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We examine the affine Wigner distribution from a quantization perspective with an 
emphasis on the underlying group structure. One of our main results expresses the 
scalogram as (affine) convolution of affine Wigner distributions. We strive to unite 
the literature on affine Wigner distributions and we provide the connection to the 
Mellin transform in a rigorous manner. Moreover, we present an affine ambiguity 
function and show how this can be used to illuminate properties of the affine Wigner 
distribution. In contrast with the usual Wigner distribution, we demonstrate that 
the affine Wigner distribution is never an analytic function.
Our approach naturally leads to several applications, one of which is an
approximation problem for the affine Wigner distribution. We show that the 
deviation for a symbol to be an affine Wigner distribution can be expressed purely 
in terms of intrinsic operator-related properties of the symbol. Finally, we present a 
positivity conjecture regarding the non-negativity of the affine Wigner distribution.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The most studied quadratic time-frequency representation is the Wigner distribution defined by

Wf (x, ω) :=
ˆ

Rd

f

(
x + t

2

)
f

(
x− t

2

)
e−2πiωt dt, (x, ω) ∈ R2d. (1.1)

Originally invented by Wigner in [33] almost a century ago, the Wigner distribution is essential in quantum 
mechanics as it gives the expectation values for Weyl quantization of symbols [15]. In recent decades, the 
Wigner distribution has found many applications in time-frequency analysis [23, Chapter 4] due to its 
connections with the short-time Fourier transform Vgf defined precisely in (2.4). One of the more surprising 
connections is the convolution relation
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|Vgf(x, ω)|2 = WP (g) ∗Wf (x, ω), (1.2)

where P is the reflection operator P (g)(x) := g(−x). The function SPECgf := |Vgf(x, ω)|2 is called the 
spectrogram of f with window g. The spectogram is an important tool for analyzing time-frequency content 
and has been used extensively in the engineering literature since its introduction.

Affine Wigner distribution
Parallel to the theory of time-frequency analysis is the time-scale (or wavelet) paradigm. Although there 

have been many attempts at finding a suitable Wigner distribution in the time-scale setting, there is no 
general consensus in the literature. We will motivate a particular choice of a time-scale Wigner distribution 
Wψ

Aff given by

Wψ
Aff(x, a) :=

∞̂

−∞

ψ

(
aueu

eu − 1

)
ψ

(
au

eu − 1

)
e−2πixu du, (x, a) ∈ Aff. (1.3)

The function Wψ
Aff is called the affine Wigner distribution due to its relation to the affine group Aff :=

R × R+. It was derived through a quantization procedure in [19]. The authors showed that the affine 
Wigner distribution satisfies Wψ

Aff ∈ L2
r(Aff) for every ψ ∈ L2(R+) := L2(R+, a−1 da), where L2

r(Aff)
denotes all measurable functions on Aff that are square integrable with respect to the measure a−1 da dx.

The affine Wigner distribution Wψ
Aff has appeared in the literature several times throughout the years; as 

a particular Bertrand distribution in [29], and as a tool for studying the quantum mechanics of the Morse 
potential in [28]. The basic properties of the affine Wigner distribution will be developed in a rigorous 
manner to fill gaps in the literature. In particular, for all sufficiently nice ψ ∈ L2(R+) we have the marginal 
properties

∞̂

−∞

Wψ
Aff(x, a) dx = |ψ(a)|2 and

∞̂

0

Wψ
Aff(x, a) da

a
= |M(ψ)(x)|2.

The symbol M(ψ)(x) denotes the Mellin transform of ψ ∈ L2(R+) at the point x ∈ R given by

M(ψ)(x) = Ma(ψ)(x) :=
∞̂

0

ψ(a)a−2πix da

a
.

Scalogram representation and the affine ambiguity function
The first significant contribution is to develop a connection between the affine Wigner distribution and 

the scalogram defined by

SCALgf(x, a) := |Wgf(x, a)|2, (x, a) ∈ Aff, (1.4)

where Wgf denotes the continuous wavelet transform of f with respect to g defined precisely in (2.8). By 
comparing with (1.2) in the time-frequency setting, one would expect a simple convolution relation to hold. 
However, as the group underlying the symmetries in the time-scale case is the non-unimodular affine group, 
we obtain the following result.

Theorem. Let f, g ∈ L2(R) be such that their Fourier transforms f̂ and ĝ are supported in R+ and satisfy 
f̂ , ̂g ∈ L2(R+). Then
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SCALgf(x, a) =
(
I
(
W ĝ

Aff

)
∗Aff ΔW f̂

Aff

)(
x

a
,
1
a

)
, (x, a) ∈ Aff,

where Δ and I denote the modular function and the involution on the affine group, respectively.

We introduce an affine ambiguity function Aψ
Aff for ψ ∈ L2(R+) given by

Aψ
Aff(x, a) :=

∞̂

0

ψ
(
r
√
a
)
ψ

(
r√
a

)
r−2πix dr

r
, (x, a) ∈ Aff.

The affine ambiguity function is intimately related to the radar ambiguity function in time-frequency analysis 
[23, Chapter 4.2]. We will show that the affine Wigner distribution and the affine ambiguity function are 
related through the Mellin transform by

Wψ
Aff(x, a) = M−1

y ⊗Mb

⎡⎣(√
b log(b)
b− 1

)2πiy

Aψ
Aff(y, b)

⎤⎦ (x, a). (1.5)

The relation (1.5) is used to show that the affine Wigner distribution preserves Schwartz functions.

Analyticity and an approximation problem
It turns out that affine Wigner distributions are never analytic functions on the upper half-plane. However, 

the space L2
r(Aff) can be completely decomposed into “almost analytic” functions as the following result 

shows.

Proposition. We have the orthogonal decomposition

L2
r(Aff) =

∞⊕
n=2

An(Aff) ⊕A⊥,n(Aff), (1.6)

where An(Aff) and A⊥,n(Aff) denote the spaces of pure poly-analytic and pure anti-poly-analytic functions 
of order n, respectively.

As an application to the theory developed we consider the approximation problem of understanding, for 
a given f ∈ L2

r(Aff), the quantity

inf
ψ∈L2(R+)

∥∥∥f −Wψ
Aff

∥∥∥
L2

r(Aff)
. (1.7)

Notice that (1.7) measures how far f is from being an affine Wigner distribution. The analogous problem 
in time-frequency analysis has been recently studied in [5]. For each symbol f ∈ L2

r(Aff) there is a Hilbert-
Schmidt operator Af on L2(R+) that is weakly defined by the relation

〈Afψ, φ〉L2(R+) =
〈
f,Wφ,ψ

Aff

〉
L2

r(Aff)
, ψ, φ ∈ L2(R+). (1.8)

The following result shows that the quantity (1.7) is linked to how much Af deviates from being a rank-one 
operator.

Theorem. Let f ∈ L2
r(Aff) be real valued. Under a mild eigenvalue assumption on Af we have

inf
2

∥∥∥f −Wψ
Aff

∥∥∥
2

=
√

‖Af‖2
HS − ‖Af‖2

op,

ψ∈L (R+) Lr(Aff)
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where ‖ ·‖HS and ‖ ·‖op are the Hilbert-Schmidt norm and operator norm, respectively. Moreover, the precise 
number of distinct minimizers can be deduced from the spectrum of Af .

Motivation for the affine Wigner distribution
It is not immediately obvious why a Wigner distribution WAff in the affine setting should have the form 

given in (1.3). In [3] the authors define Wigner distributions WG on a general Lie group G. In the case of 
G = Aff we indeed have that WG reduces to WAff . The general Wigner distribution WG is the canonical 
choice for a Wigner distribution on G since it naturally related with Fourier transforms on the group. For 
the affine group, this relation [6, Section 5.1] takes the elegant form

Af = F−1
W F−1

KO(f), f ∈ L2
r(Aff),

where FW is the affine Fourier-Wigner transform and FKO is the affine Fourier-Kirillov transform. Since 
the affine Wigner distribution determines the affine Weyl quantization completely, this motivates further 
investigation into the affine Wigner distribution WAff .

