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flatspin: A large-scale artificial spin ice simulator
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We present flatspin, a novel simulator for systems of interacting mesoscopic spins on a lattice, also known as
artificial spin ice (ASI). A generalization of the Stoner-Wohlfarth model is introduced, and combined with a well-
defined switching protocol to capture realistic ASI dynamics using a point-dipole approximation. Temperature
is modelled as an effective thermal field, based on the Arrhenius-Néel equation. Through GPU acceleration,
flatspin can simulate the dynamics of millions of magnets within practical time frames, enabling exploration
of large-scale emergent phenomena at unprecedented speeds. We demonstrate flatspin’s versatility through the
reproduction of a diverse set of established experimental results from literature. In particular, the field-driven
magnetization reversal of “pinwheel” ASI is reproduced, for the first time, in a dipole model. Finally, we use
flatspin to explore aspects of “square” ASI by introducing dilution defects and measuring the effect on the
vertex population.
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I. INTRODUCTION

An artificial spin ice (ASI) is an ensemble of nanomagnets
arranged on a lattice, coupled through magnetic dipole-
dipole interactions. The vast variety of emergent collective
behaviors found in these systems have generated consid-
erable research interest over the last decade [1,2]. Using
modern nanofabrication techniques, emergent phenomena can
be facilitated through direct control of the ASI geometry,
e.g., collective ferromagnetic/antiferromagnetic ordering [3],
Dirac strings [4], and phase transitions [5,6]. ASIs offer
a unique model system for exploring fundamental physics,
since magnetic microscopy enables direct observation of their
internal state. There is also a growing interest in ASIs as
building blocks for novel devices [7,8]. Computer simulations
have proven invaluable to gain insight into the rich behavior
of these coupled systems.

Micromagnetic simulations of ASI have been limited to a
handful of nanomagnets due to excessive computational cost.
Although physically accurate, such high fidelity simulations
are unable to capture large-scale emergent phenomena, such
as the size of magnetically ordered domains and long-range
order. To simulate large ASI systems, an established approach
is to sacrifice fidelity for speed by employing a dipole
model, i.e., treating each nanomagnet as a single macrospin
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approximated by a point dipole [9]. Conventionally, Monte
Carlo methods have been used in conjunction with the dipole
approximation to search for low energy configurations [10,11]
or to study statistical measures such as vertex populations [9].
However, Monte Carlo methods do not model the dynamical
pathway taking the system from an initial configuration
to the final low-energy configuration. They are inherently
stochastic and better suited for ensemble statistics rather than
dynamics [12].

Here we present flatspin, a point-dipole simulator for large
ASI systems that is capable of capturing realistic dynamics,
at long time scales. We introduce a generalization of the
Stoner-Wohlfarth model, that describes the switching charac-
teristics of numerous nanomagnet shapes. This generalized
model is combined with a novel, well-defined, switching
protocol, to capture the dynamics of large ASI systems.
All influences on the magnets are represented by magnetic
fields, including a stochastic thermal field derived from the
Arrhenius-Néel equation. These crucial aspects of flatspin,
combined with GPU acceleration, extends the possibilities of
ASI simulation. Using flatspin in place of micromagnetic sim-
ulations increases the possible simulation sizes from hundreds
to millions of magnets, enabling exploration of large-scale,
emergent phenomena in these intriguing systems.

In this paper, we present the motivation and design of
flatspin. The thermal model is verified against established
analytical and numerical models. We demonstrate good agree-
ment between flatspin and a variety of published experimental
results. We show that flatspin can capture dynamic behav-
iors observed experimentally, which have previously eluded
modeling [13]. Finally, we explore new aspects of square
ASI by removing individual elements of the lattice, and
measuring the effects on the type population under an
applied field.
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FIG. 1. The representation of nanomagnets as spins si and asso-
ciated quantities: position ri, angle θi, and distance to neighbor j,
ri j . Note that the magnetization of spin i is given by its spin si, and
orientation θi.

II. THE FLATSPIN MAGNETIC MODEL

In this section, we describe the dipole model and the under-
lying physical assumptions of flatspin. The model is designed
to simulate the ensemble state-by-state evolution, i.e., dynam-
ics, of two-dimensional ASI. In short, magnets are modeled as
point dipoles (Sec. II A), and each dipole can be affected by
three types of external influence: magnetic dipole-dipole cou-
pling (Sec. II C), an applied external magnetic field (Sec. II D),
and thermal fluctuations (Sec. II E). The switching of spins
is determined using a generalized Stoner-Wohlfarth model,
which takes the shape anisotropy of the simulated nanois-
lands into account (Sec. II F). Imperfections in the ASI are
introduced as different coercive fields, set per spin (Sec. II G).
Dynamics are modeled using a deterministic single spin flip
strategy (Sec. II H).

A. Magnets as dipoles

ASI systems are physically realized as elongated islands
of a ferromagnetic material, arranged on a two-dimensional
lattice. The magnets are made small enough to exhibit a single
ferromagnetic domain, i.e., coherent magnetization through-
out the magnet. The single domain state is stable as the energy
cost associated with domain walls exceeds the cost associated
with the demagnetization energy [14,15]. Since a magnet has
coherent magnetization, it can be approximated by a single
mesoscopic spin and the magnetic state can be represented by
a single vector m.

The shape anisotropy of the thin elongated islands will re-
strict their magnetization to two possible in-plane directions.
Hence, individual magnets can be approximated by classical
macrospins with a twofold degenerate ground state defined by
the elongated shape of the individual elements. Due to the two
degenerate ground-state configurations, we approximate each
magnet as a magnetic dipole with binary magnetization, i.e.,
a binary macrospin, si ∈ {−1,+1}.

As illustrated in Fig. 1, each magnetic dipole is modelled
with a position ri and rotation θi, which together define the
ASI geometry. Furthermore, each magnet is assigned a co-
ercive field, h(i)

c , describing its resistance to switching (see
Sec. II F). Using reduced units, the magnetization vector of
a single magnet can be expressed as

mi = sim̂i (1)

where m̂i = [cos θi, sin θi] is the unit vector along mi.

B. Magnetic fields and temperature

External fields and temperature are modeled as a combi-
nation of effective magnetic fields. The total field hi affecting
each magnet i is the sum of three components:

hi = h(i)
dip + h(i)

ext + h(i)
th , (2)

where h(i)
dip is the local magnetic field from neighboring mag-

nets (magnetic dipole-dipole interactions), h(i)
ext is a global

or local external field, and h(i)
th is a stochastic magnetic

field representing thermal fluctuations in each magnetic ele-
ment. Each of these field contributions are described in the
following sections.

C. Magnetic dipole-dipole interactions

The individual magnets, or spins, are coupled solely
through dipole-dipole interactions. Each spin i is subject to
a magnetic field from all neighboring spins, j �= i, given by

h(i)
dip = α

∑
j �=i

3ri j (m j · ri j )

|ri j |5 − m j

|ri j |3 , (3)

where ri j = ri − r j is the distance vector from spin i to j,
and α scales the dipolar coupling strength between spins. The
coupling strength α is given by α = μ0M

4πa3 , where a is the lattice
spacing, M is the net magnetic moment of a single magnet,
and μ0 is the vacuum permeability. The distance ri j is thus
given in reduced units of the lattice spacing.

