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Abstract. This paper reports from an early phase of a project where first-year students on a 
programme in electronic systems learn mathematics in close contact with their engineering 
specialisation. Using concepts from the Anthropological Theory of the Didactic (ATD), the 
connection between mathematics and electrical engineering will be analysed based on concrete 
examples. On the basis of interviews with teachers in both fields, challenges and opportunities with 
teaching mathematics in an engineering context are described. The analysis reveals a complex 
interplay between mathematics and engineering, and the teachers emphasise division of labour as a 
crucial issue.  
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1. Introduction 

Mathematics has always been regarded as an important subject for engineering students, and 

many different approaches to the teaching of mathematics for engineers can be identified. The 

traditional approach is to teach mathematics as part of a package of general courses, often 

over the first two years, assuming that this will provide the students with the necessary 

background to make use of the mathematics in engineering courses later (Winkelman, 2009). 

A critique towards this approach is that it may lead to mathematics being taught with a focus 

only on mathematical concepts and understanding and not on applications (Loch & Lamborn, 

2016). Another critique, of a more general nature, can be connected to the challenges of 

transferring knowledge from one context to another (e.g. Evans, 2000). Acknowledging that 

knowledge is context dependent, one might argue that mathematics for engineering should be 

learnt within the engineering context where it is going to be used. And indeed, at many 

universities mathematics is taught in courses specially designed for particular engineering 

programmes (Alpers, 2008; Enelund et al., 2011; Klingbeil & Bourne, 2014). This model 

gives good opportunities for including programme specific problems in the mathematics 

teaching, and it is assumed that this will increase the perceived relevance of mathematics. 

However, this solution also raises some issues. Providing specialised mathematics courses for 

each study programme will be expensive if the university offers a large number of study 

programmes, and it may cause complications for students who wish to switch from one study 

programme to another. Another argument used in favour of general mathematics courses is 

that one of the strengths of mathematics is exactly the fact that it is general and that one of the 
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competencies that students should acquire by studying mathematics is to adapt to new and 

unknown situations. There are, however, strong arguments for creating better connections 

between mathematics and the engineering subjects since many students find it challenging to 

apply mathematics they are supposed to have learned when they need it later in the 

engineering courses (Carvalho & Oliveira, 2018; Harris et al., 2015). There seems to be no 

obvious solution to these issues and therefore it is of interest to try out different models and 

study these models in practice. 

In this paper I will report from an early phase of a project at the Norwegian University of 

Science and Technology, NTNU, where the aim is to redesign mathematics courses for 

engineering programmes. The project is given the acronym MARTA, and its full title would 

translate to English as Mathematics as a Thinking Tool. MARTA is so far restricted to one 

study programme, Electronic Systems Design and Innovation (ELSYS), but will later also 

include other engineering programmes. MARTA is part of a process aiming at redesigning all 

the technology programmes at NTNU, a process referred to as Technology Studies for the 

Future (Fremtidens teknologistudier, 2022). This paper is based on experiences from the first 

semester of the project MARTA, where a basic course in mathematics is taught in close 

connection with the course Electronic System Design and Analysis (ESDA) to first-year 

students. Using the Anthropological Theory of the Didactics (ATD), (e.g., Bosch & Gascón, 

2014; Chevallard, 2006), I study the discourses that develop to see how the praxeologies in 

mathematics and engineering influence and interact with each other. I will inquire into the 

challenges and opportunities that arise at the interface between mathematics and electronics, 

as seen from the viewpoint of the teachers in the two subjects. 
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2. Background and context of the study 

Engineering education has from early on experienced a tension between theory and practice, 

between academic and professional aims. Edström (2018) describes engineering education in 

the United States before 1920 as highly practical. After that time a change took place, 

influenced by European-educated engineers with a more mathematically oriented background. 

Edström writes that the development was slow, with some exceptions in “newer fields, such 

as chemical and electrical engineering, which grew from science disciplines” (2018, p. 40). 

The development got a boost after the Second World War. This is reflected in a report from a 

committee appointed to review the state of the education at Massachusetts Institute of 

Technology. In this report there are several warnings against a development of engineering 

education towards becoming too far separated from practice and also a critique against routine 

learning:  

[M]any students seem to be able to graduate from the Institute on the basis of routine 

learning, and … though fully equipped with knowledge of standard procedures …, they 

lack the critical judgement, the creative imagination, the competence in handling unique 

situations. (Lewis, 1949, pp. 28-29)   

Further, it is emphasised in the report that it is important to “explore vigorously every means 

for confronting the student with basic data in genuine problem situations”, and a belief is 

expressed that it is possible to find problems that “are simple enough to be used in the early 

years and complex enough to be challenging” and that “abstract concepts are best taught 

through their applications” (Lewis, 1949, p. 29). Edström (2018) remarks that many of the 

issues in the Lewis report are still valid today. The more specific question of what kind of 

mathematics should be taught to engineers also has a long history (Alpers, 2020, p. 5). First, 

this question addressed only the actual content of mathematics for engineers but later also 

issues about the connection between mathematics and engineering and who should be 

teaching mathematics to engineers were included (Ahmad et al., 2001; Bajpaj, 1985; Cardella, 

2008).  

