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Recursive Feasibility of Stochastic Model Predictive Control with

Mission-Wide Probabilistic Constraints

Kai Wang and Sébastien Gros

Abstract— This paper is concerned with solving chance-
constrained finite-horizon optimal control problems, with a
particular focus on the recursive feasibility issue of stochastic
model predictive control (SMPC) in terms of mission-wide
probability of safety (MWPS). MWPS assesses the probability
that the entire state trajectory lies within the constraint set,
and the objective of the SMPC controller is to ensure that it is
no less than a threshold value. This differs from classic SMPC
where the probability that the state lies in the constraint set
is enforced independently at each time instant. Unlike robust
MPC, where strict recursive feasibility is satisfied by assuming
that the uncertainty is supported by a compact set, the proposed
concept of recursive feasibility for MWPS is based on the notion
of remaining MWPSs, which is conserved in the expected value
sense. We demonstrate the idea of mission-wide SMPC in the
linear SMPC case by deploying a scenario-based algorithm.

I. INTRODUCTION

Model predictive control (MPC) has been well established

for dealing with complex constrained optimal control prob-

lems [1], [2]. In the context of MPC, the system dynamics are

required to be known and deterministic. In practice, the sys-

tem uncertainty, including imprecise model parameters and

process noises, is generally unavoidable. Because MPC does

not take the uncertainty into account, constraints violations

can occur.

For applications where safety is critical, robust MPC

(RMPC) strategies have been proposed to explicitly account

for uncertainty. However, RMPC schemes can only handle

bounded disturbances and the resulting control strategy can

be conservative. To overcome these limitations, stochastic

MPC (SMPC) methods have been developed to seek a trade-

off between control performance and the risk of constraint

violations using chance constraints.

There are mainly three forms of chance constraints pro-

posed in the literature: individual chance constraint, stage-

wise chance constraint [3] and mission-wide chance con-

straint [4]. E.g. in path planning for vehicles in the presence

of obstacles, individual or stage-wise constraints restrict at

every time instant the probability that the vehicle collides

with an obstacle. In contrast, a mission-wide chance con-

straint directly restricts the probability of collision on the

overall driving mission. A mission-wide chance constraint

is arguably more meaningful than stage-wise constraints.

Indeed, the former directly handles the risk of running a

mission [5], [4], while the latter does it very indirectly.

However, stage-wise chance constraints are easier to handle
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than mission-wide constraints. Indeed, the latter handles

probabilities over entire state trajectories, yielding very large

probability spaces. More forms of chance constraints are

discussed in, e.g., [3, Section 2.2] and references therein.

The current research on SMPC focuses on developping

efficient methods for solving the underlying optimization

problem, while recursive feasibility is less explored. Indeed,

because of the (possibly unbounded) stochasticity, the recur-

sive feasibility of SMPC typically holds in the probabilistic

sense, making its analysis much more involved. Some results

exist in specific contexts. When the system uncertainties have

finite supports, recursive feasibility can be guaranteed using

robust MPC [6], at the cost of yielding very conservative

control policies. For linear stochastic systems with infinite

support, if the first two moments of the disturbance dis-

tribution are known, constraint-tightening methods via the

Chebyshev–Cantelli inequality are presented in [7], [8], [9].

Recursive feasibility is guaranteed using backup strategies

when an infeasible optimization problem is encountered [7],

[8], and using time-varying risk bound [9]. The author in

[10], [11] proposed SMPC algorithms that have a certain

probability of remaining feasible if the initial condition is

feasible. However, none of these methods tackle mission-

wide probability of safety (MWPS), nor can provide a

meaningful certificate of MWPS. In [12], the problem of

maximizing the MWPS is expressed as a stochastic invari-

ance problem and further developed into an optimal con-

trol problem, which is solvable via dynamic programming.

Unfortunately, problems constraining the MWPS rather than

maximizing it cannot necessarily be put in that simple form.