The dipole field present at each spin’s location is calculated
by summing the dipole field contributions from spins in its
neighborhood. The size of the neighborhood is user config-
urable and defined in units of the lattice spacing. The required
neighborhood distance varies, subject to the system of study.
Care must be taken to include enough spins in the neighbor-
hood such that the observed behavior converges, especially
when considering systems exhibiting long-range effects. In
some geometries, such as square ASI, short range interactions
dominate the contributions to hdip [16,17], in which case the
neighborhood size can be relatively small, for a benefit of
increased efficiency. For geometries where long range inter-
actions are significant, a larger neighborhood is required, e.g.,
pinwheel ASI [18]. The flatspin documentation [19] provides
an example of how to choose an appropriate neighborhood
distance.

D. External field

Applying an external magnetic field is the primary mech-
anism for altering the state of an ASI in a controlled manner.
The external field can either be set locally on a per-spin basis
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(h(i)
ext), globally for the entire system (hext), or as a spatial

vector field (hext(r)).
Time-dependent external fields are supported, i.e., hext is

a discrete time series of either local, global, or spatial fields.
A variety of time-dependent external fields come predefined
with flatspin, including sinusoidal, sawtooth, and rotational
fields. More complex field protocols can be generated, e.g.,
for annealing purposes or probing dynamic response.

E. Thermal field

In flatspin, the thermal energy fluctuations of individual
magnets E (i)

th are represented by a corresponding stochastic
magnetic field h(i)

th . The following section describes how the
thermal field magnitude is derived.

In a physical ensemble of particles, there is a thermal
energy budget, on the scale of kBT , where kB and T denote
the Boltzmann constant and the temperature, respectively. For
bistable magnetic particles, the thermal energy causes ran-
dom switching events, at a characteristic rate given by the
Arrhenius-Néel equation [20],

f = f0 exp

(
− �E

kBT

)
, (4)

where f0 is the attempt frequency and �E is the particle’s
energy barrier for switching.

The energy barrier �E corresponds to the additional
Zeeman energy required for magnetization reversal. This ad-
ditional energy is a function of the smallest additional field
needed for switching �h. The Zeeman energy from �h is
given by �E = �hMth, where Mth is the thermal nucleation
moment. Note that Mth is typically smaller than the entire
magnetic moment M, since thermal nanomagnetic switching
is generally mediated by a smaller nucleation volume. The rel-
evant criterion for switching is the magnitude of the stochastic
thermal field compared to the minimum energy barrier.

The probability of thermal switching follows a Poisson
distribution Pr (k,�t, f ), where k is the number of switching
events in a time interval �t , and f is the characteristic switch-
ing rate given by Eq. (4). The probability of switching at least
once Pswitch is given by

Pswitch = Pr (k > 0),

= 1 − Pr (k = 0),

= 1 − exp(− f �t ),

= 1 − exp

(
�t f0 exp

(
−�hMth

kBT

))
. (5)

In our model, we use this expression to approximate the
probability that a magnet will switch once. For this to be
valid, �t must be sufficiently small so that multiple switch-
ing events are unlikely. In other words, it is assumed that
Pr (k > 1) � Pr (k = 1), so that magnets do not have time to
“switch back” during the time �t . This is relevant only for
weak bias fields, where the probability of switching is nearly
symmetrical. With any significant bias field, the probability of
“switching back” will be negligible.

It is important to note that flatspin does not account for
the temperature dependence of the material parameters. If
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FIG. 2. Probability density functions (PDF) for hth at differ-
ent temperatures T . The example plots are for a magnetic particle
with saturation magnetization MS = 860 kA m−1 and volume V =
220 nm × 80 nm × 3 nm, for a time interval �t = 1 ms.

these parameters are expected to vary significantly in the
temperature range of interest, e.g., Mth, this has to be explicitly
accounted for by the user.

As discussed in Sec. II B, all magnetic influences are in-
cluded as magnetic fields, and their sum is compared to the
switching condition to determine whether a magnet switches.
Within this framework, we now derive an expression for the
thermal field based on Pswitch.

Consider a stochastic field variable X from which a thermal
field hth is sampled. The probability of drawing a thermal field
hth larger than the minimum switching field �h equals the
switching probability for the same minimum switching field,

P(X > �h) = Pswitch(�h), (6)

1 − P(X � �h) = 1 − exp(− f �t ), (7)

P(X � �h) = exp(− f �t ). (8)

P(X � �h) is the cumulative density function (CDF) of
the distribution for hth that matches the Poisson distribution
in Eq. (5). Using inverse transform sampling, we use the
expression for the CDF to transform a uniformly distributed
random number u to a thermal magnetic field magnitude hth,

hth = −kBT

Mth
ln

(
ln(u)

−�t f0

)
. (9)

Figure 2 illustrates how temperature influences the prob-
ability density function for the stochastic thermal field. As
can be seen, both the expected value and the variance of hth

increases with temperature. In other words, the magnitude
and spread of the stochastic field hth increases, effectively
increasing the probability of thermal flips.
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FIG. 3. Top: Schematic showing hard and easy axes of (a) an elliptical magnet and (b) a rectangular stadium-shaped magnet, as well as the
total field acting on the magnet hi with its parallel and perpendicular components, h‖ and h⊥, respectively. Bottom: Switching astroid for (c) an
elliptical magnet and (d) a rectangular stadium-shaped magnet. Red dots show the coercive field obtained from micromagnetic simulations.
The blue line in (c) shows the Stoner-Wohlfarth astroid. The blue line in (d) shows the generalized Stoner-Wohlfarth astroid with parameters
b = 0.42, c = 1, β = 1.7, and γ = 3.4 in Eq. (11). The astroids have been normalized with respect to hk .

A stochastic thermal field magnitude drawn from hth is
converted to a vector field hth parallel to �h (the smallest
additional field for switching). When the thermal field is
added to the sum of fields for each magnet, the probability
of switching will follow the Poisson distribution in Eq. (5).
In this way, thermal fluctuations are modeled as an additional
local field h(i)

th applied to each magnet individually.

F. Switching

Magnetization reversal, or switching, may take place when
a magnet is subjected to a magnetic field or as a result of
thermal fluctuations. If the field is sufficiently strong and
directed against the magnetization mi, the magnetization will
switch direction.

The critical field strength for switching is referred to as the
coercive field hc. For elongated magnets, hc depends on the
angle between the applied field hi and mi. As illustrated in
Fig. 3(a), the easy axis, where the magnetization favors align-
ment, lies along the long axis of the magnet, whereas the hard
axis is perpendicular to the long axis. The external field can be
decomposed into two components, h‖ and h⊥, corresponding
to the field component parallel and perpendicular to the easy
axis, respectively. We denote the coercive field strength along
the hard axis as hk .

A switching astroid is a polar plot of hc at different angles,
with h⊥ on the horizontal axis and h‖ on the vertical axis. For
any applied field hi that is outside the switching astroid, the
magnet will switch as long as the field is directed against the
current magnetization.

Figure 3(c) shows the normalized switching astroid for an
elliptical magnet [Fig. 3(a)] as obtained from micromagnetic

simulations using MuMax3 [21]. Notice how hc is the smallest
at a 45◦ angle, indicating that a field directed at 45◦ to a
magnet’s principal axes will require the least field strength in
order to switch its magnetization.

