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Abstract—Infrared small target detection is a key technique
in an infrared system. In the past decade, many methods have
concentrated on traditional top-hat transformation, which relies
on the hand-crafted shape and value of structural elements.
However, these methods are inevitably challenged by two aspects:
1) The structural elements cannot suppress heavy clutter because
the construction of structural elements is always according to
the prior information of the target and unable to consider
the feature of clutter. 2) Adaptively extracting sufficient local
feature information for background suppression is hard for the
structural element. In this paper, we propose an entropy-driven
top-hat transformation with guided filter kernel (EGFK top-hat
transformation) for considering the features of both the clutters
and background. First, we propose an entropy-driven top-hat
transformation method with our proposed local mean entropy,
which can be used to suppress clutter according to the local
complex degree of clutter. Then, an adaptive structural element
based on a guided filter kernel is further exploited to capture the
local feature information of image for background suppression.
Finally, an adaptive threshold is combined with our algorithm to
achieve target detection in image sequences. The experimental
results show that the proposed algorithm is not only robust
for suppressing different kinds of backgrounds but can also
obtain a higher value of the signal to clutter ratio gain (SCRG)
and detection accuracy compared with some popular traditional
baseline methods and related top-hat methods.

Index Terms—Entropy-Driven Morphological Method, Top-
Hat Transformation, Local Mean Entropy, Guided Filter, In-
frared Small Target Detection.

I. INTRODUCTION

T he detection and tracking of small infrared targets is a
crucial technique of infrared image systems and is widely

used in surveillance [1], reconnaissance [2], early warning [3]–
[5]. However, due to optics point spread function of thermal
imaging systems and the long-distance imagery, the targets
always appear as small and dim shapes with few texture
features. In addition, the heavy clutter enhances the complexity
of the background and targets always suffer from a low signal-
to-clutter ratio (SCRG) [6]. As a consequence, small target
detection under low quality images remains an open problem.

In the recent decades, various research works have been
developed to detect infrared small targets [7]–[10] effectively.
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Since the targets are usually buried in a complex background
with clutter, it is hard to track or detect targets directly [11]–
[13]. Therefore, one popular method of detection is to enhance
the targets by predicting the background and subtracting it
from the original image. Some methods based on learning
prototypes can effectively predict the background by introduc-
ing neural networks [14], SVM [15], and manifold learning
[16]. Nevertheless, the mass training set is not usually easy to
construct, and the training procedure requires too much time.
In recent years, the trend of using deep learning techniques
combined with traditional image algorithms has become more
and more obvious. Deep learning technology has great ad-
vantages in feature extraction and learning. Researchers have
proposed various target detection models based on deep learn-
ing technology, such as the symbiosis filter and the symbiosis
filter neural network proposed by Avidan S [17]. By making
full use of the spatial information in the image, it can better
utilize the spatial and spectral characteristics of infrared image
sequences. Guo [18] proposed a multi-scale feature learning
model to deal with the target detection problem. He [19]
uses domain adaptive technology to accelerate the detection
efficiency; Wang [20] proposed to use fast neural architecture
search to find the most suitable network model. However,
deep learning-based methods have achieved good performance
in many fields, but these methods rely on massive amounts
of data to a large extent. Under certain conditions, marking
infrared data is difficult to obtain and requires a lot of labor
costs. Thus, some classic methods without training are more
practical, such as top-hat transformation in morphology.

The top-hat transformation is widely applied to infrared
target detection [21] and other fields of image processing [22]–
[24]. Intuitively, the closing operation in the top-hat transfor-
mation is taken to reserve the high-frequency component for
background prediction. However, small targets and noise are
also left in the residual plot. In order to enhance the per-
formance of top-hat transformation against noise and clutter,
some methods based on modified top-hat transformations have
also been proposed. In [25], a novel multiscale center-surround
top-hat transformation was proposed, that used two structural
elements with different shapes to perceive difference informa-
tion between targets and surrounding regions. Similarly, Bai
[26] utilized this difference information through hit-or-miss
transformation and suppresses the false alarms effectively.
However, clutter will still decreases the efficiency of hit-
or-miss transformation. To overcome this problem, a toggle
contrast operator combined with top-hat transformation [27]
was further proposed to extract the feature of the image for
target detection. The above methods can effectively improve
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the quality of small target enhancement. Unfortunately, Guo
[28] proved that it is significant to select structural elements
in the discriminability of the detection model. The value of
structural elements should be set initially to accomplish the
whole small target detection.