Guaranteeing recursive feasibility of a SMPC problem

with MWPS constraints is an open problem, and this paper

investigates a tentative solution. The main contributions of

this paper is threefold. First, we show that if a policy

is designed to achieve a certain MWPS, then the MWPS

remaining until the end of the mission remains constant in

the expected value sense. Second, we design a recursively

feasible control scheme using shrinking horizon policies in

the context of SMPC with MWPS guarantee. The proposed

scheme treats directly the probability of running a mission

successfully and therefore does not introduce artificial con-

servativeness. Third, an efficient scenario-based algorithm is

proposed to deploy the idea in the linear case.

The paper is structured as follows. In Section II we present

the problem statement of SMPC with MWPS constraints,

and its difference from the classical SMPC with stage-wise

probabilistic constraint. Section III details how the MWPS

remains constant throughout the mission, and a recursively
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feasible policy design is discussed in Section IV. We demon-

strate the idea in the linear SMPC case based on an efficient

scenario-based algorithm in Section V. Finally, Section VI

concludes the paper points to some future work.

Notation. Boldface a (italic a) is a vector (scalar), and

a0,...,N (a0,...,N ) denotes a sequence of vectors (scalars). We

use s0,...,N ∈ S to denote that a state sequence s0,...,N lies

in a constraint set S of the state space, i.e., sk ∈ S for all

k = 0, . . . , N . We denote I[a,b] the set of integers in the

interval [a, b] ⊆ R.

II. PROBLEM STATEMENT

We consider a mission spanning a predefined horizon N ∈
N to be “safe” if:

s1,...,N ∈ S (1)

starting from some initial states s0 ∈ S. Here, sk ∈ Rn is

the state at time step k, and S ⊂ Rn is a set in the state

space. We assume that the true stochastic system dynamics

are given by:

ρ[ s+ | s,u ] (2)

providing the probability density underlying transitions from

a state-input pair s,u to a new state s+. Throughout the

paper, we assume that the states are known and continuous.

Notice that the control community typically uses:

s+ = f(s,u,w) (3)

to describe stochastic dynamics, in which w denotes the

stochastic disturbances and f is generally a nonlinear func-

tion. The input u is given by a control policy sequence

π := {π0, . . . ,πN−1}

such that

uk = πk(sk), ∀k ∈ I[0,N−1].

In general, guaranteeing the absolute safety as described

in (1) yields very conservative control policies, or is even

infeasible if the uncertainty is unbounded. Alternatively, for

a given initial condition s0 ∈ S and a policy sequence π,

we are interested in the Mission-Wide Probability of Safety

(MWPS):

P[s1,...,N ∈ S | s0,π]. (4)

The problem we are interested in is then to find a policy

sequence solution of

min
π

E

[

M(sN ) +

N−1∑

k=0

L(sk,πk(sk))

]

(5a)

s.t. P[s1,...,N ∈ S | s0,π] ≥ S , (5b)

where S ∈ [0, 1] is a predefined safety bound, the functions

L and M are some given stage and terminal costs, and (5a)

is the expectation over the state trajectories resulting from

s0,π and (2).

In practice, calculating an optimal policy sequence for

problem (5) exactly is hardly possible, because it involves

optimization over an infinite dimensional function space. To

tackle this issue, we will be interested in using stochastic

MPC formulations to generate policies that enforce the

MWPS (4), where a control input uk is computed by solving

an optimal control problem at every time step. In that context,

a key concept will be the remaining MWPS at any time

k ∈ I[1,N−1] for a given state sk, defined as:

P[sk+1,...,N ∈ S | sk,π] (6)

Here sk is the outcome of a realization s1,...,k of the Markov

Chain and its relationship to (4).

A key observation is that a policy sequence π satisfying

(5b) does not yield any guarantee on (6). Indeed, an adver-

sarial realization can e.g. bring the system into a state sk for

which the remaining MWPS is lower than S.

