tumors. This method advances the method presented by 
Vivanti et al. [135] in which, only known tumors are segmented from 
the follow-up CT scans and new tumors are not detected. 

FCN-based 2.5D approach was proposed in Jansen et al. [164] to 
segment the liver in six-phase Dynamic Contrast-Enhanced (DCE)-MRI 
images. Both DCE-MRI and DW-MRI images from the same patient were 
used to detect liver metastases inside the segmented liver. DW-MRI and 
DCE-MRI data are registered for motion correction. The proposed seg-
mentation part of the network consisted of a dilated FCN model and 3D 
hole filling was applied on the resultant probability maps. For 

metastases detection, a two-path FCN was proposed; one path to 
accepting DCE-MR images and the second to feed DW-MRI images. 
Morphological closing and then opening were used for post-processing. 
Lee et al. [165] proposed an HCC lesion detection network for CECT 
images. As a first step, the liver is segmented from portal venous phase 
images using FCN-VGG16. For the learning 12 bit images are converted 
into 24-bit RGB images. Secondly, the segmented liver ROI is registered 
to all four phases using initial rigid registration and B-spline based non- 
rigid registration. For transfer learning, the registered 12-bit greyscale 
3D volume images are converted to 24-bit 2D RGB images. The artery, 
portal venous, and delay phases are converted to 8-bit greyscale images 
and filled into the R, G, and B channels, respectively, resulting in a 24-bit 
RGB image for multi-phase learning. This is used as an input to 
DetectNet which is a modification of Inception v1 for HCC detection 
where the classification and detection are performed at the same time in 
parallel. As a postprocessing step, a 3D connected component method is 
used. Bousabarah et al. [162] developed a method based on DCNN for 
the liver and HCC segmentation. The main objective of this method was 
to automate the application of Liver Imaging Reporting and Data System 
(LI-RADS), where it is used for HCC diagnosis. The image sequence of 
venous and delayed phase images are registered onto arterial phase 
using similarity transforms with B-spline interpolation, and then used to 
train the model. The results from the DCNN are further processed using 
cluster thresholding and RF classifier to reduce false positives. 

8.2.7. Detection guidance 
Hoogi et al. [128], Tang et al. [109], Bellver et al. [119] proposed 

detection based segmentation approaches based on various CNN archi-
tectures and the methods were evaluated on CT images. In all three 
methods, the position of the liver is accurately marked with 2D 
bounding boxes which are further given to the segmentation model as 
input. The method proposed in Hoogi et al. [128] includes marginal 
space learning trained by Adaboost to detect the organs (liver, lymph 
nodes) and lesions. Then, the combined segmentation model incorpo-
rating generalized CNNs and active contour methods is applied to 
segment the lesions. It is also effective in handling lesions with low 
contrast and substantial heterogeneity within other organs. The method 
has a limitation when the lesions are heterogeneous. Tang et al. [109] 
proposed a detection and segmentation laboratory (DSL), where the 
detection is performed by the Faster R-CNN model, which produces a 
bounding box of the liver, and the DeepLab uses the pixels inside the 
bounding box to segment the liver. Bellver et al. [119] implemented an 
approach based on the Deep Retinal Image Understanding (DRIU) 
framework, a VGG-16 based network. The aforementioned framework 
has proven to be successful in the segmentation of the blood vessels and 
optical disk in eye fundus images. Once the predicted 3D bounding box 
was placed around the liver, the different slices cropped by this 
bounding box were segmented by the lesion segmentation network. For 
the post-processing stage, a 3D-CRF is added which models the condi-
tional distribution of the output prediction. 

