
Use of Cyber Attack and defense agents in Cyber
Ranges: A Case Study

Muhammad Mudassar Yamin and Basel Katt

Norwegian University of Science and Technology, Gjøvik 2815, Norway
{muhammad.m.yamin,basel.katt}@ntnu.no

Abstract. With the ever-changing cybersecurity landscape, the need for
continuous training for a new cybersecurity skill set is a requirement. This
training can be delivered on platforms like cyber ranges. Cyber ranges sup-
port training by providing a simulated or emulated representation of com-
puter network infrastructure besides additional training and testing services.
Cyber attack and defense skills can be gained by attacking and defending
the infrastructure; however, to provide more realistic training, there is a
need for necessary friction in the environment, which can be related to both
the attacker’s and defender’s actions. The actions of human teams—both
attackers and defenders—provide this friction. Involving human teams in
large-scale cybersecurity exercises is relatively inefficient and not feasible for
standardizing training because different teams apply different tactics. Cur-
rently, the proposed solutions for cyber range training platforms focus on
automating the deployment of the cybersecurity exercise infrastructure but
not on the execution part. This leaves room for improving exercise execu-
tion by adding realism and efficiency. This research presents an agent-based
system that emulates cyber attack and defense actions during cybersecurity
exercise execution; this helps provide realistic and efficient cybersecurity
training. To specify agents’ behavior and decision making, a new model,
called the execution plan (EP), was developed and utilized in this work.

Keywords: Cyber attack agent · Cyber defense agent · Cyber Range ·
Security Exercise.

1 Introduction

Conducting operational cybersecurity exercises is a difficult and inefficient task [YK18a].
We have found that automating the different roles involved in cybersecurity ex-
ercises can reduce these inefficiencies [YKT+18]. These roles primarily involve a
human team required to set up the exercise technical network infrastructure. Ad-
ditionally, there is a team that attacks the deployed infrastructure as an attacker
and a team that defends it as a defender [YKG20]. There can be multiple ways
with which a cybersecurity exercise can be executed that may or may not involve
both attackers and defenders at the same time. However, in a realistic environ-
ment, to train attackers, the systems being attacked are expected to be defended
by somebody. Because of shortage in the cybersecurity skills, it is very difficult to



2 Yamin and Katt

find people with the relevant skill set [YK19a] to conduct continuous cybersecu-
rity exercises. Moreover, different people have different tactics and techniques in
cybersecurity operations, making a standardized assessment of cybersecurity ex-
ercises difficult [HWD+17]. Therefore, there is a need for automating attack and
defense roles in cybersecurity exercises. Despite its importance, there is a lack of
research dealing with realism and efficiency in cybersecurity exercise execution in
cyber ranges. Most of the related work deals with automating the creation and
deployment of the exercise infrastructure. This leaves room for researchers to im-
prove the realism and efficiency of cybersecurity exercise execution. We tackle this
issue by proposing an agent-based system, one in which we model the attacker and
defender roles and automate their execution as required. In particular, we devel-
oped a new modeling technique: execution plan (EP). EP is a multi-level model
for specifying behavior and decision-making process for attacking and defending
agents. We argue that such agents will add the necessary friction in the cyberse-
curity exercise environment to make them realistic and reduce the human input of
attackers and defenders to make exercise execution more efficient. Therefore, in the
current research, we aim to answer the following research question (RQ):

RQ: How can cybersecurity attack and defense scenario models be executed
autonomously in a cybersecurity exercise to make cybersecurity exercise execution
realistic and efficient?

We present our experience in developing and using cyber-attack and defense
agents during cybersecurity exercises against human adversaries. The current pa-
per focuses on the conceptual design, agent decision modeling, practical implemen-
tation and user experience with cyber-attack and defense agents. The system is
evaluated using a case study against defined benchmarks. The case study involved
an operational cybersecurity exercise in which the attack and defense agents were
deployed along with human participants. The attack agents were used to create
forensic traces for blue team members, which were verified in their forensic reports.
At the same time, the defense agents were used to add friction or realism in the
exercise environment and were evaluated based on the compromised status of the
systems on which they were deployed. The paper is structured as follows: first, we
share the research background and related work. After that, we state our research
methodology. We then present the conceptual design and technical implementation
of cyber attack and defense agents. Finally, we present the experimental results and
conclude the article.

2 Research Background and Related Work

Cybersecurity is important both against individual inexperienced hackers and against
coordinated teams of hackers that might or might not have governmental support.
The conventional methods of teaching cybersecurity include lectures, assignments,
seminars, and hands-on labs. Hands-on methods include competitions, challenges,
and exercises such as the following:



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 3

1. Capture the flag (CTF), which focus on attacking, defending, or attack and
defense at the same time.

2. Cyber defense exercises (CDX), which focus primarily on defending.

These competitions, challenges, and exercises are conducted in isolated safe en-
vironments, which are called cyber ranges. Cyber ranges can host single standalone
challenges for CTF competitions or represent a sector/organization’s complex com-
puter network infrastructure for CDX exercises [YKG20].

An important element missing from virtual environments is an element of active
opposition. A training simulation environment has static defenses (access control,
firewalls, fixed set of intrusion methods, etc.) but lacks active opposition (e.g.,
monitor logs, blocked connections, exploit switching, or information gathering).
This results in the cyber operators behaving as though opponents do not have a
tangible existenceand higher-level goals. Second, it ignores an opportunity to tailor
the student’s learning experience through adjustable adversary behavior [JON+15].

Cyberwarfare is an imminent threat to military and civilian systems; it could
damage the economy and national security. Cyber aggressors are guided by cogni-
tive behavior (script-kiddies, ideological activists, investigators, financial criminals,
intelligence agents, or cyber warfighters). Building an effective training system for
cyberwarfare currently faces many barriers. Current training environments are un-
able to capture the purpose, creativity, and adaptability of cyber warfighters, and
cyber warfighters need to be effectively trained against a cunning and adaptive
opponents.

We conducted a detailed study on cyber ranges [YKG20] and identified that
after 2014, different operations in cybersecurity exercises have become automated

2.1 Related Work

Multiple researchers have worked in the development of cyber attack and defense
agents. Here, we discuss some of the work relevant to our research. For emulating
attacker steps, a lot of research work has been carried out, resulting in open source,
free, and commercially available solutions. Some of them are the following:

Splunk attack range [spl] is a limited cyber range deployment tool in which a
small infrastructure can be deployed on cloud and local machines. The infrastruc-
ture is monitored by various Splunk attack monitoring and detection engines. Differ-
ent attacks of the infrastructures are simulated using ART (Atomic Red Team) [red].
ART follows the MITRE attack chain model [MIT] and can simulate an attack on
Windows, Linux, and Mac OS systems. It uses YAML-based inputs to execute
atomic tests for adversary actions on the target systems.

APTSimulator [APT] is an open source advanced persistence threat simulation
tool. The tool uses batch scripts with various hacking utilities to create system
compromise traces like command and control, defense evasion, lateral movement,
and so forth. It is used for endpoint detection agent assessment, testing security
monitoring and detection capabilities, and preparing the digital forensic class envi-
ronment. It roughly follows the MITRE attack chain model and is also limited to
emulating attacks on Windows-based host machines.



4 Yamin and Katt

Metta [ube] is an open source information security preparedness tool. The tool
uses Virtualbox, with different development tools like Redis/Celery, python, and
vagrant, to simulate adversarial actions. Input is given to the tool in the form
of a YAML file, which is parsed to execute the attacker’s action on the host- and
network-based systems. Metta follows the MITRE attack chain model and is limited
to emulating attacks on Windows-based systems.

In the case of cybersecurity exercises, there is a need for the repeatable [HS16]
execution of attacker steps for standardized training. Moreover, there are legal and
ethical concerns in developing autonomous cyber-attack agents [YB18], so for an
attack agent, the attack execution steps need to be planned while keeping a human
in the loop before executing them in a cybersecurity exercise environment.

For the defense agent, most related work has focused on network- and host-
based detection systems, while some have looked into introducing active attack-
repellent features in defense agents. Randolph el al. [JON+15] conducted research
about modeling and integrating cognitive agents in the cyber domain. The purpose
was to develop agents that can produce the necessary friction during cybersecurity
exercises to create realism. They developed a novel model for cyber offense and
defense; they used the model to create software adapters that translate from task-
level actions to network-level events to support agent-network interoperability for
cybersecurity operations. They presented a high-level defender goal hierarchy in
which the defender has to (1) establish a baseline, (2) detect an ongoing attack, (3)
stop an ongoing attack, and (4) prevent future attacks.

Kott et al. [KTD+18b] put forward the idea of the development of a ”Hello
world” program for the intelligent autonomous defense agent. The researchers stated
that the autonomous agent, should have the following six capabilities to be consid-
ered intelligent:

1. The agent should be strictly associated with its environment and should be
useless outside its designed environment.

2. The agent should interact with its environment using appropriate sensors.
3. The agent should act to achieve its stated goals.
4. The agent activities should be sustained overtime to be autonomous.
5. The agent should have an internal world model that can express its states with

performance measures.
6. The agent should learn new knowledge and modify its model and goals over

time based on new knowledge.

Paul et al. [TKD+18] proposed the reference architecture for autonomous intel-
ligent cyber defense agents (AICA). In their proposed architecture, the researchers
stated that AICA has five main high-level functions:

1. Sensing world state information
2. Planning and action selection
3. Collaboration and negotiation
4. Action execution
5. Learning and knowledge improvement



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 5

The researchers also suggested a functional architecture for AICA and stated that
according to their assessment, the development of such agents is not beyond the
current technical capabilities and can be developed within ten years.

Although other researchers are also investigating autonomous intelligent cy-
ber defense agents, the work is still in the design stage [KTD+18b,TKD+20]. One
implementation of such an agent was proposed by Randolph et al. [JON+15], in
which the researchers suggested the idea of adding friction in cybersecurity exer-
cises. Their approach utilized cognitive modeling of human cybersecurity experts
to model the behavior of the agent based on human expertise. We consider such an
approach not suitable for agent development because human experts have different
subjective experiences, which can result in unintentional bias in their behavior, as
observed in data-driven AI algorithms [YUUK21]. Kott et al. [KTD+18b] and Paul
et al. [TKD+18] provided the baseline requirement and functional needs of the cy-
ber defense agent, which we considered suitable to fulfill our requirements. For the
attack agent, we find the ART, APTSimulator, and META approaches suitable for
usage in cybersecurity to conduct cybersecurity exercises. We integrated multiple
ideas and approaches suggested by various researchers for the development of our
attack and defense agents. Our attack agent follows a systemic step-by-step execu-
tion of attacks similar to ART, APTSimulator, and META, but it is integrated with
a cybersecurity exercise orchestrator, making it suitable for computationally repeat-
able cybersecurity exercises and experiments. Our defense agent is also integrated
with our cybersecurity exercise orchestrator and provides example implementation
of the design presented by Kott et al. [KTD+18b].