The structural element plays an important role in top-hat
transformation. In general, the selection of structural elements
depends on the target and the construction of structural el-
ements that adaptively reflect the different components of
the background [28]. However, prior information on targets
cannot be obtained easily when targets are buried in complex
backgrounds [29]. Meanwhile, the complexity and uncertainty
of the quality of image signals are always extremely unbal-
anced and immeasurable. Therefore, the selective structural
elements should be adaptive for input infrared images. There
are also some works [30], [31] that focused on the construction
of adaptive structural elements in mathematical morphology.
These structural elements can capture the different feature
information of an image, such as local orientation information
[31], local contrast information and spatial-temporal infor-
mation [30]. However, they cannot be used in small target
detection due to the following reasons: 1) The construction
of the structural elements cannot suppress the heavy clutter
because structural elements only rely on the prior information
of the target and the features of clutter cannot be considered.
2) Their structural elements cannot capture the local feature
information under complex background. The above two prob-
lems are the hot and difficult points in the field of small target
detection. The balance ring top hat transformation method
for infrared small target detection in complex background
introduces the shape of the balance ring [32], [33], and
USES the contrast information between the target and the
surrounding background to enhance the target.

In this paper, we reconstruct an entropy-driven top hat
transformation algorithm, which can overcome the above two
problems.

(1) In general, the features of clutter extracted from the
edge areas (e.g., some undecided areas between sky and cloud,
and the edge areas of clouds in the sky) show a similar
representative pattern to the target. However, in classic top-hat
transformation, the erosion operation may smooth the target
and some clutter together for background prediction. It is
likely that the traditional methods will always cause a large
false alarm in prediction. It is noticeable that small targets are
usually displayed as small bright areas in infrared images [25].
And the adjacent pixels of a small target are usually dependent
on each other. However, the pixels of the clutter are always
random. So, the clutters will cause a different complex degree
in the local region compared with targets [34]. In order to
solve the classic top-hat transformation problem, we exploit
the information entropy [35] to balance the contribution of
those components with high gray values to the image entropy.
In [35] the local entropy was presented to emphasize the
importance of the complexity of gray value distribution on
an image. Motivated by this, we propose an entropy-driven
top-hat transformation. The novelty of this entropy-driven top-
hat transformation utilizes a proposed local mean entropy to
weight the erosion operation. Furthermore, the enhancement

of the proposed method can make structural element fully
consider the features of clutter to overcome the effects of the
clutter in the detection model.

(2) To date, guided filters have been successfully used
in edge-preserving [36], image enhancement [37] and other
related fields in computer vision [38], [39]. We make use of a
guided filter kernel (GFK) to construct the structural elements
since the guided filter kernel can change the value in the
region with large or small variance adaptively [40]. A small
target always disconnect with periphery and the appearance
of target will cause a large difference in the local area of
an image, while the background area is usually uniform and
the difference is very small [5]. Therefore, the use of guided
filter kernel can capture local features of both the target
and background. Specifically, we will obtain the structural
elements with different features at different positions. In
this paper, we explore the application of GFK in infrared
target detection and further illustrate that GFK-based structural
elements have special characteristics for enhancing the top-hat
transformation. By this means, our top-hat transformation is
robust under different backgrounds.

Our paper has the following contributions:
• An entropy-driven top-hat transformation is proposed

for suppressing clutters. We construct the model with
our proposed local mean entropy to change the degree
of erosion operation by utilizing the complex degree
information in the local region.

• A guided filter kernel based structural element is pro-
posed to capture the local feature information for back-
ground suppression. This structural element is adaptive
according to the local feature of images and suppresses
the background of targets.

• A novel entropy-driven morphological top-hat transfor-
mation with guided filter kernel (EGFK top-hat) is pro-
posed for small target detection. This top-hat transfor-
mation can both consider the features of clutters and
local feature information, which effectively suppresses
clutter and background. Moreover, extensive experimental
results demonstrate the obvious advantages over recent
methods in terms of several different metrics.

The rest of this paper is organized as follows: In section 2,
we review the background of the mathematical morphology
operation, guided filter, and entropy. Section 3 describes the
proposed method and its detail. Section 4 provides two analy-
ses of the proposed method. Section 5 shows the experimental
results and performance analysis based on extensive data. The
conclusion is given in Section 6.

II. BACKGROUND

The mathematical morphology and guided filter are both
bases of our proposed method. In this section, we introduce the
knowledge of morphology involving dilation, erosion, open-
ing, closing and top-hat transformation. Then the guided filter
is introduced. Finally, a weighted local entropy is introduced.

A. Mathematical Morphology and Top-hat Transformation
Mathematical morphology has been widely applied in in-

frared image processing and other fields of computer vision.
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Fig. 1. Our proposed algorithm. The main procedure consists of two parts: the entropy-driven top-hat transformation and adaptive structural elements with a
guided filter kernel.

