
IFAC PapersOnLine 55-31 (2022) 78–84

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.412

10.1016/j.ifacol.2022.10.412 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Vision-based positioning of Unmanned Surface Vehicles using Fiducial Markers for 
automatic docking  

Lars Digerud*, Øystein Volden**, Kim A. Christensen*, Sampsa Kohtala*, Martin Steinert* 

*Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, 
Norway (e-mail: larsdi@stud.ntnu.no, Kim@fosenregionen.no, sampsa.kohtala@ntnu.no, martin.steinert@ntnu.no) 

** Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway (e-
mail: oystein.volden@ntnu.no) 

Abstract: This paper describes a method of using fiducial markers to aid Unmanned Surface Vehicles (USVs) as an additional 
positioning source during auto-docking. Vision-based techniques allow USVs to localize themselves relative to their 
surroundings without relying on external communication. This paper shows and evaluates a vision-based strategy to localize 
USVs to a pier. We used the Global Navigation Satellite System (GNSS) with Real-Time kinematic (RTK) and Inertial 
Navigation System (INS) with a base station on the pier to validate the vision-based position estimates. The experiment shows 
that traditional computer vision techniques using fiducial markers can give accurate outdoor position estimates in good 
conditions. We also highlight some adverse conditions where the performance decreased considerably. 
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1. INTRODUCTION 

Accurate and reliable positioning is essential for achieving 
safe auto-docking of Unmanned Surface Vehicles (USV). A 
common navigation source for USVs is the Global Navigation 
Satellite System (GNSS), often fused with an onboard Inertial 
Measurement Unit (IMU) and integrated into an inertial 
navigation system (INS) to increase positioning accuracy and 
precision (W. Wang et al., 2019). Real-Time Kinematic (RTK) 
can be used to increase GNSS accuracy. Combined, RTK-INS 
can give centimeter precision (Stateczny et al., 2021). Kooij, 
Colling, and Benson (2018) have projected that the GPS 
accuracy threshold should be below 0.1 meters during the 
docking phase before fully autonomous vehicles can become a 
common reality. Additionally, Det Norske Veritas (DNV, 
2018) guidelines have set the required absolute positioning 
accuracy during auto-docking to be below 0.1 meters, with a 
95 % probability for autonomous and remotely operated ships. 
DNV also addresses that such ships require redundant systems 
and methods to validate the primary systems during operation 
and to alert any external operator if the primary system is out 
of its valid range.  

In addition to precise positioning requirements, auto-docking 
of USVs involves intricate maneuvering and requires efficient 
motion planning and control algorithms. Current research 
focuses on fusing INS with proximity sensors such as lidar or 
ultrasonic to acquire precise positioning estimates that are fed 
to the motion planning algorithms (Martinsen et al., 2020; W. 
Wang et al., 2019). Such a setup requires that the dock is 
recognized, with distinctive features on the pier or in the 
harbor environment, if the system should give the USV precise 
and consistent relative position estimates (Esposito & Graves, 
2014). 

USVs can either dock at a stationary pier or at a floating dock. 
The latter requires a local reference point to which the USV 
can localize itself. Additionally, GNSS is an absolute 
positioning system that requires the exact global coordinates 
of the target (Volden et al., 2021). Unfortunately, GNSS and 
RTK-GNSS systems are dependent on external services and 
can suffer from precision degradation, signal loss in occluded 
urban or canyon environments, or noise from internal devices 
such as Wi-Fi modules (Malyuta et al., 2020).  

1.1 Related work 

Several approaches for vision-based docking of unmanned 
vehicles have been developed. Malyuta et al. (2020) used 
AprilTags to make a UAV fly, dock, and charge itself 
autonomously with high accuracy and precision. Volden et al. 
2021) demonstrated a vision-based positioning method using 
ArUco markers with convolutional neural networks (CNN) 
that could estimate the position of the USV in a harbor 
environment. Their approach focused on outdoor performance 
and demonstrated that vision-based methods could estimate 
the USV position up to approximately 15 m for mono- and 
stereo camera configurations. Mateos et al. (2019) used 
fiducial markers to navigate several USVs relative to each 
other to latch them to a docking station or each other. As such, 
(Mateos, 2020) proposes an upgraded AprilTag3D framework 
of two coupled non-parallel fiducial markers to increase 
vision-based positioning performance with promising results. 