8.2.8. Domain adaptation 
In single-modality or cross-modality domain adaption (DA), it is 

assumed that the tasks and domain feature space remain the same 
whereas, source and target marginal distributions are different. The 
probability of rising in test error may occur in proportion with distri-
bution difference between the source and target domain, often called the 
“domain shift” problem. DA is considered as a possible solution for 
addressing the domain shift or heterogeneity among medical images, 
thereby reducing the distribution differences between different but 
related domains. For cross-modality liver segmentation using DA, Yang 
et al. [115] proposed DA via Disentangled Representations (DADR). A 
shared domain-invariant content space and domain-specific style space 
are used here, where the images from each domain are embedded and 
DA performed in domain-invariant space. For multi-domain liver seg-
mentation, You et al. [117] introduced a novel unsupervised DA method 
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where the authors used Wasserstein distance to obtain domain invariant 
representations. The method involves incorporating 3D volumetric in-
formation and a content discriminator that distinguishes extracted 
content-level representations between different domains. For enforcing 
many-to-many mappings, the method uses a cross-cycle consistency loss. 
An example of Domain Agnostic Learning (DAL) where the objective is 
to learn from a source domain and map to arbitrary target domains, 
Yang et al. [116]proposed Domain-Agnostic Learning framework with 
Anatomy-Consistent Embedding (DALACE). The objective is to learn a 
disentangled representation that is invariant of different imaging mo-
dalities but also preserving anatomical structures. This method achieved 
an average dice of 0.847 for the DA task and 0.794 for the DAL task. 
Utilizing the efficiency of DA in a broader spectrum, Fu et al. [96] 
proposed a method on Domain Adaptive Relational Reasoning (DARR), 
where the objective was to perform 3D abdominal multi-organ seg-
mentation in datasets collected from different scanners and protocols. 
To obtain the spatial relationship, a puzzle module has been combined 
with the segmentation task for recovering CT images from shuffled 
patches. Pham et al. [106] uses zero-shot DA, where the segmentation 
model has been trained solely on the source domain and uses prior 
knowledge on both CT and MR for obtaining general features. A vanilla 
U-net with fixed Sobel kernels that enhances contour information and a 
convolutional autoencoder that learns anatomical priors were applied 
for the implementation. The method was extensively evaluated on 
CHAOS, TCIA [185], and Synapse1 datasets. Zhou et al. [118] proposed 
anatomy-guided DA network for segmentation (APA2Seg-Net), without 
target modality ground truths. The method utilizes conventional CT 
images for training the robust CT CBCT/MR segmenters (segmentation 
model). A robust point matching (RPM) method to estimate the multi-
modal registration information where RPM is guided by the anatomic 
information extracted by the CBCT/MR segmenters. APA2Seg-Net is a 
cyclic adversarial two-stage network, one with anatomy preserving DA 
network and a segmentation network. There exist five networks 
including two generators, two discriminators and one segmenter where 
one of the generators adapts images from CT to CBCT/MR domain, and 
the other adapts inversely whereas the discriminator identifies between 
real CBCT or adapted ones. 

8.3. Patch processing 

In the vast majority of the papers reviewed, DL models are trained on 
whole 2D slices or 3D patches for various tasks. Patch-based learning 
was adopted in Ben-Cohen et al. [120]; Qin et al. [77]; Frid-Adar et al. 
[163]; Kitrungrotsakul et al. [84]; Chlebus et al. [124]; Meine et al. 
[102]; Kitrungrotsakul et al. [82]; Li et al. [131]; Zhang et al. [161]; 
Romero et al. [155]; Trivizakis et al. [158]; Ahmad et al. [91,92]; Fu 
et al. [96]; Li et al. [132]; Liang et al. [150] to reduce the complexity of 
the training algorithm by using small patches instead of the entire vol-
ume. The pixels inside the non-lesions and their boundaries are het-
erogeneous so Frid-Adar et al. [163] extracted the patches of non-lesions 
from the boundary and their interior as two different classes. 

In Bellver et al. [119]; Han [127]; Ben-Cohen et al. [120] the models 
were trained on three or five consecutive slices providing significant 
information in the axial depth direction in addition to the contextual 
information from the orthogonal in-plane direction. The models produce 
the output segmentation map corresponding to the center slice by 
incorporating spatial information from the neighboring slices. In Christ 
et al. [125]; Dou et al. [94]; Bellver et al. [119]; Ouhmich et al. [81], 
though the DL models were trained on 2D slices or patches, 3D post- 
processing techniques like CRF are used to obtain the depth informa-
tion. Both the methods using consecutive slices or 3D post-processing on 
2D methods are referred to as 2.5D methods. Compared to 3D methods, 
the computational complexity in 2.5D methods is less despite obtaining 

some depth information. Different from the aforementioned methods, 
[159] extracted Time Intensity Curves from the 2D frames of CEUS 
videos and used it as input to the model to distinguish tumor vs liver 
parenchyma. 