Further results
The affine Wigner distribution is developed further in the follow-up paper [6]. Let us mention two results 

in [6] that can help to additionally motivate the affine Wigner distribution:

Quantization of Coordinate Functions: In [6, Section 3.3] we extend the affine Weyl quantization to tem-
pered distributions. This offers the possibility of rigorously determining the quantizations Afx and 
Afa of the coordinate functions fx(x, a) = x and fa(x, a) = a. We prove in [6, Theorem 3.11] the 
commutation relation

[Afx , Afa ] = 1
2πiAfa .

This is, up to re-normalization, precisely the infinitesimal structure of the affine group. Hence the 
affine Weyl quantization, and thus the affine Wigner distribution, is intimately linked with the Lie 
group structure of the affine group.

Cohen Class Operators: In [6, Section 6.3] we develop a theory affine Cohen class operators. This is mo-
tivated by the classical Cohen class operators on phase space [23, Section 4.5]. For a reasonable 
function f on Aff we define the associated affine Cohen class function as

Qf (ψ, φ) = Wψ,φ
Aff ∗Aff f̌ , f̌(x, a) := f((x, a)−1).

This is a special case of an affine Cohen class function QS associated to an operator S, where one 
considers S = Af . It turns out that any bilinear form Q : L2(R+) ×L2(R+) → L∞(Aff) is, under a 
mild continuity requirement, on the form Q = QS for some bounded operator S : L2(R+) → L2(R+)
by [6, Proposition 6.11]. As such, the affine Wigner distribution is essential in developing a well-
behaved Cohen class theory on the affine group.

In addition to the two topics above, we show in [6, Proposition 6.2] that the affine Wigner distribution 
is also related to the localization operators of Daubechies and Paul given in [13]. Finally, in [6, Section 6.2]
we relate the affine Wigner distribution to covariant integral quantizations developed by Gazeau and his 
collaborators in [2,7,8,20–22].

Structure of the paper
In Section 2 we outline necessary definitions and briefly review the affine group as it will be central for 
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many of the results we develop. In Section 3 we derive basic properties of the affine Wigner distribution. 
We devote Section 4 to uniting the literature and pointing out how the affine Wigner distribution can be 
derived by emphasizing symmetry. The convolution relation between the affine Wigner distribution and 
the scalogram will be proved in Section 5. In Section 6 we define the affine ambiguity function and show 
how this allows us to extend the affine Weyl quantization (1.8) to the distributional setting. We prove the 
decomposition (1.6) of L2

r(Aff) in Section 7. In addition to the approximation problem described above, we 
show in Section 8 how basic questions regarding operators on R+ can be answered with our framework. 
Finally, we discuss the affine Grossmann-Royer operator and the affine positivity conjecture in Section 9. 
The authors are grateful for helpful suggestions from Eirik Skrettingland and Luís Daniel Abreu.

2. Preliminaries

The notation S (Rd) will be used for the Schwartz space of rapidly decaying smooth functions on Rd. 
We write S (R+) for the smooth functions ψ : R+ → C such that Ψ(x) := ψ(ex) ∈ S (R). The correspond-
ing dual spaces of tempered distributions are denoted by S ′(Rd) and S ′(R+), respectively. The Fourier 
transform of a function f ∈ L2(Rd) is given by

Ff(ω) = f̂(ω) :=
ˆ

Rd

f(x)e−2πixω dx, ω ∈ Rd.

We will frequently use L2(R+) := L2(R+, a−1 da) since a−1 da is the Haar measure on R+.

2.1. The classical Wigner distribution

We begin by recalling basic definitions from time-frequency analysis and their connection with the Heisen-
berg group. The cross-Wigner transform W (f, g) of f, g ∈ L2(Rd) is defined to be

W (f, g)(x, ω) :=
ˆ

Rd

f

(
x + t

2

)
g

(
x− t

2

)
e−2πiωt dt, (x, ω) ∈ R2d.

Notice that the Wigner distribution Wf given in (1.1) is precisely the diagonal term W (f, f). The cross-
Wigner transform satisfies the orthogonality property

〈W (f1, g1),W (f2, g2)〉L2(R2d) = 〈f1, f2〉L2(Rd)〈g1, g2〉L2(Rd). (2.1)

A key feature of the Wigner distribution is its connection with the Weyl calculus: For a symbol σ ∈
S ′(R2d) the Weyl (pseudo-differential) operator Lσ corresponding to the symbol σ is the operator

Lσf :=
ˆ

R2d

e−πiξuσ̂(ξ, u)T−uMξf du dξ. (2.2)

The operators T−u and Mξ in (2.2) are respectively the time-shift operator and the frequency-shift operator
defined by

Txf(t) := f(t− x), Mωf(t) := e2πiωtf(t), x, ω, t ∈ Rd.

The association σ �→ Lσ is called the Weyl transform and the operator Lσ maps S (Rd) into S ′(Rd) by [23, 
Lemma 14.3.1]. Moreover, the Weyl transform is a bijection between square integrable symbols σ ∈ L2(R2d)
and Hilbert-Schmidt operators Lσ : L2(Rd) → L2(Rd) by a classical result of Poole [30, Proposition V.1].
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The connection between the Weyl calculus and the cross-Wigner transform is the relation

〈Lσf, g〉L2(Rd) = 〈σ,W (g, f)〉L2(R2d),

for σ ∈ L2(R2d) and f, g ∈ L2(Rd). Since the Weyl transform is a quantization procedure, one can think of 
the inverse transformation Lσ �→ σ as dequantization. In this terminology, the Wigner distribution Wf for 
f ∈ L2(Rd) is the dequantization of the rank-one operator

LWf
g := 〈g, f〉f, g ∈ L2(Rd). (2.3)

The reader can consult [24, Chapter 13] and [14, Chapter 4] for more details about the Weyl transform from 
a quantum mechanical perspective.

Central to time-frequency analysis is the short-time Fourier transform Vgf of f, g ∈ L2(Rd) given by

Vgf(x, ω) := 〈f,MωTxg〉L2(Rd) =
ˆ

Rd

f(t)g(t− x)e−2πiωt dt. (2.4)

We have from [23, Lemma 4.3.1] that the cross-Wigner transform and the short-time Fourier transform are 
related by the formula

W (f, g)(x, ω) = 2de4πixωVP (g)f(2x, 2ω),

where P (g)(x) := g(−x). The short-time Fourier transform originates from the Schrödinger representation 
of the Heisenberg group, see [23, Chapter 9] for details.

2.2. The affine group

The two main operators in time-scale analysis are the time-shift operator Tx and the dilation operator
Da given by

Daf(x) := 1√
a
f
(x
a

)
, (2.5)

for a > 0 and f ∈ L2(R). One defines the affine group as Aff := (R ×R+, ·Aff), where the group operation 
is given by

(x, a) ·Aff (y, b) := (x + ay, ab), (x, a), (y, b) ∈ Aff.

The motivation for the group operation stems from calculation

(TxDa)(TyDb) = TxTayDaDb = Tx+ayDab.

We can represent the affine group Aff and its Lie algebra aff in the matrix form

Aff =
{(

a x
0 1

) ∣∣∣ a > 0, x ∈ R

}
, aff =

{(
u v
0 0

) ∣∣∣u, v ∈ R

}
.

Essential for computations is the fact that the exponential map exp : aff → Aff given by

exp
(
u v
0 0

)
=

(
eu v(eu−1)

u

)

0 1



156 E. Berge et al. / Appl. Comput. Harmon. Anal. 56 (2022) 150–175
is a global diffeomorpism. The left Haar measure on Aff is given by a−2 da dx, while the right Haar measure 
is a−1 da dx. We will use the notation L2

r(Aff) and L2
l (Aff) to indicate if we are using the right or left Haar 

measure, respectively. The left and right Haar measures on Aff can be written in the coordinates induced 
by the exponential map as

da dx

a2 = du dv

λ(u) ,
da dx

a
= du dv

λ(−u) ,

where the function λ is given by

λ(u) := ueu

eu − 1 = ue
u
2

2 sinh(u2 ) . (2.6)

A natural way the affine group can act on L2(R) is by translations and dilations, namely as

f �−→ TxDaf, f ∈ L2(R). (2.7)

This is a unitary representation, although it is not irreducible. The matrix coefficients of this representation 
are given by

Wgf(x, a) := 〈f, TxDag〉L2(R) = 1√
a

∞̂

−∞

f(y)g
(
y − x

a

)
dy. (2.8)

One typically refers to the map (x, a) �→ Wgf(x, a) as the (continuous) wavelet transform of f with respect 
to g. The continuous wavelet transform is analogous to the short-time Fourier transform and incorporates 
the possibility of observing f at different scales through g. Moreover, the magnifying aspect coming from 
the change of scales can characterize local regularity through decay properties of the wavelet transform, see 
[12, Theorem 2.9.2].