3 Methodology

We employed numerous research methodologies during this research activity. We
used the DSR design science research methodology [HC10] for the overall develop-
ment of the necessary artifacts for this research. DSR is a very well-known research
methodology that has five phases 1) awareness of the problem, 2) suggestion, 3)
development, 4) evaluation, and 5)conclusion. These phases are iterative in nature,
and the results of these phases are used to improve the overall design to produce a
research artifact that addresses the research problem [KV08].

In awareness of the problem, the research problem can be identified, so we leaned
on certain studies for this phase [YK18a,YKT+18,YKG20]. In the suggestion phase,
the solution’s designs are proposed to address the research problem, and we con-
ducted this step using certain studies [YKG20,YK19b].We are currently developing
and evaluating the artifacts, and the present paper is presenting the results of
this phase. For the development of such an artifact, model-driven approaches are
widely employed [BCD+19]. In such an approach, a complex problem is abstractly
defined in the form of a model, and automation techniques are used to generate
low-level artifacts from the abstract model. In our previous work, we developed a
DSL domain specific language to formally specify the cybersecurity exercise envi-
ronment [YK22]. The environment contains the exercise infrastructure and agents



6 Yamin and Katt

running within the environment. In this work, we used the DSL developed for au-
tomating the creation and deployment of the exercise environment. Additionally,
we augmented the DSL with a new modeling technique based on attack/defense
trees that we call execution plans (EPs). EPs enable a designer to model the be-
havior and decision making of attack and defense agents. Finally, in this work, we
use applied experimentation in operational cybersecurity exercises against de-
fined benchmarks to gather the analytical data for evaluating the performance of
developed cybersecurity defense agents [EM17].

4 Conceptual Design

This research work is a part of a larger initiative in which the whole process of the
cybersecurity exercise life cycle is automated. To achieve this, a DSL is developed to
transform abstract concepts related to the cybersecurity exercise life cycle [YK18a]
into concrete artifacts. These abstract concepts include defining the network topol-
ogy, defining the vulnerabilities in the nodes connected to the network, defining
benign network traffic, and defining attacker and defender behavior. In this work,
our scope is limited to attacker and defender behavior, so we only focus on the
concepts involved in attack and defense agent development. Figure 1 illustrates the
DSL meta-model for defining attacker and defender properties used to generate
agent artifacts. Later in section 5, a concrete syntax will be presented, which will
give an example of an instantiation of this DSL meta-model.

The attack agent comprises of a total six concepts. The first one is the attack-
action-id, which is an identifier of a potential attack action. In case the attack action
causes a particular tool to be executed, the tool name can be used as an identifier.
The second, third, and fourth concepts are Agent IP, Agent User ID, and Agent
User Password. These concepts provide the information about the agent from which
the attacker action is going to be performed. The fifth concept is Argument, which
represents one of the properties that are needed for the attacker’s action to be
executed. In terms of an a tool that represents an attacker’s action, this concept
represents the tool’s specific arguments. The sixth and final concept for the attack
agent is Target, which is the IP address of a machine on which the attack agent
performs its actions. Similarly, the defense agent has five properties. The first three
are Agent IP, Agent User ID, and Agent User Password, which provide the
information necessary to install the defense agent on a system. The fourth property
is the Operating System, which provides the information of the operating system the
defense agent is working on. The final property is the Parameter, which provides
the defender with a specific knowledge base. The parameter contains a list of pairs,
each of which consists of an attacker action and the defender reaction to it.

The DSL uses an orchestrator that implements the abstract concepts defined in
it to concretely create operational artifacts for establishing the necessary exercise
infrastructures, generating network traffic, emulating benign users, launching cyber
attacks, and defending against these attacks. The orchestrator has a master control
unit connected to the attack agent and used to control them in a semi-autonomous



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 7

Fig. 1: A meta-model of the attack and defense agents

manner, while the orchestrator configures the defense agents before deployment
so that they can work in an autonomous mode. The operational artifacts contain
network topology templates for cloud deployment, specification of the vulnerabili-
ties in the form of software, service and configuration, and the specification of the
benign, attacker, and defense agents’ behaviors present in the deployed network.
The specification is given to the orchestrator in JSON, and it starts generating the
necessary artifacts in five steps, as shown in Figure 2. First, the exercises network
infrastructure is generated through a HEAT template for infrastructure deployment
in Opestack-based cloud. In the second step, software, service, and configuration
are invoked in the deployed infrastructure using a custom SSH-based installation
and configuration module to make the infrastructure vulnerable. In the third step,
part of the deployed infrastructure is used to generate benign traffic using various
automated tools like TCP relay and VNCD tool. In the fourth step, an attack agent
is used to test and verify the vulnerabilities present in the exercise infrastructure. In
the fifth and final step, a defense agent is deployed in part of the infrastructure to
add the necessary friction in the cybersecurity exercise. The DSL implementation
related to exercise network infrastructure generation and generating benign user



8 Yamin and Katt

Fig. 2: Cyber security exercise operation orchestrator

behavior and traffic is part of another research work. In the current work, we are
only focusing on the DSL instance of attackers and defenders.

There can be multiple ways attack and defense agents can be designed and de-
ployed. This depends on the eventual goal of the agent, that is, what is expected
from the agent. We can model the goals of the attack and defense agents based
on the responsibilities of the red and blue teams. Lockheed Martin’s cyber kill
chain course of action matrix [HCA+11] provides a simplified way to model the at-
tack and defense phases. For the attacker, there are seven phases reconnaissance,
weaponization, delivery, exploitation, installation, command and control, and ac-
tions on objective. These attack phases utilize a set to tools and techniques to
achieve the attacker’s eventual objectives and goals, which could be the disrup-
tion of services or extraction of data. On the defense side, there are six phases to
stop the attacker: detect, deny, disrupt, degrade, deceive, and destroy. The defender
uses different network/host intrusion detection and prevention systems, firewalls,
antivirus software, and honeypots to achieve the objective of stopping the attacker.

There are other models like MITRE ATT&CK that can be applied for model-
ing attacker actions and relevant defender reactions. However, MITRE ATT&CK
strictly focuses on concrete actions, tactics, and techniques that are specific to an



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 9

operating system. The cyber kill chain is very general and can easily model attack
and defense in a different operating environment. We consider the generality of the
cyber kill chain suitable for modeling attack and defense scenarios for cybersecurity
exercises.

Theses attack and defense phases are executed by utilizing different tools and
techniques. These tools and techniques provide relevant information to the agents
so that they can make intelligent decisions. However, it should be noted that this
intelligent decision making is strictly dependent on the amount of information being
shared, which is related to the agent’s goals.

If we look carefully at the information sources, there are primarily two types: ex-
ternal and internal. For an attack agent, external information can be gathered from
scanning networks and identifying software, services, and configurations, while its
internal information can be the knowledge about the exploits on the identified soft-
ware, services, and configurations. A defense agent’s external information sources
contain information from the environment such as network activity, while inter-
nal information sources contain information about the system’s internal activities
such as event logs, which are widely used to detect system exploitation and lateral
movement [Cen17]. These information sources are combined to provide security
information and event management capabilities for defending against the attacks
by correlating information from multiple sources. However, information correlation
requires manually defining security events to look for and manually take actions
against them to stop the attacker in its tracks. A defense agent can assess the type
of traffic to identify whether it is benign or malicious. An attacker can overwhelm
the defender by launching multiple attacks at the same time, which could make
intelligent decision making very difficult. It will also create a new threat vector
for the defender because decision making depends on external sources that can be
manipulated.

Let us analyze the course of action matrix [HCA+11] for attackers and defend-
ers. Here, the attacker’s reconnaissance and weaponization goals can be detected
by external information sources like web analytics and NIDS (network intrusion
detection systems). In contrast, exploitation and installation can be detected by
HIDS (host intrusion detection system). Although detecting an attack is desirable
at an early stage, a host-based system can be better suited to respond directly to
the attack; it can detect a security event and automatically respond to it by mak-
ing operational changes such as applying local firewall rules and installing patches
through its knowledge base without relying on an external input to deny the at-
tacker actions. The knowledge base can contain information about the expected
attacker’s actions and the appropriate defender response. This knowledge can be
useful for known attack tactics and techniques; however, it needs to be updated
for new attack detection and responses, which require some intelligence. This intel-
ligent behavior can be learned by analyzing the attack vectors and implementing
security actions against them, manually first and automatically later. The attack
vectors can be learned by constantly monitoring the system state and detecting
changes. When a change is detected, the events that lead to that change can be
fetched for identifying the malicious actions. A set of predefined reactions can be



10 Yamin and Katt

specified for implementation against a particular set of actions to deny the attacker
from using them for further exploitation.

All components and parts of a cybersecurity exercise environment are considered
a system, and each system is running software and services with system-specific
configurations. The system for the attack agent is a Kali Linux machine controlled
by another system running our developed orchestrator software and using SSH as
a service for communication with the Kali machine. The orchestrator can control
multiple Kali machines to lunch multiple attacks at the same time. Similarly, for
the defender part, the orchestrator can inject a defense agent with its knowledge
base as software that can independently run on the injected system to protect its
software, service, and configuration. Additionally, there are traffic generators that
are present in the cybersecurity exercise environment, which are basically attack
agents performing benign activities such as replying PCAP files and automating
GUI user behavior using VNCDtool. The agents and their interactions are presented
in 3, which is mapped with the third, fourth, and fifth steps of the orchestrator,
as presented in Figure 2.

The developed agents operate in a cloud-based cybersecurity exercise environ-
ment. The environment has attack and vulnerable machines on which the attack
and defense agents are operating. The vulnerable machines have vulnerabilities re-
lated to software, services, and configurations that an attack agent can remotely
sense. The behavior of the agents in the environment is governed by the world state.
The world state is the software’s, services’, and configurations’ specific informa-
tion provided to the agents. New information about the world state is gathered
from the environment in which the agents are operating by using their sensing
capability. The sensing capability indicates which type of systems the agent is in-
teracting with and triggers an action when it finds some specific information about
the world state [KTD+18b,KTD+18a]. For the attack agent, active and passive re-
connaissance tools like arp-scan and Nmap are used to gather information about
the services running in the network. This information is used to create the world
model for the attack agent, and changes in these services will update the world
state for the attacker. When the attack agent senses a vulnerable service, it triggers
a change in its world state, upon which an attack action is selected and executed
on the vulnerable machine. Similarly for the defense agent, Windows security logs
provides an active sensing capability to create a model of the world state, which
includes the type of software and services running on the system and any changes
in their configuration. When an attacker interacts with the system defended by the
defense agent, it creates logs that are then used to update the world state and trig-
ger a reaction from the defense agent. The decision-making process of the proposed
agents are discussed in section 4.1.

