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ABSTRACT 

Efficient energy demand management plays an essential role 
in smart grid, sustainable and smart cities applications and 
efforts to reduce CO2 emissions.  In this paper, we propose a 
framework for describing the household daily energy 
consumption and how it can be used to help residential 
households to perform appliance rescheduling to reduce 
energy consumption and hence reducing their energy bills 
while keeping resident’s comfort. In this paper, heuristic 
optimization techniques such as genetic algorithm (GA) and 
particle swarm optimization (PSO) are used for solving the 
load scheduling problem. Due to its ability to deal with 
computational complex scenarios in less computational time 
using less and less computational resources, Heuristic 
optimization techniques are used. In the proposed model, 
dynamic pricing is adopted where the objective is to 
minimize the overall cost of electricity consumption and 
payments by scheduling different devices in a way that fulfil 
each individual’s constraints and preferences. Here, 
MATLAB was used as the simulation platform. Simulation 
results showed that GA and PSO can optimize energy 
consumption and bills and at the same time fulfils needs and 
preferences of each individual customer. 

INTRODUCTION 

With the steady increased electricity demands in recent years, 
the need arises for mentoring energy usage and improving 
efficiency of energy use. Energy efficiency, in this regard, 
means using less energy to get the same job done, while 
cutting energy bills and reducing pollution. Smart energy 
metering technology is crucial for monitoring and improving 
energy use. Electricity smart metering become available to 
enormous numbers of end customers worldwide. By the end 
of 2020, it reached around 72% of European consumers 
(European Commission Joint Research Centre, 2021). In 
Norway, 100% of electricity consumers have received smart 
meters by 1 January 2019 (NVE-RME, 2022). Advanced 
metering system (AMS) allows the consumers to track their 
power usage and receive information about their electricity 
consumption and enables the distribution companies to move 
to a smart distribution system depending on current energy 
demands (Istad, 2019). 
As power consumption is continuously increasing, the need 
arises for understanding consumption patterns, i.e., 
measurement and analysis of consumption overtime, and 
consumer’s behavior. There are several load management 
strategies, which allow both utility companies and consumers 

to detect and control overloads (Gaur et al. 2017). Demand-
side management (DSM) in Smart Grid (SG) is a strategy that 
enables a more efficient and reliable grid operations. In this 
approach, there are two main functions: energy management 
and demand-side control activities for end-users. 
In a residential area, every smart home is equipped with 
energy management controller (EMC) and smart meters to 
provide stable and reliable bi-directional communication 
between utilities and consumers. The communication 
between EMC and electrical appliances, sensors, local 
generation, and energy storage systems (ESSs) is done 
through home area network (HAN). After each data 
collection, EMC Sends it to SG domain. Figure 1 shows a 
simple architecture of DSM architecture.  

Figure 1: Simple Architecture of DSM 

With an objective of contributing residents’ awareness on 
efficient energy consumption we have investigated energy 
demand and how this affects electricity prices dynamically. 
More specifically we have looked closer at two popular 
heuristic optimization techniques: genetic algorithm (GA) 
and particle swarm intelligence (PSO) to solve the 
appliances’ scheduling problem due to their capabilities in 
solving this kind of complex problems (Haupt and Haupt, 
2004). With an objective of minimizing the overall cost of 
electricity payment by scheduling different devices according 
to their individual constraints, dynamic pricing was adopted. 
MATLAB was used as our simulation platform. 
The rest of the paper is organized as follows: Related work is 
described in the next section.  Then we explain the load 
scheduling model developed, followed by a discussion of 
simulation results. Finally, conclusions are drawn, and future 
work suggested.   