2.3. A quantization approach to the affine Wigner distribution

We will briefly outline a procedure described in [19] to determine the affine Wigner distribution. The the-
ory is based on Kirillov’s theory of coadjoint orbits and we refer further explanations to the aforementioned 
paper.

The affine group Aff acts on its Lie algebra aff through the adjoint action

Ad(x,a)(X) :=
(
u av − xu
0 0

)
, X =

(
u v
0 0

)
∈ aff, (x, a) ∈ Aff. (2.9)

A representation Φ of a Lie group G on a vector space V is always accompanied by a representation Φ∗ of 
G on the dual space V ∗ defined by

〈Φ(g)∗η, v〉 := 〈η,Φ(g−1)v〉, g ∈ G, v ∈ V, η ∈ V ∗,

where the bracket denotes the natural pairing between V and V ∗. In the case of the adjoint action in (2.9)
we denote the accompanied representation on aff∗ by Ad∗ and call it the coadjoint representation of the 
affine group. We can realize aff∗ as matrices on the form

aff
∗ �

{
(x, y) :=

(
x 0
y 0

) ∣∣∣x, y ∈ R

}
.
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Any point on the form (x, 0) ∈ aff
∗ is a fixed point for the coadjoint representation. The upper and lower 

half-planes

H+ :=
{

(x, y) ∈ aff
∗
∣∣∣ y > 0

}
, H− :=

{
(x, y) ∈ aff

∗
∣∣∣ y < 0

}
,

both constitute distinct orbits. For reasons of symmetry it suffices to understand the representation cor-
responding to H+. It is convenient to identify H+ � Aff as sets and use the notation (x, a) for a general 
element in H+. From general coadjoint orbit theory [26, Chapter 1.2] it follows that Aff is equipped with a 
canonical symplectic structure. In fact, this symplectic structure is simply the right Haar measure a−1 da dx
on Aff.

The main idea of Kirillov’s theory is to associate irreducible representations of the Lie group to orbits of 
the coadjoint representation in a one-to-one manner. A realization of the representation corresponding to 
H+ is given by acting on ψ ∈ L2(R+) by

U(x, a)ψ(r) := e2πixrψ(ar) = 1√
a
MxD 1

a
ψ(r). (2.10)

The representation U is (up to a normalization) the representation (2.7) on the Fourier side. Define the 
Stratonovich-Weyl operator on L2(R+) by the formula

Ω(x, a)ψ(r) := a

ˆ

R2

e−2πi(xu+av)U

(
veu

λ(u) , e
u

)
ψ(r) du dv,

where ψ ∈ L2(R+), (x, a) ∈ Aff, and λ is the function defined in (2.6). The following result is given in [19, 
Corollary 4.3].

Proposition 2.1. There is an isometric isomorphism between L2
r(Aff) and the space of Hilbert-Schmidt op-

erators on L2(R+). The isomorphism sends f ∈ L2
r(Aff) to the operator Af on L2(R+) defined by

Afψ(r) :=
∞̂

−∞

∞̂

0

f(x, a)Ω(x, a)ψ(r) da dx
a

.

The association f �→ Af is called affine Weyl quantization, while the direction Af �→ f is referred to 
as affine dequantization. Moreover, we call f the (affine) symbol of Af . Recall that any Hilbert-Schmidt 
operator A on L2(R+) has an associated integral kernel AK ∈ L2(R+ ×R+) so that

Aψ(r) =
∞̂

0

AK(r, s)ψ(s) ds
s
,

for all ψ ∈ L2(R+). If A = Af , then one can recover f ∈ L2
r(Aff) from the formula

f(x, a) =
∞̂

−∞

AK (aλ(u), aλ(−u)) e−2πixu du.

Motivated by (2.3), the affine Wigner distribution should be defined as the affine dequantization of a rank-
one operator. Hence we have the following definition.
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Definition 2.2. The affine cross-Wigner transform acts on functions ψ, φ ∈ L2(R+) by

Wψ,φ
Aff (x, a) :=

∞̂

−∞

ψ(aλ(u))φ(aλ(−u))e−2πixu du

for (x, a) ∈ Aff. We refer to the diagonal Wψ
Aff := Wψ,ψ

Aff as the affine Wigner distribution of ψ.

If f ∈ L2
r(Aff) is the symbol of the Hilbert-Schmidt operator Af acting on L2(R+), then

〈Afψ, φ〉L2(R+) =
〈
f,Wφ,ψ

Aff

〉
L2

r(Aff)
, ψ, φ ∈ L2(R+). (2.11)

3. Basic properties

We now derive some basic properties of the affine cross-Wigner transform. The affine cross-Wigner trans-
form is related to the isometry Π : L2(R+ ×R+, (rs)−1 dr ds) → L2

r(Aff) given by

Π(F )(u, a) := F (aλ(u), aλ(−u)).

Lemma 3.1. The affine cross-Wigner transform can be factorized as

Wψ,φ
Aff = F1Π(ψ ⊗ φ), ψ, φ ∈ L2(R+),

where F1 is the Fourier transform in the first component and ψ ⊗ φ(r, s) := ψ(r)φ(s) for r, s ∈ R+.

The factorization in Lemma 3.1 is key for understanding essential properties of the affine cross-Wigner 
transform. We illustrate its use by extending the orthogonality property of the classical Wigner distribution 
in (2.1) to the affine setting.

Proposition 3.2. The affine Wigner distribution satisfies the orthogonality relation

∞̂

−∞

∞̂

0

Wψ
Aff(x, a)Wφ

Aff(x, a) da dx
a

= |〈ψ, φ〉|2, (3.1)

for ψ, φ ∈ L2(R+).

Proof. We use the factorization in Lemma 3.1 and obtain〈
Wψ

Aff ,W
φ
Aff

〉
L2

r(Aff)
=

〈
F1Π

(
ψ ⊗ ψ

)
,F1Π

(
φ⊗ φ

)〉
L2

r(Aff)

=
〈
Π

(
ψ ⊗ ψ

)
,Π

(
φ⊗ φ

)〉
L2

r(Aff)

=
〈
ψ ⊗ ψ, φ⊗ φ

〉
L2(R+×R+,(rs)−1 dr ds)

= |〈ψ, φ〉|2. �
We will refer to (3.1) as the affine orthogonality relation motivated by the analogous result for the classical 

Wigner distribution in (2.1). Through a different (but ultimately equivalent) approach to the affine Wigner 
distribution taken in [9] and [28], the affine orthogonality relation is already known. The usefulness of the 
affine orthogonality relation can be readily demonstrated with the following two corollaries.
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Corollary 3.3. Let {ψn}n∈N be an orthonormal basis for L2(R+). Then {Wψn,ψm

Aff }n,m∈N is an orthonormal 
basis for L2

r(Aff). In particular, we can expand any f ∈ L2
r(Aff) as

f =
∞∑

n,m=0

〈
f,WLn,Lm

Aff

〉
WLn,Lm

Aff ,

where {Ln}∞n=0 is given by

Ln(x) := e
x
2

n!
√
n + 1

dn

dxn

(
e−xxn+1) . (3.2)

Proof. The orthonormality of the functions Wψn,ψm

Aff clearly follows from Proposition 3.2. To see the com-
pleteness in L2

r(Aff) we assume that f ∈ L2
r(Aff) satisfies〈
f,Wψn,ψm

Aff

〉
L2

r(Aff)
= 0

for every n, m ∈ N. Then equation (2.11) implies that Af = 0 and hence f ≡ 0. �
Corollary 3.4. We have Wψ

Aff = Wφ
Aff for ψ, φ ∈ L2(R+) if and only if ψ = c · φ with |c| = 1.

Proof. It is clear from the definition of WAff that ψ = c ·φ with |c| = 1 implies that Wψ
Aff = Wφ

Aff . Conversely, 
if we assume that Wψ

Aff = Wφ
Aff then the affine orthogonality relation (3.1) shows that

|〈ψ, φ〉|2L2(R+) = ‖ψ‖4
L2(R+) = ‖φ‖4

L2(R+).