This observation entails that in the proposed context,

the notion of recursive feasibility needs to be treated in a

different way that is commonly done in robust MPC. We will

detail this in Section III. We briefly detail next the motivation

for developing methods to treat MWPS constraints outside

of the classical chance-constraint framework.

A. Mission-wide constraints versus stage-wise constraints

In this section, we present our motivation for treating

MWPS directly rather than via Stage-Wise Probability of

Safety (SWPS). In particular, regardless of the desired

MWPS level, enforcing it via SWPS becomes very conser-

vative for long missions. SWPS problems seek policies that

enforce constraints of the form:

P [sk ∈ S | s0, π] ≥ sk ≥ s, ∀ k ∈ I[1,N ] , (7)

in which 1 ≥ sk ≥ s ≥ 0. One can then easily verify that

the Boolean algebra and Booles’s inequality entail that:

P[s1,...,N ∈ S | s0,π] = 1− P

[
N⋃

k=1

sk /∈ S

∣
∣
∣
∣
∣
s0,π

]

≥ 1−
N∑

k=1

P [sk /∈ S | s0,π]

= 1−
N∑

k=1

(1− P [sk ∈ S | s0,π])

≥ 1−N +

N∑

k=1

sk ≥ 1−N +Ns .

To ensure the satisfaction of (5b) via imposing (7), requires

the choice, 1−N+Ns ≥ S, i.e. a bound for s can be derived

as:

s ≥
N − 1

N
+

S

N
. (8)

Hence enforcing MWPS (4) via SWPS (7) requires selecting

s according to (8), which yields a bound s close to one

very fast as N increases, see Fig. 1, hence turning the

SWPS constraints into hard constraints. While tighter bounds

than (8) can be derived1, treating MWPS via SWPS without

introducing conservativeness is difficult. The intuitive reason

1e.g. the Bonferroni inequalities allow one to refine the bound in (8) by
accounting for some of the correlation between successive states



behind this issue is that SWPS formulations neglect the time-

correlation between the constraints violations, and as a result,

it offers an incorrect representation of the risks incurred by

a system over a mission. Bound (8) corrects that, at the

cost of introducing a high conservatism. By using a similar

argument to what we developed above, risk-allocation tech-

nology proposed in [13] optimizes the risk assigned to each

stage-wise constraint instead of using constant risk in (7).

This method leads a computationally expensive two-stage

optimization problem and is still conservative as depicted in

[3, Fig. 1].

Fig. 1. Illustration of bound (8) for various N and S. The curved manifold
displays the bound (8) for the SWPS such that a prescribed MWPS (4) holds.

III. RELATION BETWEEN REMAINING MWPS AND

INITIAL MWPS

Here, we show that the remaining MWPS is constant

in the expected value sense. This offers a novel path for

guaranteeing the recursive feasibility of MPC-like control

schemes with MWPS constraints.

Lemma 1 If the policy sequence π satisfies (4), then

E{s1,...,k∈S | s0,π} [P[sk+1,...,N ∈ S | sk,π]] ≥ S (9)

for all k = 1, . . . , N − 1, i.e. the remaining MWPS at time

k satisfies the constraint on the prescribed MWPS (4) in the

expected value sense.

Proof. We observe that:

P[s1,...,N ∈ S | s0,π]

=

∫

Sk

P[s1,...,k|s0,π]P[sk+1,...,N ∈ S |s0,...,k,π]ds1 . . . dsk

=

∫

Sk

P[s1,...,k | s0,π]P[sk+1,...,N ∈ S | sk,π] ds1 . . . dsk

=

∫

S

P[s1,...,k−1 ∈ S ∧ sk|s0,π]P[sk+1,...,N ∈ S |sk,π]dsk

:= E{s1,...,k∈S | s0,π} [P[sk+1,...,N ∈ S | sk,π] ] .