Two basic operations, dilation and erosion, are defined as the
gray image f (x, y) and structural elements b (m,n). They are
denoted by (f ⊕ b) and (f 	 b) as follows:

(f ⊕ b) (x, y) = max
m,n

(f (x−m, y − n) + b (m,n)) (1)

(f 	 b) (x, y) = min
m,n

(f (x+m, y + n)− b (m,n)) (2)

Where x and y can determine the coordinates of a pixel
in the image, m and n are the offsets of the coordinates
of a pixel in a structural element with respect to x and y.
Due to the maximum operation, the dilation operation makes
the gray values of the image greater than that of the input
image, while the erosion operation makes the gray values of
the image smaller than that of the input image due to the
minimum operation. Consequently, dilation increases the size
of the bright region and reduces the size of the dark region.
The results of erosion are the opposite.

Through these two basic operations, the opening operations
(f ◦ b) and closing operations (f • b) can be represented by:

(f ◦ b) (x, y) = (f 	 b)⊕ b (3)

(f • b) (x, y) = (f ⊕ b)	 b (4)

The small bright region is removed after the opening operation.
Likewise, the closing operation can eliminate the small dark
hole.

In general, a small target is always presented as a small
bright area. The background is easily obtained after foreground
extraction through an opening operation. Subsequently, we can
subtract the background from the original image to highlight
the target . The above process is also described as top-hat
transformation, which is defined according to the opening and
closing operations:

OTHf,b (x, y) = f (x, y)− (f ◦ b) (x, y) (5)

CTHf,b (x, y) = (f • b) (x, y)− f (x, y) (6)

where, OTHf,b (x, y) and CTHf,b (x, y) are called the open-
ing top-hat operation and closing top-hat operation respec-
tively. They are widely used in bright and dark target detection.

B. Guided Filter

The guided filter is a smooth linear translation variable filter
for edge -preserving smoothing. For guidance image I , input
image Iin, and output image Iout, the filter procession can be
expressed by introducing the filter kernel as follows:

{Iout}i =
∑
j

Wij (I) {Iin}j (7)

where i and j represent the pixel indexes. If Iin and I are the
same image, the filter process can smooth the input image and
preserve the edge at the same time.

To obtain the expression of kernel Wij , the key assumption
the guided filter is the local linear model between output image
Iout and guidance image I:

Iout = xkIi + yk,∀i ∈ ωk (8)

where Iout is a linear transformation of I in the window ωk

that is centered at pixel k and (xk, yk) is the linear coefficient
in ωk. This linear model is also useful for image matting [41]
and image super-resolution [42]. The solution of xk and yk
should minimize the difference between Iout and Iin and
maintain the linear model in Eq. (7), which is defined as
following cost function:

E (xk, yk) =
∑
i∈ωk

(
(xkIi + yk − {Iin}i) +εx2k

)
(9)

ε is an important parameter that can adjust the effect of the fil-
ter. Add Eq. (8) to Eq. (9) and let Wij = ∂ {Iout}i /∂ {Iout}j ,
parameter y is removed:

Wij =
1

|ω|
∑
k∈ωi

(
∂xk

∂ {Iin}j
(Ii − µk) +

∂
{
Īout

}
i

∂ {Iin}j

)
(10)

The process of derivation can be seen in [40]. The filter
kernel can be obtained through acquiring the solution of x
and y:

Wij =
1

|ω|2
∑

k∈ωi,k∈ωj

(
1 +

(Ii − µk) (Ij − µk)

σ2
k + ε

)
(11)

where µk and σk denote as the mean and variance respectively
of the pixel in the window ωk. |ω| is the number of pixels
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in ωk. It can be proven that
∑

jWij (I) = 1, because it
dose not normalize the weight. This kernel shows the different
properties of the pixel in different regions of the image, and
we further explore it and use it to construct the structural
elements.

C. Weight Local Entropy

Generally speaking, a small target often appears in the form
of a high gray value in the infrared images with the complex
background. For the purpose of emphasizing the contribution
of high gray value components of the information entropy in
an image, a weighted information entropy is defined in [35]:

H(x, y) = −
m∑
i=1

(fi − f(x, y))
2 {Iin}i log {Iin}i (12)

The gray value of the original infrared image is f(x, y),
and the corresponding neighboring pixel is M , which includes
m kinds of gray values f1, f2, ..., fm and is a simple and
efficient space domain preprocessing method for infrared small
target images. In our paper, we propose an entropy-driven top-
hat transformation that uses a novel entropy based on this
transformation.

III. OUR ENTROPY-DRIVEN GUIDED MORPHOLOGICAL
TOP-HAT TRANSFORMATION FOR TARGET DETECTION

In this section, firstly, an entropy driven top-hat trans-
formation is proposed. Then two adaptive elements based
on a guided filter kernel and an adjusted local entropy are
used in our proposed top-hat transformation to suppress the
background and enhance the target. Finally an entropy driven
top-hat transformation with guided filter kernel is given.