RELATED WORKS 

In recent years, smart grid played a significant role in 
designing sustainable systems that promotes energy 
efficiency and reducing CO2 emissions. A smart grid is an 
electrical grid which includes a variety of operation and 
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energy measures including: AMSs, smart appliances, RESs, 
and energy efficient utilizing (Nejad et al. 2013; Saleh et al. 
2015; Rahim et al. 2016). Electronic power conditioning and 
control of electricity production and distribution are 
important aspects of smart grid technology (Benysek, 2011). 
In the demand side, using smart home concepts using smart 
devices, sensors, RESs, ESSs, and EMC will lead to better 
demand side management, as it is shown in Figure 1. There 
have been many attempts to optimally schedule smart 
appliances in a way that enhances energy efficiency. Rahim 
et al. (2016), evaluated the performance of home energy 
management controllers designed based on a set of heuristic 
algorithms; GA, binary PSO, and ant colony optimization 
(ACO) algorithms. They solved the load scheduling problem 
as a non-deterministic polynomial-time NP-hard scheduling 
problem. Mehrshad (2013) considered the problem as a 
multi-objective optimization problem and provided a solution 
based on GA. Heuristic algorithms were widely used by many 
researchers to solve the appliance scheduling problem using 
GA (Cardenas et al. 2009; Yogyong and Audomvongseree 
2011; AboGaleela et al. 2012; Chen et al. 2013; Mehrshad et 
al. 2013; Zhao et al. 2013; Oladeji and Olakanmi 2014; 
Rahim et al. 2016; Rasheed et al. 2016), PSO (Pedrasa et al. 
2009; Zhou et al. 2014; Mahmood et al. 2016), and ACO (Liu 
et al. 2011; Hazra et al. 2012; Dethlefs et al. 2015). 
In optimizing load scheduling, beside cutting energy costs for 
the end customers, other objectives have been considered. For 
instance, AboGaleela (AboGaleela et al. 2012) considered a 
load distribution scheme by applying one of following load 
control strategies: load shifting, peak clipping, valley filling, 
or load building over time. Minimizing the peak to average 
ratio (PAR) (AboGaleela et al. 2012; Zhao et al. 2013; Rahim 
et al. 2016; Rasheed et al. 2016), and load scheduling over 
multiple consumers in a defined neighborhood area 
(Mohsenian-Rad et al. 2010) are also considered.  
In our proposed model, the objective is to minimize the 
energy consumption bill while keeping the resident’s 
comfort. The proposed objective function in this model can 
easily be modified to accommodate other objectives and 
needs.   

SYSTEM MODEL 

Residents are an essential element of the smart energy 
consumption model. In this model, the aim is to increase the 
customers’ awareness of their energy consumption by 
analyzing their historical energy consumption data that is 
recorded by AMS. Then, a load scheduling model is designed 
incorporating the use of heuristic optimization algorithms 
such as GA and PSO with the aim to enable the customers to 
efficiently control their energy consumption. The proposed 
method will be described in detail in the below sections.  

Energy consumption model 

Let 𝐴 = {𝑎!, 𝑎", 𝑎#, … , 𝑎$} be the set of appliances in the 
house, where m is the total number of appliances. Then, by 
dividing the day to small time slots (e.g., hours), the daily 
energy consumption of an appliance can be calculated using 
the equation: 
𝐸(𝑎, 𝑡) = ,𝐸(𝑎, 𝑡!) + 	𝐸(𝑎, 𝑡") +⋯

+ 𝐸0𝑎, 𝑡%_$'(12 	(1) 

Where 𝐸(𝑎, 𝑡!) is the energy consumption of the appliance 𝑎 
in the time slot 𝑡!. 
The total consumption demand for the all the appliances in 
one day is then calculated as follows:  

𝐸 = 4 4𝐸(𝑎) , 𝑡)
$

)*!

%!"#

%*!

	 	(2) 

Where 𝑚 is the number of appliances, t is the time in hours 
and 𝑡$'(  is 24 hours. The energy consumption of each 
appliance depends on the it’s characteristics and the user 
lifestyle. To manage the energy consumption through 
appliance scheduling; appliances are classified into two 
categories: shiftable and non-shiftable appliances (see Table 
1).  

Load categorization 

The power consumption pattern of different types of 
consumers depends on the kind of appliances, which is used 
in the consumer's house. In general, electrical appliance can 
be categorized into schedulable (i.e., shiftable) and non-
schedulable (i.e., non-shiftable) appliances. Non-shiftable 
appliances are used in a specific period with non-changed 
power level. These appliances include essential equipment 
such as: lights, cooker, kettle, ventilation, etc. In contrast, 
shiftable appliances such as washing machine, electrical 
vehicle and clothes dryer can be moved to another time to 
use. For example, we can charge the electrical vehicle during 
the night to avoid the peak hours to reduce the energy costs. 
Table 1 summarizes most of the used appliances in a typical 
Norwegian house/apartment categorized into shiftable (S) 
and non-shiftable (NS) appliances.  