The Stoner-Wohlfarth (SW) model captures the angle de-
pendent switching characteristic of single-domain elliptical
magnets [22]. The characteristic SW astroid is shown in
Fig. 3(c) (blue line) and is described by the equation

(
h‖
hk

)2/3

+
(

h⊥
hk

)2/3

= 1. (10)

In the SW model, switching may occur when the left-hand
side of Eq. (10) is greater than one.

The astroid obtained from micromagnetic simulations and
the SW astroid [Fig. 3(c)] are nearly identical. Despite its sim-
plicity, the SW model clearly captures the switching behavior
of elliptical nanomagnets.

However, the SW model is only accurate for elliptical
magnets. Other magnet shapes typically have quite different
switching characteristics. Figure 3(d) shows the switching
astroid for rectangular stadium-shaped magnets (red dots),
which is the shape commonly used in most fabricated ASIs
[Fig. 3(b)]. Notice how the astroid is asymmetric: Rectangular
magnets switch more easily with a field applied along the easy
axis than the hard axis.

To capture the asymmetric switching characteristics of
nonelliptical magnets, we have generalized the SW switching
model to allow an asymmetry between easy and hard axes.
Additionally, the model has been extended to allow for tuning
of the curvature of the extrema. In the generalized model, the
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switching threshold is given by
(

h‖
bhk

)2/γ

+
(

h⊥
chk

)2/β

= 1, (11)

where b, c, β, and γ are parameters, which adjust the shape
of the astroid: b and c define the height and width, respec-
tively, while β and γ adjust the curvature of the astroid at
the easy and hard axis, respectively. Introducing these new
parameters allows for tuning of the switching astroid to fit
with the shape of nanomagnets used in ASIs. With b = c = 1
and β = γ = 3, Eq. (11) reduces to Eq. (10), i.e., the clas-
sical Stoner-Wohlfarth astroid is obtained (valid for elliptical
magnets).

By tuning the parameters of the generalized SW model,
we can obtain the asymmetric switching astroid shown in
Fig. 3(d) (blue line). The astroid is in good agreement with
results obtained from micromagnetic simulations (red dots).

In flatspin, the generalized SW model is used as the switch-
ing criteria, i.e., a spin may flip if the left-hand side of Eq. (11)
is greater than one. Additionally, the projection of hi onto mi

must be in the opposite direction of mi,

hi · mi < 0. (12)

G. Imperfections and disorder

Due to manufacturing imperfections, there will always be
a degree of variation in the shape and edge roughness of
nanomagnets. This variation can be thought of as a disorder in
the magnets’ inherent properties. Rough edges and a slightly
distorted geometry can affect the magnets’ switching mech-
anisms, with defects pinning magnetization and altering the
coercive field for each magnet.

In flatspin we model this variation as disorder in the coer-
cive fields. The coercive field is defined individually for each
magnet, and a distribution of values can be used to introduce
variation. A user-defined parameter kdisorder defines the distri-
bution of coercive fields, i.e., h(i)

k is sampled from a normal
distribution N (hk, σ ), where σ = kdisorder · hk . Negative h(i)

k
values are disallowed.

H. Dynamics

Given the total magnetic field acting on each spin, hi,
flatspin employs deterministic single spin flip dynamics. At
each simulation step, we calculate hi, which will contain a
stochastic term in the case of nonzero temperature. Next, we
determine which spins may flip according to the switching
criteria Eqs. (11) and (12). Finally, we flip the spin where
hi is the furthest outside its switching astroid, i.e., where the
left-hand side of Eq. (11) is the greatest. Ties are broken
in a deterministic, arbitrary manner, although with nonzero
disorder such occurrences are rare. The dipolar fields are
recalculated after every spin flip, and the above process is
repeated until there are no more flippable spins.

This relaxation process is performed with constant exter-
nal and thermal fields. To advance the simulation, the fields
are updated and relaxation is performed again. Hence, a
simulation run consists of a sequence of field updates and
relaxation processes.

The dynamical process makes three main assumptions:
(1) The external field is quasistatic compared to the

timescale of magnet switching.
(2) Magnet switching is sequential.
(3) The magnet experiencing the highest effective field

compared to its switching threshold is the first to
switch.

Assumption 1 means the model holds for low frequency
external fields, i.e., where switching settles under a static field.
The switching mechanics of nanomagnets are typically in the
subnanosecond range [23,24], and experimental setups often
employ external magnetic fields, which can be considered
static at this timescale. At high applied field frequencies, more
complex physical phenomena such as spin waves will have
a non-negligible effect on switching dynamics. Such high-
frequency phenomena are not considered in flatspin.

Assumption 2 holds if the coercive fields h(i)
c , and total

field hi, of the magnets are sufficiently nonuniform, so that
there will always be a single magnet that will flip first. It is
assumed to be unlikely that two magnets will have a h(i)

c and
hi that bring them equally far outside the switching astroid.
However, in those rare cases where two magnets are equally
far outside, overlapping switching events may occur in a
physical system.

Assumption 3 relies on the fact that all changes in the
magnetic fields are effectively continuous, and the change is
unidirectional within a simulated time step, i.e., a quasistatic
field. Since evaluation happens in discrete time, there will be
cases where several magnets are above their corresponding
switching thresholds simultaneously. In those cases, the mag-
net furthest above its switching threshold will have been the
first to have crossed the threshold under a quasistatic field.
Furthermore, if the angle of the external field is constant,
the switching order is invariant to the time resolution of the
external field.

I. Geometries

The particular spatial arrangement of the magnets is re-
ferred to as the geometry. A wide range of ASI geometries
have been proposed in the literature. Figure 4 depicts the
geometries included in flatspin, which are the most com-
monly used ASI geometries: square [16], kagome [25,26],
pinwheel [13,18], and Ising [27]. Note that when we refer to
“pinwheel ASI” in this paper, we are referring explicitly to the
45 ◦ variant.

Geometries are often decomposed into two or more “sub-
lattices”, where the magnets within one sublattice are all
aligned, i.e., have the same rotation. In Fig. 4, the sublattice
a magnet belongs to is indicated by its color. As can be
seen, both square and pinwheel ASIs have two perpendicular
sublattices, whereas kagome has three sublattices.

flatspin can be used to model any two-dimensional ASI
comprised of identical elements. New geometries can easily
be added by extending the model with a new set of positions
ri and rotations θi.

J. Limitations of the model

The flatspin model makes several assumptions and approx-
imations, which means there are inherent limitations to what
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(a) (b) (c)

(d) (e) (f)

FIG. 4. flatspin includes the most common ASI geometries: (a) Square (closed edges), (b) square (open edges), (c) kagome, (d) pinwheel
“diamond”, (e) pinwheel “lucky-knot”, and (f) Ising.

physics flatspin can capture. In this section, we outline the
main limitations of the model.

All magnets in the model are approximated as binary
mesoscopic spins, i.e., the magnetization direction of a single
magnet is always parallel to the easy axis of the magnet. In
reality, the magnetization of nanomagnet islands may deviate
somewhat from the easy axis, which in turn would influence
the dipolar fields.