Several recent studies show that the tension between usefulness and scholarliness, and the 

challenges with applying theory to practical engineering problems, still persists (Carvalho & 

Oliveira, 2018; Harris et al., 2015; Loch & Lamborn, 2016). The Conceive, Design, 

Implement, Operate (CDIO) Initiative, launched in 2000, addresses this issue. It is described 

as “an innovative educational framework for producing the next generation of engineers” 

(www.cdio.org). Further details are given below.  
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The CDIO approach has three overall goals: To educate students who are able to  

1. Master a deeper working knowledge of technical fundamentals 

2. Lead in the creation and operation of new products, processes, and systems 

3. Understand the importance and strategic impact of research and technical 

development on society  

(Crawley et al., 2014, p. 13) 

Crawley et al. (2014) emphasise that it is not memorisation of facts and definitions, nor the 

simple application of a principle that is important, but conceptual understanding, seen as 

ideas that have lasting value. In addition, the CDIO approach values contextual learning. This 

means, among other things, that new concepts should be presented in situations familiar to 

students and in situations they recognise as important to their current and future lives 

(Crawley et al., 2014, pp. 32-33). The CDIO approach involves combining ideas of learning 

in context and maintaining deep, or conceptual, understanding (Marton & Säljö, 1976). These 

ideas are in line with those presented by Scanlan in 1985 in a talk about mathematics in 

engineering education. In his talk Scanlan concluded by stating that mathematics should be an 

essential part of the students’ formation and “not a set of ‘tools’ to be acquired before 

proceeding to the ‘important’ part of the course” (Scanlan, 1985, p. 449). 

The project MARTA that I am reporting from, has as its main aim to create a closer 

connection between mathematics and engineering programmes, while maintaining conceptual 

understanding in both fields. An overarching goal for the project is to develop mathematics as 

a ‘tool for thinking’. The programme Electronic Systems Design and Innovation (ELSYS) has 

been chosen as a pilot for MARTA. Other programmes will follow. ELSYS is one of 17 five-

year Master of Technology programmes at NTNU, admitting approximately 1700 new 

students in total each year, approximately 100 in ELSYS. All these programmes traditionally 

contain four mathematics courses distributed over the first three semesters, with almost 

identical content for all programmes. MARTA represents a break with the traditional model. 

In MARTA, the idea is to make adaptations by shifting the emphasis on various topics as well 

as changing the sequencing of the topics, in order to better suit the needs of the engineering 

programmes. It is expected that this approach will make the students better see the relevance 

of mathematics for their engineering specialisation. The approach is in line with the idea of 

contextual learning from CDIO. 
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This paper is based on experiences from the first semester of the five-year programme, 

which is also the first semester of the project. Based on these experiences, my aim is to get a 

better understanding of the interplay between mathematics and topics from electrical 

engineering, which may be of value when developing the project further. 

3. Theory and Methodology 

Concepts from ATD will be used in the analysis. A central notion in ATD is the notion of 

praxeology, “the basic unit into which one can analyse human action at large” (Chevallard, 

2006, p. 23). A praxeology is composed of two blocks, the praxis block, P, and the logos 

block L. P is seen as consisting of two parts, types of tasks (T) and a set of techniques (𝜏) to 

carry out the tasks. L also consists of two parts, a technology (𝜃), or justification for the 

techniques used to carry out the tasks, and the theory (𝛩), which provides the basis and 

support for the technological discourse (Bosch & Gascón, 2014, p. 68). I will write P = [T, 𝜏], 

L = [𝜃, 𝛩], and P = [P/L] = [T, 𝜏, 𝜃, 𝛩] for the whole praxeology. This is often referred to as 

the 4T-model.  

A social situation is called a didactic situation 

whenever one of its actors (Y) does something to help a person (x) or a group of 

persons (X) learn something (indicated by a heart ♥). A didactic system S(X; Y; ♥) is 

then formed. The thing that is to be learned is called a didactic stake ♥ and is made 

up of questions or praxeological components. (Bosch & Gascón, 2014, p. 71)  

In my case X can be seen as made up of students at the ELSYS programme. Y is made up of 

two components, YM and YE, where YM consists of teachers and learning resources involved in 

the teaching and learning of mathematics to X, and YE consists of the corresponding 

components in the Electronic System Design and Analysis (ESDA) course.  

The driving force in a praxeology is the desire for X to find answers (A) to questions (Q). 