When the attacker’s action is executed, an event is created in the vulnerable
machine environment. The defense agent has a list of malicious events, the current
world state, and responses to those events. The defense agent can sense the known
events generated by attacker actions, which can trigger a change in its world state.
The defense agent then selects an appropriate response and executes it to counter
the attack agent’s actions. The interactions between the attack and defense agents



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 11

Fig. 3: Attack and defense agent environment and interactions

in the cybersecurity exercise environment is presented in Figure 3, and details of
the attack and defense agent work flows are presented in Figure 6 and Figure7
respectively:

In terms of deploying the agents in the cybersecurity exercise environment, there
are certain considerations. Some researchers have implemented script execution
techniques on the machine [Gen] to generate attack logs; however, we deployed the
attack agents on a remote machine to emulate realistic adversary behavior. On the
other hand, the defense agents were deployed on the machines because a central
command and control unit could have been compromised to disable the defenders’
functionality.



12 Yamin and Katt

4.1 Agent Decision Modeling

On an abstract level, our agents have five properties— Knowledge, Goals, Con-
ditions, Actions, and Commands, where the knowledge is provided through the
DSL. The Knowledge of an agent contains information about the world state, like
the software, services, and configuration running in the environment. An agent’s
Condition is used to perform condition-specific actions on the software, services,
and configuration. These conditions are triggered based on events that change the
world state. An Action is executed using a set of Commands. A set of successful
action executions result in the achievement of a Goal, which is modeled based on
the CKC course of action matrix. For the attacker, these goals are Reconnais-
sance, Delivery, Exploitation, Installation, Command and Control and Actions on
Objective. Similarly, for the defender, these goals are Detect and Deny.

The DSL instance is translated into EPs (Execution Plans) for the achieve-
ment of specific Goals. We adapted the concepts from the attack and defense
trees [KMRS14], as well as the hierarchy of action plans [Kot05], to develop the EP
models. The EP models consist of three levels of decisions high, medium, and low.

4.1.1 EP Model EPs are tree-structured models that represent the agent’s
decision-making process. An EP describes the goals, conditions, and commands
of an agent, as well as showing the path that needs to be taken to reach the final
conditions and fulfill the goals. These conditions result in one of the following EP
outputs: plan fulfilled, plan not fulfilled, or plan maybe impractical.

The root of an EP tree is the goal of an agent, and an end-leaf of an EP tree
represents the commands that will fulfill an agent’s goal. An EP consists of three
decision levels-Level 1, Level 2, and Level 3-and each level is represented as a sub-
tree of the EP tree. The root of Level 1 of an EP tree is the root of the EP tree.
The leaves of one sub-tree are the roots of the next level sub-tree. A parent node
is connected with its children nodes using two possible operators, AND and OR,
which are represented by ∧ and ∨, respectively. The semantics of the nodes and
operators in an EP tree depend on the level where the node exists.

Level 1 The Level 1 sub-tree of an EP tree is the first high level sub-tree of the EP tree.
The root node of a Level 1 sub-tree of an EP tree represents the main goal of
the EP tree, and the leaves represent a set of sub-goals. The operator ∧ is used
if all the sub-goals needs to be fulfilled for the parent goal to be achieved. On
the other hand, ∨ can be used if the fulfillment of one sub-goal will result in
the fulfillment of the parent goal.

Level 2 The Level 2 sub-tree of an EP tree is the second medium-level sub-tree of the
EP tree. The root of the Level 2 sub-tree is a leaf in the Level 1 tree or the
root of the EP tree where the Level 1 sub-tree consists of one node. Level 2
represents a sequence of conditions that need to be checked to decide which
actions should be executed. The nodes of a Level 2 sub-tree are conditions with
two possible outputs Yes/No, meaning that only ∨ operators are allowed in
a Level 2 sub-tree. Each parent node is connected to, at most, two children



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 13

nodes, which represents the next conditions to be checked. A special type of
condition is called ”Not Fulfilled.” It is a final condition with no children, and
it is denoted by the symbol —; reaching this condition means that the plan
is not or cannot be fulfilled. A leaf in a Level 2 sub-tree can be either an NF
”Not Fulfilled” condition or an action.

Level 3 The Level 3 sub-tree of an EP tree is the third low-level sub-tree of the EP tree.
Level 3 roots are actions represented in the leaf nodes of the Level 2 sub-tree,
and the nodes represent concrete commands. Both ∧ and ∨ are allowed in a
Level 3 sub-tree. ∧ means all the children’s commands need to be executed to
achieve the action, while ∨ means that the execution of any of the commands
can achieve the action.

Output Plan output ”Fulfilled” is reached when all the commands in the EP tree leaves
are executed successfully and the goal is achieved. Plan output ”Impractical” is
reached when the result of the execution of one command leaf is not successful.
Plan output ”Not Fulfilled” is reached when the agent cannot reach an action
leaf because of knowledge or resource limitations. The EP plan in this case will
stop at the Level 2 sub-tree.

4.1.2 EP Formal Model We use Datalog [Dat] for formal modeling of the
agents decisions and to verify the different decision properties like: is the goal fulfilled
or not?. Datalog is a programming language based on a declarative logic [Llo12].
It is employed by researchers for large-scale software analyses [Nai20], automatic
evaluations of cybersecurity matrices [ZN20], and the verification of cybersecurity
exercise scenarios [RCA20], making it suitable as a formal model for cybersecurity
exercise scenarios. It consists of two parts: facts and clauses. A fact conforms to the
parts of the elements of the predicated phenomenon. A clause refers to information
deriving from other subsets of information. Clauses rely on terms, which can contain
variables; however, facts cannot. It adjudicates whether the specific term is adherent
to the specified facts and clauses. If it happens to be so, the specific query is
validated via a query engine, providing the prerequisite facts and clauses.

When running a Datalog operation, the specified conditions include a combi-
nation of two facts along with a singular clause. We assign a condition that if the
query is valid, a specific response is to be expected at the end. The conclusion of
the said experiment is that the specific response is received and that the query is
satisfied. By utilizing the clauses via their variables, the engine can pinpoint and
find the result. For a concrete example [CGT+89], consider the facts ”John is the
father of Harry” and ”Harry is the father of Larry”. A clause will allow us to
deduce facts from other facts. In this example, consider we want to know ”Who is
the grandfather of Larry?”. We can use three variables X,Y and Z and make a
deductive clause: If X is the parent of Y and Y is the father of Z, then X will
be the grandfather of Z. To represent facts and clauses, Datalog uses horn clauses
in a general shape:

L0 : −L1...,Ln

Each instance of L represents a literal in the form of a predicate symbol that
contains one or multiple terms. A term can have a constant or variable value. A



14 Yamin and Katt

Datalog clause has two parts: the left hand side part is called the head, while the
right hand side part is called the body. The body of the clause can be empty, which
makes the clause a fact. A body that contains at least literal represents the rules
in the clause. Lets us represent the above mentioned facts that ”John is the father
of Harry” and ”Harry is the father of Larry” as follows:

Father(John,Harry)

Father(Harry ,Larry)

The clause if X is the father of Y and Y is the father of Z, then X will be the
grandfather of Z can be represented as follows:

GrandFather(Z ,X ) : −Father(Y ,X ),Father(Z ,Y )

For our agents we define 4 basic predicates for decision modeling which are 1)
Goal, 2) Condition, 3) Action and 4) Fulfilled. The facts for the decision model
with their definitions are as follows:

Definition 1. The Goals predicate is logically presented as Goals(Goal, SubGoal),
and it has two variables Goal and SubGoal. The Goal is a string value which
indicates attack and defense goals like ’Exploit System’ for attack and ’Prevent
Attacks’ for defense. The SubGoal is also a string values which contains sub goals
for achieving the Goal like ’Reconnaissance’ and ’Exploitation’ for attack and
’Detect’ and ’Deny’ for defense. A concrete example of Goals predicate for attack
is presented as fallows:

Goals(′ExploitSystem ′,′ Reconnaissance ′)

Goals(′ExploitSystem ′,′ Exploitation ′)

Similarly for defense Goals can be represented as fallow:

Goals(′PreventAttacks ′,′ Detect ′)

Goals(′PreventAttacks ′,′ Deny ′)

Definition 2. The Condition predicate is logically presented as Condition(Goal,
Parameter, Command) and it has three variables Goal, Parameter and Command.
Goal is a string value which is the leaf of Level 1 tree consisting goals and sub
goals like ’Reconnaissance’, Parameter is a string value that is condition specif
to achieve the goal like ’Active’ for performing active reconnaissance, Command
contain the parameter for performing a low level action like service and version scan
using Nmap ’-sS -sV’. A concrete example of Condition predicate is presented as
fallows:

Condition(′Reconnaissance ′,′ Actvie ′,′−sS − sV ′)

Similarly a defense Condition can be represented as fallow:

Condition(′Deny ′,′ shell .exe ′,′ taskkill/IM ”shell .exe”/F ′)



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 15

Definition 3. The Action predicate is logically presented as Action(ActionName,
ActionTarget), and it has two variables ActionName and ActionTarget. Action-
Name is a string value which contain low level goal action execution like Nmap
for attacker and Deny for defender. ActionTarget is string value which contain
the information of machine address on which the action is to be executed for the
attacker and the pattern on which the action is triggered by the defender. A concrete
example of Action predicate is presented as fallows:
For attacker:

Action(′Nmap′,′ 172.168.2, 2′)

For defense:
Action(′Deny ′,′ shell .exe ′)

Definition 4. The Fullfilled predicate is logically presented as Fullfilled(Goal,
ActionName) and it has two variables Goal and ActionName. Goal is a string
value that indicates high level goal like ’Reconnaissance’ and ActionNamel is a
string value that indicates concrete tool or action to achieve the high level goal like
’Nmap’. A concrete example of Fullfilled predicate is presented as follows:

FullFilled(′Reconnaissance ′,′ Nmap′)

For defense: FullFilled(’Deny’,’shell.exe’)

4.1.3 EP Model Verification The decision model presented in section 4.1 help
us to verify various agent properties before their execution, like:

– How high level goal can be translated into to low level actions
– Can the agent fulfill the given goal?
– What information is missing to achieve the goal?