Hence ‖φ‖L2(R+) = ‖ψ‖L2(R+) and |〈ψ, φ〉|L2(R+) = ‖ψ‖L2(R+)‖φ‖L2(R+). This can only happen when ψ =
c · φ for some |c| = 1. �

The marginal properties [23, Lemma 4.3.6] for the classical Wigner distribution strengthen a quantum 
mechanical interpretation of the Wigner distribution. For the affine Wigner distribution, we need an analogue 
of the Fourier transform on the group R+. This is the Mellin transform given by

M(ψ)(x) = Ma(ψ)(x) :=
∞̂

0

ψ(a)a−2πix da

a
,

for x ∈ R and ψ ∈ L2(R+). There is little consensus regarding the exponent of a in the literature and we 
recommend checking carefully which convention is used whenever the Mellin transform is encountered. The 
Mellin transform is a unitary map M : L2(R+) → L2(R) with inverse

M−1(f)(a) = M−1
x (f)(a) =

∞̂

−∞

f(x)a2πix dx, (3.3)

for a ∈ R+ and f ∈ L2(R). Moreover, the Mellin transform of a dilated function satisfies

M(Drψ)(x) = r−2πix− 1
2M(ψ)(x). (3.4)

The following marginal properties have been stated in [31] where the proofs are referred to the unpublished 
Ph.D. thesis of R.G. Shenoy. We provide a new proof of this remarkable fact to fill in gaps in the original 
sources.
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Proposition 3.5. The affine Wigner distribution satisfies for ψ ∈ S (R+) the marginal properties

∞̂

−∞

Wψ
Aff(x, a) dx = |ψ(a)|2,

∞̂

0

Wψ
Aff(x, a) da

a
= |M(ψ)(x)|2.

Proof. The first marginal property follows from Lemma 3.1 and the realization that

∞̂

−∞

Wψ
Aff(x, a) dx = F−1

1

(
Wψ

Aff

)
(0, a).

The validity of the pointwise convergence in the Fourier inversion step is clear since ψ ∈ S (R+).
For the second marginal property, we utilize a change of variables in the definition of the affine Wigner 

distribution to get the alternative form

Wψ,φ
Aff (x, a) =

∞̂

0

u−2πixψ

(
a
u log(u)
u− 1

)
φ

(
a
log(u)
u− 1

)
du

u
.

The isometry property of the Mellin transform can then be used to obtain

∞̂

0

Wψ
Aff(x, a) da

a
=

∞̂

0

∞̂

0

u−2πixψ

(
a
u log(u)
u− 1

)
ψ

(
a
log(u)
u− 1

)
da du

au

=
∞̂

0

∞̂

−∞

u−2πixMa

(
ψ

(
a
u log(u)
u− 1

))
(β)Ma

(
ψ

(
a
log(u)
u− 1

))
(β) dβ du

u
.

By using the dilation relation (3.4) and the inverse Mellin transform (3.3) we end up with

∞̂

0

Wψ
Aff(x, a) da

a
=

∞̂

0

∞̂

−∞

u−2πix
(
u log(u)
u− 1

)2πiβ

Ma (ψ) (β)
(

log(u)
u− 1

)2πiβ

Ma(ψ)(β) dβ du

u

=
∞̂

0

∞̂

−∞

u−2πixu2πiβ |Ma(ψ)(β)|2 dβ du

u

=
∞̂

0

u−2πixM−1
β (|Ma(ψ)(β)|2)(u) du

u

= Mu(M−1
β (|Ma(ψ)(β)|2)(u))(x)

= |M(ψ)(x)|2.

Interchanging the order of integration and the pointwise convergence of the Mellin transform is easily 
justified under the assumption that ψ ∈ S (R+). �
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Remark. It follows from Proposition 3.5 that

∞̂

0

∞̂

−∞

Wψ
Aff(x, a) da dx

a
=

∞̂

0

|ψ(a)|2 da

a
= ‖ψ‖2

L2(R+),

for all ψ in the dense subspace S (R+) ⊂ L2(R+). If ‖ψ‖L2(R+) = 1 and Wψ
Aff is everywhere non-negative, 

then the affine Wigner distribution would be a probability density function on the upper half-plane. We 
will elaborate on this in Section 9.

If ψ ∈ S (R+) has compact support and a ∈ R+ is outside the support of ψ, then Proposition 3.5 shows 
that

∞̂

−∞

Wψ
Aff(x, a) dx = 0.

This extreme case can be improved with the following finite support property.

Proposition 3.6. Assume ψ ∈ L2(R+) is countinuous and supported in [r, s] ⊂ R+. Then Wψ
Aff(x, a) = 0 for 

all x ∈ R whenever a /∈ [r, s].

Proof. The functions ψ(aλ(u)) and ψ(aλ(−u)) are both non-zero if and only if

λ(u), λ(−u) ∈ L :=
[ r
a
,
s

a

]
.

If a > s then L ⊂ (0, 1). Hence it suffices to show that λ(u) and λ(−u) can not take values in (0, 1)
simultaneously. This follows since λ(u) is an increasing function that only takes values in (0, 1) whenever 
u < 0. If a < r then L ⊂ (1, ∞). In this case, the result follows from the fact that λ(u) > 1 if and only if 
u > 0. �
4. Alternative descriptions

Although the affine Wigner distribution was constructed rather recently, it has appeared in the liter-
ature several times in different disguises. We outline two instances of this and see how this enriches our 
understanding of the more subtle properties of the affine Wigner distribution.

Consider a function ψ ∈ L2(R) ∩L2(R+) that is supported on R+ and let f ∈ L2(R) be such that f̂ = ψ. 
The affine Wigner distribution Wψ

Aff is related to the Bertrand P := (P0, 1) distribution described in [29]
by the formula

Wψ
Aff(x, a) = 1

a
Pf

(
a,−x

a

)
.

One refers to P as the Bertrand P0 distribution and it is in both the affine class and the hyperbolic class
described in [29]. From this we can gauge several invariance properties of the affine Wigner distribution:

• The fact that P is in the affine class gives the invariance properties

WMωψ
Aff (x, a) = Wψ

Aff(x− aω, a), WDrψ
Aff (x, a) = 1

r
Wψ

Aff

(
x,

a

r

)
. (4.1)

These invariance properties can be summarized as
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W
U(x,a)ψ
Aff (y, b) = Wψ

Aff(y − bx, ab), (4.2)

where U is the action of the affine group on L2(R+) given in (2.10).
• The fact that P is in the hyperbolic class gives the invariance property

W
H(c,fr)ψ
Aff (x, a) = Wψ

Aff(x + c, a), (4.3)

where H(c, fr) is the transformation

H(c, fr)ψ(r) := e
−2πic ln

(
r
fr

)
ψ(r), r, fr > 0, c ∈ R.

Notice that the positive reference frequency fr only appears on the left-hand side of (4.3).

The affine Wigner distribution WAff can be derived in another way by emphasizing invariance properties 
as done in [9] and [28]. From this perspective, one starts with a general quadratic distribution and require 
invariance under a group extension of the affine group. This will produce the distribution

Wψ(x, a) :=
∞̂

−∞

ψ(aλ(u))ψ(aλ(−u))e−2πiuxμ(u) du,

where μ(u) is a weight function that satisfies μ(u) = μ(−u). The requirement that Wψ satisfies the affine 
orthogonality relation in (3.1) forces μ ≡ 1 so that Wψ = Wψ

Aff . Although one gets the orthogonality relation 
(3.1) for free with this approach, the connection with the affine Weyl quantization in (2.11) is then obscured. 
The affine Wigner distribution WAff is a special case of a family of distributions that are called tomographic 
distributions in [9].

Remark. There have been other attempts at defining a notion of affine Wigner distribution that do not 
coincide with our definition. As an example, we refer the reader to [22] and the recent successor paper 
[21] where an affine Wigner-like quasi-probability is defined through a semi-classical quantization approach. 
Although this is different from the approach in [19] that our work is based on, it has similarities in both 
motivation and properties.