It is assumed that the size and shape of all magnets is
identical, as all magnets have the same net magnetic moment
M, and the same switching astroid. Magnet imperfections
are modelled solely as a disorder in the coercive fields, i.e.,
without any effect on the magnetic moment. Hybrid sys-
tems with magnets of different size and shape are therefore
not supported.

The point dipole approximation underestimates the cou-
pling coefficients for small lattice spacings. As the lateral
dimensions of the magnets are not taken into account, the
physical proximity of the magnets is underestimated. This can
be remedied by artificially increasing the coupling strength α

for highly coupled systems.
The dynamical model assumes switching to be instan-

taneous. In reality, magnetic switching takes finite time,
mediated by a rotation of the internal magnetization state.
Such transient states may affect ensemble dynamics in subtle
ways, which will not be captured in the instantaneous model.

Another limitation of the dynamical model is that switch-
ing is assumed to be sequential. While simultaneous switching
is possible in reality, it is not modeled in flatspin.

In spite of these limitations, the flatspin model is able
to capture a range of real-world phenomena, as we will see
in Sec. V.

While flatspin is specifically designed for artificial spin
ice consisting of ferromagnetic macrospins, the model could
be modified to accommodate other forms of artificial spin
systems with bi-stable elements. Some examples include col-
loidal spin ice [28,29], macroscopic magnets [30], interacting
skyrmions [31], and superconducting vortices [32]. Simulat-
ing such systems would require three main changes to the
flatspin magnetic model. First, the magnetic dipole-dipole in-
teractions (Sec. II C) would need to be replaced with a suitable
interaction field along with the interaction modifier α. Second,
the thermal field (Sec. II E) should be modified to include any
other effects of temperature in the relevant system. Finally, a
suitable switching mechanism (Sec. II F) must be devised to
capture the switching barriers as a function of the total fields.

K. A note on units

The physical unit of the h field in flatspin is Tesla [T].
While the H field is typically described in units of [A m−1],
the fields in flatspin are exclusively external to the magnets. In
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ASI model

Input encoder

Runner Dataset

Analysis tools

FIG. 5. Overview of the flatspin architecture, with arrows indi-
cating data flow.

other words, the h field is equivalent to a B field in the absence
of material magnetization, i.e., h = μ0H. Correspondingly,
the magnetic moments M and Mth have units [A m2].

III. SIMULATION FRAMEWORK

In addition to a magnetic model, flatspin provides a flex-
ible framework for running simulations, storing results, and
performing analysis.

Figure 5 illustrates the overall architecture of flatspin. The
ASI model has been described in detail in Sec. II. Conceptu-
ally, the ASI model describes the physical system under study.
The rest of the components are tools used by the researcher to
interact with the ASI and observe the results. In this section,
we briefly describe each of these components.

The input encoder translates a set of input values to a
series of external fields. Encoders provide a flexible way to
define field protocols. A range of encoders are included, e.g.,
sinusoidal, sawtooth, and rotational fields.

The responsibility of the runner component is to perturb
the ASI model according to the field protocol, and save the
results. The model, which is fully parametric, receives param-
eters from the runner, enabling automated parameter sweeps.
In addition, there is support for distributed running of simula-
tions on a computing cluster.

Results are stored in a well-defined dataset format, which
makes the analysis of a large number of simulations straight-
forward. A suite of analysis tools are included, e.g., for
plotting results, visualizing ensemble dynamics, and analysis
of vertex populations.

flatspin is written in Python and utilizes OpenCL to ac-
celerate calculations on the GPU. OpenCL is supported by
most GPU vendors, hence flatspin can run accelerated on a
wide variety of platforms. The simulator may also run en-
tirely on CPUs in case GPUs are not available, albeit at a
reduced speed.

flatspin is open-source software and released under a GNU
GPL license. For more information, see the website [19].

IV. VERIFICATION OF FLATSPIN

The flatspin software has been verified through an exten-
sive suite of unit tests, where computed results are compared
to theoretical values. We do not go into detail about the unit
tests here, but the test suite is packaged with the flatspin
software, and available from the website [19].

While the unit tests verify the software implementation, a
verification of the temperature model itself (Sec. II E) is nec-
essary. In the next section, we compare flatspin simulations to
experiments where the results are known analytically.

Stochastic thermal field

To verify the temperature model in flatspin, we consider the
effect of temperature on a system of noninteracting spins at
equilibrium. In particular, we investigate the relationship be-
tween the temperature scale and the thermal fields, described
in Sec. II E. In the following, the magnetization behavior
of magnets subjected to an external field and temperature,
M(H,T ), is simulated and compared to results of other es-
tablished techniques, both analytical and numerical.

Two different scenarios are considered:
(1) The coercive fields are small compared to the external

field, and switching is mostly an effect of the external
field competing with temperature.

(2) The switching threshold is comparable to the external
field and switching is also influenced by the energy
landscape of the magnet, as captured by the shape of
the switching astroid.

For scenario (1) we use a switching threshold of hk =
1 mT, and for scenario (2) we use hk = 20 mT. For both
scenarios, we use the unaltered Stoner-Wohlfarth astroid (b =
c = 1, β = γ = 3).

Ensembles of noninteracting spins (α = 0 in flatspin) are
subjected to a rising, quasistatic magnetic field aligned with
their easy axis, which is held at each field value until equilib-
rium. Here, equilibrium is defined by the convergence of the
mean magnetization over time.

The time intervals were set short enough to avoid a sig-
nificant probability of multiple flips of one magnet within
one interval, and long enough to reach equilibrium within
reasonable simulation time. For the low coercivity scenario
(1), �t = 1 × 10−10 s, and for the high coercivity scenario
(2), �t = 1 × 10−9 s. Other parameters include the attempt
frequency, f0 = 1 × 109 Hz and no disorder.

For the low coercivity scenario, the M(H ) curve should
match the analytical two-state model described by the
Brillouin function for spin- 1

2 systems [33]. The average mag-
netization of such a system under an applied field μ0H is
described by the analytical expression

〈mx〉 = tanh(Aμ0H ), (13)

where A = MSV /kBT , i.e., Aμ0H is the ratio of the Zeeman
energy to thermal energy.

For the high coercivity scenario, the energy barriers and the
shape of the astroid becomes significant, and the analytical
model breaks down. In this case, we compare results with
micromagnetic simulations using MuMax3 [21]. The micro-
magnetic simulations are set up to capture the M(H ) curves
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FIG. 6. M(H) curves of ensembles of noninteracting magnets at different temperatures, simulated with different approaches, and for
different coercivities. Also indicated is the analytical tanh(Aμ0H ) where A = MSV/kBT . Note that the MuMax3 results are for binned cell
magnetization.

of single cell magnets in a rising magnetic field. To isolate the
cells in the MuMax3 simulation, the EnableDemag property
is set to False and the exchange stiffness to zero (Aex =
0 J m−1). One period of a 500 Hz stepped ramping field is ap-
plied, starting at μ0Hext = −100 mT and ending at μ0Hext =
100 mT. This field protocol subjects the magnets to a constant
field value for 2 μs before increasing the field by an additional
0.2 mT, which is sufficient to reach thermal equilibrium. The
coercivity of hc = 20 mT was reproduced with a material
uniaxial anisotropy and Ku1 = hc · MS/2 = 8600 J m−3. Other
parameters include a world size of 16 × 16 cells and a cell size
of V = 10 nm3 × 10 nm3 × 10 nm3.