The questions depend on the praxeology they emerge within. In the process of finding the 

answers, a didactical milieu, M, is developed, consisting of material and immaterial tools that 

X gathers, with the help of Y, in the process of inquiring into the question Q. This situation is 

represented with the reduced Herbartian schema S(X; Y; Q) ! A (Chevallard, 2020).  The 

milieu is seen as consisting of several components: existing answers (Ai) offered by other 

persons or institutions, works (Wj) of different kinds that can be accessed, and new questions 
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(Qk) that may arise during the work: M = {A1 , A2 , … ,Am, Wm+1, Wm+2, …, Wn, Qn+1, Qn+2, …, 

Qp} (Chevallard, 2020, p. 44). 

Since there are separate courses in mathematics and electronic systems, there will also be 

separate didactic stakes, ♥M ≠ ♥E. Hence, there are two didactic systems, S(X; YM; ♥M) and 

S(X; YE; ♥E), and two praxeologies, one for mathematics, PM = [TM, 𝜏M, 𝜃M, 𝛩M], and another 

for electronic systems, PE = [TE, 𝜏E, 𝜃E, 𝛩E]. Learning in context should have as a 

consequence that the didactic stakes in the two praxeologies should overlap (♥M ∩ ♥E ≠ ∅), 

and therefore I find it of interest to study the interplay between PM and PE, within the 

didactic system S(X; YE; ♥E). I focus on the system S(X; YE; ♥E) since I consider PE to be the 

central praxeology in ELSYS, with PM playing a role as a “supporting praxeology” for PE. 

On the basis of selected questions from PE, I will identify elements of the milieu used to 

answer these questions. In particular, I will be looking for similarities and differences 

regarding technologies (𝜃) and techniques (𝜏) that are applied to solve a given task, coming 

from PE. The aim of this investigation is to answer the following question: In which ways can 

techniques and technologies from mathematics and electronic systems in combination 

contribute to finding answers to questions arising in S(X; YE; ♥E)?  

4. Previous relevant research 
 
One issue regarding mathematics in engineering education is to find the right balance between 

theory and practice. Flegg et al. (2012, p. 718) argue that “[w]ithout the explicit connection 

between theory and practice, the mathematical content of engineering programs may not be 

seen by students as relevant”. They also claim that in cases where mathematics departments 

teach the mathematical content to the engineering students, the engineering departments may 

have little idea of what mathematical content the students are exposed to. Loch and Lamborn 

(2016) observed that first-year mathematics is often seen as irrelevant and distracting by 

engineering students, who are more interested in applied engineering subjects. This lack of 

relevance was attributed partly to mathematics being taught in a ‘mathematical’ way, “with a 

focus on mathematical concepts and understanding rather than applications” (Loch & 

Lamborn, 2016, p. 30). Loch and Lamborn report from a project where higher year 

engineering students were asked to create multimedia artefacts meant to show the relevance 

of mathematics. The project resulted in two animated videos showing how mathematics was 

used to plan and construct a building and a car. In interviews with first-year students after 

they had seen the videos, some students said that the videos did demonstrate the relevance of 
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mathematics, and that “there is probably a reason we’re being taught what we’re being 

taught” (Loch & Lamborn, 2016, p. 38). However, students also reported that they found the 

videos overwhelming because of the amount of mathematics that was shown. Regarding the 

purpose of mathematics for engineers, Cardella (2008) claims that mathematics should be 

more than learning some specific topics. It is about learning a way of working and thinking 

that is of value for the work as an engineer. Faulkner et al. (2019) use the term “mathematical 

maturity” to cover what many teachers in engineering subjects hope that students learn from 

their mathematics coursework.  

Booth (2004) discusses various approaches to learning mathematics by presenting a table 

of different strategies, with corresponding intentions and goals. These approaches constitute a 

hierarchy where the lowest level is made up of the strategy “Just learning” with the intention 

“To learn the content” and the goal “To know the content for use when needed”. The highest 

level is made up of the strategy “Studied reflection” with the intention “To be able to take 

different perspectives on problems” and “To relate content to the world outside of 

mathematics”. The goal is here formulated as “To be able to use mathematics to solve 

problems” and “To understand how mathematics applies to other situations” (Booth, 2004, p. 

15). Scanlan, a professor of electrical engineering, warned against seeing mathematics for 

engineers just as a set of tools, but rather as an essential part of the students’ formation 

(Scanlan, 1985, p. 449). It could be argued that in order to be able to use mathematics in a 

meaningful way, e.g. in engineering, it is necessary to learn mathematics to the level of 

studied reflection (Booth, 2004). This could also be related to mathematical maturity 

(Faulkner et al., 2019). 

Booth also argues that mathematics should not be taught by engineers but that 

“mathematicians and engineers could unite some of their courses so that the students 

experienced a team of teachers leading their learning of mathematics in the world of 

engineering they intend to enter” (Booth, 2004, p. 21). This is in line with the ideas of 

contextual teaching from CDIO (Crawley et al., 2014), and also with the ideas behind 

MARTA.  