Here, s1,...,k is a Markov Chain underlying (2), and therefore

a random variable in the high dimensional space (Rn)
k
.

Given a policy sequence π, the remaining MWPS at time

k, i.e., the term inside E{s1,...,k∈S | s0,π}[ · ], depends only on

the random state sk, which is a particular dimension in the

Markov Chain s1,...,k. Hence, the last equation holds because

here E{s1,...,k∈S | s0,π}[ · ] is used to denote the expectation

value of the remaining MWPS that is taken over all possible

realizations of the random Markov Chain s1,...,k that remains

in S. �

Lemma 1 entails that the MWPS is conserved in the

expected value sense throughout the mission if a mission-

wide policy sequence has been selected at the beginning

of the mission. Result (9) is arguably best interpreted in

a frequentist framework. Indeed, even though a specific

realization s0,...,k may be adversarial for the remaining

MWPS, we observe that in average the MWPS remains

unchanged throughout the mission. As a result, (9) entails

that if running missions under policy π designed according

to (5), the resulting ratio of success will asymptotically be

at least S. While this statement may appear tautological, it

provides a basic concept of recursive feasibility that can be

translated into constraints in a MPC framework to ensure that

a prescribed MWPS is achieved. We detail this observation

below.

IV. RECURSIVE FEASIBILITY OF MWPS WITH

SHRINKING-HORIZON POLICIES

In this section, we focus on solving the originally proposed

mission-wide probability-constrained finite-horizon optimal

control problem (5) using shrinking-horizon policies that are

updated as the mission progresses. The reason behind this is

that the exact optimal policies for (5) is difficult to compute

in general.

As a result, in practice, the policy sequence π is typically

finitely parameterized, and hence restricted to a subset of

the set of admissible policies. This introduces sub-optimality,

and makes it useful to re-solve problem (5) at every time

instant k, according to the latest state realization sk. We then

consider at every time k the control policy sequence:

π
k =

{
π

k
k, . . . ,π

k
N−1

}
(10)

lasting to the end of the mission. For the sake of brevity,

we will work with a shrinking horizon extending to the end

of the mission. The fixed, receding horizon shorter than the

mission duration will be the object of our future work.

At every time instant k ∈ I[0,N−1], for the correspond-

ing state sk, we consider solving the following shrinking-

horizon, mission-wide and chance-constrained problem:

min
π

k
E

[

M(sN ) +
N−1∑

l=k

L(sl,π
k
l (sl))

]

(11a)

s.t. P[sk+1,...,N ∈ S | sk,π
k] ≥ Sk (11b)

to get a new policy sequence. Here, Sk ∈ [0, 1] is a varying

risk-bound that will be specified later. Notice that while (11)

computes an entire policy sequence π
k for the current state

sk, only the first policy π
k
k of that sequence is used to



generate the actual control action, as the policy sequence

is recalculated at the next time instant k + 1, in a classic

MPC fashion. The inputs eventually applied to the closed-

loop system will therefore read as:

uk = π
k
k (sk) , ∀ k ∈ I[0,N−1] (12)

In the context of mission-wide SMPC, we will consider the

recursive feasibility issue of employing the policy sequence

{π0
0, . . . ,π

N−1
N−1} resulting from extracting only the first

policy π
k
k of the policy sequence π

k at every time step k,

for all k ∈ I[0,N−1]. We show next that retaining recursive

feasibility in the sense of (9) requires only that the new

policy sequence produces a remaining MWPS that is not

worse than a discounted one achieved by the previous policy

for the current state sk. We formalise this statement in the

proposition below.