5. Affine convolution representation of the scalogram

Recall from the introduction that the classical Wigner distribution can represent the spectogram through 
convolution

SPECgf(x, ω) = WP (g) ∗Wf (x, ω) = WP (ĝ) ∗Wf̂ (ω,−x), (5.1)

where P (g)(x) := g(−x). This relation was mentioned in [27, Eq 85] where the Wigner distribution went 
under the name (instantaneous) spectrum-smoothing function. It later appeared in [11, Eq 4.5], where it 
was used to show that the spectogram is a Cohen class distribution. Finally, it was put on more rigorous 
foundations in [17, Proposition 1.99]. By attempting to use the classical Wigner distribution to represent 
the scalogram in (1.4) one obtains

SCALgf(x, a) =
ˆ

Wf (τ, ξ)Wg

(
τ − x

a
, aξ

)
dτ dξ.
R2
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However, this only superficially looks like convolution as it does not incorporate one of the Haar measures 
on Aff.

We will use the affine Wigner distribution to get a proper convolution representation of the scalogram. 
Before stating the precise result, we recall some generalities from the theory of locally compact groups 
applied to the affine group: The affine convolution between two functions f, g on the affine group is given 
whenever it is well-defined by

f ∗Aff g(x, a) :=
∞̂

−∞

∞̂

0

f(y, b)g
(
(y, b)−1 ·Aff (x, a)

) db dy

b2
.

A departure from the usual Euclidean convolution is that the affine convolution is not commutative. The 
modular function Δ on any locally compact group measures the difference between the right and left Haar 
measure. We refer the reader to a precise definition in [18, Chapter 2.4] as we only need that the modular 
function on the affine group is

Δ(x, a) = 1
a
, (x, a) ∈ Aff.

Finally, the (right) involution of a function f on the affine group is given by

I(f)(x, a) := Δ(x, a)f((x, a)−1) = 1
a
f

(
−x

a
,
1
a

)
, (x, a) ∈ Aff.

The following convolution result should be compared with (5.1).

Theorem 5.1. Let f, g ∈ L2(R) be such that their Fourier transforms f̂ and ĝ are supported in R+ and 
satisfy f̂ , ̂g ∈ L2(R+). Then

SCALgf(x, a) =
(
I
(
W ĝ

Aff

)
∗Aff ΔW f̂

Aff

)(
x

a
,
1
a

)
, (x, a) ∈ Aff.

Proof. By using Parseval’s identity and that the support of the Fourier transforms is in R+ we obtain

SCALgf(x, a) =
∣∣〈f, TxDag〉L2(R)

∣∣2 =
∣∣∣〈f̂ ,√a · U(x, a)ĝ 〉L2(R+)

∣∣∣2 ,
where U(x, a) is given in (2.10). The affine orthogonality relation given in Proposition 3.2 and the invariance 
property given in (4.2) together show that

SCALgf(x, a) =
∞̂

−∞

∞̂

0

W f̂
Aff(y, b) · a ·WU(x,a)ĝ

Aff (y, b) db dy
b

=
∞̂

−∞

∞̂

0

W f̂
Aff(y, b) · a ·W ĝ

Aff(y − bx, ab) db dy
b

=
∞̂

−∞

∞̂

0

W f̂
Aff(y, b) · ab ·W ĝ

Aff ((y, b) ·Aff (−x, a)) db dy

b2
.

We use the involution on the affine group to write
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Table 1
Summary of invariance properties.

Transformation Function Affine Wigner Distribution Affine Ambiguity Function

Identity ψ(r) Wψ
Aff(x, a) Aψ

Aff(x, a)

Dilation Dsψ(r) 1
sW

ψ
Aff

(
x, a

s

)
s−2πix−1Aψ

Aff(x, a)

Modulation Mωψ(r) Wψ
Aff(x − aω, a) No simple formula

Hyperbolic H(c, fr)ψ(r) Wψ
Aff(x + c, a) a−2πicAψ

Aff(x, a)

ab ·W ĝ
Aff ((y, b) ·Aff (−x, a)) = I

(
W ĝ

Aff

) (
(−x, a)−1 ·Aff (y, b)−1) .

Combining these observations shows that

SCALgf(x, a) =
∞̂

−∞

∞̂

0

W f̂
Aff(y, b)
b

· I
(
W ĝ

Aff

)((
x

a
,
1
a

)
·Aff (y, b)−1

)
db dy

b

=
(
I
(
W ĝ

Aff

)
∗Aff ΔW f̂

Aff

)(
x

a
,
1
a

)
. �

6. The affine ambiguity function

The cross-ambiguity function in time-frequency analysis of f, g ∈ L2(R) is defined to be

A(f, g)(x, ω) :=
∞̂

−∞

f
(
t + x

2

)
g
(
t− x

2

)
e−2πitω dt, (x, ω) ∈ R2.

The ambiguity function Af := A(f, f) of f ∈ L2(R) has been frequently used in radar applications [23, 
Chapter 4.2]. In the affine setting, we suggest the following analogue.

Definition 6.1. The affine cross-ambiguity function of ψ, φ ∈ L2(R+) is the function Aψ,φ
Aff on Aff defined by

Aψ,φ
Aff (x, a) :=

∞̂

0

ψ
(
r
√
a
)
φ

(
r√
a

)
r−2πix dr

r
, (x, a) ∈ Aff.

Similarly as before, we call the function Aψ
Aff := Aψ,ψ

Aff the affine ambiguity function.

For the summary of invariance properties see Table 1. In [31] the authors define a different notion of 
affine ambiguity function under the name wide-band ambiguity function. Notice that the definition of Aψ,φ

Aff
incorporates the Haar measure on R+ in a natural way. Moreover, we will show that our definition possesses 
properties that justifies the terminology affine ambiguity function.

Lemma 6.2. For ψ, φ ∈ L2(R+) we define the functions Ψ(x) := ψ(ex) and Φ(x) := φ(ex) for x ∈ R. Then

Aψ,φ
Aff (ω, ex) = A(Ψ,Φ)(x, ω), (x, ω) ∈ R2.

Moreover, the affine ambiguity function satisfies

|Aψ
Aff(x, a)| < Aψ

Aff(0, 1) = ‖ψ‖2
L2(R+),

for every (x, a) �= (0, 1).
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The last statement in Lemma 6.2 is a direct consequence of [23, Lemma 4.2.1]. The proof of the following 
orthogonality result illustrates the usefulness of Lemma 6.2.

Proposition 6.3. The affine cross-ambiguity function satisfies the orthogonality relation〈
Aψ1,φ1

Aff , Aψ2,φ2
Aff

〉
L2

r(Aff)
= 〈ψ1, ψ2〉L2(R+)〈φ1, φ2〉L2(R+),

for ψ1, ψ2, φ1, φ2 ∈ L2(R+).

Proof. Let Ψi(x) := ψi(ex) and Φi(x) := φi(ex) for i = 1, 2. Then Lemma 6.2 gives that

〈
Aψ1,φ1

Aff , Aψ2,φ2
Aff

〉
L2

r(Aff)
=

∞̂

−∞

∞̂

0

A(Ψ1,Φ1)(ln(a), x)A(Ψ2,Φ2)(ln(a), x) da dx
a

=
∞̂

−∞

∞̂

−∞

A(Ψ1,Φ1)(u, x)A(Ψ2,Φ2)(u, x) du dx.

From [23, Lemma 4.3.4] it follows that the ambiguity function is related to the classical cross-Wigner 
transform by

W (Ψi,Φi) = FUA(Ψi,Φi), i = 1, 2,

where F is the Fourier transform and U is the rotation UF (x, ω) := F (ω, −x) for a function F on R2. Hence 
from (2.1) we obtain that〈

Aψ1,φ1
Aff , Aψ2,φ2

Aff

〉
L2

r(Aff)
= 〈Ψ1,Ψ2〉L2(R)〈Φ1,Φ2〉L2(R) = 〈ψ1, ψ2〉L2(R+)〈φ1, φ2〉L2(R+). �

Corollary 6.4. Let ψ ∈ L2(R+) be normalized and let U ⊂ Aff be a Borel set. Assume there exists ε > 0
such that

¨

U

|Aψ
Aff(x, a)|2 da dx

a
≥ 1 − ε. (6.1)

Then

μr(U) ≥ (1 − ε)
p

p−2

(p
2

) 2
p−2

, p > 2.

In particular, we have μr(U) ≥ max(2(1 − ε)2, 1 − ε).