A. The Proposed Entropy-Driven Top-hat Transformation with
Local Mean Entropy

A small target appears as a small bright area in the image,
which causes the discontinuity with surrounding area(as shown
in Fig. 2) [43]. For the proposed top-hat transformation, the
key operation is closing operation. The closing operation can
smooth the bright area of the image, such as the target.
If it can remove a target completely from original image,
the background prediction will be precise after opening the
operation. However, for the case of a complex background,
some clutter regions contain clutters that shows a similar
representative pattern to target. Thus, these regions will also
be removed after the closing operation. In this situation,
the clutter is also reserved after subtracting the prediction
background from the original image.

Under the ideal case, we hope that our adaptive structural
element can remove the targets completely and smooth the
clutter as much as possible in the erosion operation. Thus,
less clutters will be included in the resulting image. Further-
more, entropy is widely used to represent complex degree. To
address this challenging problem for the opening operation,
we propose a local mean entropy to weight erosion operation.

The size of the image is N ×M , f(x, y) is the gray value
at the center pixel point (x, y), and its neighborhood pixels
are formulated as follows:

Fig. 2. The discontinuity between target and surrounding area.

L = {(x, y) , (Iin, Iout) | |x− Iin| ≤ n, |y − Iout| ≤ m}
(13)

Here, L is the edge of the target region, (Iin, Iout) is
the surrounding pixel, n and m represent the range of the
neighborhood. For a small window with a size of R × R,
f (x, y) is also defined as the gray value of the central pixel
point (x, y). If the block contains s various of gray values,
fi, i = 1, 2, ..., s, then our local mean entropy is defined as
follows:

S (x, y) = 1−
s∑

i=1,i∈L

fi −
R×R∑
i=1

fi

R×R


2

{Iin}i log {Iin}i

(14)
where µk is mean value of the local region. {Iin}i = si

R×R
represents the probability density function of the ith gray level.
Since a target appears with high gray value and causes a large
degree of complexity in local region, the pixel value of the
target has a difference from the mean value of the local pixel. If
fi is a pixel of target, fi − 1

R×R
∑R×R

i=1 fi will large. However,
for local region, the pixels are usually random and spare. Then
the complex degree is relative smaller if compared with target
region. Thus, fi − 1

R×R
∑R×R

i=1 fi will be relative small. And
we will analyze of our proposed local mean entropy later.

Then, we use our proposed local mean entropy to weight the
erosion operation in the opening operation. Correspondingly,
it is also used for weight dilation operations in the closing
operation. The formulation and our entropy-driven top-hat
transformation are defined as follows:

E −OTHf,S (x, y) = f − (f 	 b · S)⊕ b (15)

E − CTHf,S (x, y) = (f ⊕ b)	 b · S − f (16)

where E is a function.

B. Adaptive Structural Elements Based on Guided Filter Ker-
nel

A small target is normally has difference with the surround-
ing background areas. Consequently, the opening operation
mainly utilizes this property to remove the target. This is the
main reason why the top-hat transformation is well suitable
for small target detection models. However, in classical top-hat
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transformation, the value of the structural elements should be
initialized before filtering operation. In other words, the value
of a structural element is a constant that is short of properly
handling the local features efficiently and effectively. Here, we
propose an adaptive structural element inspired by [40]

Here, we adopt the guided filter kernel for designing the
adaptive structural elements. The key term of the guided filter
kernel in Eq. (11) is presented as follows:

G = 1 +
(Ii − µk) (Ij − µk)

σ2
k + ε

(17)

For a sliding window, Ii and Ij represent two different pixels.
The value of the G varies according to the location of the
window in the image.

Case 1: The window centers around the edge in the image.
The terms Ii − µk and Ij − µk have the same sign (+/−)
if the two pixels Ii and Ij are on the same side of edge. If
two pixels are on the different, then they have opposite signs.
In this way, G will become smaller (even close to 0) if two
pixels are on the different sides of an edge.

Case 2: If the window is located in a flat area with slight
change of images, σ2

k � ε, Ii − µk ≈ 0, and Ij − µk ≈ 0.
Then G ≈ 1.

These above two cases show that the value of G will be
close to the value of different types of areas in the image.

In a local region of the image, the background can be
considered a small flat region with similar pixels. In this way,
the pixel corresponds to the situation in case 2. The pixels of
a small target in case 1 always show the discontinuity with
the surrounding area.

Aiming to remove these two aspects, here, we introduce G
in Eq. (17) to construct the adaptive structural elements. For a
certain local window ωk, we define Ix,y as a pixel. Then our
structural function can be represented as follows:

bR,ε(x, y)=
1

R2

(
1+

(Ix,y−µk) (Io − µk)

σ2
k+ε

)
Ix,y,Io∈ωk

(18)

where R represents the size of the structural element and local
window, and R2 is used to normalize the value in a structural
element. Io is the center pixel of the local window, µk and
σ2
k denote the mean and variance respectively. The output
bR,ε(x, y) is the value of a pixel in the structural element
with the corresponding index.