To verify the decision model we define a new predicate CheckGoals which takes two
variables Goal and SubGoal and is logically presented as CheckGoals(Goal,SubGoal).
A logical relationship is defined between the Goal and SubGoal so it can be estab-
lished whether the Goal is the leaf for Level 2 conditions or the SubGoal.

CheckGoals(Goal , SubGoal) ≤ CheckGoals(SubGoal , Goal)

FullFilled predicate is used to link the Goal and SubGoals which is presented as
fallows:

FullFilled(Goal , SubGoal) ≤ CheckGoals(Goal , SubGoal)

Furthermore, it is defined whether a SubGoal needs to be completed in order to
achieve the Goal. A relationship is established between Goal, SubGoal and Action
using transitive property which is presented as fallows:

FullFilled(Goal , SubGoal) ≤ CheckGoals(Goal , Action))
& FullFilled(SubGoal , Action) & (Goal ! = SubGoal)



16 Yamin and Katt

To verify the attack decision for achieving high level goal using low level action
based upon certain conditions following clause can be defined:

FullFilled(′Reconnaissance ′, SubGoal) & Condition(Goal , ′Active ′, Commands)
& Action(SubGoal , ActionTarget)

The clause will return the high level goal, and the low level specific action to be exe-
cuted based upon the specific command. Similarly for the defense decision following
clause can be defined:

FullFilled(′Deny ′, SubGoal) & Condition(′Deny ′, SubGoal , Commands)

The clause will return the low level pattern through which the action is triggered
and the low level command to deny that action.

4.1.4 EP Model Representation A schematic representation of the attack
and defense agent EP models all three levels is presented in Figure 4 and Figure
5, respectively.

In Figure 4, a high-level Goal is given to an agent that has the aim of performing
system exploitation. The sub-goals are Reconnaissance and Exploitation. The
agent will check information in its knowledge base to make medium-level decisions,
for example, whether information about the target is provided or not. If the target
information is provided, it will check whether it is accessible or not; if it is accessible,
then the agent will check if some specific argument is present to perform a specific
kind of reconnaissance like nbtscan, which is a low-level decision. Otherwise, it
will use a default reconnaissance technique like nmap or netcat. Similarly, if the
target information is not provided, the agent will check whether there is a network
interface and if on that network interface it can perform arp-scan a medium-level
decision.If the condition returns true, then the agent can perform an arp-scan using
default commands, which is a low-level decision.

In Figure 5, a high-level Goal is given to an agent to prevent the attackers
from performing any actions. The sub-goals are to Detect and Deny attacker
actions. Whenever an attacker performs an action, it creates an event. If the event is
detected, then it is checked in the knowledge base of the defender; this is considered
a medium-level decision. If the knowledge base contains information about the
reaction to this specific action, then it will execute a specific command to the
counter-attacker’s action; this is considered a low-level decision, for example, killing
a specific malicious process using taskkill. In another case, if there is no specific
command to react to the attacker’s action, then the agent will execute a general
defense command to counter the action, such as closing the ports using netstat or
npx-kill-port. If the action of the attacker is not detected, then the agent will fail
to defend the system.



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 17

Fig. 4: Attack agent EP



18 Yamin and Katt

Fig. 5: Defense agent EP



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 19

4.1.5 Attack Agent Conceptually, the attack agent’s goal is to perform the
steps involved in exploiting vulnerable systems during a cybersecurity exercise. The
steps involve performing scanning, identifying vulnerable services, and launching an
attack on them. Multiple adversary emulation tools already exist in academia and
industry, here using various techniques ranging from logical programming [Yue15]
to AI [Sto18] for achieving this goal.

A model-driven approach for executing the attacks during a cybersecurity exer-
cise can provide repeatable and standardized training. The model needs to follow
penetration testing execution standards [PTE] to leave realistic attack and exploita-
tion traces for the defender or blue team members to identify. This can be achieved
by specifying the attacker’s actions in a DSL, hence enabling the precise execution
of attack steps and helping in the evaluation by the defenders in incident response
and forensic analysis.

We combined complex attacker operations into six components of a DSL, whose
concrete syntax instance is presented in Listing 1. These components specify the
attack techniques that are going to be used by the attacker and on which target
it needs to be performed. The DSL instance components are used to provide the
necessary information to the EP model to specify the behavior of the attacker based
on the cyber kill chain. Once the model has been created, it is verified by executing
it in different operational cybersecurity exercises with the same network topology
to check whether its execution is repeatable for standardized training.

Listing 1: Concrete syntax for attacker DSL instance

[

{

"nbtscan": {

"AgentIP": "192.168.81.128",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "",

"Target": "172.168.2.17"

}

}

]

The attack agent DSL model has the following properties:

1. It can perform actions from the following list: Reconnaissance, Delivery, Ex-
ploitation, Installation, Command and Control, and Actions on Objectives.

2. It has six attributes: agent action name, agent to use, agent credential user
ID and password, action-specific parameters and the target on which action is
needed to performed.

3. It runs in a separate attack machine in the exercise network environment, where
it has network-level access to vulnerable machines present in the exercise net-
work.



20 Yamin and Katt

4. It interacts with exercise networks using the specific actions, which can collect
information about the software, services, and configurations present in exercise
machines and then preform other actions to exploit those machines. Deciding
on which actions and commands to execute is specified in the EP model.

Utilizing the above-mentioned properties, the attack agent launches attacks in
a semi-autonomous manner, as defined in the EP models. These EPs consist of exe-
cuting the attack phases presented in CKC by utilizing its attack agent properties.
The attack agent’s overall workflow is represented in Figure 6. Itrepresents how the

Fig. 6: Attack agent’s work flow

agent functions. The agent then does the following: (1) First, the agents loads the
goals and related EPs. (2) The agent checks the world state. Initially, the world
state is empty for a newly deployed agent. (3) An EP model for the loaded goal is
utilized by the agent to decide which actions to perform and fulfill the goal. (4) The
agent decides which low-level commands to execute based on the EP model (4.1),
and it will fail in case the goal was not fulfilled or was impractical (4.2). (5) The
selected command(s) will be executed. (6) The agent (continuously) monitors the
environment to detect any changes in the world state and to get the output and
results of executing its commands. (7) The sensors detect new knowledge. (8) New
knowledge updates the world state. (9) The agent checks the new world state.

4.1.6 Defense Agent The defense agent’s primary goal is to defend its system
from external and internal attackers. This primary goal has additional sub-goals



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 21

in which the defense agent has to Detect, Deny, Disrupt, Degrade, Deceive, and
Destroyan attacker. The focus of this work is on detect and deny.These sub-goals
are achieved by the usage of different tools and techniques at different stages of an
attack. These tools and techniques include but are not limited to network and host
intrusion detection and the prevention system, web analytics, security configuration,
and system user training.

Our DSL instance is used to specify the defense agent’s properties. Based on
these properties, the EPs are executed by our orchestrator. The orchestrator inserts
the agent in the machine present in the exercise network with the knowledge base
of the events generated by the attacker’s actions Conceptually, the defense agent
has the following properties:

1. It can detect and deny the actions performed by the attacker.

2. It has a knowledge base that contains information about the attacker’s actions
and their countermeasures.

3. It runs on the exercise machines being attacked.

4. It interacts with the events generated by the attacks and implements specified
countermeasures on the machine it is running.

Utilizing the above-mentioned properties, the defense agent can perform defense
measures against launched attacks in a semi-autonomous manner, as defined in the
EP models. These EPs consist of executing the defense phases presented in CKC
by utilizing the defense agent properties. One key difference between the attack
and defense agent is that the defense agent is not controlled by a Master and is
independent in its execution. The Master only configures the knowledge base of the
defense agent one time and uploads it on the machine that needs to be defended. The
defense agent’s overall workflow uploaded to a machine is represented in Figure 7
In the work flow, the agent does the following:(1) First, the agent loads the goals
and related EPs.(2) The agent checks the world state based on the EP model of
detecting the attacker. Initially, the world state is empty for a newly deployed
agent. (3) The agent will use its sensors to detect an event generated by attacker
actions based on its knowledge base. (4) In the detection phase, if the attacker’s
action event is detected, then the agent will check its knowledge base to counter
the attacker’s action (4.1). If the attacker’s actions were not detected by the agent,
then it will fail to deny the attacker (4.2). (5) The agent will update its world state
and act on new EP models to deny the attacker. (6) To deny the attacker, the agent
will check its knowledge base. (7) For denying the attacker, the agent will execute
a low-level command that changes the world state. If the agent’s knowledge base
has information about the specific action, then it will execute a specific command
(7.1). If the agent does not have specific countering information, then it will execute
a general command (7.2). (8) New knowledge is updated in the world state of the
agent. (9) The agent checks the new world state.



22 Yamin and Katt

Fig. 7: Defense agent’s work flow

5 Technical Implementation

5.1 Attack Agent

The attack agent is a Kali Linux automation utility that can automate most of the
Kali Linux environment tools. These tools can perform red team operations such
as reconnaissance, weaponization, delivery exploitation, installation, command and
control, and actions on objectives. In a cybersecurity exercise environment, one or
more Kali Linux machines can be deployed to perform the attacker’s actions. The
orchestrator has a remote Master control unit that controls these machines using a
dedicated SSH connection. The Kali Linux agents and the Master control unit work
in a Botnet Command and Control [ZM09,FSR09] manner. The attacker’s actions
are modeled in the DSL, which the Master control unit interprets and forwards to
the Kali Linux machines as EP.



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 23

The Mastercontrol unit contains the EP of various attack stages, such as
Nmap scripts for scanning and Metasploit scripts for exploitations. The resource
script [Res] of Metasploit is used to perform post-exploitation on the exploited ma-
chines. An extensive logging mechanism is integrated into the Master control unit,
which can collect logs from the Kali machines to confirm whether the launched
attack steps were successful or not. A schematic diagram presenting the main com-
ponents existing in an attack agent is shown in Figure 8. Each component represents
a category of tools that can be used by the attack agent. For example, these com-
ponents include scanners to collect information about the exercise environment and
vulnerability executors to perform a particular attack or exploit. The results of the
attacks are logged to update the world state and to inform the Master control unit
about successful attacks.

Fig. 8: Attack agent

5.1.1 Scanner The scanner can work both passively and actively. In passive
mode, the scanner uses ARP resonance techniques for the identification of targets
using Netdiscover [net]. When the targets are identified, it can switch into an active
scanning mode and use Nmap for the identification of vulnerable services running on
the system. The information of vulnerable services and their exploitation methods
are provided in the DSL parameters.