Table 1: Household Electrical Load 
Power (KW) Quantity Load type 

Television 0.1 1 NS 

PC 0.1 2 NS 
Phone 0.05 2 NS 

Bulbs (inside and 
outside) 

0.025 10 NS 

Iron 1.5 1 NS 
Ventilation 0.5 1 NS 

Refrigerator 0.160 1 S 
Water heater 3 1 S 
Space heater 2 1 S 

Washing 
machine 

1.5 1 S 

Dish washer 3 1 S 
Clothes dryer 4 1 S 
Electrical car 4 1 S 

Coffee machine 1.5 1 NS 
Oven 3 1 NS 

Freezer box 0.175 1 S 
Microwave 0.8 1 NS 
Cook top 3 1 NS 
Hoover 0.7 1 NS 

Hair dryer 0.75 1 NS 

In our proposed model, we selected only four appliances in 
the scheduling optimizing problem, as it is shown in Table 2. 
We selected these four appliances for simplicity and as a 
proof-of-concept, but other shiftable appliances can be easily 
added to the model.  



 
Table 2: Parameters of shiftable appliances 

Appliance Start 
time 
(h) 

End 
time 
(h) 

Power 
(KW) 

Operational 
time (h) 

Washing 
machine 

7am 7pm 1.5 2 

Clothes dryer 9am 9pm 4 2 
Dish washer 6am 10pm 3 2 

Electrical car 16pm 6am 4 4 

 
Energy price model 

Based on the daily energy demand, the time periods in the 
day can be classified as peak or non-peak hours (Rahim et al. 
2016). During peak hours, the cost of the energy consumption 
is the highest. There are several tariff models that can be used 
to define electrical energy prices for a full day or for shorter 
periods during the day. Real-time electricity prices (RTEP) 
can change hourly reflecting the utility cost of supplying 
energy to consumers at that specific time. In Norway, this is 
called “spotpris” or spot price that follows the prices in the 
Nordpool which change hourly (Nordpoolgroup.com). In 
contrast to RTEP, ToU tariff model is defined for electricity 
prices depending on the time of a day and it is pre-defined in 
advance. Critical peak pricing (CPP) is a variant of ToU, and 
the price is considerably raising in the high demand (e.g., 
peak hours) (Oladeji and Olakanmi, 2014). In our model, we 
used ToU by considering the energy demand side and 
historical spot prices reference to Aalesund1 region.  
The total energy cost for each time slot 𝑡 is the summation of 
the energy consumed by the ON appliances at this time slot, 
multiplied by the price at this time slot.  
 
Problem statement 

To reduce the energy consumption cost, the user can schedule 
the shiftable appliances to perform their jobs on non-peak 
hours. The non-shiftable devices must operate at any time 
depending on their characteristics or the user’s needs and 
preferences. Then the reduction of electricity bill is not 
possible with non-shiftable appliances. But the electricity 
usage cost can still be reduced by scheduling the shiftable 
appliances. In this model, heuristic algorithms such as GA 
and PSO, will be used to solve the scheduling problem in a 
way that minimizes the defined cost function. 
 
Objective/cost function 

The overall objective/cost function is to minimize the 
electricity bill by scheduling the shiftable devices to perform 
their jobs at optimal time where energy cost is minimum. The 
multi-objective cost function has two parts: minimizing the 
electricity bill and minimizing the waiting time to keep the 
user’s comfort. Each shiftable appliance has start time (𝑠𝑡), 
end time (𝑒𝑡), and operation time (𝑜𝑡) as it is shown in Figure 
2.  

 
1 Aalesund, is a municipality in Møre og Romsdal County, western 
cost of Norway. 

 
Figure 2: Parameters of appliance 

The total electrical energy consumption cost at each hour is 
the total energy consumption at this hour multiplied by the 
electricity price at this hour as follows: 

𝐶𝑜𝑠𝑡) = 𝑝)4𝐸(𝑎+ , 𝑡))
$

+*!

																														(3) 

where 𝐶𝑜𝑠𝑡)  is the total electricity consumption cost of an 
hour 𝑖 ,	𝑝) is the electricity price of an hour 𝑖, 𝐸(𝑎+ , 𝑡)) is the 
energy consumption by an appliance 𝑘 at an hour 𝑖. 𝑚   is the 
total number of appliances. Then the daily cost is the 
summation of the cost of each hour as follows: 

𝐶𝑜𝑠𝑡 =4𝐶𝑜𝑠𝑡)

",

)*!

																																							(4) 

To keep residents’ comfort, we consider the user’s wish to 
switch on the appliance at the given start time (𝑠𝑡), as it is 
shown in Figure 2. Then, we schedule the shiftable appliances 
in a way that minimizes the waiting time, as it is shown in Eq. 
(5):   

WT =4(𝑆𝑂𝑇+ −	𝑠𝑡+)
$

+*!