Proposition 1 Assume that the initial policy sequence π
0

satisfies the MWPS cosntraint:

P[s1,...,N ∈ S | s0,π
0] ≥ S0 ≥ S (13)

and that each policy sequence π
k is built under the con-

straint:

P[sk+1,...,N ∈ S | sk,π
k] ≥ Sk (14)

where

Sk = γkP[sk+1,...,N ∈ S | sk,π
k−1]

holds and with γk ∈ (0, 1], for all k ∈ I[1,N−1]. Then the

MWPS under uk = π
k
k (sk) and k ∈ I[0,N−1] reads as:

P
[
s1,...,N ∈ S

∣
∣ s0, {π

0
0, . . . ,π

N−1
N−1}

]
≥

N−1∏

k=1

γkS0 . (15)

Proof. We will prove this by induction. Consider

P
[
s1,...,N ∈ S

∣
∣ s0, {π

0
0, . . . ,π

k
k, . . . ,π

k
N−1}

]

=

∫

S

P
[
s1,...,k−1 ∈ S ∧ sk | s0, {π

0
0, . . . ,π

k−1
k−1}

]

· P
[
sk+1,...,N ∈ S

∣
∣ sk,π

k
]
dsk

≥

∫

S

P
[
s1,...,k−1 ∈ S ∧ sk | s0, {π

0
0, . . . ,π

k−1
k−1}

]

· γkP
[
sk+1,...,N ∈ S

∣
∣ sk,π

k−1
]
dsk

= γkP
[
s1,...,N ∈ S

∣
∣ s0, {π

0
0, . . . ,π

k−1
k−1, . . . ,π

k−1
N−1}

]
,

where the last equality holds because the last integral de-

scribes the MWPS associated to applying the policy sequence

{π0
0, . . . ,π

k−1
k−1, . . . ,π

k−1
N−1}. Hence an induction from

P[s1,...,N ∈ S | s0,π
0] ≥ S0

yields (15). �

Let us introduce the following corollaries, showing the

practical implications of Proposition 1:

Corollary 1 Guarantee of MWPS: The choice:

N−1∏

k=1

γkS0 = S (16)

together with the policy update constraint (14) yields a

sequence of policies {π0
0, . . . ,π

N−1
N−1} that satisfies the pre-

scribed MWPS constraint (13).

Proof. The update constraint (14) ensures that (15) holds.

Condition (16) imposed on the factors γ1,...,N−1 then ensures

that (5b) is satisfied. �

Corollary 2 Recursive Feasibility: Constraint (14) is al-

ways feasible for any γ ≤ 1

Proof. We observe that (14) is feasible for πk = π
k−1. �

V. A SCENARIO-BASED LINEAR SMPC APPROACH WITH

MISSION-WIDE GUARANTEES

In this section we deploy the mission-wide SMPC idea

developed so far in the linear case. Let us consider that the

stochastic dynamics (3) are explicitly given by:

sk+1 = Ask +Buk +wk , (17)

and that the safe set S is polytopic, i.e.

S = { s |Cs+ c ≤ 0} . (18)

Here we assume that the disturbances wk, k ∈ I[0,N−1] are

i.i.d., and zero-mean for the sake of notation convenience.

At each time instants k ∈ I[0,N−1], the predicted state st

for all t = k, k + 1, . . . , N , can be split into a nominal part

and an stochastic error part, i.e., st = s̄t + et. we consider

the policy sequence π
k
t parameterized via ūt, K , given by:

ut = π
k
t (st) := ūt +Ket, ∀t ∈ I[k,N−1]

where K is a stabilizing feedback matrix for the nominal

dynamics:

s̄t+1 = As̄t +Būt s̄k = sk. (19)

The stochastic error dynamics are then given by:

et+1 = (A+BK) et +wt, ek = 0 . (20)

Our goal is to solve the following mission-wide probability

constrained optimal control problem at every time instant k:

min
ūk,...,N−1

E

[

s
⊤
NQNsN +

N−1∑

t=k

(
s
⊤
t Qst + u

⊤
t Rut

)

]

(21a)

s.t. s̄k = sk (21b)

s̄t+1 = As̄t +Būt, ∀t ∈ I[k,N−1] (21c)

et+1 = (A+BK) et +wt, ∀t ∈ I[k,N−1] (21d)

st+1 = s̄t+1 + et+1, ∀t ∈ I[k,N−1] (21e)

P[Cst+1 + c ≤ 0, ∀t ∈ I[k,N−1]] ≥ Sk . (21f)

Here, Q,QN are semi-positive definite, R is positive definite,

and the value

Sk = γkP[sk+1,...,N ∈ S | sk,π
k−1] (22)

will be estimated at every time instant k using Monte Carlo

simulation based on the real, closed-loop state sk and the

previous policy sequence π
k−1.