5.1.2 Vulnerability Executor The vulnerability executor can take the infor-
mation from the scanner to launch an attack based on predefined conditions, or it
can follow the concrete action steps provided in DSL and the EP. DSL contains the



24 Yamin and Katt

general static information for the attack agent, and the EP contains the execution
plan to fulfill the attacker’s goals. The conditions include finding a specific service
or application signature and launching the relevant, very well-known approach. On
the other hand, the concrete action steps from EP provides a repeatable execution
of vulnerability exploits. The DSL constructs include (1) the tool or action name
needed to be executed, (2) the agent’s IP and credentials from which the action is
to be executed, and (3) the specific vulnerability parameters and the target address
on which the attack is executed.

5.1.3 Post Exploitation When a vulnerability is exploited, the post-exploitation
module performs different tasks like credentials and memory dumps, backdoor in-
jection, pivoting and lateral movement, and so forth. The post-exploitation steps are
predefined, and because the cyber kill chain does not incorporate post-exploitation
steps, concepts from MITRE Attack [MIT] are incorporated in it. For a Windows-
based environment, most of the post-exploitation is performed through predefined
Mimikatz commands with standard Meterpreter modules [Mim] and Powershell
scripts [Pow]. For a Linux-based environment, a set of bash scripts [Lin] is used in
an automated manner for post-exploitation.

5.1.4 Logger The logger logs all the different agents’ activities with respect to
time, the commands used, and their results in textual format. The logs are used to
verify different attack agent success parameters in scanning, exploiting, and post-
exploitation of the vulnerabilities in the cybersecurity exercise environment.

5.2 Defense Agent

The defense agent is a portable executable that can be deployed in a Windows-
based machine. The defense agent’s EP is generated based on the DSL instance,
that is, on which system it is needed to be deployed on and what kind of action it
needs to take, as presented in the Listing 2.

Listing 2: Concrete syntax for defender behavior emulation

[

{

"Defender 1": {

"MachineIP": "192.168.81.132",

"MachineUserID": "root",

"MachineUserPassword": "toor",

"OS": "Windows",

"Parameter": "Actions1.csv"

}

}

]



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 25

The defense agent has multiple components, such as knowledge base, monitor-
ing, analysis engine, event collector, and event responder. The knowledge base of
the defender can be configured to adjust the agent behavior based on the scenario
requirement, the details of which are given below and presented in Figure 9. The
defense agent is deployed in a Windows-based environment. It uses a a custom
monitor and analysis engine that collects security events from Windows event logs
and that act as sensors to collect information about the environment. When an
event is detected whose information is present in the defense agent knowledge base,
a trigger will change its world state, resulting in the selection and execution of
different responses against the attacks using the information present in the knowl-
edge base. This defense step execution is mapped with different CKC phases and
is conceptually represented in Figure 3.

Fig. 9: Defense agent

5.2.1 Knowledge Base The knowledge base for the defense agent is a simple
CSV file that contains the list of attacker actions and defender reactions. This ap-
proach of segregating the knowledge of the defense agent from the program provides
the flexibility to use different levels of knowledge against the different skill set levels
of attacker. For example, in a cybersecurity exercise for novice and expert hackers,
the knowledge base can be adjusted to create a balanced environment [MTWP15].
We analyze some example attacker actions and defender reactions below.

5.2.2 Attacker Actions We can consider the example of Pass the hash attackon
a remote Windows-based system. The attack will generate a 4688 Windows security
event log that contains the following command line information:



26 Yamin and Katt

Listing 3: Process command line information

C:\Windows\System32\wbem\WMIC.exe

This event and command line information can be inserted into the knowledge base
to give the capability to the defender to detect such an attack signature. If the
attacker is skilled enough, then the attacker can use various payload obfuscation
techniques to bypass the defender’s detection.

5.2.3 Defender Reaction The defender’s reaction can be variable based on the
scenario requirement, the knowledge for preventing the above attack can be added
in the CSV file.

Listing 4: Defender reaction to the detected event

Reg add

\HKEY_LOCAL_MACHINE\SYSTEM\CurentControlSet\Control\Terminal

Server" /v fDenyTSConnections /t REG_DWORD /d 1 /f

↪→

↪→

The defense agent can disable the service being exploited to prevent the known
attack; however, it will not be able to prevent the attacks that it has no information
about. To address this, the defense agent has a monitoring and analysis engine to
detect and respond to new attack patterns. Most of the attacks result in events
that have similar patterns as the defined attack action; for example, opening a port
from different exploits will have similar signature. The defense agent can utilize
such information to prevent the attack.

5.2.4 Monitoring and Analysis Engine The monitoring and analysis engine
provides the defense agent the capability to acquire and apply new knowledge. We
can consider a case where the attacker was able to bypass the detection mechanism
of the defender; then, the attacker will try to achieve its goals and objectives. For
instance, an attacker can try to tamper with the content of the file, which was
specified in the knowledge base to be monitored. This action will also generate an
event log that can be traced back to the original process using our exploit chain
detection algorithm [YKG19]. Using this information, the knowledge base of the
defense agent can be updated automatically to kill the exploited process or close
the vulnerable port using standard system commands.

Listing 5: Sample commands used for detecting file manipulation

type <filename.txt>

more <filename.txt>

Listing 6: Sample commands used for detecting user manipulation



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 27

whoami /all

net user

net user <user> <pass> /add

net localgroup administrators <user> /add

net user <pass> /del

Listing 7: Sample commands used for detecting host information gathering

systeminfo

driverquery

tasklist

fsutil fsinfo drives

net time

net file

net session

net use

5.2.5 Event Collector The event collector collects Windows security event
logs. The event logs contain a lot of information that can be used in event corre-
lation and for a process analysis. The event collectors parse the event logs, remove
irrelevant information, and forward them to the monitoring and analysis engine
for further processing. The event collector can be configured to collect the security
logs from the active directory to perform network-centric cyber defense. However,
currently, it is only working on Windows-based host systems.

Figure 10 represents sample attacker actions for the event collector in the defense
agent in which attacker is trying to retrieve clear text WLAN credentials. One
attacker action is to open a CMD shell on a compromised system; then, the attacker
can fetch the WLAN profiles present on the system through a CMD command.
The WLAN profiles contain information about the WIFI networks with which the
system is or was connected. The attacker then fetches the clear text credentials of
a WIFI network SSID through another command. The attack scenario involves the
total execution of three commands. In Figure 10, it can be seen that the process ID
for initiating the CMD console is 0x34f8, which then executed two child processes
with the process ID 0x1a44 and 0x82c.

5.2.6 Event Responder The event responder is running on the host system
with system-level privileges. It merely takes input from the monitoring and analysis
engine and performs relevant operating system security tasks. These tasks involve
executing Windows command line and Powershell for managing and implementing
security setting changes on the system.

All these processes in Figure 10 create events in the Windows security logs and
can be monitored by the monitoring and analysis engine. If the command entered



28 Yamin and Katt

Fig. 10: Sample event collector

in the CMD console is being monitored and detected, then the parent process ID
0x34f8 will be used to kill the process. If the action of the attacker is not detected
and a secure resource is retrieved, here being the credentials of the WLAN SSID,
then the process is traced back, and the command parameters used for leading to the
information retrieval are saved in the knowledge base to prevent future exploitation.

An attacker can bypass the defender command and event monitoring capability
using different command-line obfuscation techniques [asi]. The techniques use spe-
cial characters and encoding schemes to evade any pattern matching algorithms; an
example of such technique is presented in Figure 11, where the command whoami
is executed in a CMD shell of a Windows 10 machine using various obfuscation
techniques. Although machine learning–based techniques are developed to detect
such obfuscated commands [YK18b,HKR18], we did not integrate such a solution
in the defense agent yet.



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 29

Fig. 11: Sample techniques for defense agent detection bypass

6 Experimentation

6.1 Experimental Setup of the Cyber Range

The experimental environment setup was created using our cybersecurity exercises
scenario modeling language [YK19b]. The experimental setup was used to conduct
three cybersecurity exercises, in which one was against the attack agent and two
were against the defense agent. A total of 101 people who were from 20–25 years
old and from Norway participated in the exercises; quantitative methods were used
to evaluate the agents’ performance.

The attack agents were used in a digital forensic and incident response cyber-
security exercise at the Norwegian University of Science and Technology [Cou],
in which 84 people participated in 17 groups on a multi-subnet exercise network
environment of 408 machines. Each group was provided with individual networks
compromised by human attackers and attack agents. Each network contained 11
Windows- and Linux-based machines, and 2 out of 17 networks were compromised
by the attack agent. The participants did not have any knowledge about the at-
tacker and how they exploited the machine.

The defense agents were used in two cybersecurity exercises, which were con-
ducted at the Norwegian Cyber Range [OmN]. The first exercise was a 48-hour
long qualification round for the Norwegian national team for the European Cy-
ber Security Challenge [Nor,Eur], in which 17 people participated in 5 groups on a
multi-subnet exercise network environment of 75 machines. The second exercise was
a 2-week-long exercise conducted during the Ethical Hacking course taught at the
Norwegian University of Science and Technology, in which 84 people participated
in 17 groups on a multi-subnet exercise network environment of 408 machines. Both
exercises were focused on a penetration testscenario of a small organization.

The organization infrastructure has a multi-subnet network containing 11 Windows-
and Linux-based machines. The participants had access to the public network
through 5 dedicated Kali machines. For the attack agents, two Kali machines were
used for launching attacks and creating forensic traces. In the organization’s in-
frastructure, 2 out of those 11 machines had the same vulnerabilities, but a single



30 Yamin and Katt

machine was running the proposed defense agent. Each group was assigned a seg-
regated replica of the organization network and tasked with doing a pen-test. The
scenario’s ultimate goal was to tamper with the content of a file in the scenario
machine running the defense agent, and the participants were incentivized with
extra points to achieve the goal. However, they did not know the presence of the
defense agent. A schematic diagram representing the experimental infrastructure is
presented in the Figure 12.

Fig. 12: Experimental setup of the cyber range

6.2 Test Cases

6.2.1 Attack Agent We defined four test cases to evaluate the attack agent per-
formance. These test cases were selected based on the information we gathered from
cybersecurity exercises [YKG20]. These include scanning the network, performing
exploitation, post-exploitation, and launching attacks that were not successful. De-
tails of the test cases are as follows:

1. Perform network scan on all the machines present in the exercise network.



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 31

2. Exploit n of the machines present in the exercise network.
3. Perform post-exploitation on n of the machines present in the exercise network.
4. Launch unsuccessful attacks on n of the machine present in the exercise

network.