Proof. Notice that the assumption (6.1) is by Lemma 6.2 equivalent to

ˆ

U1

ˆ

ln(U2)

|AΨ(u, x)|2 du dx ≥ 1 − ε,

where Ψ(x) := ψ(ex). We can write AΨ(u, x) = eπiuxVΨΨ(u, x), where V is the short-time Fourier transform 
given in (2.4). The assumption



166 E. Berge et al. / Appl. Comput. Harmon. Anal. 56 (2022) 150–175
ˆ

U1

ˆ

ln(U2)

|VΨΨ(u, x)|2 du dx ≥ 1 − ε

implies by Lieb’s uncertainty principle [23, Theorem 3.3.3] that we have

μr(U) = |U1 × ln(U2)| ≥ (1 − ε)
p

p−2

(p
2

) 2
p−2

, p > 2.

The final claim follows from considering p = 4 and p → ∞. �
We now relate the affine ambiguity function to the affine Wigner distribution. Define

Θ(y, b) :=
(√

b log(b)
b− 1

)2πiy

,

for y ∈ R and b > 0 with the convention that Θ(y, 1) = 1 for all y ∈ R. If we write b = eu for u = log(b), 
then

√
b log(b)
b− 1 =

√
λ(u)λ(−u),

where λ is the function given in (2.6). Hence we can think of Θ(y, b) as arising from a symmetrization of 
the function λ. We leave the verification of the following result to the reader as it is straightforward.

Lemma 6.5. For ψ, φ ∈ L2(R+) we have the equality

Wψ,φ
Aff (x, a) = M−1

y ⊗Mb

[
Θ(y, b) ·Aψ,φ

Aff (y, b)
]
(x, a),

where (x, a) ∈ Aff and M is the Mellin transform.

It is of importance to extend the affine Weyl quantization to tempered distributions. To do this, we first 
need the following definition.

Definition 6.6. Let S (Aff) denote the smooth functions f : Aff → C that satisfy

(x, ω) �−→ f(x, eω) ∈ S (R2).

The space S (Aff) is called the rapidly decaying smooth functions on Aff. The dual space of S (Aff) will be 
denoted by S ′(Aff) and called the tempered distributions on Aff.

The following result illustrates how we can use the Mellin transform and the affine ambiguity function 
to deduce properties of the affine Wigner distribution.

Proposition 6.7. For ψ, φ ∈ S (R+) the affine Wigner distribution satisfies Wψ,φ
Aff ∈ S (Aff).

Proof. Let Ψ(x) := ψ(ex) and Φ(x) := φ(ex). By Lemma 6.2 and Lemma 6.5 we want to show that

(x, ω) �−→ M−1
y ⊗Mb

[
Θ(y, b) ·AΨ,Φ(log(b), y)

]
(x, eω) ∈ S (R2).
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The cross-ambiguity function A is a map A : S (R) × S (R) → S (R2) by [23, Theorem 11.2.5]. Hence 
A(y, b) := AΨ,Φ(log(b), y) ∈ S (Aff). Since Θ(y, b) is a smooth function with polynomially bounded deriva-
tives, the same goes for the product Θ(y, b) ·A(y, b). The claim follows since the Mellin transform is related 
to the Fourier transform by the formula M(ψ)(x) = F(Ψ)(x). �
Corollary 6.8. The affine Weyl quantization Af of f ∈ S ′(Aff) is well-defined as an operator

Af : S (R+) → S ′(R+).

Example 6.9. Consider the point measure δAff(x, a) ∈ S ′(Aff) defined by

〈δAff(x, a), f〉 = f(x, a),

for f ∈ S (Aff) and (x, a) ∈ Aff. We compute for ψ, φ ∈ S (R+) that〈
AδAff(x,a)ψ, φ

〉
=

〈
δAff(x, a),Wφ,ψ

Aff

〉
= Wφ,ψ

Aff (x, a) = Wψ,φ
Aff (x, a).

Hence the operator AδAff(x,a) is weakly defined through the values of the affine Wigner distribution.

7. An almost analytic decomposition

Recall that analytic and anti-analytic functions f are characterized by the equations ∂z̄f(z) = 0 and 
∂zf(z) = 0, respectively. The fact that Wψ,φ

Aff ∈ L2
r(Aff) when ψ, φ ∈ L2(R+) allows us to exclude (anti-

)analytic functions from being affine Wigner distributions.

Proposition 7.1. There are no analytic or anti-analytic functions in the space L2
r(Aff).

Proof. The conclusion is easier to obtain by looking at the isomorphic spaces in the unit disc D by applying 
the standard linear fractional transformation. Under this transformation, the analytic functions in L2

r(Aff)
are transformed to the analytic functions f in the unit disc satisfying the integrability condition

ˆ

D

|f(z)|2
1 − |z|2 dz < ∞. (7.1)

Any such analytic function will have to vanish as it approaches the boundary circle. Thus they are identically 
zero inside the unit disc as well by the unique continuation principle for analytic functions. The case of anti-
analytic functions is similar. �
Remark. Proposition 7.1 shows a big difference between the affine Wigner distribution and both the classical 
Wigner distribution and the wavelet transform; the classical Wigner distribution can produce Gaussians, 
while one can obtain plenty of analytic functions from the wavelet transform as shown in [12, Chapter 2.5].

A function f : Aff → C is called (anti-)poly-analytic of order n ∈ N if ∂n
z f = 0 (∂n

z f = 0). We write 
f ∈ An(Aff) (f ∈ A⊥,n(Aff)) to signify that f is (anti-)poly-analytic of order n, but not (anti-)poly-analytic 
of order n − 1. The following result is inspired by [32] and shows that L2

r(Aff) decomposes completely into 
poly-analytic and anti-poly-analytic functions.

Proposition 7.2. The space L2
r(Aff) has the orthogonal decomposition

L2
r(Aff) =

∞⊕(
An(Aff) ⊕A⊥,n(Aff)

)
.

n=2
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Proof. Notice first that

L2
r(Aff) �

(
L2(R+, dx) ⊗ L2(R+, a

−1 da)
)
⊕

(
L2(R−, dx) ⊗ L2(R+, a

−1 da)
)
.

Hence for n ≥ 2 it suffices to show the decompositions

An(Aff) � L2(R+, dx) ⊗ span {Ln−2} , A⊥,n(Aff) � L2(R−, dx) ⊗ span {Ln−2} ,

where {Ln}∞n=0 is the orthogonal basis for L2(R+) defined in (3.2). We will only show the decomposition of 
An(Aff) since the decomposition of A⊥,n(Aff) is similar.

Consider the map Φ : L2
r(Aff) → L2

r(Aff) given by

Φf(x, a) = F1(f)
(
x,

a

2|x|

)
,

where F1 is the Fourier transform in the first component. It is straightforward to check that Φ is a unitary 
map. The image of An(Aff) under Φ consists of all functions in L2

r(Aff) that satisfy

Φ ◦ ∂n
z ◦ Φ−1f = Φ(∂x + i∂a)nΦ−1f = 0, (7.2)

but do not satisfy (7.2) for n − 1. A computation shows that functions f ∈ L2
r(Aff) satisfying (7.2) are 

precisely those that satisfy the homogeneous equation

|x|n (sign(x) + 2∂a)n f(x, a) = 0, (7.3)

but do not satisfy (7.3) for n − 1. It is well-known that the solution is precisely

f(x, a) = g(x)Ln−2(a), g ∈ L2(R+, dx).

Hence we obtain the decomposition for An(Aff) and the result follows. �
Remark. Notice that Proposition 7.2 does not claim that An(Aff) and A⊥,n(Aff) are orthogonal as An(Aff) ∩
A⊥,n(Aff) �= {0} for all n ≥ 2. The poly-analytic functions have appeared prominently in the work of Abreu, 
see e.g. [1], in the context of wavelet analysis and sampling theory.

8. Applications

8.1. An approximation problem

Let us use the notation

W(Aff) :=
{
Wψ

Aff

∣∣∣ψ ∈ L2(R+)
}
⊂ L2

r(Aff),

and call W(Aff) the affine Wigner space. The affine orthogonality relation (3.1) implies that W(Aff) is a 
closed subset of L2

r(Aff). Although we can create orthonormal bases for L2
r(Aff) by using the affine cross-

Wigner transform as done in Corollary 3.3, the space W(Aff) is a proper subset of L2
r(Aff).