In this way, an adaptive structural element is obtained at
each position along with a sliding window. Since the top-hat
transformation consists of dilation and erosion, the structural
function of these two operations is used twice in a top-hat
transformation for target detection.

C. Target Detection Based on Overall Model

Our top-hat transformation is based on guided filter kernel in
Eq. (18) and local mean entropy in Eq. (14). The formulation
is defined as follows:

EGFK−OTHf,bR,ε,S (x, y)=f−(f 	 bR,ε · S)⊕bR,ε (19)

EGFK−CTHf,bR,ε,S (x, y)=(f ⊕ bR,ε · S)	bR,ε−f (20)

where the bR,ε is our adaptive structural element. The value of
this structural element is adaptive on the position of the pixel in
the image and can capture the local feature information. The S
represents our proposed local mean entropy, which is used for
clutter suppression. We provide further detailed information
and analysis in next section.

In summary, a small infrared target and its surrounding
regions is discontinuous, and it causes the large entropy in
local areas. Our EGFK top-hat transformation mainly utilizes
these two features to enhance the target while suppressing the
clutters. The following threshold is defined to subdivide the
result:

T = Io +KσIi (21)

For output image Io, Io and σIi are the mean and standard de-
viation, respectively, of Io. K is a parameter that ranges from
5 to 10. Correspondingly, the EGFK top-hat based infrared
small target detection method is described in Algorithm 1.

Algorithm 1 EGFK top-hat based infrared small target
detection method

1: Input: Frame image f .
2: Output: Result image fT and target position.
3: Initialization: initial parameter R and ε to calculate

structural elements and local mean entropy.
4: for x = 1 to M
5: for y = 1 to N
6: (1). Construct the adaptive structural elements bR,ε

by Eq.(18).
7: (2). Get the local mean entropy S (x, y) by

Eq.(14).
8: (3). Implement the erosion operation fE (x, y) =

(f 	 bR,ε · S)⊕ bR,ε

9: end
10: end
11: for x = 1 to M
12: for y = 1 to N
13: (1). Construct the adaptive structural elements bR,ε

for image fE by Eq.(18).
14: (2). Implement the dilation operation fD (x, y) =

fE ⊕ bR,ε

15: end
16: end
17: Obtain the result image fT through top-hat transformation:

fT = f − fD
18: Calculate the threshold: T = Ii +KσIi
19: Segment target from the result image fT according to

T :the pixel at the location (x, y) is the target if fT ≥ T ,
otherwise it is a pixel of background.

20: Result: Obtain the target detection.

IV. ANALYSIS OF THE STRUCTURAL ELEMENT AND
ENTROPY

A. Analysis of the Adaptive Structural Elements

From the definition in Eq.(18), we can find that each value
of a structural element is depend on the mean and pixel



6

value in the local region. Here, we take the opening top-
hat transformation for example to analyze that our adaptive
structural elements have different shapes at the target and
background regions. We explain how this property will be
helpful for background prediction in top-hat transformation.

The opening top-hat transformation takes the erosion oper-
ation first. In a small area of background, the pixels can be
considered uniformly. Then we will have the following:

Ix,y ≈ µk, Io ≈ µk ⇒
(Ix,y − µk) (Io − µk)

σ2
k + ε

≈ 0 (22)

Thus, we obtain the each pixel of a structural element after
normalization:

bR,ε(x, y) ≈ 1

R2
(23)

which means that the structural element is approximately flat:

bR,ε ≈


1
R2 · · · 1

R2

...
. . .

...
1
R2 · · · 1

R2


R×R

(24)

Then, we use an erosion operation through this flat structural
element, and the pixel value in each local region of the
background can be defined as: µk − 1

R2 .
For the target region, the pixel value shows the discontinuity

at the boundary of a target. Here, the center pixel Io belongs to
a target and a surrounding pixel Ix,y belongs to background.
Then we have the following:

µk > Ix,y, Io > µk ⇒
(Ix,y − µk) (Io − µk)

σ2
k + ε

< 0 (25)

In this way, if ε is small enough, it may result in

(1 +
(Ix,y − µk) (Io − µk)

σ2
k + ε

) ≈ 0 (26)

Thus:
bR,ε(x, y) ≈ 0 (27)

In contrast, if Io and Ix,y are both belonging to the target, we
have:

(Ix,y − µk) (Io − µk)

σ2
k + ε

> 0 (28)

In this way, for the target region, we obtain a sharp structural
element as follows:

bR,ε ≈


0 · · · 0

... tx,y tx,y
...

tx,y
0 · · · 0

 (29)

where

tx,y =
1

R2

(
1 +

(Ix,y − µk) (Io − µk)

σ2
k + ε

)
(30)

The location of tx,y is the corresponding location of target
pixel. Then, the pixel value of target is formed after the erosion
operation, which is defined as follows:

min (Io − tx,y, Ix,y − bR,ε (x, y)) (31)

Thus, a target can be removed and a flat background is
obtained. Consequently, after the erosion operation, the input
image is relatively flat for the local region. We use the
structural function Eq. (18) again for the dilation operation
and obtain the flat structural element for each local region.
Finally, the pixel value in each local region could is formed
as µk − 1

R2 to recover the background.