Gueudet and Quéré (2018) report that a gap can be observed between mathematics taught 

in mathematics courses and the way mathematics is used to solve problems in engineering 

courses. An important explanation that they give for this gap is that the mathematics courses 

do not make enough connections. As examples of relevant connections, the authors list links 

between mathematics and the real world, between different mathematical contents and 
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between different representations (Gueudet & Quéré, 2018). Connections are also seen as 

important by Wolf and Biehler (2016) who present 10 examples of what they denote as 

authentic problems in mathematics for mechanical engineering. To secure connection, one of 

the basic principles that is presented, is that the problem should be authentic in the sense that 

it should not just be a dressed-up mathematical problem with unrealistic numbers (Wolf & 

Biehler, 2016).  

Authentic problems are also discussed by Schmidt and Winsløw (2021), using the theory 

of didactic transposition (part of ATD). They create a model for what they call Authentic 

Problems from Engineering, defined as “a problem which comes from current research and 

innovation in some specific institution of scholarly engineering” (Schmidt & Winsløw, 2021, 

p. 266).  In their paper, they present a model for task design, where tasks in the mathematics 

course are created, based on the problems from engineering. As an example, they present an 

assignment based on the problem to compute and control the magnetic field induced by a so-

called Halbach magnet (Schmidt & Winsløw, 2021, p. 272).   

Recently several researchers have shown how ATD can be a useful tool for investigating 

mathematics for engineering students, (e.g. González-Martín, 2021; González-Martín & 

Hernandes-Gomes, 2017, 2018, 2019; Peters et al., 2017). The main focus of González-

Martín and Hernandes-Gomes is to compare presentations in Calculus textbooks with 

presentations in textbooks for professional engineering courses, to identify connections 

between the fields. Most of the examples presented by these authors are from mechanical 

engineering, but also a course in electricity and magnetism is studied (González-Martín, 

2021). The results, in particular in mechanical engineering, indicate a lack of connection 

between the praxeologies. A similar analysis on the topic of Fourier series in mathematics and 

signal theory has been made by Rønning (2021). Also here, there are differences but it seems 

that signal theory makes more explicit use of results from mathematics than what may seem 

to be the case in mechanical engineering.  

Summing up, it seems that there are two main challenges that are reported on. One is that 

students do not see the relevance of mathematics for their engineering profession. This in turn 

may reduce the motivation for mathematics, and perhaps also for the study as a whole, and 

may lead to drop-out (Faulkner et al., 2019). The second challenge is the lack of connection 

between mathematics and engineering subjects (e.g., Flegg et al., 2012; Gueudet & Quéré, 

2018; Loch & Lamborn, 2016). Recently, some approaches to create connections have been 

presented (e.g., Schmidt & Winsløw, 2021; Wolf & Biehler, 2016).  There seems to be 
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agreement that it is important to develop problem solving abilities. This can be expressed as 

making mathematics a tool for thinking. And for this to happen, deep knowledge is required 

(e.g. Booth, 2004; Cardella, 2008; Crawley et al., 2014; Scanlan, 1985), as well as good 

problems.  

5. Analysis of data 

The question raised in this paper is the following: In which ways can techniques and 

technologies from PM and PE contribute to finding answers to questions arising in the 

didactic system S(X; YE; ♥E)? As data for the study, I used teaching material (problem sheets, 

lecture notes, textbooks, video lectures) from the ESDA course. With the video lectures 

(Lundheim, 2019) as the main source, supported by a textbook that was recommended for the 

students (Nilsson & Riedel, 2011), I performed an open coding of utterances as representing a 

technique or a technology. In each case, I also coded according to whether I saw the utterance 

as arising from PM or from PE. To further strengthen my analysis, I conducted a joint 

interview with both the mathematics and the ESDA teacher after the end of the semester. The 

purpose of the interview was to get further insight into issues arising from studying the 

teaching material, as well as getting insight into the teachers’ experiences from the first 

semester of the project. The interview was audio recorded and partly transcribed. From the 

teaching material I selected as my main example a situation with modelling an electric circuit 

(see Figure 1). This example provides the main question for the reduced Herbartian schema 

S(X; Y; Q) ! A (see Section 5.1). In the interview, I inquired into the techniques and 

technologies behind the main example and I asked both teachers to formulate their ideas about 

learning and teaching in context, and to explicate their view on how the two subjects could 

mutually support each other. I intend to show some possibilities for making connections 

between mathematics and electrical engineering, and to show the interplay between the 

praxeologies PM and PE in making this connection. The analysis will show that knowledge 

from both praxeologies is needed to solve the given problem. 