It is natural to ask how far a function f ∈ L2
r(Aff) is from being in W(Aff). Hence we are interested in 

the following affine Wigner approximation problem

inf ‖f − g‖L2
r(Aff). (8.1)
g∈W(Aff)
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The analogous problem for the classical Wigner distribution has been recently investigated in [5]. Our 
quantization based approach will as a byproduct produce a new proof of the classical Wigner approximation 
problem in [5].

For g = Wψ
Aff it follows from (2.11) and the affine orthogonality relation (3.1) that Ag is the rank-one 

operator

Agφ = 〈φ, ψ〉ψ. (8.2)

The converse is also clear, so there is a one-to-one correspondence between affine Wigner distributions and 
positive rank-one operators. Hence the distance (8.1) should somehow be related to how far Af is from being 
a rank-one operator. In Corollary 8.2 we will see that this heuristic is correct for a large class of functions 
f ∈ L2

r(Aff). We use the notation

λ+
max(Af ) := max

{
max

λ∈Spec(Af )
λ, 0

}
.

Theorem 8.1. The affine Wigner approximation problem for a real-valued function f ∈ L2
r(Aff) has the 

explicit solution

inf
g∈W(Aff)

‖f − g‖L2
r(Aff) =

√
‖f‖2

L2
r(Aff) − λ+

max(Af )2. (8.3)

A minimizing function h ∈ W(Aff) to the affine Wigner approximation problem always exists. Moreover, 
when λ+

max(Af ) > 0 the number of minimizers is equal to the multiplicity of λ+
max(Af ).

Proof. Notice that Af is self-adjoint since

〈Afψ, φ〉 =
〈
Afψ, φ

〉
=

〈
f,Wφ,ψ

Aff

〉
=

〈
f,Wψ,φ

Aff

〉
= 〈ψ,Afφ〉 ,

for ψ, φ ∈ L2(R+). Thus the spectral theory for compact, self-adjoint operators implies that the spectrum 
Spec(Af ) = {λk}∞k=0 of Af is countable with 0 ∈ Spec(Af ) as the only possible accumulation point. 
Moreover, there is by [18, Theorem 1.52] an orthonormal basis {φk}∞k=0 for L2(R+) such that φk is an 
eigenvector for Af corresponding to the eigenvalue λk. The convention is that eigenvalues are repeated 
according to their multiplicity.

We claim that we can write Af =
∑∞

k=0 λkφk ⊗ φk, where the convergence is in the Hilbert-Schmidt 
norm. Notice that convergence of 

∑∞
k=0 λkφk ⊗ φk to Af is guaranteed in the operator norm from the 

theory of compact operators [10, Theorem 3.5]. Hence it suffices to show that 
∑∞

k=0 λkφk ⊗ φk converges 
in the Hilbert-Schmidt norm; this will imply together with the norm inequality ‖ · ‖op ≤ ‖ · ‖HS that ∑∞

k=0 λkφk⊗φk must converge to Af in the Hilbert-Schmidt norm. Due to completeness, it suffices to show 
that 

∑∞
k=0 λkφk ⊗ φk is a Cauchy sequence. For n, m ∈ N with n < m we have

∥∥∥∥∥
m∑

k=n

λkφk ⊗ φk

∥∥∥∥∥
2

HS

=
m∑

k,k′=n

λkλk′
〈
φk ⊗ φk, φk′ ⊗ φk′

〉
HS =

m∑
k=n

|λk|2,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. The claim follows since Af is Hilbert-Schmidt.
We can now by Proposition 2.1 write

inf
g∈W(Aff)

‖f − g‖L2
r(Aff) = inf

ψ∈L2(R+)

∥∥∥∥∥
∞∑

λkφk ⊗ φk − ψ ⊗ ψ

∥∥∥∥∥ . (8.4)

k=0 HS



170 E. Berge et al. / Appl. Comput. Harmon. Anal. 56 (2022) 150–175
Assume that λj = λ+
max(Af ). Then (8.4) is clearly minimized when ψ =

√
λjφj . By orthogonality, we can 

rewrite (8.4) and obtain

inf
g∈W(Aff)

‖f − g‖L2
r(Aff) =

√
‖Af‖2

HS − λ+
max(Af )2 =

√
‖f‖2

L2
r(Aff) − λ+

max(Af )2.

We always have a minimizer as we can take h = Wψ
Aff . The statement about uniqueness of minimizers is 

clear from (8.4). �
Remarks.

• From the spectral theory of compact, self-adjoint operators, it also follows that the eigenspaces corre-
sponding to non-zero eigenvalues are finite-dimensional. Hence, for a given f ∈ L2

r(Aff), there is at most 
a finite number of minimizers h1, . . . , hk ∈ W(Aff) so that

inf
g∈W(Aff)

‖f − g‖L2
r(Aff) = ‖f − hi‖L2

r(Aff), i = 1, . . . , k.

• The proof of Theorem 8.1 goes through almost verbatim to show the analogous result for the classical 
Wigner distribution. The analogous formula to (8.3) for the classical Wigner distribution was shown in [5, 
Theorem 3] using a variational calculus approach. That the number of minimizers can be easily deduced 
from the spectrum of the quantized operator seems new even for the classical Wigner distribution.

• Assume that f ∈ L2
r(Aff) is such that Af is a negative operator. Then λ+

max(Af ) = 0 and it is clear 
from (8.4) that the zero function is the unique minimizer.

Corollary 8.2. Let f ∈ L2
r(Aff) be real-valued and assume that

λ+
max(Af ) = max

λ∈Spec(Af )
|λ|.

Then

min
g∈W(Aff)

‖f − g‖L2
r(Aff) =

√
‖Af‖2

HS − ‖Af‖2
op. (8.5)

Proof. Since Af is self-adjoint it follows from [18, Proposition 1.24] that

‖Af‖op = max
λ∈Spec(Af )

|λ|. �
Remark. Notice that under the assumptions in Corollary 8.2, the heuristic we presented regarding rank-one 
operators holds true: If Af is a rank-one operator, then the Hilbert-Schmidt norm and the operator norm 
coincide. Hence (8.5) is zero and thus f is in the affine Wigner space W(Aff). Conversely, the equations

‖Af‖2
op = max

λ∈Spec(Af )
λ2, ‖Af‖2

HS =
∑

λ∈Spec(Af )

λ2 (8.6)

imply that (8.5) is zero precisely when Af is a rank-one operator.

Example 8.3. Let f ∈ L2
r(Aff) be such that Af is a positive operator with rank k > 0. Then (8.6) implies 

that

‖Af‖2
op ≥ ‖Af‖2

HS .

k
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Hence we obtain from (8.5) that

min
g∈W(Aff)

‖f − g‖L2
r(Aff) =

√
‖Af‖2

HS − ‖Af‖2
op ≤

√
k − 1
k

‖Af‖HS =
√

k − 1
k

‖f‖L2
r(Aff).

This has the following consequence: Let f1, f2 ∈ L2
r(Aff) both correspond to positive operators Af1 and Af2

with finite rank. If rank(Af1) � rank(Af2), then f1 will be closer to the affine Wigner space than f2, unless 
the energy of f2 is significantly smaller than that of f1.

8.2. Dilation invariant operators

An operator A : L2(R+) → L2(R+) is said to be dilation invariant if

A = Dr ◦A ◦D∗
r , (8.7)

for all r > 0 where Dr is the dilation operator in (2.5). We use the affine Weyl quantization to show the 
following result.

Proposition 8.4. There are no non-zero dilation invariant Hilbert-Schmidt operators on L2(R+).

Proof. Assume by contradiction that A : L2(R+) → L2(R+) is a dilation invariant Hilbert-Schmidt operator 
and write A = Af for f ∈ L2

r(Aff). It follows from (4.1) that

W
D 1

r
ψ,D 1

r
φ

Aff (x, a) = r ·Wψ,φ
Aff (x, ra), ψ, φ ∈ L2(R+),

for r > 0 and (x, a) ∈ Aff. Hence (2.11) implies that

〈
DrAfD 1

r
ψ, φ

〉
=

〈
f,W

D 1
r
φ,D 1

r
ψ

Aff

〉
=

∞̂

−∞

∞̂

0

rf
(
x,

a

r

)
Wψ,φ

Aff (x, a) da dx
a

.