B. Analysis of Our Proposed Local Mean Entropy

The local entropy refers to the variance in gray values of
a local region. The homogeneous areas always show a small
entropy and the heterogeneous areas are opposite. A small
target usually possesses gray value information in a local area,
where the local entropy of the target region is larger than that
of the background areas. Let (xt, yt) and (xB , yB) denote as
the pixels of target and background respectively. For the target
region and background region with clutters, we will have the
following equation:(

−
s∑

i=1

Iinxt
(i) yt (i) log {Iin}xt

(i)yt (i)

)
>

(
−

s∑
i=1

{Iin}xB
(i)yB (i) log {Iin}xB

(i)yB (i)

) (32)

In addition, the discontinuity between the target and surround-
ing area is apparently shown. Therefore, we also obtain the
following inequality:(

fxt(i)yt(i) − µkxt,yt

)
>
(
fxB(i)yB(i) − µkxB,yB

)
(33)

In this way, we have the following equation:

S (xt, yt) > S(xB , yB) (34)

After using our proposed local mean entropy to weight the
erosion operation, we obtain:

(f 	 bR,ε · S) (xt, yt) < (f 	 bR,ε · S) (xB , yB) (35)

which means that the target area is more corroded than the
background area with clutter. In this way, more clutter is
reserved if the target is removed from the background. Con-
sequently, after subtracting the background from the original
image, the target is enhanced.

For the flat background region, we define (xn, yn) as pixel.
Since the gray value is uniform in the flat region, we have the
following definition:

fixn,yn
− µkxn,yn

≈ 0 (36)

Thus,

S ≈ 1, (f 	 bR,ε · S) (xn, yn) ≈ (f 	 bR,ε) (xn, yn) (37)

Here, the degree of the erosion operation is hardly changed
by introducing our proposed improved local entropy.

In other words, our local mean entropy can control the
degree of the erosion operation of top-hat transformation,
which causes the erosion operation to smooth the target while
retaining as much clutters as possible, which increases the
ability of our adaptive structural elements.



7

Fig. 3. (A1)-(F1) and (A2)-(F2) denote the six real image sequences and three-dimensional gray distributions, (A3)-(F3) and (A4)-(F4) denote the output
image and corresponding three-dimensional distribution

Fig. 4. Experimental results of different methods. (A1)-(F1),(A2)-(F2), (A3)-(F3), (A4)-(F4), and (A5)-F5) are the enhanced results obtained through the
LCM , WLDM, NWTH, MPCM, and LACRFR respectively.
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TABLE I
THE DETAILS OF REAL IMAGE SEQUENCES

Image size(pixels)
(width× height)

Target size(pixels)
(width× height) Target type Target details Background details

sequence1 286× 225 2× 2 ∼ 3× 3 A small ship Small and motionless Sea-sky background
with little change

sequence2 561× 452 3× 2 ∼ 4× 3 Airplane Dim and constant movement Sky background
with clouds clutter

sequence3 128× 128 4× 6 ∼ 5× 6 A small ship A short imaging distance
Keeping motion

Blurred sea-sky background
with heavy noise.

sequence4 256× 200 7× 4 ∼ 9× 5 Airplane A change size and constant movement Sea-sky background
with clouds.

sequence5 220× 160 3× 3 ∼ 4× 5 Car A small size and motionless Highway background

sequence6 128× 128 9× 5 ∼ 10× 6 Aircraft A large size and motionless Sky background with heavy clouds
constant change

V. EXPERIMENT AND DISCUSSION

A. Experimental Setting

First of all, we introduce the evaluation indicators and
compare several recent methods. Next, we make use of three
image sequences with heavy clutter in complex background
to demonstrate the contribution of our proposed adaptive
structural elements and local mean entropy in top-hat trans-
formation. The most part of dataset is collected from the
[44]. We collect real infrared images and generate synthetic
ones to validate the proposed model. Furthermore, we use
real small target image sequences in different backgrounds
to show the superiority of our method through comparison.
The experimental data used in the article contains six sets of
real infrared sequences, each set of 500 frames, the sequence
contains a different number of real targets. Our experimental
data sets are actually collected infrared sequence images. In
some comparative experiments, because of insufficient data,
we use simulated data for experiments. The experiments
are performed on a computer with 8-GB of random access
memory and an Intel(R) Core(TM) i5-7440HQ CPU with
2.80GHz processor, and the implementation is presented in
Matlab 2016a.