5.1. Example: An electric circuit 

The electric circuit I will use as an example is illustrated in Figure 1. This, and similar 

circuits, are used frequently in the early phase of the ESDA course and can therefore be seen 

as an important basic example for the students at ELSYS. The circuit consists of two resistors, 

with resistance R1 and R2, a capacitor with capacitance C and an inductor with inductance L. 
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The problem is to determine the voltages v1 and v2 at the points A and B shown in Figure 1, 

given the input voltage v(t).  

 

Figure 1 A circuit with a given input voltage and two unknown voltages 

This is a problem from PE where the question Q is to find the voltages v1 and v2. The 

expression for these voltages will be the answer A. I will discuss the reduced Herbartian 

schema S(X; Y; Q) ! A for this problem by identifying elements of the didactical milieu 

coming both from PE and from PM. My data for this discussion come from video lectures by 

Lundheim (2019) and a textbook on electric circuits (Nilsson & Riedel, 2011). Both these 

resources are central in the ESDA course, and hence in the didactic system S(X; YE; ♥E). 

In the video lectures, two equations, (1) and (2), are presented, based on the currents at the 

points A and B, with voltages v1 and v2 respectively.  

(1)					
𝑣! − 𝑣
𝑅!

+
1
𝐿0𝑣!

(𝑡)𝑑𝑡 + 𝐶
𝑑
𝑑𝑡
(𝑣! − 𝑣") = 0	

(2)					𝐶
𝑑
𝑑𝑡
(𝑣" − 𝑣!) +

𝑣"
𝑅"

= 0 

Equation (1) models the current out of the node at the point A (v1). The left-hand side of (1) 

contains three terms, one for the resistor, one for the inductor and one for the capacitor. I will 

look at how each of these terms are justified in Lundheim’s (2019) presentation. For each 

justification, I will indicate, either by 𝜃E or by 𝜃M which praxeology I interpret the 

justification to be based on. The first term is justified by saying that “this is just regular circuit 

analysis”, i.e. Ohm’s law is used: The current through the resistor is proportional to the 

voltage over the resistor (𝜃E). The two other terms are more interesting. For the second term, 

it is said that “the current through an inductor is proportional to the integral of the voltage 

over the inductor” (𝜃E), and for the third term that “the current through a capacitor is 
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proportional to the derivative of the voltage over the capacitor” (𝜃E). Furthermore, the 

principle used is what is known as Kirchhoff’s law of currents, stating that the sum of the 

currents out of the node at v1 is zero (𝜃E). Equation (2) is obtained in a similar way by 

analysing the current going out of the node at the point B (v2). Now Lundheim observes that 

equation (2) is a first order differential equation whereas equation (1) contains terms 

including both an integral and a derivative (an integro-differential equation). To transform 

this to a “pure differential equation” he takes the derivative with respect to time on both sides 

of (1) to obtain (𝜏M) 

(1′)					
𝑑
𝑑𝑡

1
𝑅!
(𝑣! − 𝑣) +

1
𝐿 𝑣!

(𝑡) + 𝐶
𝑑"

𝑑𝑡"
(𝑣! − 𝑣") = 0 

Lundheim now observes that a system of differential equations, (1’) and (2), has been 

obtained and that in principle this system can be solved (within PM). He says that he finds this 

to be complicated, and therefore he will look for an alternative way to find the answer A to the 

question Q. This “alternative way” is based on the assumption that the input signal (v) is 

sinusoidal. This is a reasonable assumption in PE, but in PM it would probably be seen as a 

(very) special case. 

The following reasoning is presented. For a given trigonometric signal 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 +

𝜑), define its complex form 𝑋(𝑡) = 𝐴𝑒#(%&'() = 𝐴𝑒#(𝑒#%&. Then 𝑥(𝑡) = Re	𝑋(𝑡). The 

complex number 𝐴𝑒#( is called the phasor or the complex amplitude of the signal1. An 

important point made is that *
*&
𝑋(𝑡) = 𝑗𝜔𝑋(𝑡) and ∫𝑋(𝑡)𝑑𝑡 = !

#%
𝑋(𝑡). Although this 

technique is purely mathematical, it would rarely be seen as a technique for differentiating 

and integrating in PM, since it would apply only to a very limited choice of functions. These 

functions, however, play a very important role in PE and therefore it makes sense to introduce 

this technique.  

Applying this technique to the system of equations (1) and (2) and replacing the voltages v 

with their complex form V, the following system of algebraic equations is obtained. 

(3)					
𝑉! − 𝑉
𝑅!