Unlike in flatspin, where spins are binary, the cells in the
micromagnetic simulations are allowed to exhibit any mag-
netization direction. To compare the results from flatspin and
micromagnetic simulations, the magnetization of micromag-
netic cells is binned into spin states of si = ±1, before they are
averaged. Note that this binning only approximates the same
average magnetization as a system with significant anisotropy,
such as in the high coercivity scenario.

For all simulations, we use the parameters MS =
860 kA m−1, and V = 10 nm × 10 nm × 10 nm.

Figure 6 presents the results of the flatspin simulations, the
micromagnetic simulations, as well as the analytical two-state
model of Eq. (13). For the low coercivity scenario (hc =
1.0 mT), the M(H ) curves produced by flatspin agree well
with the analytical two-state model. For the high coerciv-
ity scenario (hc = 20.0 mT), there is a significant deviation
between flatspin and the two-state model, but excellent agree-
ment between flatspin and micromagnetic simulations.

For the low coercivity scenario, the agreement between
flatspin and the analytical two-state model shows that
flatspin’s thermal field scales correctly compared to the
absolute temperature.

As mentioned, for the high coercivity scenario, the analyt-
ical model breaks down, and both flatspin and micromagnetic
results deviate significantly from the analytical two-state
model. However, there is excellent agreement between the
results from flatspin and micromagnetic simulations. Both
of these models take the effects of a significant coercivity
(significant uniaxial anisotropy) into account. Thus, flatspin
is shown to reproduce correct thermal activity also with sig-
nificant coercivity.

The results presented here are all from systems of nonin-
teracting magnets, where the only influences are the external
field and the thermal field. However, since interactions be-
tween magnets are mediated by dipolar magnetic fields, the
results are also valid for systems of dipolar coupled magnets.
The additional dipolar fields can be seen as simple additions
to the total field at each magnet, and thus does not alter the
validity of the temperature model.

In conclusion, our results show excellent agreement be-
tween flatspin and the expected thermal activity for both high
and low coercivity scenarios, at equilibrium. For the low co-
ercitvity scenario, the influence of the switching astroid is
negligible and flatspin matches the analytical two-state model.
For the high coercivity scenario, where the energy barriers
are significant, flatspin shows excellent agreement with micro-
magnetic simulations. These results thereby validate the scal-
ing of temperature in the thermal model of flatspin (Sec. II E).
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FIG. 7. Left: Snapshots of the evolution of a kagome ASI at selected field values. the images have been cropped to show the middle 80%
of the total ASI to improve clarity. Right: Comparison of the hysteresis curve of the simulated ensemble (blue line) against a sketch of the
hysteresis curve from the experimental results of Mengotti et al. [34] (red-dashed line). The labeled points indicate the points at which the
snapshots are sampled from.

V. VALIDATION OF FLATSPIN

To evaluate the suitability of the simulator, flatspin simula-
tions were compared to established experimental results from
literature, as well as micromagnetic simulations. In particular,
we investigate phenomena such as Dirac strings in kagome
ASI [34], the size of crystallite domains in square ASI [10],
and superferromagnetism in pinwheel ASI [13]. Finally, we
compare the switching order from flatspin simulations with
that of micromagnetic simulations, and investigate the effect
of varying lattice spacings.

A. Dirac strings in kagome ASI

To assess the ability of flatspin to reproduce fine-scale
patterns, we consider the emergence of Dirac strings in
a kagome ASI [Fig. 4(c)]. Applying a reversal field to a
polarized kagome ASI results in the formation of monopole-
antimonopole pairs [34]. These pairs are joined by a “string”
of nanomagnets, which have flipped due to the reversal field.

As the strength of the reversal field increases, the strings
elongate until they fill the array.

We closely follow the methodology set out in an ex-
perimental study of Dirac strings in kagome ASI [34], in
which a room temperature kagome ASI undergoes magne-
tization reversal. We start with an array of 2638 magnets
(29 × 29 hexagons) polarized to the left and apply a reversal
field H to the right with a slight, downward offset of 3.6◦. This
offset breaks the symmetry, such that one of the sublattices
is now least aligned with the field, resulting in an increased
coercive field on this “unfavored” sublattice.

Micromagnetic simulations of magnets of size
470 nm × 160 nm × 20 nm yield the following estimation of
flatspin parameters: α = 0.00103, hk = 0.216, β = 2.5, γ =
3, b = 0.212, c = 1. The ensemble was simulated at constant
room temperature (300 K) with time interval �t = 1 s, and
with 5% disorder.

The time evolution snapshots of Fig. 7 demonstrate
a strong, qualitative similarity to the results of Mengotti
et al. [34]. We see Dirac strings developing with a preference
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to lie along the two sublattices most aligned with the field
angle. Furthermore, in the final image, we see the vast ma-
jority of unflipped magnets are on the unfavored sublattice, in
accordance with both experimental and simulated results from
the literature.

Also in Fig. 7, we see the hysteresis of the simulated
ensemble (solid line) is similar to that of Mengotti et al. [34]
(dashed line) in some sections, but differs near the extrema.
The hysteresis can be understood in two stages. The first stage,
at roughly M/MS ∈ [−0.6, 0.6], is dominated by the lengthen-
ing of the Dirac strings, with almost no activity occurring on
the unfavored sublattice. At M/MS < −0.6 and M/MS > 0.6,
the ensemble enters a second stage in which the Dirac strings
have fully covered the array, and the change in magnetization
is dominated by switching on the unfavored sublattice. Clearly
we see good agreement, within stage one, between our sim-
ulated hysteresis and the experimental results. Furthermore,
there is a clear transition (characterized by a sharp decrease
in gradient) in our hysteresis very close to the transition in
the experimental hysteresis. Notably, however, although the
transitions occur at similar field values, the change in gradient
is less pronounced in our simulated hysteresis. This disparity
indicates that, in the second stage, the magnets on the unfa-
vored sublattice flip more easily in our simulation than in the
experimental data.

As discussed in Sec. II J, the accuracy of the point dipole
approximation is known to suffer when considering kagome
ASI. Specifically, it has been shown to underestimate the cou-
pling coefficient of the nearest neighbors by approximately a
factor of 5 [35], which may contribute to the disparity noted
above. Despite this, we observe flatspin accurately reproduces
snapshots of the time evolution behavior, while also capturing
salient features of the ensemble hysteresis curve.

B. Domain size in square ASI

In order to demonstrate simulation of large-scale behavior,
we have reproduced the emergence of large domains of mag-
netic order in square ASI, similar to experimental results of
Zhang et al. [10]. One of the main advantages of flatspin over
typical alternatives is the scalability and high throughput of
large systems with many magnets. Some emergent ASI phe-
nomena require large systems in order to be fully quantified
and studied with high fidelity, such as the domain size of
magnetic charge crystallites. For ASIs with strongly coupled
magnets, typical domain sizes can become too large for direct
experimental observation. Thus, an accurate estimate of the
domain size for ASIs with a small lattice spacing is, in part,
limited by the number of directly observable magnets.