1.2 Main contributions 

This paper demonstrates how a single camera can aid USVs in 
obtaining precise relative position estimates of a pier or a 
potential floating docking station, using a high precision RTK-
INS for validation. The long-term objective is to develop an  
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independent vision-based positioning system to increase the 
redundancy and accuracy of autonomous vehicles' navigation 
systems during the docking phase. The method uses only 
computer vision and filtering techniques for computational 
efficiency. The paper also addresses some adverse weather 
conditions that a fully developed camera system must 
overcome. A Kalman filter is added to remove outliers and 
increase positioning accuracy. 

2. DESIGN, ALGORITHMS, AND IMPLEMENTATION 

The vision-based system uses a single camera to feed raw 
images to an AprilTag2 algorithm (Wang and Olson, 2016), 
where perspective-n-point (PnP) estimates the relative position 
of the USV to a marker on the pier. A Kalman filter is applied 
to improve accuracy by removing outliers. An overview of the 
system is shown in Fig. 1. 

 
Fig. 1 Block diagram describing our vision-based positioning 

system. A camera feeds raw images to the AprilTag2 algorithm, 
where the camera pose relative to the markers is estimated by a 
PnP solution using a Kalman filter to remove outliers and increase 
accuracy. 

2.1 Fiducial markers 

Fiducial markers are commonly used in computer vision 
applications to detect and localize reference points in a 
physical space. The markers can be used to estimate the 6-DoF 
camera-tag pose. As such, fiducial markers can be helpful in 
dynamic and unstructured environments to obtain global pose 
estimates.  

A fiducial marker system usually consists of a detection 
algorithm and a coding system. Each type consists of unique 
patterns which constitute the marker ID. The detection 
algorithms are often based on traditional image processing 
techniques such as edge detection, blob detection, and image 
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different camera locations, which can be observed as the 
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marker. The homography matrix calculated from the DLT 
algorithm can be written as a product of the camera matrix, 𝑲𝑲, 
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𝑠𝑠𝒎𝒎′ = 𝑲𝑲[𝑹𝑹|𝒕𝒕]𝑴𝑴′. (1) 

Where 𝑠𝑠 is a projective transformation scale factor,  𝒎𝒎′ is the 
2D marker pixel coordinates on the camera sensor, 𝑴𝑴′ is the 
3D local coordinates of the marker in the camera frame. Fully 
extended, (1) can be written as: 

𝑠𝑠 [
𝒖𝒖𝑥𝑥 
𝒗𝒗𝑦𝑦
1

] = [
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

] [
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑡𝑡𝑥𝑥
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑡𝑡𝑦𝑦
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑡𝑡𝑧𝑧

] [
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

] . (2) 

Here, (𝒖𝒖𝑥𝑥, 𝒗𝒗𝑦𝑦) is the image point, (𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) are the camera focal 
lengths and (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) are the principal point. The global position 
of the camera can then be obtained by calculating the inverse 
of the 𝑹𝑹|𝒕𝒕 matrix, 

[
𝑥𝑥
𝑦𝑦
𝑧𝑧

] = [𝑹𝑹|𝒕𝒕] [
𝑋𝑋
𝑌𝑌
𝑍𝑍

] . (3) 

Where 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 gives the global camera position relative to 
the markers' X,  Y and Z local position in the camera frame. 
The Euclidean distance between the camera and the marker is 
then obtained with, 

|𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸| = √𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2. (4) 

2.3 Kalman Filter 

Kalman filters are commonly used in navigation to obtain 
accurate and robust estimates from a set of independent 
position sources (e.g., GNSS and IMU). The filter was 
kinematic modeled as a constant velocity model with the 
following equations as defined by Kim and Bang (2019): 

𝒙𝒙𝑘𝑘 = 𝑭𝑭𝒙𝒙𝑥𝑥−1 + 𝑩𝑩𝒖𝒖𝑘𝑘−1 + 𝒘𝒘𝑘𝑘−1, (5) 
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Here, 𝒙𝒙𝑘𝑘 is the marker 3D positions, [𝑥𝑥, 𝑦𝑦, 𝑧𝑧]𝑇𝑇. 𝑭𝑭 is defined as 
the state transition matrix applied to the previous state vector 
𝒙𝒙𝑘𝑘−1, as 

𝑭𝑭 = 

[
 
 
 
 
 1 𝑑𝑑𝑑𝑑 0 0 0 0
0 1 0 0 0 0
0 0 1 𝑑𝑑𝑑𝑑 0 0
0 0 0 1 0 0
0 0 0 0 1 𝑑𝑑𝑑𝑑
0 0 0 0 0 1 ]