8.4. Loss function 

To tackle class imbalance in the dataset and to optimize the training 
model accuracy, different loss functions were proposed. In Çiçek et al. 
[171]; Jiao et al. [80]; Qin et al. [77]; Trivizakis et al. [158]; Jansen 
et al. [164], cross-entropy(CE) loss or its variant were used. The 
weighted voxel-wise CE loss [171], improved class equilibrium CE loss 
[80], sparse cross-entropy CE loss [158] were shown to perform better 
than the regular CE loss functions. Variants of Dice loss were used in 
Chlebus et al. [124]; Huang et al. [139]; Yu et al. [147]; Huang et al. 
[139]. Soft Dice loss [124] and weighted Dice loss [147] were shown to 
be better than normal Dice loss, particularly in terms of segmenting 
smaller structures. The joint loss functions combining multiple loss 
functions were proposed in Kaluva et al. [130]; Liang et al. [150]; Jiang 
et al. [129]; Xia et al. [112]; Zhou et al. [118]; Mitta et al. [103]; Li et al. 
[76]. In Kaluva et al. [130] the combination of the spatially weighted 
cross-entropy loss function and the DICE overlap coefficient is used. A 
new joint loss function that combines both the inter-loss and intra-loss 
between the classes is proposed in Liang et al. [150]. In Jiang et al. 
[129], the joint dice loss function is proposed to train the liver locali-
zation network and focal binary cross-entropy is used to fine-tune the 
tumor segmentation network. In Xia et al. [112] segmentation-based 
loss, content-based loss and adversarial loss are combined into a single 
loss function of Wasserstein GAN to assess the results. In [118], the 
combination of adversarial loss, cycle consistency loss, segmentation 
loss, identity loss and anatomy preserving loss together with Modality 
Independent Neighborhood Descriptor loss and correlation coefficient 
loss was used. The joint loss function using N-cuts loss and Recon-
struction loss was used in [103]. The N-cuts and the reconstruction loss 
were used to optimize the encoder and decoder models respectively. Li 
et al. [76] uses a hybrid loss function combining soft Dice coefficient 
loss, focal loss and pixel-wise cross-entropy loss. Gibson et al. [97] 
proposed multi-resolution loss functions. Other loss functions such as 
the negative-log likelihood [82,84,94,131], non-normalized softmax 
[98] and SensSpec [99] loss functions were observed. 

8.5. Post-processing 

In the segmentation task, post-processing methods are used to refine 
the segmentation obtained from the DL model. The connected compo-
nent analysis [123,127,129,130,147,165] and the morphological oper-
ators [79,91,121,130,135,164] are the most used post-processing 
methods followed by 3D CRF [81,94,103,119,125]. Kaluva et al. [130] 
utilized both the connected component analysis and morphological 
operations to further improve the segmentation results. 3D CRF is also 
used in some methods [125,126] to account for 3D information 
involving 2D DL models to get the initial segmentation. In the methods 
involving the combined approach, the traditional segmentation methods 
like active contour models [92,98], deformable models [138] and graph- 
cut methods [100] were used to refine the segmentations obtained from 
the DL models. The papers show that the post-processing methods 
improve the segmentation performance obtained from the DL models. 

9. Discussion 

Automatic precise detection, classification and delineation of the 
liver, lesions and relevant anatomical structures like major vessels is 
critical for computer-assisted diagnosis and treatment planning. Due to 
the availability of powerful computing machines, advancement in al-
gorithms and digitization of medical images, DL methods have become 
widely used for medical image analysis. In the last decade, nearly 90 1 https://www.synapse.org/#!Synapse:syn3193805/wiki/217752. 
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papers were published exclusively in DL-based liver image analysis. The 
intention to use DL-based methods is not just a trend, but also due to its 
high competence. The DL-based methods outperformed other traditional 
and machine learning approaches for liver segmentation ([94,95]; 
[77,81]) and lesion classification tasks [86,91,153,159]. 

9.1. Best performing methods 

The 91 papers reviewed in this article (Tables A.1 to A.5) have been 
thoroughly analysed. The publications were categorized based on the 
methodology used (see Section 8.2). Even though the disparity in testing 
datasets e.g., public and private, and metrics reporting, we rank the 
performance of the proposed solutions based on the following criteria: 

• segmentation performance is measured in terms of the Dice score, 
• whereas classification and detection solutions are ranked based 

on the accuracy. 
Both Dice score and accuracy are the most commonly used metrics, 

in each respective task. 
In the tasks of liver segmentation, the three top methods based on 