In Listing 8, a snippet of the test cases execution is provided. The agent’s goal
according to EP was to exploit system. The agent with the IP address of 10.10.4.96
first performed a full network scan using Nmap on sublet 10.10.1.1/24 to emulate a
realistic adversary. Then, the second action was to launch a successful FTP exploit
on 10.10.1.4; the FTP exploit was designed as Metasploit resource script, so it
performed the post-exploitation steps automatically. After that, the agent launched
an unsuccessful attack on 10.10.1.5 using the same exploit and a successful attack
on 10.10.1.6 using a different exploit.

Listing 8: Concrete syntax for attacker behavior emulation

[

{

"ActiveScan": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "SV",

"Target": "10.10.1.1/24"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "FTPexploit",

"Target": "10.10.1.4"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "FTPexploit",

"Target": "10.10.1.5"

},

"MetaSploit": {

"AgentIP": "10.10.4.96",

"AgentUserID": "root",

"AgentUserPassword": "toor",

"Argument": "Vulnserver",

"Target": "10.10.1.6"

}



32 Yamin and Katt

}

]

6.2.2 Defense Agent In case of the defense agent, we used three cases to eval-
uate their performance indicators:

1. Number of machines exploited not running the defense agent.
2. Number of machines exploited running the defense agent.
3. Files that are tampered with and that were monitored by the defense agent.

We used the knowledge base similar to Listing 4, 5, 7, and 6 in the case study for
test case execution. The defender’s goal according to EP was to detect and deny the
attacker using its knowledge base. In the knowledge base, different attacker actions
such as information gathering and user and file manipulation were presented, and
the defender’s actions against those activities were given.

6.3 Evaluation

We employed both quantitative and qualitative evaluation metrics to evaluate the
agents. The quantitative metrics were used formally analyses the agent properties
and to measure the efficiency of the developed artifacts in which the performance
of humans was compared with the proposed agent in similar task with respect to
time and resources; this is discussed in sections 6.3.2 and 6.3.3. The qualitative
metrics used to measure the realism through a survey conducted on the participants
who took part in the experimental scenario. The questions we asked are given in
Appendix A, and its details are presented in section 6.3.4.

6.3.1 Agent Decision Modeling and Verification The EP model presented
in section 4.1 helps us to analyze different test cases before their actual execution
by the agents. This analysis helps us to verify different model properties like

– How high level goal can be translated into to low level actions
– Can the agent fulfill the given goal?
– What information is missing to achieve the goal?

This enables us to fine-tune agent decisions based upon model analysis for their
precise execution. Listing 9 and 10 presents the implementation and logical ver-
ification conditions of the EP model for attack and defense decisions in a PyDat-
alog [pyD]. While listing 11 presents a sample analysis of the presented models.
PyDatalog is an implementation of Datalog and in python and is used for its easy
interoperability with rest of the technology stack used in this research for artifact
development.

Listing 9: EP Decision Model implementation for attack



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 33

#Defining necessary term for the model

pyDatalog.create_terms('Goal','SubGoal','Condition','Action',

'CheckGoals','FullFilled','ActionName','ActionTarget','Commands')

#Defining root goal with sub goals of attack agent with an AND

relation↪→

+Goal('Exploit System','Reconnaissance')

+Goal('Exploit System','Exploitation')

#Defining sub goal of attack agent with an OR relation

+Goal('Exploitation','Service' or 'Configuration')

#Defining attack actions

+Action('Default', '172.168.2.1')

+Action('ping', '172.168.2.1')

+Action('Nmap', '172.168.2.1')

#Defining fulfillment requirements for attack agent

+FullFilled('Reconnaissance','ping')

+FullFilled('Reconnaissance','Nmap')

+FullFilled('Reconnaissance','WirShark')

+FullFilled('Reconnaissance','NetCat')

+FullFilled('Reconnaissance', 'Default')

#Defining conditions for attack agent

##Checking action target information is provided

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')↪→

##Condition to check is target accessible or not

+Condition('Reconnaissance', 'TargetAccess', '-i 4' )

##Validating target access

Condition(Goal, 'TargetAccess', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Condition to check is network interface enabled

+Condition('Reconnaissance', 'NetworkInterface', 'netstat -i' )

##Validating network interface is enabled



34 Yamin and Katt

Condition(Goal, 'NetworkInterface', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Condition to check is arp-scan is present

+Condition('Reconnaissance', 'arp-scan-check', 'man arp-scan' )

##Validating network arp-scan is present

Condition(Goal, 'arp-scan-check', Commands) &

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or print ('NotFullFilled')

↪→

↪→

##Checking action name information is provided

FullFilled('Reconnaissance', SubGoal) &

Action(SubGoal,ActionTarget) or Action('Default',ActionTarget)↪→

##Defining the attacker action to execute

+Condition('Reconnaissance', 'Active', '-sS -sV' )

+Condition('Reconnaissance', 'Passive', 'arp-scan -interface=eth0

-localnet' )↪→

+Condition('Reconnaissance', 'Default', 'nc -zv ' )

Listing 10: EP Decision Model implementation for defense

#Defining goals and sub goals of defense agent

+Goal('Prevent Attacks','Detect')

+Goal('Prevent Attacks','Deny')

#Defining defense actions

+Action('Deny', 'shell.exe')

+Action('Deny', 'port 8080')

#Defining fulfillment requirements for defense agent

+FullFilled('Detect','shell.exe')

+FullFilled('Detect','rootkit.exe')

+FullFilled('Detect','chroot.exe')

+FullFilled('Detect','port 8080')

#Check the attack action is detected or not

FullFilled('Detect', SubGoal) & Condition('Deny', SubGoal,

Commands) or print ('NotFullFilled')↪→



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 35

#Defining conditions for defense agent to prevent attack action

+Condition('Deny', 'shell.exe', 'taskkill /IM "shell.exe" /F' )

+Condition('Deny', 'Default', 'npx kill-port 8080' )

Listing 11: EP Decision Model analysis

#Establishing links between goals, sub goals

CheckGoals(Goal,SubGoal) <= CheckGoals(SubGoal,Goal)

FullFilled(Goal,SubGoal) <= CheckGoals(Goal,SubGoal)

#Establishing links between sub goals and conditions

CheckGoals(SubGoal,Condition) <= CheckGoals(SubGoal,Condition)

FullFilled(SubGoal,Condition) <= CheckGoals(SubGoal,Condition)

#Establishing links between conditions and action

CheckGoals(Condition, Action) <= CheckGoals(Action,Condition)

FullFilled(Condition, Action) <= CheckGoals(Action,Condition)

#Check a goal can be full filled to perform specific action

FullFilled(Goal,SubGoal) <= CheckGoals(Goal,Action) &

FullFilled(SubGoal,Action) & (Goal != SubGoal)↪→

#Sample analysis condition for attack agent EP decision

Condition(Goal, 'Actvie', Commands) & FullFilled('Reconnaissance',

SubGoal) & Action(SubGoal,ActionTarget)↪→

#Sample analysis condition for defense agent EP decision

FullFilled('Detect', SubGoal) & Condition('Deny', SubGoal,

Commands)↪→

While translating high-level goals to low-level action and task is a complex and
challenging task, our model can perform it based upon the given conditions. Fur-
thermore, the agents’ different decisions were verified, highlighting the decisions
that can result in goals not fulfilled or impractical. This allowed us to plan agent
decisions based upon the scenario requirement. Like in some scenarios, the agents
need to make wrong decisions against human adversaries to maintain realism. Sim-
ilarly, in some scenarios, the agents were required to execute the actions as fast as
possible, like performing dry runs on exercise infrastructure, so their decision model
can be tuned to avoid unfulfilled and impractical decisions to save time. A sample
decision model verification for attack and defense agent decisions highlighted in
Figure 4 and Figure 5 is presented in Figure 13.

6.3.2 Attack agent Results



36 Yamin and Katt

Fig. 13: Agent decision model verification

6.3.2.1 Task performed by humans: Human teams of attackers were given
the task to perform penetration testing on the segregated exercise networks pre-
sented in Figure 12. They had to discover, exploit, analyze, and report the identified
vulnerabilities in a penetration testing report. The penetration testing report was
used for their evaluation and comparison with the attack agent’s performance.

6.3.2.2 Task performed by agent: The attack agent was tasked with per-
forming penetration testing on the similar segregated exercise network presented in
Figure 12. First, the attack agent performed a full network scan of the network to
emulate an adversary’s scanning. Then, the attack agent created forensic evidence
by launching attacks and performing post-exploitation. Out of the 11 machines,
the attack agent was tasked to compromise 4 machines, perform post-exploitation,
launch failed attacks on 3 machines, and launch no attack on 4 machines. The at-
tack agent was programmed to emulate a human adversary, so it created successful
and unsuccessful attack traces for forensic investigators.

6.3.2.3 Comparison of human and attack agent performance: The hu-
mans and attack agents were given same task, but the humans participated in
teams of five, and most teams compromised a minimum of four machines, while
one team compromised eight machines in the exercise network. The human teams
took around 50 hours to complete the assigned task, while the attack agent were
able to emulate the human performance in approximately 10 minutes.

6.3.2.4 Verification of performance: Human and attack agent performance
was measured in the same way. The human participants in the digital forensic and
incident response exercise were tasked with performing the forensic analysis of the
compromised network by the human teams and the attack agent and to present



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 37

their findings in a digital forensic and incident response report. The report was
used to assess the performance of the attack agent in the cybersecurity exercise,
the summary of the findings are presented in Table 1:

Exercise 1

Group task Compromised ma-
chines identified

Post-exploitation
identified

Attack attempts
identified

Forensic analysis of
machine compro-
mised by humans

3 3 3

Forensic analysis
of machine com-
promised attack
agent

4 4 3

Table 1: Results of the cybersecurity exercise against the attack agent

6.3.2.5 Summary of the results: The human participants detected most of the
successful attacks, post-exploitation, and unsuccessful attack attempts. The attack
traces were identical to the attack traces generated by an human attacker, and
the participants were not able to identify that they were generated by an attack
agent. This indicates that the attack agent was providing the necessary realism and
removing the need for a red team member for launching attacks, thus increasing
the efficiency by automating different CKC phases like Reconnaissance, Delivery,
Exploitation, Installation, Command and Control, and Actions on Objectives. It
was identified that the proposed agent was working as expected and suitable in
a cybersecurity exercise for creating digital forensic traces. We didn’t include the
factor of time in this work, which can be used by an experienced forensics analysts
for distinction between human and attack agent generated forensic traces. However,
over the passage of time we are incorporating the concepts of technical injects that
are executed according to a scenario timeline to make the generation of forensic
traces as realistic as possible.