 
 
 
 
 

, (6) 

With 𝑑𝑑𝑑𝑑 set as the time between the frames and 𝑩𝑩 as the control 
input matrix, and 𝒘𝒘𝑘𝑘−1 as the process noise vector. Note that 
the 𝒖𝒖𝑘𝑘−1 term in (5) is assumed zero, as no control inputs were 
included to improve the vision system performance. The 
process model is paired with the measurement model that 
describes the relationship between the state and the 
measurements at the current time step k as, 

𝒛𝒛𝑘𝑘 = 𝑯𝑯𝒙𝒙𝑘𝑘 + 𝛎𝛎𝑘𝑘, (7) 

where 𝒛𝒛𝑘𝑘 is the measurement vector and H is the measurement 
matrix, 𝑰𝑰3×6, defined as, 

𝑯𝑯 = [
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

] , (8) 

with the covariance process matrix Q. 𝐯𝐯𝒌𝒌 is the measurement 
noise vector ~ 𝓝𝓝(0, 𝐑𝐑) with the measurement covariance 
matrix R. The estimation is accomplished in two steps: 
prediction (−) and update (+). The hat operator  ̂  represents 
an estimate of a variable. The prediction state estimate and 
predicted error covariance are subsequently defined, 

𝒙𝒙𝑘𝑘
− = 𝑭𝑭𝒙𝒙𝑘𝑘−1

+ , (9) 

𝑷𝑷𝑘𝑘
− = 𝑭𝑭𝑷𝑷𝑘𝑘−1

+ 𝑭𝑭𝑇𝑇 + 𝑸𝑸. (10) 

The update stages are then described as, 

𝒚̃𝒚𝑘𝑘 = 𝒛𝒛𝑘𝑘 − 𝑯𝑯𝒙𝒙𝑘𝑘
−, (11) 

𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘
−𝑯𝑯𝑇𝑇(𝑹𝑹 + 𝑯𝑯𝑷𝑷𝑘𝑘

−𝑯𝑯𝑇𝑇)−1, (12) 

𝒙𝒙𝑘𝑘
+ = 𝒙𝒙𝑘𝑘

− + 𝑲𝑲𝑘𝑘𝒚̃𝒚, (13) 

𝑷𝑷𝑘𝑘
+ = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑯𝑯)𝑷𝑷𝑘𝑘

−, (14) 

where (11)-(14) are defined as the measurement residual, 
Kalman gain, updated state estimate, and updated error 
covariance. The filter estimates the current measurement by 
multiplying the predicted state by the measurement matrix. 𝒚̃𝒚𝑘𝑘 
is then multiplied by the Kalman gain, 𝑲𝑲𝑘𝑘, to provide the 
correction 𝑲𝑲𝑘𝑘𝒚̃𝒚 to the predicted estimate 𝒙𝒙𝑘𝑘

−. Once the updated 
state estimate has been calculated, the error covariance matrix, 
𝑷𝑷𝑘𝑘

+ is calculated for the next time step. Finally, the Kalman 
filter requires an initial estimate of 𝒙𝒙0 and an initial guess of 
the error covariance matrix P to estimate the next state 𝒙𝒙𝑘𝑘 at 
timestep k.  

3. EXPERIMENTAL SETUP AND TEST SCENARIOS 

Our experimental setup consists of an Otter USV developed by 
Maritime Robotics (Maritime Robotics, 2022) in collaboration 

with the Norwegian University of Science and Technology 
(NTNU) as an experimental test platform to conduct sea trials. 
The USV is equipped with two GNSS receivers in bow and 
stern, integrated into an INS system that receives RTK 
corrections from an onshore base station, as shown in Fig. 2. 
The RTK base station was configured to estimate the phase of 
the GNSS carrier wave over 20 h before the experiments were 
conducted—resulting in an absolute GNSS accuracy of 10.48 
cm during the experiments.  

A wireless radio was used for communication between the 
USV and the onshore base station. Specific USV and camera 
specifications can be seen in Table 1 and Table 2, respectively. 
All actions of the USV during the experiment were remote-
controlled, and all data were recorded with the Robotic 
Operating System (ROS, 2022) on the same computer onboard 
the Otter USV for post-processing. To evaluate the accuracy 
of the vision-based system, we compared the estimated 
positions to RTK INS positions at each timestep using Root 
Mean Square Error (RMSE). Both systems were post-
synchronized, where RTK INS positions were sampled at 25 
Hz and camera frames at 15 Hz.  