Dice score were the following: Li et al. [76], Qin et al. [77], and Hu et al. 
[78]. Though DL-based methods have been proven to better perform 
compared to non-DL methods, the way data is handled, processed and 
fed to the network plays a crucial role. To the writers’ knowledge, the 
liver segmentation method presented by Li et al. [76] achieved better 
results because of the multi-scale feature extractor strategy. Hence, 
simultaneously providing global and local context to the network. The 
same hybrid model strategy is followed by Hu et al. [78], which ranked 
third. However, unlike Li et al. [76], the latter did not use deep super-
vision and attention to extract the relevant features at the different 
scales. Instead, the network was trained to find the most relevant fea-
tures. The method presented by Qin et al. [77], ranking second, aimed 
for a combined approach. However similar to the two aforementioned 
solutions in the sense that Qin et al. [77] also used a smart preprocessing 
of the images to use the most relevant features. Here superpixel patches 
were initially classified into interior of the liver, liver boundary or outside of 
the liver, using multimodal classification. Based on information entropy 
content, the three categories were sampled to build the training batches 
with patches containing relevant information. The final output was a 
probability map of the parenchyma boundary. 

For lesion segmentation, the three best performing solutions were 
those presented by Abdalla et al. [79], Ouhmich et al. [81] and Li et al. 
[131]. Abdalla et al. [79] used a hybrid network by incorporating both 
the inter-slice and intra-slice features, resulting in better lesion seg-
mentation. Whereas solutions by Jiao et al. [80] and Ouhmich et al. [81] 
share the use of cascaded methods, where two consecutive CNNs are 
used to segment both the liver and the tumors in CT volumes. 

For the vessel segmentation task, the research done by Kitrun-
grotsakul et al. [82], Kazami et al. [83] and Kitrungrotsakul et al. [84] 
ranked the top three. The first and third-ranking methods used an 
ensemble approach where the vesselness probability maps are used as 
the input making the methods more robust and insensitive to CT in-
tensity changes. Kitrungrotsakul et al. [82] aimed for a patch-wise 
classification pre-processing step, improving the detection and seg-
mentation of smaller vessels, showing better outcome than Kitrun-
grotsakul et al. [84]. The second-ranking method [83]followed a multi- 
task approach using a single encoder and multiple decoders for vessel 
extraction, center voxel detection and tree construction. This hybrid 
approach results in accurate extraction and separation of both the he-
patic and portal veins. 

Regarding classification, the three best algorithms were the 
following: Mostafiz et al. [85], Hassan et al. [86] and Mitrea et al. [87]. 
The first [85] and the second [86] highest-ranking methods incorpo-
rated computer vision algorithms with DL approaches, as a combined 
method. In Mostafiz et al. [85], the local binary patterns and Gabor 
wavelet features are fused with the CNN extracted features, and further 
classified using a SVM. This work showed as well that the use of edge- 

preserving modified anisotropic diffusion filtered images as input to 
the model yielded an improvement of precision in the classification task. 
The combined strategy using level-set and fuzzy-c-means for segment-
ing, and auto-encoders for classifying the lesions improved the accuracy 
of lesion classification in Hassan et al. [86]. Unlike Mostafiz et al. [85] 
and Hassan et al. [86], the third highest-ranking method introduced by 
Mitrea et al. [87] for the liver lesion classification tasks utilized a 
ensembling approach. The probability maps from the different classifiers 
trained on CEUS and B mode images at the decision level are ensembled, 
making the model more efficient in classifying the HCC lesions. 

And lastly, the best performing models in the detection tasks are 
Fabijańska et al. [88], Todoroki et al. [89] and Wojciechowska et al. 
[90]. All three methods used a similar strategy (combined approach) by 
detecting the lesions from the segmented liver. In Fabijańska et al. [88], 
and Todoroki et al. [89], the liver is segmented using the computational 
and statistical shape models respectively whereas the lesions are 
detected using DNNs. In addition, Fabijańska et al. [88] averaged three 
phases images to a grayscale MR image and used it as an input which 
aids in better detection accuracy. Wojciechowska et al. [90] is distinct 
from the top two methods [88,89] by using DL centered solution to 
segment the liver, and the combination of intensity thresholding and 
circularity measure to detect lesions. 

9.2. Discussion on architectures 

It is worth highlighting the cascade strategy for lesion segmentation. 
This strategy improves the convergence of the model as well as the 
generalization of the task, by training each step to tackle tasks following 
a hierarchical relationship. For instance, the two steps cascade pipeline 
is preferred by those publications where both the liver and the lesions 
are segmented. The first model segments the parenchyma, reducing the 
search space for the second model, in charge of segmenting the lesions. 
In ([81,108], a model trained to simultaneously segment all the struc-
tures are compared to the cascaded approach, hierarchically segmenting 
structures. In both([81,108], the cascaded approach performs better by 
reducing the false positives. In [108], the cascaded approach reduces the 
search space and improves segmentation accuracy even for the smallest 
structures like vessels. On average, the method achieved a 7.5 % 
improvement in DICE score per organ using the two-stage hierarchical 
approach. 