A. An efficient scenario-based SMPC algorithm

Cost Function. Since E[st] = s̄t and et is zero mean (since

wt is zero mean by assumption), the cost function (21a) can

be written explicitly as

s̄
⊤
NQN s̄N +

N−1∑

t=k

(
s̄
⊤
t Qs̄t + ū

⊤
t Rūt

)
+ σ,

where σ is a constant term that can be excluded from the

cost function.

Chance Constraint. Substituting (21d) and (21e) into (21f),

the constraints can be rewritten as

P[C(s̄t+1+(A+BK) et+wt)+c ≤ 0, ∀t ∈ I[k,N−1]]≥Sk

and further be written as

P[CAw
⊤
k,...,N−1 + [c, . . . , c]⊤

︸ ︷︷ ︸

:=H

+ Cs̄⊤k+1,...,N ≤0]≥Sk (23)

with matrix A obtained by condensing the dynamic (21d)

and matrix C being block-diagonal with C as blocks.

Scenario Approximation. In general, providing a closed

form for (23) is difficult. Fortunately, this problem can be

handled efficiently with a scenario-based approach. Con-

straints (23) is replaced by a finite, sufficiently large number

Nk of deterministic constraints resulting from sampling the

disturbance sequence wk,...,N−1. For a given time instant k,

we define the ith sample for all i ∈ I[1,Nk] as

w
(i)
k,...,N−1 := {w

(i)
k , . . . ,w

(i)
N−1} ,

Hence, the chance constraint (23) can be converted to

H(i) + Cs̄⊤k+1,...,N ≤ 0, ∀i ∈ I[1,Nk] , (24)

where

H(i) = CA(w
(i)
k,...,N−1)

⊤ + [c, . . . , c]⊤ .

In order to guarantee that (24) approximates (23) with

a high probability 1 − β, where β is typically set to be

very small (e.g., β = 10−6), Nk must satisfy the following

inequality [14]:

dk∑

n=1

(
Nk

n

)

(1− Sk)
nSNk−n

k ≤ β ,

where dk is the number of optimization variables. The

explicit lower bound of Nk can be further derived as [15]:

Nk ≥
2

1− Sk

(

ln
1

β
+ dk

)

. (25)

To further reduce the conservatism of the scenario-based

approach, a sample removal approach is proposed in [16]

and several variants are proposed. Their use here is beyond

the scope of this paper.

For each scenario i, nc linear constraints are generated in

(24). It is clear that nc is equal to the number of rows of

matrix H(i). We additionally observe that for the constraint

of index j ∈ I[1,nc] in (24), the following inequality holds:

[H(i)]j + [C]j s̄k+1,...,N ≤ max
q∈I[1,Nk]

[H(q)]j + [C]j s̄k+1,...,N

for all i ∈ I[1,Nk], where [⋆]j denotes the jth row of

the matrix ⋆. Note that this inequality is tight, i.e., for all

constraint of index j there always exists at least one sample

of index i that ensures the above inequality tight. Hence jth

constraint is satisfied for all realizations i if they are satisfied

for the one having the largest [H(i)]j .

Let us label:

Ij = max
i∈I[1,Nk]

[H(i)]j , ∀j ∈ I[1,nc].

then we have that constraint (24) is equivalent to the follow-

ing constraints:

Ij + [C]j s̄k+1,...,N ≤ 0, ∀j ∈ I[1,nc].