B. Evaluation Metrics and Baseline Methods for Comparison

The main tasks for detecting targets in complex background
are suppressing the background clutters and enhancing the
target. Consequently, if there is less background clutter after
using our method, the target will be more obvious.

Based on this fact, we use signal-to-clutter ratio gain
(SCRG) and background suppression factor (BSF) to evaluate
the performance of target enhancement after using different
methods, since these evaluation indicators can measure the
significance of the target and the degree of clutter in the
background. If the value of SCRG and BSF are higher, a target
is more obvious. The definitions of the SCRG and BSF are
formulated as follows:

SCRG =
(S/C)out
(S/C)in

(38)

BSF =
Cin

Cout
(39)

The S and C denote average value of the pixels in image
and the clutter standard deviation respectively, and Cin, Cout

denote the standard deviation of input image and output image
respectively.

Additionally, the detection probability PD and the rate
of false alarm PF are also taken to evaluate the detection
performance. Their definitions are formulated as:

PD =
Nt

NC
× 100% (40)

PF =
Nf

N
× 100% (41)

where Nt, NC , Nf and N denote the number of correctly
detected targets, actual targets, false detections, and total
detection number respectively.

Our method exploits the mathematical morphology and
entropy to detect target, which also uses the local mutation in-
formation caused by the emergence of small target in an image.
We choose some recent methods to perform the comparative
test: LCM [45], NWTH [25], MPCM [46], LACRFR [47] and
WLDM [48].

C. Target Enhancement and Performance Analysis

In this section, six image sequences with different kinds of
targets and background (more than 500 images) are used in
our experiment. They are denoted as sequences 1-6. In Fig. 3,
there are six images representing six sequences and detailed
information about the target is listed in Table I. Moreover,
some recent baseline methods are introduced for comparison,
including:
• Local contrast method(LCM) [45]. This method utilizes

the contrast of brightness as a standard to decide whether
the method should pay attention to the areas or not.

• New white top-hat(NWTH) [49]. NWTH transformation
utilizes structuring elements considering target region
and background region. This method is superior than
the white top-hat method transformation in viewpoint of
target enhancement.

• Multiscale patch-based contrast measure(MPCM) [46].
MPCM can increase the contrast between target and
background, which makes it easy to segment small target
by simple adaptive thresholding method.

• Local adaptive contrast operation based on regularized
feature reconstruction(LACRFR) [47]. Based on the
closed-form solution derived from regularized feature
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Fig. 5. The 3D distribution from other methods. All results are normalized in [0, 1]. (A1)-(F1),(A2)-(F2), (A3)-(F3), (A4)-(F4), and (A5)-F5) are the enhanced
results obtained through the LCM , WLDM, NWTH, MPCM, and LACRFR respectively.

Fig. 6. The average value of SCRG and BSF between different methods .

reconstruction, this method can perform local adaptive
contrast operation. Finally, the spatial saliency map and
the temporal saliency map can be calculated on the spatial
domain and the temporal domain.

• Weighted local difference measure(WLDM) [48]. This
method weights a multiscale local difference contrast to
separate the true target from jamming objects. Subse-
quently, this method utilizes a simple threshold to detect
the target in the filtered result. And this measure can si-
multaneously enhance the target and suppress background
clutters.

Here, extensive images with different targets and back-
ground are used to compare the performance of these methods
and our method. Hence, the pixels of all results are normal-
ized in [0, 1]. (Fig. 3, A4-F4) shows the enhanced 3D gray
distributions obtained by our methods. We can see that in
original image (Fig. 3, A1-F1), most targets are not obvious,
and the background is complex. The corresponding 3D gray
input images are displayed in (Fig. 3, A2-F2). After applying
our method, the background clutter is almost suppressed. In
this way, the target in our results can be detected easily. The
result of other methods are displayed in Fig. 4 and Fig. 5.
Our method has less clutters and the targets are more obvious

compared with other methods,.

Furthermore, the values of SCRG and BSF are used to prove
the performance of these methods. The high values of SCRG
and BSF indicate the better performance. We compute the av-
erage value of SCRG and BSF to objectively evaluate these six
image sequences. The results of each sequence are displayed
in Fig. 6. Two bar images present the average values of SCRG
and BSF for six image sequences from different methods. Our
method obtains higher scores, which also suggests that our
method can enhance the target better than other methods. The
above experimental results demonstrate that our method can
achieve higher performance in terms of target enhancement
and background suppression .

According to the protocol in [5], if the distance between
centers of the ground-truth does not exceed 5 pixels, then
we assume that the detected result is correct. The targets in
sequences 2 and 4 keep moving in each frame, while the
targets in other frames have little movement (Table I). For
sequences 2 and 4, Fig. 7 displays the ground-truth target
movement trajectories and the detected trajectories from our
method. We can find that there are only a few errors and that
horizontal and vertical errors are both less than 10 pixels. A
conclusion can be drawn from Fig. 7 that proposed method
can achieve a high detection ratio and low false alarm rates
for moving targets.