																										(5) 

where 𝑊𝑇  is the total waiting time for all the shiftable 
appliances, 𝑆𝑂𝑇+ is the start operation time for device 𝑘, and 
𝑠𝑡+  is the given possible start time by the user for the 
appliance 𝑘. 
Then the objective function to select better or optimized 
solution can be modeled as follows:  

𝑚𝑖𝑛I𝑤! K4𝐶𝑜𝑠𝑡)

",

)*!

	L +	𝑤" K4(𝑆𝑂𝑇+ −	𝑠𝑡+)
$

+*!

LM				(6) 

where 𝑤!  and 𝑤"  are weights of two parts of objective 
function and their values are between 0 and 1, and 𝑤!+𝑤" = 
1.  
Genetic Algorithm 

Genetic algorithm (GA) is the most popular heuristic 
technique. GA is an optimization and search technique based 
on the principles of genetic and natural selection (Haupt and 
Haupt, 2004). A GA allows a population composed of many 
individuals to evolve under specified selection rules to a state 
that maximize the fitness (i.e., minimizes the cost function). 
Genetic algorithms (GAs) were invented by John Holland in 
1960s and were developed by him and his students in 1960s 
and 1970s (Holland, 1975). GA belongs to the larger class of 
evolutionary algorithms, which generate solutions to 
optimization problems using techniques inspired by natural 
evolution such as selection (reproduction), crossover 
(recombination) and mutation (altering). The evolution 
process starts from a population of individuals generated 



 
randomly within the search space and continues for 
generations. In each generation, fitness of every individual is 
evaluated, and multiple individuals are randomly selected 
from the current population based on their fitness and 
modified by recombination and mutation operation to form a 
new population. Then this new population will be used for 
the next generation of the evolution. In general, the search 
process ends when either a maximum number of generations 
have been produced or a fitness level has been reached for the 
population. The flowchart of GA is shown in figure 3.  

 
Figure 3: Flowchart of GA 

GA for appliances’ scheduling problem 

In this scheduling problem, the objective is to find the optimal 
start operation time for the shiftable appliances. Then, the 
chromosome length is the number of shiftable appliances, and 
the variables are the start operation times (𝑆𝑂𝑃𝑠) for the 
appliances as follows:  

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑆𝑂𝑇!, 𝑆𝑂𝑇", …	, 𝑆𝑇𝑂$]													(7)                                          

Where m is the number of shiftable appliances. and the 𝑆𝑂𝑇𝑠 
take only integer values. 
  
Particle Swarm Optimization 

Particle swarm Optimization (PSO) is a computational 
method that optimizes a problem by iteratively trying to 
improve a candidate solution regarding a given measure of 
quality. Kennedy and Eberhart introduced PSO in 1995 
(Kennedy and Eberhart, 1995). PSO was originally used to 
solve non-linear continuous optimization problems, but more 
recently it has been used in many practical, real-life 
application problems. For example, PSO has been 
successfully applied to track dynamic systems (Eberhart and 
Shi, 2001) and evolve weights and structure of neural 
networks (Zhang et al. 2000). PSO draws inspiration from the 
sociological behavior associated with bird flocking. It is a 
natural observation that birds can fly in large groups with no 
collision for extended long distances, making use of their 
effort to maintain an optimum distance between themselves 
and their neighbors.  
The PSO methodology operates by placing a group of 
individual particles into a continues search space, wherein 

each particle is initialized with a random position and a 
random initial velocity in the search space. The position and 
velocity are updated synchronously in each iteration of the 
algorithm. Each particle adjusts its velocity according to its 
own flight experience and the other’s experience in the 
swarm in such a way that it accelerates towards positions that 
have high fitness values in previous iterations. In other words, 
each particle keeps track of its coordinates in the solution 
space that are associated with the best solution that has 
achieved so far by itself. This value is called personal best 
(pbest), Another best value that is tracked by the PSO is the 
best value obtained so far by any particle in the neighborhood 
of that particle. This value is called (gbest). So, the basic 
concept of PSO lies in accelerating each particle toward its 
pbest and the gbest locations, with a random weighted 
acceleration at each time step. Figure 4 shows the flow chart 
of a standard PSO algorithm. 
The modification of the particle’s position can be 
mathematically modeled according to following equations: 

�⃗�(𝑘 + 1) = 	𝑤�⃗�(𝑘) + 𝑐!𝑅!YYYY⃗ Z𝑝𝑏𝑒𝑠𝑡YYYYYYYYYYY⃗ 	− 𝑠-YY⃗ (𝑘)\ +

	𝑐"𝑅"YYYY⃗ Z𝑔𝑏𝑒𝑠𝑡YYYYYYYYYYY⃗ 	− 𝑠-YY⃗ (𝑘)\																																																											(8)	            

 Where, 

 �⃗�(𝑘) is the velocity of a particle at iteration k. 