6.3.3 Defense Agent Results

6.3.3.1 Tasks performed by humans: Teams of humans were tasked to com-
promise a vulnerable machine that was or was not running the defense agent. In
the scenario, the human teams were incentivized with additional points to exploit a
particular machine known as the CEO Machine, which had the same vulnerabilities
present in another machine Machine9 but was running the defense agent.

6.3.3.2 Tasks performed by agents: The defense agent was tasked to block
or prevent the attacks launched by the human attackers. The defense agent had



38 Yamin and Katt

a knowledge base to prevent particular attacks from a specific vulnerability also
present in Machine9. Additionally, the defense agent was also monitoring a local
file to prevent access to the attacker in case the attacker exploited a vulnerability
not present in the defense agent’s knowledge base.

6.3.3.3 Comparison of human and attack agent performance: In the
exercise environment, there were no machines actively defended by human adver-
saries, so comparing the performance regarding efficiency of the human and defense
agents is a bit difficult. However, the machines that were defended by the proposed
agents were difficult to exploit compared with the undefended machines. According
to IBM, the average detection time for a data breach is 206 days [Cos19]; we are
not arguing that our proposed solution will drastically improve this, but we are
arguing that having an active agent running in a system will restrict the attacker’s
actions and improve system security.

6.3.3.4 Verification of performance: In the second exercise, three out of
five groups compromised the vulnerable machine not running the defense agent. In
comparison, one group compromised the machine running the defense agent using
a vulnerability that was not in the defense agent’s knowledge base but could not
tamper with the file because of the defense agent’s actions. Similarly, in the third
exercise, 8 out of 17 groups compromised the vulnerable machine, and 2 groups were
able to compromise the machine running the defense agent using a vulnerability
not present in the defense agent’s knowledge base but were not able to tamper with
the content of the file. The results of the experiments are presented in Table 2.

Exercise 2

Number of
Groups

Groups Exploited
Vulnerable Machine

Groups Exploited
Vulnerable Machine
Running Defense
Agent

Groups Tampered
with the File

5 3 1 0

Exercise 3

17 8 2 0

Table 2: Results of the cybersecurity exercise against the defense agent

6.3.3.5 Summary of the results: The results indicate that the defense agent
created the necessary friction and added realism by preventing attacks present
in its knowledge base during an operational cybersecurity exercise. The defense
agent removed the need for an active blue team member during the exercise, thus
increasing the efficiency by automating certain tasks in CKC like Detect and Deny
for the defender. The inclusion of the defense agent made the exercise environment
more dynamic and challenging because some groups were not able to compromise
the machines running the defense agents.



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 39

6.3.4 Qualitative feedback from the exercise participants The qualita-
tive feedback consists of survey responses from the 3 teams, which represent 15
students. The survey was conducted in a semi-informal way. The participants were
asked to answer a list of pre-defined open-ended questions using digital communica-
tion apps, hence following COVID-19 restrictions. Fallow-up questions were asked
if the answers needed further explanation. The survey was conducted in a relaxed
and friendly environment, and the participants were given sufficient time to reflect
on their experience and properly answer the question to avoid any biases. No per-
sonally indefinable information was collected during the survey to avoid any GDPR
(General Data Protection Regulation)-related issues. During the survey, when we
asked the participants if they found the scenario realistic, one survey participant
stated the following:

Scenarios were pretty realistic for the hacking phase

This sentiment was shared by the majority of the survey participants. The exercise
was conducted in two phases Ethical Hacking and Incident response & Forensics.
The participants were very impressed by the complexity and dynamism of the
scenario in the Ethical Hacking phase; this can be attributed to the presence of
a dynamic defense agent in the exercise environment. However, for the Incident
response & Forensics, they were not that impressed because the environment was
static. The participants expected continuing attacks during this phase to make it
more dynamic. The feedback of the participants was noted for implementing active
attack execution in the Incident response & Forensics phase in the future. When
we asked about the difficulty of the scenario, one participant stated the following:

I think it is good that the scenario is large and consist of both easy machines and
more difficult ones. This allows weaker students to be able to get points and

provides a challenge for stronger students with much experience. In my opinion,
the project is good from a grading perspective

This sentiment was also shared by most of the survey respondents. The participants
indicated that they found the machines to exploit having a variety of difficulty levels
easy, medium, and hard, which allowed the participants with ranging skill sets to
practice their skills. This indicates that the presence of the developed agents in the
scenario provided balance in the lab, which made some machines difficult to exploit
because of them having similar vulnerabilities to other easily exploitable machines.
When we asked about the number of machines exploited by their teams, two teams
stated that they exploited four machines, while one team exploited nine machine.
Continuing from this, we asked a specific question about the machine that was not
running the agent Machine9 and the machine that was running the defense agent
CEO machine. Two teams were not able to exploit both machines, while one team
was able to exploit it Machine9. When we asked why they were not able to exploit,
it they responded with the following:

No exactly each planned attack went through except for one where we were trying
to do an smb exploitation but we couldn’t figure out and came to the conclusion

that it was rabbit hole and moved on



40 Yamin and Katt

The rest of the questions were asked to improve the quality of the exercise scenario
and are not relevant to this study. From the qualitative feedback, it can be concluded
that the exercise scenario that incorporated our agents are quite realistic and offer
the opportunity to exercise participants to practice their skills against realistic
computational adversaries.

7 Discussion and Conclusion

In this work, we investigated the cyber-attack and defense agents’ usage of cyber
ranges for improving the realism and efficiency of cybersecurity exercise execution.
We identified that such agents could provide the necessary level of friction during
an exercise. For example, in a red team exercise, a defense agent will try to prevent
attackers from achieving their objectives. On the other hand, in a blue team exer-
cise, an attack agent will conduct various attacks and create forensics traces, such
that the need for a human red team is reduced. This makes cybersecurity exercise
execution more realistic and efficient.

We proposed EP models for specifying the agents’ decision making. An EP
model contains three levels of decisions: high, medium, and low. These decisions
were translated using a DSL into goals, actions, and commands. We presented the
workflows of the attack and defense agents to showcase how they made their deci-
sions during the execution of a cybersecurity exercise. We employed the proposed
agent-based system in cybersecurity exercises and presented their performance re-
sults in the form of a case study.

For the attack agent, we consider its performance satisfactory when applied in a
semi-autonomous manner. The attack agents create realistic forensic traces during
a cybersecurity exercise, which is verified by the human participants. On the other
hand, our developed cyber defense agents currently have the six capabilities high-
lighted by Kott [KTD+18b]. However, we do not consider these agents suitable for
deployment in the actual production environment for active cyber defense because
they were tested in a controlled environment of cyber ranges. Yet, they can be
considered a first step to achieve autonomous cyber defense. One of the limitation
of the proposed defense agents is in the way they respond to attacks. If an agent
detects a new attack on a specific port, it will update the knowledge base with some
information about the attack’s signature. Then, it will close the port or service for
the next attack with a similar signature without analyzing the impact of its action,
which is not suitable for real-world systems. We will address this issue in our future
research, and we are planning to develop state machines that can help the defense
agent take the optimal action to deal with the attacker.

In the future, we are also planning to integrate specific test cases with the attack
agent to automatically perform the security assurance of systems and provide a
quantitative score of the state of system security [KP18,KP19]. Finally, we plan
to use our developed cyber-attack and defense agents in additional cybersecurity
exercises with different network topology positions. This will help us analyze the
impact of such agents at different stages of attacks and defenses, for example, an



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 41

exercise designer can use such agents in an outer network on dispensable systems to
obtain the attacker’s tactics and techniques for preventing attacks in the internal
network.

References

[APT] APTSimulator/test-sets at master · NextronSystems/APTSimulator.
https://github.com/NextronSystems/APTSimulator/tree/master/test-sets.
– (Accessed on 01/27/2021)

[asi] Dosfuscation. https://i.blackhat.com/briefings/asia/2018/asia-18-bohannon-
invoke dosfuscation techniques for fin style dos level cmd obfuscation-
wp.pdf - (Accessed on 01/28/2021)

[BCD+19] Braghin, Chiara ; Cimato, Stelvio ; Damiani, Ernesto ; Frati, Fulvio ;
Mauri, Lara ; Riccobene, Elvinia: A model driven approach for cyber secu-
rity scenarios deployment. In: Computer Security. Springer, 2019, S. 107–122

[Cen17] Center, JPCERT C.: Detecting lateral movement through tracking event logs.
2017

[CGT+89] Ceri, Stefano ; Gottlob, Georg ; Tanca, Letizia u. a.: What you always
wanted to know about Datalog(and never dared to ask). In: IEEE transactions
on knowledge and data engineering 1 (1989), Nr. 1, S. 146–166

[Cos19] Cost of a Data Breach Study — IBM. https://www.ibm.com/security/data-
breach. Version: 2019. – (Accessed on 06/16/2021)

[Cou] Course - Incident Response, Ethical Hacking and Forensics - IMT3004 -
NTNU. https://www.ntnu.edu/studies/courses/IMT3004#tab=omEmnet

[Dat] Datalog: Deductive Database Programming. https://docs.racket-
lang.org/datalog/index.html. – (Accessed on 09/30/2020)

[EM17] Edgar, Thomas W. ; Manz, David O.: Research methods for cyber security.
Syngress, 2017. – 271–297 S.