The receiver operating characteristic (ROC) curve can also
reflect the relationship between detection versus false alarm
rates. We provide ROC curves obtained using different meth-
ods in Fig. 8, which suggests the better performance of our
method in other ways.
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Fig. 7. Ground-truth and detected trajectories obtained by using our method:
A and b Ground-truth and detected trajectories of Sequence 2 and 4.

TABLE II
THE CONTRIBUTION OF THE DIFFERENT PARTS IN OUR ALGORITHM

Sequence a Sequence b Sequence c Average
SCRG/BSF SCRG/BSF SCRG/BSF Runing Time

Top-hat 1.69/2.98 1.14/2.25 1.74/2.59 1.31s
GFK top-hat 5.86/9.30 2.99/4.43 5.47/5.72 2.38s

EGFK top-hat 15.84/13.02 4.96/6.14 9.35/13.76 5.64s

D. The Contribution Analysis of the Adaptive Structural Ele-
ments and the Proposed Local Mean Entropy

Our adaptive structural elements allow our top-hat trans-
formation to handle complex background because the pro-
posed local mean entropy makes our algorithm more robust
under clutters. Here we compare the results between top-hat
transformation, top-hat transformation based on guided filter
kernel (GFK top-hat transformation) and entropy-driven top-
hat transformation based on a guided filter (EGFK top-hat
transformation).

We adopt three representative image sequences (named
sequences a, b and c) with complex backgrounds and clutters.
The size of the target is ranges from 10 to 25 pixels. As shown
in Fig. 9, A1-A6 are the representative three input images and
3D gray distribution images. It is obvious that there is heavy
clutter in the background area. The top-hat transformation can
not suppress the background thoroughly due to the simple
structural elements. After using our adaptive structural ele-
ments, the background is suppressed better (second line, B1-
B6). However, there is still some clutter in the results that can
be seen in the 3D gray distribution result (C2,C4,C6). Finally,
after using the proposed local mean entropy, the background
is clear and the target is enhanced sufficiently. Moreover, the
testing average values of the SCRG and BSF are listed in Table
II, which shows the incremental contribution of GFK top hat
transformation and EGFK top-hat transformation.

E. Sensitivity Analysis of the Crucial Parameters

In this section, we analyze the sensitivity of the crucial
parameters of our algorithm. Two parameters are tested rea-
sonably in our proposed top-hat transformation.

The size of the sliding window controls the size of the
structural elements and the area size of the local entropy.
If the size is too small, the window cannot cover the target.
Thus, it may not sufficiently utilize the local difference and
background information. This problem potentially yields a
high miss rate for target detection. However, if the larger
window is considered, the window covers the background
clutter and may cause the false detections. In order to analyze
the effects of the window size, we set the size of the window

as 3×3, 5×5, 7×7, 9×9, 11×11 respectively. Then we test the
SCRG value and BSF value for the above three representative
images. The result is shown in Fig. 10, and we find that the
choice of R = 5 achieves good performance in the value of
BSF and SCRG.

Then, we fix R and test the value of ε =
{0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.2, 0.4, 0.6, 0.9}
from the setting ε ∈ (0, 1) [40]. We can find that ε = 0.01
and ε = 0.03 achieve the highest SCRG value and BSF value.
In the above experiment, we set the R = 5 and ε = 0.02 for
all test images.

F. Computational Complexity

In this part, we discuss the complexity of our method briefly.
The whole framework can be shown in Fig. 1. We find that
the calculation of our algorithm mainly includes two parts:
the structural element operation, and the entropy operation.
Assuming the size of the image as m×n. The computational
complexity is O(m× n×R2) according to the local entropy
operation. For structural element construction, the complexity
is also O(m×n×R2). Then for the dilation and erosion oper-
ation, the total computational complexity is O(m2×n2×R2).
Therefore, on the basis of the above analysis, the total compu-
tational complexity is O(m×n×R2+2×m2×n2×R2). The
table III shows the algorithm complexity and computational
time of different methods.

VI. CONCLUSION

In our paper, we present an entropy-driven top-hat trans-
formation with a guided filter kernel for small infrared target
detection. The entropy-driven top-hat transformation is used
to suppress the clutters of an image capturing the features
of clutters. Then structural elements based on a guided filter
kernel allow our top-hat transformation to capture the local
feature information for background suppression. In this way,
our top-hat transformation can not only enhance the target
in the image with a low SCRG value, but also effectively
suppress the background with clutter. According to the thresh-
old adaptation, our algorithm can obtain a higher detection
probability and lower false alarm rate.The experimental result
also shows that our algorithm can acquire a higher value of
SCRG under different backgrounds compared with several
other approaches.
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