   𝑅!YYYY⃗  and 𝑅"YYYY⃗  are random numbers in the range of [0,1] with 
the same size of the swarm population. 

𝑐! and 𝑐" are learning factors which will be fixed through 
whole the process. 

w is the inertia weight, and it is calculated as: 
 

𝑤 = 𝑤.%'/% −	
𝑤.%'/% −𝑤012

𝐾 	𝑘																	(9) 

Then the new position for the particles is the addition of the 
position at k iteration and the distance that the particles will 
fly with the new velocity �⃗�(𝑘 + 1). The position is updated 
by: 

𝑠-YY⃗ (𝑘 + 1) = 	 𝑠-YY⃗ (𝑘) + �⃗�(𝑘 + 1)														(10)                                         

 

 
Figure 4: Flowchart of general PSO algorithm 



 
PSO for appliances’ scheduling problem 

As it is described in GA, PSO can also applied to find the 
optimum start operation time 𝑆𝑂𝑃  for each shiftable 
appliance. The particle position vector includes the start 
operation times as the following: 
 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = [𝑆𝑂𝑇!, 𝑆𝑂𝑇", …	, 𝑆𝑇𝑂$]									(11) 

SIMULATIONS AND RESULTS 

In order to study the power consumption patterns; we 
analyzed the data we got from Mørenett2. We got data for 
1112 meters in Sunnmøre region, Norway. Table 3 
summarizes the data; the consumptions are in hourly rates 
from 18 November 2018 to 25 November 2019.  Figure 5 
shows the total consumption for all the 1112 
meters/consumers.  

 
Figure 5: Energy consumption of 1112 meters 

Table 3: Data from Mørenett 
Apartments and houses 960 
Industry 114 
Cabin 38 
Total 1112 

 
Scheduling scenario 

For scheduling, we have selected the week 47 (18 – 24 
November 2019) to test and validate the proposed scheduling 
model. We have selected one of the customer’s meters, then 
we added 4 appliances (washing machine, clothes dryer, dish 
washer and vehicle charger) randomly within time limits 
(Table 2).  Figure 6 shows the original power consumption 
during week 47 and the consumption after adding the 
shiftable appliances.  

 
Figure 6: Week 47 (sample), added shiftable appliances 

Scheduling by GA 

For scheduling, we got the “spotpris” or spot prices for this 
region in week 47, as it is shown in Figure 7. Then, we 

 
2 Mørenett is a network company in Sunnmøre and parts of 
Nordfjord  

counted the bill for this end-user for week 47 which was 
300.67 NOK. After that, we optimize it by finding an 
optimized/better scheduling.  
 

 
Figure 7: Week 47 spotprise from Nordpool AS 

(Nordpoolgroup.com) 
We used GA with defined parameters in Table 4. The 
objective function defined in Eq. (6) is used with  𝑤! = 0.7 
and 𝑤" = 0.3 . The choice of weight values reflects the 
importance of energy cost compared to end-users’ comfort.   

Table 4: GA Parameters 
Number of optimisation variables 4 
Upper limit on optimisation 
variables 

[19,21,22,28] 

Lower limit on optimisation 
variables 

[7,9,6,16] 

Maximum iteration 100 
Population size  100 
Selection rate 0.8 

 
Figure 8 shows our results. Upper part shows the original 
energy consumption and the optimized one. The middle 
figure shows the prices on hourly-based. The bottom figure 
shows the consumption cost for both original consumption 
and optimized consumption by applying scheduling.  

 
Figure 8: GA week-47 2019 

 

 



 
Table 5: Result for week 47-2019 

Weekly bill without scheduling 
(NOK) 

Weekly bill with scheduling 
(NOK) 

300.67 291.17 
 

Daily price model 

To test our scheduling optimization model, we have designed 
a daily price model shown in Figure 9. We have considered 
the historical prices and the daily usage patterns. 
 

 
Figure 9: Daily prices 

We used the shiftable appliances with defined parameters in 
Table 2. The schedule for each appliance is optimized by GA 
to minimize the objective function defined in Eq. (6). Table 
6 summarizes the obtained results that shows that 9.5NOK 
could be saved daily, then 285NOK monthly and 3467.5NOK 
annually.   