For a given range of lattice spacings covering both strongly
coupled ASIs and weakly coupled ASIs, a corresponding
range of large to small magnetic order coherence lengths is
expected. In this study, we consider square ASI [closed edges,
Fig. 4(a)] with different lattice spacings, a, ranging from
320 nm to 880 nm.

Square ASIs of size 50 × 50 were annealed in flatspin
with a linearly decreasing temperature, starting at T = 800 K
and decreasing by 1 K until no magnets were active. Each
temperature was simulated over 50 simulation steps. The time
interval �t of each simulation step was chosen so that the

probability of multiple switching events in any single mag-
net was small, Pr (k > 1) < 0.001, or until the total time per
temperature value reached 1 min. At high temperatures (T �
720 K), the requirement Pr < 0.001 causes the total time per
temperature value to be less than 1 min. This is a trade off
between the number of simulation steps allowed and the like-
lihood of multiple switching events.

The nucleation moment Mth was chosen to match the
blocking temperature of the 25-nm-thick magnets reported by
Zhang et al. [36], where moments are stable below ∼670 K. A
switching astroid for 220 nm × 80 nm × 25 nm was obtained
through micromagnetic simulations, described by generalized
astroid parameters b = 0.38, c = 1.0, β = 1.3, and γ = 3.6.
Additionally, hk = 0.20, kdisorder = 0.05, and a neighbor dis-
tance of 10a were used. The temperature dependence of the
saturation magnetization was accounted for by adjusting Mth

according to data reported by Zhang et al. [36]. The tempera-
ture dependence of hk was scaled by the same factor. Details
of the specific time intervals, temperature and temperature
dependent parameter values can be found in flatspin’s docu-
mentation [19].

In the annealed state, the spin-spin correlation as a function
of their lateral separation was calculated across the ensembles.
Analysis of the average correlation of annealed states provides
insight about the typical coherence length of magnetic order,
i.e., magnetic charge crystallite size, or domain size. Here, the
correlation of two spins is defined as +1 (–1) if their dipole
interaction is minimized (maximized). Averaging correlation
across distinct types of spin pairs, in the annealed ASI, gives a
measure of how coherent the ASI is at that particular neighbor
separation. How quickly the average correlation decreases as
a function of separation can be used to estimate the char-
acteristic domain size. In particular, it can be argued that
the separation where the correlation falls below 1/e is the
characteristic domain radius [10,37].

Typical domain structures and correlation results can be
seen in Fig. 8. The domains shown in Fig. 8(a) and the
correlation curves in Fig. 8(b) are in good agreement with
experimental results [10]. A qualitative comparison of the do-
main sizes and structures in Fig. 8 shows that the domains tend
to be larger, with smoother domain boundaries, for smaller
a. The analysis of coherence as a function of separation also
shows similar trends and values, where an increase in a leads
to low correlation, even between nearest neighbors.

The discrepancy for a = 320 nm is not completely unex-
pected, as the point-dipole approximation is known to under-
estimate nearest-neighbor interaction for magnets placed very
close together [35]. In strongly coupled systems, each spin
flip results in a greater change in dipole energy, compared to
systems that are less coupled. This makes a gradual descent
towards the ground state by random spin flips (the thermal
fluctuations as modeled by flatspin) harder to achieve. These
issues may be addressed by increasing the coupling parameter
α for nearest neighbor spins, and by a longer and slower
annealing protocol. A longer and slower annealing proto-
col will inevitably come at the cost of longer computation
times.

These results show that flatspin provides sufficient flexi-
bility, fidelity and performance required to reproduce experi-
mentally observed large-scale emergent behavior in ASIs.
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FIG. 8. (a) Maps showing the net magnetization of the ASI vertices, for an annealed 50 × 50 square ASI with the given lattice spacing a.
The white regions have zero net magnetization, and thus correspond to a coherent domain of type I vertices. Colored regions have a nonzero net
magnetization, direction indicated by the color wheel, and correspond to type II or III vertices. (b) The absolute value of spin-spin correlation
at a given separation for square ASIs of different lattice spacings, a. Dashed curves show exponential best fits for data from the original
paper [10]. Also indicated is a 1/e threshold of correlation.

C. Superferromagnetism in pinwheel ASI

In this section, we use flatspin to reproduce the dynamic
behavior of pinwheel ASI, which had yet to be demonstrated
with a dipole model [13]. We find that our switching criteria
plays a key role in replicating magnetization details during the
field-driven array reversal.

Pinwheel ASI is obtained by rotating each island in square
ASI some angle about its center. A rotation of 45 degrees
results in a transition from antiferromagnetic to ferromagnetic
order [18]. The dynamics of pinwheel ASI in many ways re-
semble continuous ferromagnetic thin films, with mesoscopic
domain growth originating from nucleation sites, followed
by coherent domain propagation and complete magnetization
reversal [13].

Here, we demonstrate that flatspin is able to replicate the
experimental reversal processes presented in Li et al. [13],
where pinwheel “diamond” ASI [Fig. 4(d)] is subject to an
external field at different angles. A key result is that the
angle θ of the external field controls the nature of the reversal
process. When θ is small (equally aligned to both sublattices),
reversal happens in a single avalanche, whereas when θ is
large (more aligned to one sublattice), reversal happens in a
two-step process where one sublattice switches completely
before the other. Previous attempts at capturing this behavior
in a dipole model have proven difficult [13].

To replicate this process in flatspin, an asymmetric switch-
ing astroid is required, i.e., the threshold along the parallel
component is reduced by setting b < 1 in Eq. (11). From
micromagnetic simulations of a single 470 × 170 × 10 nm

magnet, we obtain the following characteristic switching pa-
rameters: b = 0.28, c = 1.0, β = 4.8, and γ = 3.0. Other
simulation parameters include α ≈ 0.00033, hk = 0.098,
kdisorder = 0.05, and a neighbor distance of 10a. Full simula-
tion details are available in the flatspin documentation [19].

Figures 9(a)–9(d) show hysteresis loops and array snap-
shots when the field is aligned with the array (θ = 0◦ and
θ = −6◦). As can be seen, the results from flatspin [Figs. 9(b)
and 9(d)] are qualitatively very similar to experimental results
[Figs. 9(a) and 9(c)]. In all cases, the ASI undergoes reversal
in a single avalanche. Reversal begins at a few nucleation
points close to the edge, followed by domain growth and
domain wall movement perpendicular to the direction of the
field. The simulated system appears to have an anisotropy
axis of 0◦ as opposed to −6◦ observed experimentally. Hence,
Fig. 9(b) is most similar to Fig. 9(c) and Fig. 9(d) is most
similar to Fig. 9(a). It should be noted that the tilted anisotropy
axis found experimentally has not yet been explained.

Figures 9(e) and 9(f) show the hysteresis loops and ar-
ray snapshots when the field is misaligned with the array
(θ = 30◦). Again, flatspin simulations [Fig. 9(f)] replicate key
features observed experimentally [Fig. 9(e)]. Reversal now
happens in two steps: the sublattice whose magnets have their
easy axis most aligned with the field will switch first, followed
later by the other sublattice. This two-step reversal process
results in an emergent rotation of the collective magnetization.
The magnetization is constrained to follow the orientation of
the magnets, resulting in reversal via stripe patterns at 45◦.