In contrast to regular 3D models, the ensemble approach can 
improve the prediction performance using fewer parameters. This is 
because the model explores the three orthogonal slices (sagittal, coronal 
and axial) instead of full volumes. This strategy seems to work well for 
the vessel segmentation task [82,84]. We also observe similar trend for 
lesion segmentation tasks in Chlebus et al. [124] and Wang [37]. 
Chlebus et al. [124] reported the use of ensemble classifier with tri- 
planar approach yielded a slightly better dice score for both the liver 
and liver tumor segmentation. In Wang [37], the tri-planar approach 
reduces the VOE from 8.9 to 6.7 for the liver segmentation and from 16.3 
to 13.3 for the lesion segmentation. Similar to tri-planar/multi-planar 
input, using multiphase (arterial, venous and delayed phase com-
bined) [81,88,133,160] and multi-scale [121,161] input shown to 
improve the prediction score. 

By comparing the evaluation metrics, we realize that the methods 
using hybrid models and combined approaches are performing well for 
the liver segmentation and lesion classification tasks. From the experi-
ments reported in the papers reviewed, we observe that using hybrid 
models can improve the segmentation performance [93] along with 
faster convergence, overcome the vanishing gradient problem, improve 
performance [94] and increase the processing speed [114]. The com-
bined approach using the combination of DL models and various com-
puter vision algorithms has also been shown to improve the predictive 
power compared to standalone DL models or simultaneous approach 
[77,98]. [77] outperformed U-net (DL only) and other segmentation 
approaches like active contour, level set, and graph cut. In Guo et al. 
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[98], their solution has a 1.8 % improvement in DICE score compared to 
the purely FCN method. 

9.3. Discussion on the research lines 

The vessel segmentation papers mentioned in the review show a 
preference toward the segmentation of the whole vascular tree of the 
liver. Only Yu et al. [147] and Kazami et al. [83], are DL based ap-
proaches to segment hepatic and portal veins separately, which is clin-
ically relevant. Being able to differentiate between the hepatic and 
portal vein system helps the clinician to better understand the structural 
and volumetric anatomy, especially relevant for treatment planning. 
Future research should aim to both the segmentation and classification 
of the three hepatic vascular systems. 

Regarding the dimensionality of the input, the 2.5D methods using 
either tri-planar input or three or five consecutive axial slices as input 
had better performance both in terms of computational needs and the 
dice score compared to 2D or 3D approaches [102]. By analyzing a 
smaller set of neighboring slices, 2.5D is a tradeoff between 2D analysis, 
with lower computational footprint but only local information, and 
complete 3D, which provides global information but demands more 
resources. 

Considering the modalities used in these papers, most of them are 
based on CT images. Very few papers addressed methods focused on 
MRI, US or laparoscopic videos. In addition to the clinical perspective, 
the main reason could be the availability of the labeled data which is 
crucial for training DL models. Publicly available CT labeled datasets for 
the liver have a major effect on the number of papers published using 
CT, whereas, for MRI and US, there is a lack of publicly available labeled 
data. If more labeled datasets would be publicly available for all the 
modalities, then the algorithms can be tested on multi-modality data 
which is crucial from the clinical perspective. 

Though the DL-based approaches using different methodologies and 
optimization techniques [186] could improve the prediction perfor-
mance, still there is a bottleneck concerning the inhomogeneity of the 
medical images. The developed methods have some limitations when 
the liver tissue is minimally visible and has high inter-patient variability 
in liver appearance [99], unable to segment structures in low dose and 
low contrast images [110], problems in segmenting tumors with fuzzy 
borders and heterogeneous intensity [131]. To use the developed 
methods for CAD or treatment planning in clinical routine, the methods 
developed should be adaptable and reproducible and DL models could 
be trained with additional varying/ inhomogeneous images. 

Due to the clinical importance of image-based analysis of the liver 
and its lesions and vessels, this review summarizes the existing algo-
rithms and their performance for various image analysis tasks. 