Table 6: Optimization Results 
 Wash

ing 
mach
ine 

Clothes 
dryer 

Dish 
washer 

Electrical 
vehicle  

Daily cost 
of the 
shiftable 
appliances 

Start time 
without GA 

17 19 18 16 21.6 
(NOK) 

Start time 
with GA 

7 13 13 22 12.1 
(NOK) 

Monthly saved = 285 NOK 
Annually saved = 3467.5 NOK 

 
Scheduling by PSO 

In this section, we applied PSO algorithm in the same manner 
as it is in the previous section. A customized PSO toolbox has 
been developed from scratch in MATLAB environment since 
existing PSO in the optimization toolbox can’t be modified to 
incorporate integer PSO. The PSO parameters are summarized 
in Table 7.   

Table 7: PSO Parameters 
Swarm size 200 
Dimension of the problem 4 
Maximum iteration 100 
c1 (cognitive parameter) 1.5 
c2 (social parameter) 1.5 
C (constriction factor) 1 
Inertia start 0.9 
Inertia end 0.4 
Upper limit on optimisation variables [19,21,22,28] 
Lower limit on optimisation variables [7,9,6,16] 
Maximum velocity 3 

 
PSO provided very similar results to that obtained by GA. 
Figure 10 shows the convergence of PSO algorithm which 
shows that it can converge faster than GA.  

 
Figure 10: PSO convergence 

 
CONCLUSIONS 

The objective of this article is to increase the user awareness 
of energy efficiency and how optimization algorithms can be 
very beneficial in appliance scheduling in a way that 
minimizes consumption and at the same time keep customer’s 
satisfaction. Demand side management is an essential part in 
design smart grids and sustainable energy systems. Residents 
can reduce the energy consumption considerably by using 
smart appliances that can be operated optimally. Also, 
scheduling the shiftable appliances by taking into 
consideration the varying electricity prices and the resident’s 
comfort; would you reduces the electricity bill and 
consequently, reduce the electricity prices leading to smart 
grids and sustainability.     
We have successfully used GA and PSO for scheduling four 
shiftable appliances. For GA, we used the MATLAB 
optimization toolbox, while we have developed a PSO-based 
optimization toolbox in MATALB that can handle integer 
decision variables. The simulation results for the defined 
scenario showed a cut in electricity bill up to 285NOK 
monthly on average.  
 
Future work 

This work can be extended in many different ways. For 
instance, developing a visualization tool that can be used by 
residents to increase their awareness of how to manage their 
energy consumption. The objective function can be extended 
to include different aspects of the problem such as including 
load control strategies (e.g., load shifting), and minimizing 
the peak to average ratio. Additionally, solving the problem 
as a multi-objective optimization problem should be 
investigated.  
 
ACKNOWLEDGMENT  

We would like to thank Mørenett for their help by 
providing the energy consumption data. 

Also, we would like to express a special thanks to 
Professor Ricardo Torres for providing guidance and feedback 
throughout this project work. 

REFERENCES 
AboGaleela, M.; El-Sobki, M. and El-Marsafawy, M. 2012. “A two-

level optimal DSM load shifting formulation using genetics 
algorithm case study: residential loads,”. In Proc. of IEEE PES 

0 10 20 30 40 50 60 70 80 90 100
generation

0.265

0.27

0.275

0.28

0.285

0.29

0.295

co
st

PSO Convergance



 
Power Africa 2012 Conference and Exposition, Johannesburg, 
South Africa. 

Benysek, G.; Kazmierkowski, M.; Popczyk, J. and Strzelecki, R. 
2011. “Power electronic systems as a crucial part of Smart Grid 
infrastructure - a survey”. Bulletin of the Polish Academy of 
Sciences: Technical Sciences, 59(4), pp.455-473. 

Cardenas, J. J.; Garcia, A.; Romeral, J. L. and Andrade, F. 2009. “A 
genetic algorithm approach to optimization of power peaks in an 
automated warehouse,” in Industrial Electronics, 2009. IECON 
'09. 35th Annual Conference of IEEE, Porto, Portugal.  

Chen, C.; Lan, M.; Huang, C.; Hong, Y. and Low, S. H. 2013. 
“Demand response optimization for smart home scheduling 
using genetic algorithm”. In Proc. of IEEE International 
Conference on Systems, Man and Cybernetics, Manchester, UK. 

Dethlefs, T.; Preisler, T. and Renz, W. 2015.  “Ant-Colony based 
Self-Optimization for Demand-Side-Management”, in: 
Conference in SmartER Europe (E-World Energy and Water), 
Essen, pp. 1–8.  