On the other hand, since Af is dilation invariant we also have

〈
DrAfD 1

r
ψ, φ

〉
= 〈Afψ, φ〉 =

〈
f,Wφ,ψ

Aff

〉
=

∞̂

−∞

∞̂

0

f (x, a)Wψ,φ
Aff (x, a) da dx

a
.

This forces f ∈ L2
r(Aff) by Corollary 3.3 to satisfy the homogeneity relation

f(x, a) = rf
(
x,

a

r

)
,

for all r > 0 and almost every (x, a) ∈ Aff. However, this implies that

‖f‖2
L2

r(Aff) =
∞̂

−∞

∞̂

0

|f(x, a)|2 da dx

a
= r2

∞̂

−∞

∞̂

0

∣∣∣f (
x,

a

r

)∣∣∣2 da dx

a
= r2‖f‖2

L2
r(Aff).

Hence f is not in L2
r(Aff) unless f = 0, in which case Af is the zero operator. �

Remark. Notice that the proof of Proposition 8.4 actually shows that there can be no non-zero Hilbert-
Schmidt operator A that satisfies (8.7) even for a single r �= 1.
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Example 8.5. Although we showed in Proposition 8.4 that there are no non-zero dilation invariant Hilbert-
Schmidt operators on L2(R+), there are non-zero projections in L2(R+) that are dilation invariant. As 
an example, consider the orthogonal projection P : L2(R+) → M(0,∞) where M(0,∞) is the space of all 
ψ ∈ L2(R+) such that the Mellin transform of ψ satisfies

supp(M(ψ)) ⊂ R+.

The projection P is dilation invariant due to (3.4).

8.3. Trace class operators

Finally, we give an application to trace-class operators motivated by [14, Proposition 162].

Proposition 8.6. Let T : L2(R+) → L2(R+) be a trace-class operator. Then we can write T = Af ◦ Ag for 
f, g ∈ L2

r(Aff). Moreover, the trace of T can be calculated by the formula

Tr(T ) = Tr(Af ◦Ag) =
∞̂

−∞

∞̂

0

f(x, a)g(x, a) da dx
a

.

Proof. Any trace-class operator T on L2(R+) can be written as a composition of two Hilbert-Schmidt 
operators T = A ◦ B. The bijective correspondence in Proposition 2.1 shows that A = Af and B = Ag for 
f, g ∈ L2

r(Aff). Finally, we have

Tr(T ) = Tr(Af ◦Ag) =
〈
Ag, A

∗
f

〉
HS =

〈
g, f

〉
L2

r(Aff) =
∞̂

−∞

∞̂

0

f(x, a)g(x, a) da dx
a

. �

Remark. Notice that

Tr (T ) = Tr (T ∗) = Tr
(
A∗

g ◦A∗
f

)
= Tr

(
Ag ◦Af

)
=

∞̂

−∞

∞̂

0

f(x, a)g(x, a) da dx
a

.

In particular, the trace of T is real-valued whenever f and g are real-valued.

9. Further research

9.1. The affine Grossmann-Royer operator

A standard tool for deriving properties of the classical Wigner distribution is the Grossmann-Royer 
operator R̂(x, ω) defined by the relation

W (f, g)(x, ω) =
〈
R̂(x, ω)f, g

〉
L2(Rd)

,

for f, g ∈ L2(Rd) and (x, ω) ∈ R2d. An essential property of the Grossmann-Royer operator R̂(x, ω) is that∥∥∥R̂(x, ω)f
∥∥∥ = 2d · ‖f‖L2(Rd),

L2(Rd)
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for all f ∈ L2(Rd) and (x, ω) ∈ R2d. This is immensely useful; to see that the classical cross-Wigner 
transform is bounded one simply needs to apply Cauchy-Schwarz inequality to obtain

sup
(x,ω)∈R2d

|W (f, g)(x, ω)| ≤
∥∥∥R̂(x, ω)f

∥∥∥
L2(Rd)

‖g‖L2(Rd) = 2d · ‖f‖L2(Rd)‖g‖L2(Rd). (9.1)

Analogously, we define the affine Grossmann-Royer operator R̂Aff(x, a) by the relation

Wψ,φ
Aff (x, a) =

〈
R̂Aff(x, a)ψ, φ

〉
L2(R+)

,

for ψ, φ ∈ S (R+) and (x, a) ∈ Aff. We restrict our attention to Schwartz functions for convenience since then 
Wψ,φ

Aff ∈ S (Aff) and hence have well-defined point values. Notice that the affine Grossmann-Royer operator 
R̂Aff(x, a) is precisely the affine Weyl quantization of the point mass δAff(x, a) given in Example 6.9. The 
affine Grossmann-Royer operator has the explicit form

R̂Aff(x, a)ψ(r) =
e2πixλ−1( r

a

)
λ−1 (

r
a

) (
1 − eλ

−1( r
a

))
1 + λ−1

(
r
a

)
− eλ

−1
(
r
a

) · ψ
(
re−λ−1( r

a

))
,

for ψ ∈ S (R+), r > 0, and (x, a) ∈ Aff where λ is the function given in (2.6).
Trying to generalize the strategy in (9.1) runs into a problem: The affine Grossmann-Royer operator is 

not a bounded operator on S (R+) ⊂ L2(R+) with respect to the norm ‖ · ‖L2(R+). However, if ψ ∈ S (R+)
is supported in the interval 

[ 1
k , k

]
for some k > 0, then there is a constant Ck > 0 such that∥∥∥R̂Aff(x, a)ψ

∥∥∥
L2(R+)

≤ Ck · ‖ψ‖L2(R+).

We call the optimal constant Ck in the inequality above the k-support constant. Hence if φ ∈ S (R+) we 
have

sup
(x,a)∈Aff

∣∣∣Wψ,φ
Aff (x, a)

∣∣∣ ≤ Ck · ‖ψ‖L2(R+)‖φ‖L2(R+).

A trivial adaption of [23, Lemma 4.3.7] gives the following relative uncertainty principle.

Proposition 9.1. Let ψ ∈ S (R+) be supported in the interval 
[ 1
k , k

]
for some k > 0 and let U ⊂ Aff be a 

Borel set. Assume there exists ε ≥ 0 such that
ˆ

U

Wψ
Aff(x, a) da dx

a
≥ (1 − ε)‖ψ‖2

L2(R+).

Then the right Haar measure of U satisfies μr(U) ≥ (1 − ε)C−1
k .

Motivated by Proposition 9.1, it is of interest to investigate the k-support constant Ck both numerically 
and asymptotically. The affine Grossmann-Royer operator is investigated more thoroughly in the follow-up 
paper [6].

9.2. The affine positivity conjecture

One of the major results about the classical Wigner distribution is regarding positivity; when is Wf

a non-negative function on R2d? Normalized functions f ∈ L2(Rd) such that Wf is non-negative would 
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generate probability density functions on R2d that represent the time-frequency distribution of f . However, 
a well-known result of Hudson [23, Theorem 4.4.1] shows that this can only happen for suitably perturbed 
Gaussians.

Turning to the affine setting, we would like to determine the normalized functions ψ ∈ L2(R+) such 
that Wψ

Aff is a non-negative function on the affine group. In [28] the authors showed that the affine Wigner 
distribution Wψs

Aff is non-negative if ψs is the so called Morse ground state

ψs(r) := rse−
r
2

Γ(2s) , s ≥ 0.

We will only consider ψs for s > 0 as ψ0 /∈ L2(R+). More generally, one can use the invariance properties 
(4.2) and (4.3) to show that the affine Wigner distribution Wψ

Aff of

ψ(r) = Cr−i(x+ia)ei(y+ib)r C ∈ C, (x, a), (y, b) ∈ Aff, (9.2)

is non-negative. The functions (9.2) are the generalized Klauder wavelets in [16, Equation (41)] that are in 
L2(R+). It is of interest to determine the following affine positivity conjecture, which is a reformulation of 
an open question posed in [16]:

If Wψ
Aff is non-negative for ψ ∈ L2(R+), then ψ is a generalized Klauder wavelet.

The Klauder wavelets have in [25] been shown to be the only functions that generate analytic spaces for the 
continuous wavelet transform. This gives a concrete connection between Klauder wavelets and Gaussians, 
since Gaussians are the only functions in the classical case that generate analytic spaces for the short-time 
Fourier transform by [4, Theorem 3.1].
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