10. Future research and directions 

From the analysis of the 91 articles included in this review, including 
methodology, scope and performance, the authors consider of major 
interest the following research lines:  

• Segmentation and classification of the different vascular systems of 
the liver.  

• MRI, US and laparoscopic video are the modalities least researched, 
because of the availability of data material. Hence, disclose of 
research data on these image modalities would be of great benefit, 
enhancing the research on these modalities as well.  

• Research on methods to improve robustness against the variability of 
image quality.  

• Promote the use of reference evaluation datasets to better compare 
the performance of the reported solutions, in a standardized way. 

11. Conclusion 

From the discussion, incorporating necessary information into the DL 
models like shape and edge contours, local and global context infor-
mation, using multi-scale, multi-phase, multi-plane inputs, pre- and 
post-processing methods will highlight the relevant structures by sup-
pressing the background which can significantly improve the 
performance. 

The DL-based liver lesion segmentation and classification ap-
proaches developed so far seem to be promising but we see there is still 
room for improvement especially to tackle the challenges related to the 
inhomogeneity of the medical images and the liver structures. To apply 
the developed methods in clinical use, the researchers should also focus 
on augmentation techniques to synthetically develop huge variations of 
realistic labeled medical data which can be further used to train the DL 
models. 

Liver vessel segmentation and classification remain a fairly unex-
plored research area for DL-based medical image analysis. Current DL- 
based methods are mainly focused on just segmenting the hepatic ves-
sels as a whole due to the complexity of the vessel structures. Future 
research should focus on segmenting or classifying the hepatic and 
portal structures separately which is of high clinical relevance. 

Most of the existing research papers focus on liver segmentation from 
CT scans. However, especially for computer-assisted liver resections, it is 
very important to have methods capable of multi-modality liver image 
analysis. This need together with the increasing interest in minimally 
invasive surgery means we might see an increase in research publica-
tions aiming to expand the DL methods onto modalities such as US, MRI 
or PET. Further research in the domain adaptation and transfer learning 
networks can address this challenge. 
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Appendix A. Collection of articles surveyed  

Table A.1 
Articles reviewed on liver segmentation task: S - segmentation, Li - liver parenchyma, MO - multiple organ, Modal - modality, Dim - dimension, DSC - DICE score, ACC - 
accuracy, VOE - volume overlap error, D1 - dataset 1, D2 - dataset 2, D3 - dataset 3.  

Author Tasks Method Modal Dim DICE/ACC/VOE Dataset 

Ahmad et al. [91] LiS SA CT 2D DSC-90.1 SLiver07 
Ahmad et al. [92] LiS CA CT 3D DSC(D1, D2)-(91.83, 94.8) 3DIRCADb, SLiver07 
Chung et al. [93] LiS HM CT 3D DSC-96 SLiver07, 3DIRCADb 
Dou et al. [94] LiS HM CT 3D VOE-5.42 SLiver07 
Dou et al. [95] LiS CA CT 3D VOE-5.37 SLiver07 
Fu et al. [96] MOS DA CT 3D DSC-91.55 Synapse, LiTS 
Gibson et al. [97] LiS SA LV 2D DSC-95 Clinical 
Guo et al. [98] LiS CA CT 3D DSC-95.8 SLiver 
Hu et al. [78] LiS HM CT 3D DSC-97.25 SLiver07, Clinical 
Irving et al. [99] LiS CA MR 2D DSC-95 UK Biobank 
Li et al. [76] LiS HM CT, MR 2D DSC(CT)-98.1, DSC(MR)-93.5 LiTS, CHAOS 
Lu et al. [100] LiS CA CT 3D VOE(D1, D2)-(5.9, 9.36) Sliver07, 3DIRCADb 
Masoumi et al. [101] LiS CA MR 2D ACC-94 Clinical 
Meine et al. [102] LiS EC CT 2D VOE-5.05 Clinical 
Mitta et al. [103] LiS CA MR 3D DSC-88.1 CHAOS 
Mulay et al. [104] LiS HM CT, MR 2D DSC(CT)-94, DSC(MR)-91 CHAOS 
Pandey et al. [105] LiS SA MR 2D DSC-86.4 CHAOS 
Pham et al. [106] LiS DA CT/MR 3D DSC(D1, D2, D3)-(75.3, 81.7, 69.2) CHAOS, TCIA, Synapse 
Prasad et al. [107] LiS SA CT 2D DSC-94.5 3DIRCADb 
Qin et al. [77] LiS CA CT 2D DSC-97.3 LiTS 
Roth et al. [108] MOS CM CT 3D DSC-95.4 Clinical 
Tang et al. [109] LiS DG CT 2D VOE(D1,D2)-(8.67, 5.06) 3DIRCADb, SLiver07 
Tang et al. [110] LiS SA CT 3D DSC-94 LiTS, MSD 
Wang et al. [111] LiS HM CT, MR 2D DSC-95 Clinical 
Xia et al. [112] LiS HM CT 2D DSC-97 LiTS, Clinical 
P. Xu et al. [113], Z. Xu et al. [68] LiS HM CT 3D DSC-87.1 LiTS, Clinical 
Yang et al. [114] LiS HM CT 3D DSC-95 Clinical 
Yang et al. [115] LiS DA CT/MR 2D DSC-81 LiTS, Clinical 
Yang et al. [116] LiS DA CT/MR 2D DSC-84.7 LiTS, Clinical 
You et al. [117] LiS DA CT/MR 3D DSC-83.4, LiTS, Clinical 
Zhou et al. [118] LiS DA CT, MR 3D DSC(CT)-90.3, DSC(MR)91.8 LiTS, CHAOS   