Eberhart, R. and Shi, Y. 2001, “Tracking and optimizing dynamic 
systems with particle swarms”, Proc. Congress on Evolutionary 
Computation 2001, Seoul, Korea 

Energyusecalculator.com. 2022.“Energy Use Calculator – Calculate 
electricity usage and energy cost of any device”. [online] 
Available at: http://energyusecalculator.com/index.htm 
[Accessed 8 February 2022]. 

Enerwe.no. 2017. “Så mye svinger strømprisen i løpet av døgnet”. 
[online] Available at: https://enerwe.no/sa-mye-svinger-
stromprisen-i-lopet-av-dognet/144438 [Accessed 8 February 
2022]. 

European Commission Joint Research Centre, 2021. “Smart 
Metering deployment in the European Union. [Online]. 
Available at: https://ec.europa.eu/energy/en/topics/markets-
and-consumers/smart-grids-and-meters. [Accessed 08 February 
2022]. 

Gaur, G.; Mehta, N.; Khanna, R. and Kaur, S. 2017. "Demand side 
management in a smart grid environment," IEEE International 
Conference on Smart Grid and Smart Cities (ICSGSC), 2017, 
pp. 227-231, doi: 10.1109/ICSGSC.2017.8038581. 

Hazra, J.; Das, K. and Seetharam, D. P. 2012. “Smart Grid 
Congestion Management through Demand Response”, in: IEEE 
Third International Conference on Smart Grid Communications 
(SmartGridComm), Tainan, pp. 109–114.  

Haupt, R. and Haupt, S., 2004. “Practical genetic algorithms”, 2nd 
Ed, J. Wiley, 2004. 

Holland, J. 1975, “Adaptation in Natural and Artificial Systems”, 
Ann Arbor: University of Michigan Press. 

Istad, m., 2019. “Data from HAN ports fitted to smart meters (AMS) 
can provide you with valuable information” - #SINTEFblog. 
[online] #SINTEFblog. Available at: 
https://blog.sintef.com/sintefenergy/han-port-smart-meters-
ams/  [Accessed 10 February 2022]. 

Kennedy, J. and Eberhart, R. 1995, “Particle Swarm Optimisation”, 
Proceedings of IEEE International Conference on Neural 
Networks IV. pp. 1942–1948.  

Liu, B.; Kang, J.; Jiang, N. and Jing, Y. 2011. “Cost control of the 
transmission congestion management in electricity systems 
based on ant colony algorithm”, Energy Power Eng. 3 pp17–23.  

Mahmood, D.; Javaid, N.; Alrajeh, N.; Khan, Z.A.; Qasim, U. and 
Imran Ahmed, M. I. 2016. “Realistic scheduling mechanism for 
smart homes”, Energies 9 202.  

Mehrshad, M.; Tafti, A. D.  and Effatnejad, R. 2013. “Demand-side 
management in the smart grid based on energy consumption 
scheduling by NSGA-II”. International Journal of Engineering 
Practical Research, vol. 2, no. 4.  

Mohsenian-Rad, A.; Wong, W. S. and Jatskevich, J. 2010. 
“Autonomous demand side manageme t based on game- 
theoretic energy consumption scheduling for the future smart 
grid”.  IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320-331. 

Molla, T. 2020. “Smart Home Energy Management System”. In B. 
Khan, H. Alhelou, & G. Hayek (Eds.), Handbook of Research 
on New Solutions and Technologies in Electrical Distribution 
Networks (pp. 191-206). IGI Global. 
https://doi.org/10.4018/978-1-7998-1230-2.ch011 

Nejad, M. F.; Saberian, A. M. and Hizam, H., et al. 2013. 
“Application of smart power grid in developing countries”. 
IEEE 7th International Power Engineering and Optimization 
Conference (PEOCO) (PDF). IEEE. pp. 427–431. 
doi:10.1109/PEOCO.2013.6564586. ISBN 978-1-4673-5074-7. 

Nordpoolgroup.com. 2022. “Market data | Nord Pool”. [online] 
Available at: https://www.nordpoolgroup.com/Market-
data1/Dayahead/Area-Prices/NO/Hourly/?view=chart 
[Accessed 8 February 2022]. 

NVE-RME, 2022. “Smart metering (AMS)”. [Online]. Available at: 
https://2021.nve.no/norwegian-energy-regulatory-
authority/retail-market/smart-metering-ams/. [Accessed 08 
February 2022]. 

Oladeji, O. and Olakanmi, O. O. 2014. "A genetic algorithm 
approach to energy consumption scheduling under demand 
response," 2014 IEEE 6th International Conference on Adaptive 
Science & Technology (ICAST), Ota, 2014, pp. 1-6. 
doi: 10.1109/ICASTECH.2014.7068096. 