 
Fig. 2 The fully equipped Otter USV and the onshore RTK GNSS 

base station at the pier. 

Table 1. Otter USV specifications 

Dimensions 2 𝑚𝑚 𝑥𝑥 1.08 𝑚𝑚 
Position and heading 
reference system 

Two GNSS receivers in 
bow and stern 

INS SBG Ellipse 2-D 
Sample rate 25 𝐻𝐻𝐻𝐻 

 
Table 2. Camera specifications 

Model name ZED 2i 
Pixel format RGB 
Resolution 2208 × 1242 
Sample rate 15 𝐻𝐻𝐻𝐻 
Field of View 120° 

The AprilTag markers' physical size was 0.412 𝑚𝑚 × 0.412 𝑚𝑚 
of marker family 36h11, located on the pier, as seen in Fig. 3. 
In order to compare the estimated camera positions to RTK 
INS positions, the North-East-Down (NED) coordinate system 
was used, denoted as η = [𝑁𝑁,𝐸𝐸,𝐷𝐷]𝑇𝑇, with the first dimension 
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pointing North, the second pointing East, and the last pointing 
towards the earth's center. For convenience, we used the 
coordinate origin of the NED frame to correspond to the 
midpoint of the reference tag, m1, as seen in Fig. 3. As such, 
we can transform the GNSS measurements into NED 
coordinates and compare them directly with the tag 
measurements. 

 
Fig. 3 Experiment setup with the Otter USV and the fiducial 

markers, m1, m2, and m3, on the pier. Only positions from the tag, 
m1, were used in this experiment to estimate the USV position. 

3.1 Environmental effects on AprilTag detection 
Three scenarios were analyzed to test how the camera system 
performed in good and adverse weather conditions. The 
scenarios can be seen in Fig. 4, showing the following 
conditions: a) optimal light conditions, b) mirrored light from 
the sun, and c) the harbor in darkness from the Otter USV 
perspective. 

 
Fig. 4 Camera observations from the Otter USV: a) optimal light 

conditions, b) mirrored light from the sun, and c) a harbor in 
darkness. 

4. RESULTS AND DISCUSSION 

This section presents and discusses the positional accuracy of 
the vision-based system for each of the three scenarios.  

4.1 Scenario 1: Optimal conditions 

Fig. 5 shows the top-down view of the Otter approaching the 
marker in NED coordinates during optimal light conditions. 

The yellow points represent the Otters' position estimates by 
the AprilTag system, while the Kalman filtered path can be 
seen as the blue dotted line and the RTK INS path as the green 
dotted line. A few erroneous position estimates can be seen in 
the upper left corner of Fig. 5, which are likely caused by 
position subjected to ambiguity (marker position predicted 
incorrectly). However, the figure shows that the Kalman filter 
can effectively remove these outliers. 

 
Fig. 5 USV RTK INS path versus raw and Kalman filtered position 

estimates estimated by the vision system. 

The RTK INS and the estimated USV positions during the 
experiment are shown in Fig. 6, including the Euclidean 
distance to the marker (a) and the distance along the East, 
North, and Down axis (b-d). The corresponding RMSE values 
can be seen to the right in Fig. 6, which are calculated for every 
one-second interval.  

Although some position estimates are flipped symmetrically in 
the East axis, the corresponding RMSE values show that the 
Kalman filter effectively removes these outliers and increases 
the positioning accuracy. In general, the AprilTag and the 
Kalman filtered positions seem to have a high positive 
covariance, indicating that the Kalman filter may not 
significantly increase the positioning accuracy.  

Fig. 6 shows overall good performance of the vision-based 
position estimates, both for the Euclidean position and around 
the three axes East, North and Down. Additionally, better 
positioning accuracy can be observed when the USV is close 
to the marker, which is a critical part of the docking phase. The 
marker was detected up to a range of 30 m in Euclidean 
distance, with a corresponding RMSE value of around 1 m at 
96 s, as seen in Fig. 6 (a) and (a'). 

Following the 0.1-meter guideline set by (DNV, 2018) and the 
GNSS threshold by (Kooij et al., 2018), the RMSE value is 
below the 0.1 m criteria between 50 to 65 s when the marker 
is within a range of 5 m to the marker (a')-(d'). Additionally, 
the results along the Down axis (d') show that the RMSE is 
below 0.01 m at 56 s and when the USV is within a Euclidean 
range of 2 m, both for the unfiltered and the Kalman filtered 
position estimates which indicate high accuracy along this 
axis. 
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Fig. 6 Positions along Euclidean a), East b), North c), and Down d) versus time. Its corresponding RMSE value can be seen to the right, 

(a')-(d'), respectively.