Li et al. [13] report they were unable to replicate the mag-
netization details using a point-dipole Monte Carlo model.
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FIG. 9. Hysteresis loop and snapshots of the pinwheel units for various angles θ of the applied field. Figures (a), (c), and (e) show
experimental results, adapted from Li et al. [13], Copyright ©2018 American Chemical Society, CC-BY-4.0 . Figures (b), (d), and (f) show
results from flatspin simulation.
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One crucial difference between flatspin and their dipole model
is the switching criteria. They use the simpler criteria hi ·
mi < h(i)

k , which considers only the parallel field component
and will be largely inaccurate for fields that are not aligned
with the magnet’s easy axis. Indeed, we find that the general-
ized Stoner-Wohlfarth model (Sec. II F) is crucial to reproduce
the reversal process and magnetization details.

D. Comparison to micromagnetic single-spin switching order

Micromagnetic simulations, e.g., MuMax3 [21,38], are
taken as the gold standard and generally agree with exper-
imental results, due to the high simulation fidelity of the
micromagnetic model. In this section, we compare how well
flatspin agrees with MuMax3 at the level of detail expressed
in flatspin.

Here we evaluate the switching strategy outlined in
Sec. II H, by comparing the switching orders obtained in flat-
spin and MuMax3, of a square ASI as it undergoes reversal
by an external field. Switching order refers to the sequence
in which individual magnets switch their magnetization state.
As a similarity measure, Spearman’s rank correlation co-
efficient ρ [39] is used, where a value of 1 indicates
perfect correlation and 0 indicates no correlation between
switching orders.

In the weakly coupled regime, the switching order is dom-
inated by the coercivity of each individual magnet, i.e., low
coercivity magnets switch first, and high coercivity magnets
switch last. In flatspin, the coercive field can be set di-
rectly by modifying h(i)

k . In MuMax3, we control the coercive
field implicitly, by varying the first-order, uniaxial, magne-
tocrystalline anisotropy, K (i)

U1 of each magnet. Given a set of
randomly drawn K (i)

U1 values, the corresponding h(i)
k values

were obtained by a linear map. In this way, the distribution
of magnet coercivities in the two models match.

The system we considered was a 4 × 4 square (closed)
ASI, each magnet measuring 220 nm × 80 nm × 25 nm. flat-
spin was run with parameters b = 0.38, c = 1, β = 1.5, and
γ = 3.2. In both simulators, we applied a gradually increasing
reversal field at θ = 44◦.

As the lattice spacing is decreased, the dipolar interactions
begin contributing to the switching order. To verify that flat-
spin captures switching dynamics, we perform a comparison
of the switching orders for all pairs of lattice spacings in
both simulators.

Figure 10(a) shows the correlations for each pair of lattice
spacings as an average over 32 different square ASIs. We
observe a clear linear relationship between the two simulators,
with higher lattice spacings exhibiting higher correlation. The
nonzero y-intercept in the heatmap indicates that, as expected,
the coupling strength is slightly underestimated by the dipole
approximation employed in flatspin, in particular for lower
lattice spacings. For example, flatspin with 300 nm lattice
spacing is most similar to MuMax3 with 380 nm.

The red line in Fig. 10(b) traces the ridge in the heatmap,
i.e., the highest ρ, for each flatspin lattice spacing. As can
be seen, a near-perfect agreement between the simulators is
found in the weakly coupled regime (high lattice spacing). As
lattice spacings decrease, the magnets start to interact through
dipolar coupling. Below 450 nm, the correlation drops. Since
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FIG. 10. (a) Spearman’s rank correlation coefficients ρ averaged
over 32 different square ASIs, evaluated for different lattice spac-
ings in flatspin and MuMax3. The red line shows the approximate
maximum ridge line through the heatmap. (b) The red line shows
the true maximum ρ for the lattice spacing pairs. The blue and
violet lines show projections of the top row and rightmost column
of (a), respectively.

flatspin does not account for the micromagnetic state, com-
plete correlation is not expected.

The particular selection of h(i)
k values of flatspin, and the

corresponding KU1 values of MuMax3, introduces an inher-
ent bias in the switching order. One might expect that this
quenched disorder dominates the switching order, leading to
an inflated correlation between flatspin and MuMax3, regard-
less of dipole interactions.

The violet line of Fig. 10(b) [plotting the rightmost
column from Fig. 10(a)], shows the correlation between Mu-
Max3 and the uncoupled flatspin system (lattice spacing of
1000 nm). If the quenched disorder completely dominated the
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FIG. 11. The throughput (number of field calculations per sec-
ond) as a function of number of spins. Throughput is averaged over
100 simulations of each size. The test was performed on an NVIDIA
Tesla V100 GPU with 32 GB of RAM. Note the logarithmic scale of
the axes.

switching order, one would expect this to be a flat line, as
increasing the dipole coupling (by reducing lattice spacing)
would have no effect. The blue line of Fig. 10(b) [top row
from Fig. 10(a)] show the corresponding curve comparing
flatspin to the uncoupled MuMax3 system. In both cases,
the correlation rapidly declines with lattice spacing, con-
firming that the switching order is not dominated by the
inherent bias for highly coupled systems. Furthermore, the
red line clearly shows a stronger agreement when the lattice
spacing of MuMax3 and flatspin are both varied proportion-
ally. We conclude that flatspin and MuMax3 capture similar
switching dynamics.

VI. PERFORMANCE

Although the total simulation time will depend on many
factors, it is of interest to measure how simulation time scales
with the number of spins. As the number of spins are in-
creased, simulation time will be largely dominated by the
calculation of the effective field, hi, acting on each of the N
spins in the lattice. Computing time for h(i)

dip depends on the
number of neighbors around spin i, which is typically constant
for all spins except the ones at the edges of the geometry.
For large N , the number of edge magnets is negligible (in
the common ASI geometries). Computing hi for all spins will
take O(N ) time, i.e., computation time grows no faster than
linear in N .

Figure 11 shows the throughput (number of field calcula-
tions per second) as a function of the number of spins. Here
a field calculation is defined as the computation of hi for a
single spin i, hence for N spins there will be N such field
calculations. The geometry used was square ASI (open edges)
using a standard 8 spin neighborhood for calculating h(i)

dip. The
throughput was averaged over 100 simulations of each size.
The test was performed on an NVIDIA Tesla V100 GPU with
32 GB of RAM.

At around 200 000 spins, the throughput saturates at 108

field calculations per second. On our test setup, computing

FIG. 12. A snapshot from flatspin simulations of a pinwheel ASI
system with more than one million magnets, as it undergoes reversal
by an external field. The angle of the external field is θ = 0◦.

hi for one million spins takes approximately 10 ms. Above
200 000 spins, we are able to fully utilize the GPU resources.

To simulate the reversal of an ASI by a gradually increasing
external field, at least one field calculation per spin flip is
required, i.e., at least N field calculations. If the external field
gradually changes with a resolution of K values, the worst
case will be when all spins flip during a single field value.
In this case the number of field calculations required will be
N + K − 1 since there will be K − 1 field calculations that
results in no spin flips.