Table A.2 
Articles reviewed on lesion segmentation task: S - segmentation, Li - liver parenchyma, Le - lesions, Modal - modality, Dim - dimension, DSC - DICE score, VOE - volume 
overlap error, TPR - true positive rate, D1 - dataset 1, D2 - dataset 2.  

Author Tasks Method Modal Dim DICE/VOE/TPR Dataset 

Abdalla et al. [79] LiS, LeS HM CT 2.5D DSC-96.2 LiTS 
Bellver et al. [119] LeS DG CT 2.5D DSC-59 LiTS 
Ben-Cohen et al. [120] LiS, LeS CM CT 2.5D DSC(Li)-89, TPR(Le)-86 SLiver07, Clinical 
Bi et al. [121] LiS, LeS CM CT 2D DSC(Li)-95.9, DSC(Le)-50.01 LiTS 
Bi et al. [122] LeS EC CT 2D DSC-80.71 Clinical 
Chlebus et al. [123] LeS CM CT 3D DSC-65 LiTS 
Chlebus et al. [124] LiS, LeS EC MR 2.5D DSC(Li)-95.1, DSC(Le)-64.7 Clinical 
Christ et al. [125] LiS, LeS CM CT 2.5D DSC(Li)-94.3, DSC(Le)-56 3DIRCADb 
Christ et al. [126] LiS, LeS CM CT, MR 2.5D DSC(Li)-87, DSC(Le)-69.7 3DIRCADb, Clinical 
Han [127] LeS HM CT 2.5D DSC-67 LiTS 
Hoogi et al. [128] LeS DG CT 3D DSC-71 Clinical 
Jiang et al. [129] LeS HM CT 3D DSC(Li)-94.5, DSC(Le)-62 LiTS, 3DIRCADb 
Jiao et al. [80] LeS CM CT 2.5D DSC-96 TCGA-LIHC 
Kaluva et al. [130] LiS, LeS CM CT 2D DSC(Li)-92.3, DSC(Le)-62.5 LiTS 
Li et al. [131] LeS SA CT 2D DSC-82.64 Clinical 
Li et al. [132] LiS, LeS HM CT 3D DSC(Li)-96.1, DSC(Le)-68.6 LiTS, 3DIRCADb 
Ouhmich et al. [81] LiS, LeS CM CT 2D DSC(Li)-89.9, DSC(Le)-90.5 Clinical 
Sun et al. [133] LeS EC CT 2D VOE(D1)-8.1, VOE(D2)-4.5 3DIRCADb, Clinical 
Tian et al. [134] LiS, LeS HM CT 2D DSC(Li)-94.2, DSC(Le)-54.9 LiTS 
Vivanti et al. [135] LeS AR CT 3D VOE-16.15 Clinical 
Vivanti et al. [136] LeS AR CT 3D TPR-86 Clinical 
Vorontsov et al. [137] LiS, LeS CM CT 2D DSC(Li)-95.1, DSC(Le)-66.1 LiTS 
Wang [37] LiS, LeS EC CT 3D VOE(Li)-6.7, VOE(Le)-13.3 3DIRCADb 
Zheng et al. [138] LeS CA CT 2D VOE-17 LiTS, 3DIRCADb   
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Table A.3 
Articles reviewed on vessel segmentation task: S - segmentation, Ve - vessels, HV - hepatic vein, PV - portal vein, Modal - modality, Dim - dimension, DSC - DICE score, 
ACC - accuracy, IoU - intersection over union.  