4.2 Scenario 2: Mirrored light from the sun 

Fig. 7 shows the results of testing with mirrored light from the 
sun. The figure shows that the camera system estimates 
contain many outliers compared to the RTK INS and scenario 
1. Additionally, the Kalman filter seems to have started with 
erroneous initial conditions, which may have caused incorrect 
predictions. However, the Kalman filter accurately predicts the 
USV position when the distance to the marker is low. 

 
Fig. 7 USV RTK GNSS path with the vision system estimated 

positions during the mirrored light from the sun scenario. 

4.3 Scenario 3: A harbor in darkness 

Fig. 8 shows the position estimated when the USV approached 
the pier at night. The figure shows that the camera system got 
considerably fewer detections compared to scenarios 1 and 2. 
In addition, a large portion of the estimates has a significant 
deviation from the RTK INS, which also might be subjected to 
ambiguity.  

 
Fig. 8 USV RTK GNSS path with estimated positions by the vision 

system during the harbor in darkness scenario. 
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4.4 Discussion 

All the results were estimated from one single marker using 
the AprilTag2 algorithm by Wang and Olson (2016) and 
validated by RTK INS. In scenario 1, the vision-based system 
successfully created a local reference point on the pier to 
estimate the position of the USV. The method accurately 
estimated the USV position at a range of up to 5 meters, with 
an RMSE below 0.1 m, demonstrating that the vision-based 
system can provide sufficient positioning accuracy as an 
independent positioning system. Furthermore, despite a few 
outliers, the method is robust in optimal weather conditions. 
However, the results revealed that the performance degraded 
significantly in more adverse environmental conditions (e.g., 
mirrored light from the sun and in a harbor in darkness), most 
likely due to lighting issues. Using a high dynamic range 
camera, adjusting camera exposure, and using illuminated 
backlight markers could increase the detection rate and 
accuracy in scenarios 2 and 3. Additionally, using more 
advanced techniques (e.g., CNN) could further increase the 
detection rate, as found by Volden, Stahl and Fossen (2021). 

Estimating the USV position from a marker given a set of four 
2D-3D correspondences is the core methodology of our vision-
based system. Configuring multiple markers in a known setup 
may improve positioning accuracy and ensure the vision-based 
system integrity, as Malyuta et al. (2020) demonstrated by 
using several AprilTags in a multi-tag configuration to 
estimate a UAV position more robustly. This approach can be 
supported by research from Collins and Bartoli (2014), which 
points out that ambiguity can be solved if certain pre-
determined conditions are met. Mateos (2020) suggests a setup 
of two coupled non-planar markers with promising results 
(achieved 95% vs. 60% detection rate in outdoor experiments 
and an improved positioning accuracy). However, such a setup 
will be ambiguous if only one single marker is detected, as the 
results from the experiment have shown. 

Lastly, the proposed vision-based method has limitations as an 
independent positioning source because the method requires 
that the marker is in the camera's field of view and can be 
identified to provide positioning information. Applying a 
Kalman filter on the position estimates acquired from the 
camera system works in optimal conditions. Still, results from 
the field experiment have demonstrated that ambiguity could 
cause significantly erroneous position estimates. For practical 
applications, the Kalman filter can be initialized with GNSS 
INS positions to improve the vision-based positioning system. 
To avoid sudden jumps in position, it is also essential to check 
that the difference in the estimated position between the 
camera system and the INS is minimal. 

5. CONCLUSION 

This paper demonstrates how vision-based positioning can be 
utilized in harbors as an additional positioning source by 
creating a local reference point between the USV and a pier 
using a single camera. In terms of positioning accuracy, the 
results have shown that efficient computer vision algorithms 
can estimate the position of the USV with reasonable accuracy 
in optimal weather conditions. However, a vision-based 
system is limited in adverse conditions, including suboptimal 

light conditions and darkness. Such scenarios must be further 
addressed before a vision-based system can serve as an 
independent positioning system. Lastly, using cameras with a 
larger dynamic range and greater resolution could increase the 
vision-based system performance, which, combined with 
multiple markers in a multi-tag configuration, will form a more 
robust vision-based positioning system. 
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