The total simulation time depends largely on the particular
experimental setup, parameters and other system characteris-
tics. Time will be spent on things other than field calculations,
e.g., organizing and writing results to storage. Hence, the total
simulation time will be longer than predicted by field calcula-
tions alone. As an example, the simulations from Sec. V C of
25 × 25 pinwheel ASI with 1250 magnets took approximately
6 seconds with K = 2500, for one reversal.

Figure 12 shows a snapshot from flatspin simulations of
a large pinwheel ASI system as it undergoes reversal by an
external field. With more than one million magnets, the simu-
lation of array reversal took several days to complete. A video
of the full reversal is available as Supplemental Material [40].

The ability to simulate such large systems allows a re-
searcher to explore phenomena at much larger scales than
can be directly observed experimentally. The imaging window
of experimental techniques with single spin resolution, such
as magnetic force microscopy (MFM), is typically limited to
about 50 μm × 50 μm. However, much smaller imaging win-
dows are frequently used due to other practical considerations.
For instance, the square ASI investigated by [10] is a typical
example, where 5000 magnets are imaged.

VII. SQUARE ASI ROBUSTNESS TO DILUTION DEFECTS

In the following, we will make use of the unique
framework provided by flatspin to explore new aspects of
ASI behavior.
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FIG. 13. (a) Average complete vertex fraction, by type, as a function of dilution by removal of spins in a 50 × 50 square ASI. Only
complete vertices are included. The averages are taken over 10 different instances for each dilution fraction. (b) Example end states of square
ASI of different dilutions. Each pixel correspond to the net magnetization of 4 spins (vertices), as in Fig. 8(a). Note that white pixels correspond
to vertices of no net magnetization (type I vertices if the vertices are complete, as there are no type IV vertices).

While square ASI is perhaps one of the most investi-
gated ASI systems, mainly due to its display of magnetically
charged defects with associated Coulombic interactions and
string tension [1,41], the robustness of this system with re-
spect to lattice defects is largely unexplored. For the kagome
ASI it has, however, been recognized that significant removal
of elements in the lattice will cause the phase transition of
the system (from spin ice I state to the ordered spin ice II
state) to disappear [42]. Related work on particle-based ice
of the square geometry has revealed an apparent ice rule
fragility with respect to similar dilution [43,44]. Here, we
use flatspin to investigate the effect of dilution defects, i.e.,
random removal of lattice elements, on square vertex popula-
tion and domain size in the ASI after a field demagnetization
protocol.

Large ASI systems are needed to observe large-scale phe-
nomena such as domain formation and the effects of sparse
random dilution. Random defects result in stochastic behav-
ior, as the results will depend on the exact configuration of
the defects. Hence, to provide sufficient statistics of these
phenomena, the experiments must be repeated for different
random configurations. Furthermore, this is combined with
long field protocols, which are required to relax each system
to a lower energy configuration.

The two-fold degenerate ground state configurations in
square ASI consist of antiferromagnetic ordering on the verti-
cal and horizontal sublattices [10]. Reaching this ground-state
configuration experimentally has proven difficult. Relaxation
through thermal annealing or field protocols will typically
result in domains of charge neutral type I vertices separated by
domain walls comprised of mostly type II vertices with a net
magnetization (and no net magnetic charge). These domain
walls, strings of type II vertices, are necessarily terminated
by type III (or less frequently: type IV) vertices of opposite

net magnetic charge, or at incomplete vertices, such as at the
edges of the ensemble.

Diluting the ASI lattice by removal of elements intro-
duces more vertices with uncompensated magnetic charge.
Here, we use flatspin to explore how such doping with fixed
magnetic charges affects the magnetic vertex population of a
square ASI.

A 50 × 50 square ASI is initialized uniformly and sub-
jected to a rotating magnetic field with decreasing amplitude.
The initial amplitude is slightly larger than a saturating field,
and is decreased linearly over 1000 periods. The final peri-
ods do not alter the state of the ASI. Individual spins are
assigned a hk = 0.2 with 5% disorder, and the field amplitude,
directed at 45 ◦, starts at h = 0.080 and ends at h = 0.072.
Each spin is again modeled as a rectangular magnet, with
astroid parameters b = 0.38, c = 1.0, β = 1.3, γ = 3.6, and
α = 30272, with a lattice spacing a = 300 nm. A neighbor
distance of 3a is used in the simulations. Larger neighbor
distances (up to 50a) were sampled for the undiluted system
and revealed no discrepancy from a neighbor distance of 3a.
Spins in the lattice are removed randomly, until the desired
dilution fraction is achieved. Ten different instances of this
random removal were performed for each level of dilution.

After the field protocol described above, the complete
(undiluted) vertices of the final state were counted and clas-
sified according to their vertex type. The resulting vertex
fraction count of complete vertices can be seen in Fig. 13(a).

Somewhat surprisingly, the fraction of each vertex type at
the end of the field protocol is almost constant through dilu-
tion. We also note that a large fraction of the complete vertices
(>0.70) obey the ice rules (type I or type II), indicating that
the system is strongly coupled.

Another apparent effect of dilution is a dramatic reduction
in domain size, see Fig. 13(b). It is interesting to note that,
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despite the change of domain size, which should include
more domain boundaries and more magnetized vertices, the
type population fraction stays constant through dilution. Our
findings indicate that the fixed magnetic charges introduced
through dilution comes in addition to the mobile magnetic
charges. While the domain walls in systems with low dilution
are comprised of ordinary type II vertices, the fixed incom-
plete vertices add up with complete type II vertices to form
more domain walls for the systems with higher dilution and,
thus, smaller domains.

The presented simulation study demonstrates that the type
population in square ASI is robust towards dilution. How-
ever, the sizes of ground-state domains reduce considerably
as an increasing number of magnetic islands are removed
at random, as seen in [10]. This preliminary study into the
effect of dilution defects in square ASI demonstrates how
flatspin can be used as an efficient tool to explore new physical
phenomena in ASI systems, which in turn can be verified
by experiments.

VIII. CONCLUSION

flatspin is a highly effective simulator for ASI systems. At
its heart lies a robust magnetic model based on dipole-dipole
interactions, with a switching criteria based on a generalized
Stoner-Wohlfarth model, and thermal fluctuations based on
the Arrhenius-Néel equation. Accompanying the model is a
toolbox of useful input encoders and analysis tools. The model
includes several common ASI geometries, and there are no
inherent limits to the range of possible geometries.

The flatspin ASI model has been verified against estab-
lished theory and micromagnetic simulations, and validated

against experimental results from the literature. Emergent
fine-scale patterns in kagome ASI were replicated suc-
cessfully, where the formation of Dirac strings matched
experimental results. Large-scale domain sizes in square
ASI were reproduced, and good agreement was found be-
tween flatspin and experimental results. Using flatspin, the
experimental magnetization reversal of pinwheel ASI was
reproduced for the first time in a dipole model. On a
detailed level, we found good agreement between micromag-
netic simulations and flatspin in terms of magnet switching
order.

Finally, we shed light on the effects of dilution defects in
square ASI. Our investigation revealed a surprisingly robust
vertex type population, as random magnets were removed
from the lattice.

Through GPU acceleration, flatspin scales to large ASI
systems with millions of magnets. High speed, parallel com-
putation allows for many ASI simulations to be executed,
enabling quick exploration of parameters and novel geome-
tries. The flexibility and performance offered by flatspin open
for exciting new possibilities in ASI research.
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