+
1
𝐿𝑖𝜔 𝑉! + 𝐶𝑖𝜔

(𝑉! − 𝑉") = 0	

(4)					𝐶𝑖𝜔(𝑉" − 𝑉!) +
𝑉"
𝑅"

= 0	

 
1 j is used for the imaginary unit, in accordance with the tradition in PE. 
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Solving this system for V1 and V2 the unknown voltages v1 and v2 are obtained by taking the 

real part. The given task T belongs to PE but the techniques and technologies belong to PM 

(properties of complex numbers). However, the techniques, although purely mathematical, 

would not have been given such a prominent role in a mathematical praxeology. This shows 

that the choice of technique may depend on the praxeology: A technique (𝜏M) from PM is 

considered more important because it is used in PE compared to if it had been used in PM. 

I now return to the modelling process resulting in the system of the integro-differential 

equation (1) and the differential equation (2), to take a closer look at the justifications for 

setting up these equations. Of particular interest are the terms !
+ ∫𝑣!(𝑡)𝑑𝑡 and 𝐶 *

*&
(𝑣! − 𝑣") 

in (1). For the term with the integral (the inductor), the principle used is that the current 

through an inductor is proportional to the integral of the voltage. For the term with the 

derivative (the capacitor), it is claimed that the current through a capacitor is proportional to 

the derivative of the voltage. These are technologies (𝜃E) from PE leading to the application 

of techniques (𝜏M) from PM.  

 Concerning the capacitor, Nilsson and Riedel (2011) write: 

[A]pplying a voltage to the terminals of the capacitor … can displace a charge within the 

dielectric. As the voltage varies with time, the displacement of charge also varies with 

time, causing what is known as the displacement current. At the terminals, the 

displacement current is indistinguishable from the conduction current. The current is 

proportional to the rate at which the voltage across the capacitor varies with time. (p. 204) 

This technology (𝜃E) gives the relation 𝐼 = 𝐶 *,
*&

.  For the inductor, Nilsson and Riedel just 

state that the following relation holds, 𝑣 = 𝐿 *-
*&

 (Eq. 6.1, p. 198). Then they state: “Note from 

Eq. 6.1 that the voltage across the terminals of an inductor is proportional to the time rate of 

change of the current in the inductor” (p. 198). Hence, they give a mathematical interpretation 

of a relation between electrotechnical quantities, without justifying why this particular 

relation, 𝑣 = 𝐿 *-
*&

, holds. Accepting this, again by mathematical techniques (𝜏M), one gets 𝐼 =

!
+ ∫𝑣(𝑡)𝑑𝑡.  

For the circuit in Figure 1 I expressed the question Q as determining the voltages v1 and v2 

at the points A and B, given an input voltage v. The answer A in S(X; Y; Q) ! A contains the 

values of the unknown voltages. In search of this answer a didactical milieu M was generated, 
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M = {A1 , A2 , … ,Am, Wm+1, Wm+2, …, Wn, Qn+1, Qn+2, …, Qp}, consisting of partial answers, 

Ai, works (results), Wj, and new questions Qk (sub questions), used to find the answer A to the 

original question Q. Some of these components are formulated within PM and some within 

PE. Table 1 shows the didactical milieu associated with the electric circuit in Figure 1.  

Table 1. The didactical milieu for the electric circuit in Figure 1 

 PM PE 

Main question, Q  
• Determine the voltages v1 and v2 

given an input voltage v. 

Sub-questions, Qj 
• How to solve a system of 

differential equations 
• How to solve a system of 

algebraic equations 

• Model the current flow at the 
nodes v1 and v2 

Works, Wk 
• Transforming equation 

(1) to equation (1’) 
• Solving a system of 

algebraic equations 
• Properties of complex 

numbers 

• Kirchoff’s current law 
• Behaviour of current over 

resistors, capacitors and 
inductors 

• Properties of the phasor 

Partial answers, Ai 
• The equations (1), (1’) 

and (2) 
• The equations (3) and (4) 
• Solution of the system of 

equations (3) and (4) 

 

Main answer, A  • The values v1 and v2  

Table 1 shows the interplay between the praxeologies PM and PE for the given problem. 

Although both Q and A belong to PE the didactical milieu also includes questions and 

answers of a purely mathematical character, and the process of finding the values v1 and v2 

draws on works from PM. However, works from PM are not sufficient. In order to model the 

current flow, justifications from PE are needed to formulate the system of equations (1) and 

(2). I find the behaviour of current over capacitors and inductors to be of particular interest. 

Why can this be modelled with derivatives and integrals as shown in equations (1) and (2)? I 

will return to this question in Section 5.2. I have previously pointed out that a key word 

pertaining to the challenge of teaching mathematics for engineers is connections (e.g. Gueudet 

& Quéré, 2018). The analysis resulting in Table 1 shows how the didactical milieu involved 

in solving the problem with the circuit consists of elements from both praxeologies PM and 
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PE and that both praxeologies are essential in the path leading to the solution of the problem. 

In the next section I will look into how the project MARTA creates opportunities for 

connections, as well as going deeper into some of the justifications given in the analysis of the 

circuit.  