Author Tasks Method Modal Dim DICE/ACC/IoU Dataset 

Huang et al. [139] VeS SA CT 2D DSC-67.5 SLiver07, 3DIRCADb 
Ibragimov et al. [140] VeS CA CT 2D DSC-83 Clinical 
Kazami et al. [83] VeS SA CT 3D DSC(HV)-90, DSC(PV)-94 Clinical 
Kitrungrotsakul et al. [141] VeS EC CT 3D DSC-83 Clinical 
Kitrungrotsakul et al. [84] VeS EC CT 3D DSC-87.9 Clinical 
Kitrungrotsakul et al. [82] VeS EC CT 2D DSC-96 3DIRCAD, VascuSynth 
Mishra et al. [142] VeS HM US 2D DSC-79,IoU-83 Clinical 
Mishra et al. [143] VeS CA US 2D ACC-99.14, IoU-69.62 Clinical 
Survarachakan et al. [144] VeS EC CT 3D DSC-81.8 Clinical 
Thomson et al. [145] Ves SA US 3D DSC-74(3D), DSC-78(2D) Clinical 
Yan et al. [146] VeS HM CT 3D DSC-80.5 3DIRCADb, Clinical 
Yu et al. [147] VeS HM CT 3D DSC(HV)-71.7, DSC(PV)-76.5 Clinical   

Table A.4 
Articles reviewed on lesion classification task: C - classification, D - detection, Le - lesions, Modal - modality, Dim - dimension, DSC - DICE score, ACC - accuracy, AUC - 
area under curve, RA - (ROC-AUC).  

Author Tasks Method Modal Dim DICE/ACC/AUC/RA Dataset 

Ben-Cohen et al. [148] LeC SA CT 2D ACC-80 Clinical 
Căleanu et al. [149] LeC SA US 2D ACC-88 Clinical 
Hassan et al. [86] LeC CA US 2D ACC-97.2 Clinical 
Liang et al. [150] LeC HM CT 2D ACC-87.58 Clinical 
Liang et al. [151] LeC HM CT 2D ACC-90.93 Clinical 
Marya et al. [152] LeC SA US 2D, 3D AUC-0.86(2D), 0.904(3D) clinical 
Meng et al. [153] LeC HM CT 2D ACC-96.08 Clinical 
Mitrea et al. [87] LeC EC US 2D ACC-97 Clinical 
Mostafiz et al. [85] LeC CA US 2D ACC-98.4 Clinical 
Pan et al. [154] LeC SA US 3D ACC-93.1 Clinical 
Romero et al. [155] LeC HM CT 2.5D ACC-96 UK Biobank 
Schmauch et al. [156] LeD, LeC SA US 2D RA(D)-93.5, RA(C)-91.6 JFR18 
Sîrbu et al. [157] LeC SA US 3D ACC-95.71 Clinical 
Trivizakis et al. [158] LeC SA MR 3D ACC-83 Clinical 
Wu et al. [159] LeC CA US 2D ACC-86.36 Clinical 
Yasaka et al. [160] LeC SA CT 2D ACC-84 Clinical 
Zhang et al. [161] LeC SA MR 3D DSC-80 Clinical   

Table A.5 
Articles reviewed on lesion detection task: S - Segmentation, D - detection, Li - liver parenchyma, Le - lesions, Modal - modality, Dim - dimension, DSC - DICE score, ACC 
- accuracy, TPR - true positive rate, SEN - sensitivity.  

Author Tasks Method Modal Dim DICE/ACC/SEN/TPR Dataset 

Bousabarah et al. [162] LiS, LeD AR MR 2D DSC(LiS)-91, DSC(LeD)-68 Clinical 
Fabijańska et al. [88] LeD CA MR 2D ACC-98.5 Clinical 
Frid-Adar et al. [163] LeD SA CT 2D TPR-86.8 Clinical 
Jansen et al. [164] LiS, LeD AR CT, MR 2.5D DSC(Li)-94, SEN(Le)-99.8 Clinical 
Lee et al. [165] LeD AR CT 2.5D SEN-93.88 Clinical 
Todoroki et al. [89] LeD CA CT 2D ACC-84 Clinical 
Wojciechowska et al. [90] LeD CA MR 2D ACC-83 UK BioBank  
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