Pedrasa, M. A. A.; Spooner, T. D. and MacGill I.F. 2009. 
“Scheduling of Demand Side Resources Using Binary Particle 
Swarm Optimization”, IEEE Trans. Power Syst. 24 1173–1181.  

Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.; Khan, Z.; Alrajeh, N. 
and Qasim, U. 2016. “Exploiting heuristic algorithms to 
efficiently utilize energy management controllers with 
renewable energy sources”. Energy and Buildings, 129, pp.452-
470. 

Rasheed, M. B.; Javaid, N.; Awais, M.; Khan, Z. A.; Qasim, U.; 
Alrajeh, N.; Iqbal, Z. and Javaid, Q. 2016. “Real time 
information based energy management using customer 
preferences and dynamic pricing in smart homes”, Energies 9 
542.  

Saleh, M. S.; Althaibani, A.; Esa, Y.; Mhandi, Y. and Mohamed, A. 
A. 2015. “Impact of clustering microgrids on their stability and 
resilience during blackouts”. International Conference on Smart 
Grid and Clean Energy Technologies (ICSGCE). pp. 195–200.  

Strøm fra Glitre Energi. 2019. “Timesprising - Strøm fra Glitre 
Energi”. [online] Available at: 
https://www.glitreenergi.no/strom/timesprising/?fbclid=IwAR2
khAh4rbKgf-
iZmbc35iy9nb0te7jEz6p_a6SVBwhgnWqXyyxpK_Ovqlo 
[Accessed 8 February 2022]. 

Yogyong, W.; and Audomvongseree, K. 2011. “Optimal fuel 
allocation for generation system using a genetic algorithm” in 
Proc. of the 8th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and 
Information Technology (ECTI-CON), Khon Kaen, Thailand.  

Zhang, C.; Shao, H. and Li, Y. 2000, “Particle Swarm Optimisation 
for Evolving Artificial Neural Network”, In the 2000 IEEE 
International Conference on Systems, Man, and Cybernetics, 
vol.4, pp.2487-2490.  

Zhao, Z.; Lee, W. C.; Shin, Y. and Song, K. 2013. “An optimal 
power scheduling method for demand response in home energy 
management system”, IEEE Trans. Smart Grid 4. 1390–1400.  

Zhou, Y.; Chen, Y.; Xu, G. and Zhang, Q. 2014, “Home Energy 
Management with PSO in Smart Grid” in: Industrial Electronics 
(ISIE), IEEE 23rd International Symposium, Istanbul, pp. 1666–
1670.  

 
 
 
 
 



 
AUTHOR BIOGRAPHIES 

 
SARAH M. DARAGMEH is a project manager at Caverion 
Norge AS, and she is a master student in the Electrical Power 
Engineering program at the Norwegian University of Science and 
Technology (NTNU), Norway.  She has also a MSc degree in 
Simulation and Visualization from NTNU, Norway. She obtained 
her bachelor’s degree in electrical engineering from An Najah 
University, Palestine. Her research interest includes Optimization, 
Machin Learning and Smart Grid. 
 
 
ANNIKEN Th. KARLSEN is an Assoc. Professor at the 
Department of ICT and Natural Sciences, Faculty of Information 
Technology and Electrical Engineering at the Norwegian University 
of Science and Technology (NTNU). Karlsen teaches 
and researches within Technology Management and Digital 
Transformation and is Head of the Sustainable Digital 
Transformation research group. She has, among others, a PhD 
degree in information science from the University of Bergen and a 
MSc degree in Information Technology from the University of 
Aalborg, Denmark. Karlsen has done empirical research within 
several sectors, including maritime, marine, offshore, food, 
consultant, health and banking.  
 
IBRAHIM A. HAMEED is a Professor at the Department of 
ICT and Natural Sciences, Faculty of Information Technology and 
Electrical Engineering, Norwegian University of Science and 
Technology (NTNU), Norway. Hameed is Deputy Head of research 
and innovation within the same department. Hameed is an IEEE 
senior member and elected chair of the IEEE Computational 
Intelligence Society (CIS) Norway section. Hameed has a Ph.D. 
degree in Industrial Systems and Information Engineering from 
Korea University, Seoul, South Korea and a PhD degree in 
Mechanical Engineering from Aarhus University, Aarhus, 
Denmark. His current research interest includes Artificial 
Intelligence, Machine Learning, Optimization, and Robotics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 