5.2. Opportunities for connections 

The example described in Section 5.1 comes from PE, but the analysis shows that elements 

from both PE and PM are used to solve the problem (Table 1). Therefore, it is necessary that 

the students have some knowledge from mathematics in order to make sense of what is going 

on. This is in itself nothing special, so to see what extra can be gained by teaching 

mathematics and electronics in close connection, I interviewed the teachers Marc, who was 

teaching the mathematics course, and Eric, who was teaching the ESDA course to the same 

students in their first semester. When asked about the main differences in the current 

approach compared to a traditional approach, Marc emphasises that in addition to changing 

the sequencing of topics, he tries to include circuits into mathematics as often as possible. He 

continues: “But I don’t know the electronics and it is difficult to find circuits that give good 

mathematical problems. Then I have to ask Eric or look in a textbook”. Here Eric comments 

that a crucial point is division of labour. “I think that mathematics must live on its own 

premises, and that the learning goals in mathematics must be mathematical. We cannot make 

plans that presuppose that the mathematicians know a lot of electronics. The most important 

is continuous communication.”  

Marc gives an example of a circuit which is modelled by a non-linear differential equation. 

The mathematical purpose of this example was to motivate the introduction of numerical 

methods for solving differential equations, and Marc felt that the students thought it was fun. 

The problem was given as solving the differential equation using Euler’s explicit and implicit 

methods, and it was just claimed that the differential equation would model the given circuit. 

The purpose of this example was purely mathematical, namely to introduce Euler’s methods. 

This could have been done without connection to the electrical circuit, but the circuit worked 

as a link between the praxeologies, perhaps contributing to the students seeing increased 

relevance.  

Below is a dialogue following another of Marc’s examples.  
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Eric The mathematicians have a habit of setting all values of the components equal to 

one, because then it gets much tidier. With this, the physics disappear. 

Marc I defend this based on the principle of division of labour. The mathematical 

principles are easier to comprehend if you leave out the physical constants. 

Eric Then you are left with the structure of the problem. I think this is the kind of 

division of labour we should have. We can “dress the problem up” later. 

Marc  I think it is a good pedagogical trick to clean away the mess when you learn 

something for the first time. 

This dialogue shows a fundamental difference between the praxeologies. In engineering one 

is concerned with units and with physical constants that are important for understanding the 

physical principles. In mathematics, however, one is more concerned with the structure, and 

this structure may come better to the fore if for example (non-zero) constants are set equal to 

one. Based on the principle of division of labour, both teachers find that this difference is not 

problematic, but on the contrary, that it can be an asset.  

One issue that Eric finds particularly important is that the close connection to mathematics 

gives the possibility to justify principles from electrical engineering better. As an example, he 

mentions the principle of superposition. This is explained in the following way by Nilsson 

and Riedel:  

A linear system obeys the principle of superposition, which states that whenever a system 

is excited, or driven, by more than one independent source of energy, the total response is 

the sum of the individual responses. (Nilsson & Riedel, 2011, p. 144).  

The strategy chosen in the book by Nilsson and Riedel is to deactivate all sources of energy 

but one, and study the system that is then created (tE). Solving for the currents in each of the 

circuits with just one source of energy, it is claimed, with reference to the principle of 

superposition (qE), that the complete solution is obtained by adding the currents. Eric finds 

this argument unsatisfactory, and he is happy that he can use mathematical arguments to 

justify the principle. Eric says: “I was always told that, ‘this is how it is’. Now we can argue 

that this is actually how it has to be”. The mathematical justification of the superposition 

principle is based on linear algebra. Each of the circuits with only one source of energy can be 

modelled with a system of linear equations Axi = bi, i = 1, …, n, where n is the number of 

energy sources. The complete circuit can then be modelled by Ax = b, where b = b1 + … + bn. 
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Since A is a linear operator, the complete solution is given by x = x1 + … + xn (qM). This is an 

example that a technology from mathematics is used to justify a technique in electrical 

engineering.  

In Section 5.1 it would appear both from Lundheim (2019) and from Nilsson and Riedel 

(2011) that the justification for the modelling of the circuit shown in Figure 1 was somewhat 

unsatisfactory. I therefore asked Eric in the interview how he would justify the modelling of 

equation (1). Regarding the capacitor, Eric says:  

Current is the derivative of charge with respect to time. How much charge passes through a 

crosscut per unit of time. The number C indicates how much charge a capacitor can hold. 

Q=CV, so I = dQ/dt = C dV/dt.  

In the justification he bases his argument on the definition of current, as the rate of change of 

charge with respect to time (qE). And the charge that a capacitor can hold is proportional to 

the voltage, where the proportionality constant C is a characteristic of the capacitor. This is in 

line with the argument given in Nilsson and Riedel (2011) that “[t]he current is proportional 

to the rate at which the voltage across the capacitor varies with time” (p. 204).  