Note that calculating Ij , for all j ∈ I[1,nc], requires only nc

(vector) maximum operations that are easy to implement and

computationally efficient.

Now, (21) is equivalent to the following QP:

min
ūk,...,N−1

s̄
T
NQN s̄N +

N−1∑

t=k

(
s̄
T
t Qs̄t + ū

T
t Rūt

)
(26a)

s.t. s̄k = sk (26b)

s̄t+1 = As̄t +Būt + w̄t, ∀t ∈ I[k,N−1] (26c)

Ij + [C]j s̄k+1,...,N ≤ 0, ∀j ∈ I[1,nc] (26d)

yielding a regular QP of the same complexity as a normal

linear MPC.

A systematic overview of the proposed scenario-based

mission-wide linear SMPC scheme is summarized in Algo-

rithm 1.

Algorithm 1: linear SMPC with MWPS constraints

Initialization: S0, γ1,...,N−1, initial state s0

for k = 0 : N − 1, do

1) if k ≥ 1 then
Evaluate Sk in (22) through Monte Carlo

simulation
2) Generate Nk scenarios according to (25)

3) Get the solution ū
∗
k,...,N−1 by solving (26)

4) Send ū
∗
k to the actual system and update state:

sk+1 = Ask +Bū
∗
k +wk

B. Numerical Case Study

We consider the linear system (17) with

A =

[
1 1
0 1

]

, B =

[
0.5
1

]

and the uncertainty is assumed to have a Gauss distribution

wk ∼ N (0, 0.04 · I).



The safe (constraint) set S (18) is given by matrices

C =







1 0
0 1
−1 0
0 −1






, c =







−2
−2
−10
−2






.

The matrices Q = I , R = 0.1, and

K = [−0.6167,−1.2703] , QN =

[
2.0599 0.5916
0.5916 1.4228

]

are computed from the corresponding LQR solution.

We select N = 11, S0 = 0.98 and γ1,...,10 = 0.99,

resulting in S =
∏10

k=1 γkS0 = 0.8863. The number Nk

of disturbance sample is selected from (25). The bound

Sk given by (22) is evaluated from Monte Carlo simu-

lation and β = 10−6. In the simulations, we observed

that Sk ≈ 0.99 for all k ∈ I[1,10]. This is due to Nk

calculated from (25) is conservative, such that the remaining

MWPS at time k achieved by the previous policy sequence

{πk−1
k , . . . ,πk−1

N−1}, is much higher than that is actually

required.

A Monte Carlo simulation that simulates 105 missions

shows that the resulting ratio of mission success is 99.88%.

This result is larger than S = 88.63%. The reason for

this discrepancy is that the scenario-based method adopted

is conservative. Fig. 2 shows the state trajectories of 103

missions.

(0, 0)
(−8, 0)

Fig. 2. State trajectories plot obtained by running 103 number of missions
starting from the initial sate s0 = [−8, 0]⊤. The reference point is [0, 0]⊤.
The rectangular area depicts the safe set S.

VI. CONCLUSIONS AND FUTURE WORK

We investigated optimal policies satisfying Mission-Wide

Probability of Safety constraints, i.e. constraints imposing the

safety of a system over an entire mission. This is in contrast

with classical stochastic MPC, where safety constraints are

imposed independently at every time stage. We show that

recursive feasibility holds in the expected value sense for

the concept of Mission-Wide Probability of Safety, opening a

simple and practically meaningful concept of recursive feasi-

bility for stochastic MPC. Optimal control with mission-wide

probabilistic constraints is challenging. However, a compu-

tationally efficient scenario-based approach is proposed to

solve this issue for linear stochastic problems. For the sake

of brevity, a shrinking-horizon approach was presented in

this paper. The scenario-based approach proposed here relies

on classical Monte-Carlo sampling. More advanced methods

will be developed in the future for the proposed method.
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