[Eur] European Cyber Security Challenge — ECSC.
https://europeancybersecuritychallenge.eu/ - (Accessed on 01/28/2021)

[FSR09] Feily, Maryam ; Shahrestani, Alireza ; Ramadass, Sureswaran: A sur-
vey of botnet and botnet detection. In: 2009 Third International Conference
on Emerging Security Information, Systems and Technologies IEEE, 2009, S.
268–273

[Gen] Generating Realistic Non-Player Characters for Training Cyberteams.
https://insights.sei.cmu.edu/blog/generating-realistic-non-player-characters-
for-training-cyberteams/. – (Accessed on 04/19/2021)

[HC10] Hevner, Alan ; Chatterjee, Samir: Design science research in information
systems. In: Design research in information systems. Springer, 2010, S. 9–22

[HCA+11] Hutchins, Eric M. ; Cloppert, Michael J. ; Amin, Rohan M. u. a.:
Intelligence-driven computer network defense informed by analysis of adver-
sary campaigns and intrusion kill chains. In: Leading Issues in Information
Warfare & Security Research 1 (2011), Nr. 1, S. 80

[HKR18] Hendler, Danny ; Kels, Shay ; Rubin, Amir: Detecting malicious PowerShell
commands using deep neural networks. In: Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018, S. 187–197

[HS16] Holm, Hannes ; Sommestad, Teodor: Sved: Scanning, vulnerabilities, exploits
and detection. In: MILCOM 2016-2016 IEEE Military Communications Con-
ference IEEE, 2016, S. 976–981



42 Yamin and Katt

[HWD+17] Herold, Nadine ; Wachs, Matthias ; Dorfhuber, Marko ; Rudolf,
Christoph ; Liebald, Stefan ; Carle, Georg: Achieving reproducible net-
work environments with INSALATA. In: IFIP International Conference on
Autonomous Infrastructure, Management and Security Springer, Cham, 2017,
S. 30–44

[JON+15] Jones, Randolph M. ; O’Grady, Ryan ; Nicholson, Denise ; Hoffman,
Robert ; Bunch, Larry ; Bradshaw, Jeffrey ; Bolton, Ami: Modeling and
integrating cognitive agents within the emerging cyber domain. In: Proceedings
of the Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC) Bd. 20 Citeseer, 2015

[KMRS14] Kordy, Barbara ; Mauw, Sjouke ; Radomirović, Saša ; Schweitzer,
Patrick: Attack–defense trees. In: Journal of Logic and Computation 24
(2014), Nr. 1, S. 55–87

[Kot05] Kotenko, Igor: Agent-based modeling and simulation of cyber-warfare be-
tween malefactors and security agents in Internet. In: 19th European Simula-
tion Multiconference “Simulation in wider Europe, 2005

[KP18] Katt, Basel ; Prasher, Nishu: Quantitative security assurance metrics:
REST API case studies. In: Proceedings of the 12th European Conference
on Software Architecture: Companion Proceedings, 2018, S. 1–7

[KP19] Katt, Basel ; Prasher, Nishu: Quantitative Security Assurance. In: Ex-
ploring Security in Software Architecture and Design. IGI Global, 2019, S.
15–46

[KTD+18a] Kott, Alexander ; Théron, Paul ; Drašar, Martin ; Dushku, Edlira ;
LeBlanc, Benôıt ; Losiewicz, Paul ; Guarino, Alessandro ; Mancini, Luigi
; Panico, Agostino ; Pihelgas, Mauno u. a.: Autonomous Intelligent Cyber-
defense Agent (AICA) Reference Architecture. Release 2.0. In: arXiv preprint
arXiv:1803.10664 (2018)

[KTD+18b] Kott, Alexander ; Thomas, Ryan ; Drašar, Martin ; Kont, Markus ;
Poylisher, Alex ; Blakely, Benjamin ; Theron, Paul ; Evans, Nathaniel
; Leslie, Nandi ; Singh, Rajdeep u. a.: Toward Intelligent Autonomous
Agents for Cyber Defense: Report of the 2017 Workshop by the North At-
lantic Treaty Organization (NATO) Research Group IST-152-RTG. In: arXiv
preprint arXiv:1804.07646 (2018)

[KV08] Kuechler, Bill ; Vaishnavi, Vijay: On theory development in design science
research: anatomy of a research project. In: European Journal of Information
Systems 17 (2008), Nr. 5, S. 489–504

[Lin] Linux Post Exploitation Command List · mubix/post-exploitation Wiki.
https://github.com/mubix/post-exploitation/wiki/Linux-Post-Exploitation-
Command-List. – (Accessed on 01/25/2021)

[Llo12] Lloyd, John W.: Foundations of logic programming. Springer Science &
Business Media, 2012. – 1–31 S.

[Mim] Mimikatz - Metasploit Unleashed. https://www.offensive-
security.com/metasploit-unleashed/mimikatz/. – (Accessed on 01/25/2021)

[MIT] MITRE ATT&CK®. https://attack.mitre.org/. – (Accessed on 01/25/2021)

[MTWP15] Mirkovic, Jelena ; Tabor, Aimee ; Woo, Simon ; Pusey, Portia: Engaging
Novices in Cybersecurity Competitions: A Vision and Lessons Learned at
{ACM} Tapia 2015. In: 2015 {USENIX} Summit on Gaming, Games, and
Gamification in Security Education (3GSE 15), 2015



Use of Cyber Attack and defense agents in Cyber Ranges: A Case Study 43

[Nai20] Naik, Mayur: Petablox: Large-Scale Software Analysis and Analytics Us-
ing Datalog / GEORGIA TECH RESEARCH INST ATLANTA ATLANTA
United States. 2020. – Forschungsbericht

[net] netdiscover. https://manpages.debian.org/unstable/netdiscover/netdiscover.8.en.html.
– (Accessed on 01/23/2021)

[Nor] Norwegian Cyber Security Challenge - NCSC - NTNU.
https://www.ntnu.no/ncsc. – (Accessed on 01/28/2021)

[OmN] Om Norwegian Cyber Range - NTNU. https://www.ntnu.no/ncr. – (Accessed
on 01/28/2021)

[Pow] PowerShellMafia/PowerSploit: PowerSploit - A PowerShell Post-Exploitation
Framework. https://github.com/PowerShellMafia/PowerSploit. – (Accessed
on 01/25/2021)

[PTE] PTES Technical Guidelines - The Penetration Testing Execution Standard.
https://tinyurl.com/6cgn3cu. – (Accessed on 01/20/2021)

[pyD] pyDatalog. https://sites.google.com/site/pydatalog/home - (Accessed on
09/03/2021)

[RCA20] Russo, Enrico ; Costa, Gabriele ; Armando, Alessandro: Building Next
Generation Cyber Ranges with CRACK. In: Computers & Security (2020),
S. 101837

[red] Aatomic-red-team: Small and highly portable detection tests based on MITRE’s
ATT&CK. https://github.com/redcanaryco/atomic-red-team. – (Accessed on
01/27/2021)

[Res] Resource Scripts — Metasploit Documentation.
https://docs.rapid7.com/metasploit/resource-scripts/. – (Accessed on
01/19/2021)

[spl] splunk/attack range: A tool that allows you to create vulnerable instru-
mented local or cloud environments to simulate attacks against and collect
the data into Splunk. https://github.com/splunk/attack range. – (Accessed
on 01/27/2021)

[Sto18] Stoecklin, Marc P.: Deeplocker: How AI can power a stealthy new breed of
malware. In: Security Intelligence, August 8 (2018)

[TKD+18] Theron, Paul ; Kott, Alexander ; Drašar, Martin ; Rzadca, Krzysztof ;
LeBlanc, Benôıt ; Pihelgas, Mauno ; Mancini, Luigi ; Panico, Agostino:
Towards an active, autonomous and intelligent cyber defense of military sys-
tems: The NATO AICA reference architecture. In: 2018 International confer-
ence on military communications and information systems (ICMCIS) IEEE,
2018, S. 1–9

[TKD+20] Theron, Paul ; Kott, Alexander ; Drašar, Martin ; Rzadca, Krzysztof ;
LeBlanc, Benôıt ; Pihelgas, Mauno ; Mancini, Luigi ; De Gaspari, Fabio:
Reference architecture of an autonomous agent for cyber defense of complex
military systems. In: Adaptive Autonomous Secure Cyber Systems. Springer,
2020, S. 1–21

[ube] Uber-Common:An information security preparedness tool to do adversar-
ial simulation. https://github.com/uber-common/metta. – (Accessed on
01/27/2021)

[YB18] Yamin, Muhammad M. ; Basel, KATT: Ethical Problems and Legal Issues in
Development and Usage Autonomous Adversaries in Cyber Domain. (2018)

[YK18a] Yamin, Muhammad M. ; Katt, Basel: Inefficiencies in Cyber-Security Exer-
cises Life-Cycle: A Position Paper. In: AAAI Fall Symposium: ALEC, 2018,
S. 41–43



44 Yamin and Katt

[YK18b] Yamin, Muhammd M. ; Katt, Basel: Detecting malicious windows commands
using natural language processing techniques. In: International Conference on
Security for Information Technology and Communications Springer, 2018, S.
157–169

[YK19a] Yamin, Muhammad M. ; Katt, Basel: Cyber Security Skill Set Analysis for
Common Curricula Development. In: Proceedings of the 14th International
Conference on Availability, Reliability and Security, 2019, S. 1–8

[YK19b] Yamin, Muhammad M. ; Katt, Basel: Modeling attack and defense scenarios
for cyber security exercises. In: 5th interdisciPlinary cyber research conference,
2019, S. 7

[YK22] Yamin, Muhammad M. ; Katt, Basel: Modeling and executing cyber security
exercise scenarios in cyber ranges. In: Computers & Security 116 (2022), S.
102635

[YKG19] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: Detecting Win-
dows Based Exploit Chains by Means of Event Correlation and Process Mon-
itoring. In: Future of Information and Communication Conference Springer,
2019, S. 1079–1094

[YKG20] Yamin, Muhammad M. ; Katt, Basel ; Gkioulos, Vasileios: Cyber ranges
and security testbeds: Scenarios, functions, tools and architecture. In: Com-
puters & Security 88 (2020), S. 101636

[YKT+18] Yamin, Muhammad M. ; Katt, Basel ; Torseth, Espen ; Gkioulos,
Vasileios ; Kowalski, Stewart J.: Make it and break it: An IoT smart home
testbed case study. In: Proceedings of the 2nd International Symposium on
Computer Science and Intelligent Control, 2018, S. 1–6

[Yue15] Yuen, Joseph: Automated cyber red teaming / DEFENCE SCIENCE AND
TECHNOLOGY ORGANISATION EDINBURGH (AUSTRALIA) CYBER
AND . . . . 2015. – Forschungsbericht

[YUUK21] Yamin, Muhammad M. ; Ullah, Mohib ; Ullah, Habib ; Katt, Basel:
Weaponized AI for cyber attacks. In: Journal of Information Security and
Applications 57 (2021), S. 102722

[ZM09] Zeidanloo, Hossein R. ; Manaf, Azizah A.: Botnet command and control
mechanisms. In: 2009 Second International Conference on Computer and
Electrical Engineering Bd. 1 IEEE, 2009, S. 564–568

[ZN20] Zaber, Matthew ; Nair, Suku: A framework for automated evaluation of se-
curity metrics. In: Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security, 2020, S. 1–11

A Survey Question

1. Did you find the scenario realistic?
2. Did you find the scenario difficulty hard, medium, or easy?
3. How many machines did you exploited?
4. Did you find similarities between Machine9 and CEO machines?
5. Did you identify any of your attacks get blocked?
6. If yes, did you exploited both or only one and why?
7. What can be improved in the scenario?