I observed in Section 5.1 that the argument in Nilsson and Riedel (2011) for the behaviour 

of the inductor was rather vague. Below is the explanation provided by Eric in the interview. 

For the inductor it is more tricky. You cannot use the concept of charge. You need flux, 

which is physically much heavier. So here I often use some analogies, e.g. analogy with 

mass. Imagine you will push a car. It is heavy in the beginning but as the car starts to roll, 

you need less and less force and finally the car rolls by itself. Mass as inertia. An inductor 

functions as inertia for the current. In the beginning high voltage is needed to get the 

current going, but as the current starts to flow, the voltage goes down. So an inductor 

exerts inertia towards changes in current. If you want a quick change in the current you 

need high voltage. When the current evens out, the voltage goes down. When the current is 

zero, the inductor works as a short circuit.  

The justification he gives is in the form of an analogy, thinking of the inductor as an element 

that resists change, like mass at rest. The crucial formulation here is “[i]f you want a quick 

change in the current you need high voltage”. This means that to get a large value of *-
*&

, v 

needs to be large, motivating the relation 𝑣 = 𝐿 *-
*&

. This example shows that Eric draws on yet 

another praxeology for his justification, by comparing with pushing a car. This he does 



 17 

because the justification within PE (using flux) would not be accessible for the students at this 

point. Then, using a mathematical technique (tM), the relation can be written as 𝐼 =
!
+ ∫𝑣(𝑡)𝑑𝑡, as in equation (1).  

Although recognising the value of the interplay between the two praxeologies, the teachers 

argue that they also, to some extent, should be kept apart. This is expressed using the 

expression division of labour. It is the role of PM to work with the structure of a problem, and 

the role of PE to see the problem, and its solution, in an engineering context.  

6. Discussion 

In the literature, there are some particular challenges that are frequently mentioned: lack of 

relevance of mathematics for engineers, lack of connections between mathematics and 

engineering, and challenges with applying mathematics to engineering problems (e.g., 

Carvalho & Oliviera, 2018; Flegg et al., 2012; Gueudet & Quéré, 2018; Harris et al., 2015; 

Loch & Lamborn, 2016). There is also criticism against mathematics being taught too 

“mathematically” (Loch & Lamborn, 2016). However, there is evidence to support that there 

is a need for a deep knowledge of mathematics, to avoid mathematics becoming just a set of 

tools (e.g., Booth, 2004; Cardella, 2008; Crawley et al., 2014; Scanlan, 1985).  

An intention with the project MARTA is to teach mathematics and engineering in close 

connection, with much of the mathematics contextualised through problems and examples 

from engineering, in line with the ideas of the CDIO approach (Crawley et al., 2014). An 

overarching goal is to develop mathematics as a way of thinking (Cardella, 2008; Faulkner et 

al., 2019) and obtaining deep learning, both in mathematics and in the engineering subject 

(Crawley et al., 2014; Marton & Säljö, 1976; Scanlan; 1985).  

With the above principles as a background, I performed a praxeological analysis of an 

example from PE  in order to investigate how techniques and technologies from PE and PM in 

combination contribute to finding answers to questions arising in the didactic system S(X; YE; 

♥E). The analysis shows that applications of mathematics in electrical engineering involve a 

complex interplay between the praxeologies to establish a functional didactical milieu. 

Techniques and technologies from two praxeologies are intertwined and although both the 

problem and the answer lie within PE, it is necessary to use elements from PM to get to the 

answer. This interplay between the praxeologies I see as evidence that deep knowledge in 

both fields is necessary. Not only techniques, but also technologies (justifications) from PM 



 18 

are necessary, so using mathematics just as “a set of ‘tools’” (Scanlan, 1985, p. 449) will not 

suffice. A certain degree of “mathematical maturity” (Faulkner et al., 2019) is needed to 

master the interplay between the praxeologies.  

I also identified some issues that are seen as important from the viewpoint both of the 

mathematics teacher and of the electronic systems teacher. Their main message is that of 

division of labour. They recognise that they enter the work with the students with different 

competencies. They work closely together but the mathematics teacher says that “I don’t 

know the electronics” and he admits that he finds it difficult to find examples from electrical 

engineering that give good mathematical problems. The electronic systems teacher says that 

“I think that mathematics must live on its own premises”, and he recognises the value of 

mathematics for example to see the structure behind a method. It will be of great interest in 

the further work with the project to get information from the students, both in surveys 

reflecting their perceptions of the collaboration between the fields, and in direct observation 

of students working on problems. Another issue is to see the effect of including other study 

programmes into the project. It will not be sustainable to have specially designed mathematics 

courses for each study programme, so an important line of inquiry will be to study the 

interplay between the praxeology PM and a given praxeology PZ, where Z represents an 

engineering field, for various choices of Z.  
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