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We study a version of the fractal uncertainty principle in 
the joint time-frequency representation. Namely, we consider 
Daubechies’ localization operator projecting onto spherically 
symmetric n-iterate Cantor sets with an arbitrary base M > 1
and alphabet A . We derive an upper bound asymptote up 
to a multiplicative constant for the operator norm in terms 
of the base M and the alphabet size |A | of the Cantor set. 
For any fixed base and alphabet size, we show that there are 
Cantor sets such that the asymptote is optimal. In particular, 
the asymptote is precise for mid-third Cantor set, which was 
studied in part I [19]. Nonetheless, this does not extend to 
every Cantor set as we provide examples where the optimal 
asymptote is not achieved.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are many versions of the uncertainty principle, that all, in some form, state that 
a signal cannot be highly localized in time and frequency simultaneously. One recent 
version, described by Dyatlov in [12], referred to as the fractal uncertainty principle
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(FUP) (first introduced and developed in [14], [7], [13]), states that a signal cannot be 
concentrated near fractal sets in time and frequency. Fractal sets are here defined broadly 
as families of time and frequency sets T (h), Ω(h) ⊆ [0, 1], dependent on a continuous 
parameter 0 < h ≤ 1, that are so-called δ-regular with constant CR ≥ 1 on scales h to 1
(see Definition 2.2. in [12] for details). The FUP is then formulated for this general class 
when h → 0. While originally formulated in the separate time-frequency representation, 
we search for an analogous result in the joint representation as the uncertainty principles 
should be present regardless of our choice of time-frequency representation (see Itinerary 
page 1 in [17]).

In the separate representation, Dyatlov considers the following compositions of pro-
jections onto such time and frequency sets, χΩ(h)FhχT (h), where χE is the character-
istic function of a subset E ⊆ R, and Fh is a dilated Fourier transform Fhf(ω) =√
h
−1Ff(ωh−1). For signals f ∈ L2(R), the FUP then states (see Theorem 2.12 

and 2.13 in [12]) that for a fixed 0 < δ < 1 there exists some non-trivial exponent 
β > max{0, 1/2 − δ} such that

‖χΩ(h)FhχT (h)‖op = O(hβ) as h → 0. (1.1)

Although no further estimates for the exponent is provided in [12], Jin and Zhang have 
made some progress in a recent paper [18]: For families of sets T (h), Ω(h) ⊆ [0, 1] that are 
δ-regular with constant CR ≥ 1 on scales h to 1, they have derived an explicit estimate 
for β > 0 only dependent on 0 < δ < 1 and CR.

In the original statement, we might not immediately recognize (1.1) as an uncertainty 
principle since the parameter h is also encoded in the Fourier transform. However, if we 
disentangle h from the Fourier transform, (1.1) turns out to be a statement regarding 
localization on the sets T (h)/

√
h in time and Ω(h)/

√
h in frequency. Depending on our 

choice of δ, the measures |T (h)/
√
h|, |Ω(h)/

√
h| might, in fact, tend to infinity as h → 0.

One prominent subfamily of fractal sets, is the Cantor sets. This includes the infamous 
mid-third Cantor set, but instead of subdividing into three pieces and keeping two by 
each iteration, we generalize and subdivide into M > 1 pieces labeled {0, 1, . . . , M − 1}
and keep a fixed alphabet A of said pieces. With regard to the Cantor set construction, 
we could just as well speak of iterations n → ∞ rather than an h-neighborhood that 
tends to zero. For Cantor sets with base M , these two quantities are related by h ∼M−n.

Moreover, if T (h) = Ω(h) correspond to an n-iterate Cantor set Cn(M, A ) based in 
[0, 1], their scaled counterparts T (h)/

√
h = Ω(h)/

√
h correspond to a Cantor set based in 

[0, L] with L ∼ M
n
2 . Or equivalently, for such scaled n-iterate Cantor sets, the intervals 

{Ij}j that make up n-iterate all satisfy

|Ij | ∼
1
L

∼ M−n
2 . (1.2)

This condition will be a point of reference in the subsequent discussion.
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In the joint representation, we shall consider Daubechies’ localization operator, based 
on the Short-Time Fourier Transform (STFT) with a Gaussian window, that projects 
onto spherically symmetric subsets of the time-frequency plane. The non-trivial assump-
tion of radial symmetry is effective as the Daubechies operator has a known eigenbasis, 
the Hermite functions, and explicit formulas for the eigenvalues. With this powerful tool 
available, we estimate the operator norm when projecting onto the family of generalized 
spherically symmetric Cantor sets with base M and alphabet A defined in a disk of 
radius R > 0. Thus, with our approach, this version of the FUP does not rely on the 
FUP in the separate representation, and the result from the separate representation is 
used as inspiration rather than a direct implication. Other treatments of localization on 
sparse sets utilizing the STFT can be found in [15] and [2], where sparsity is described 
in terms of “thin at infinity” and the Nyquist density, respectively.

The remainder of the paper is organized as follows: In section 2, we describe 
Daubechies’ operator and the Cantor set construction in more detail. New results are 
divided into two sections, 3 and 4: In the first section, we keep the base M > 1 and 
alphabet A fixed throughout the iterations, while in the second, we introduce the notion 
of an indexed Cantor set where the base and alphabet may vary.

In section 3, we let the radius R = R(n) be dependent on the iterates n. For base M , 
we initially consider the general case when

R(n) → ∞ as n → ∞ while πR2(n) ≤ Mn for n = 0, 1, 2, . . . (1.3)

A special case of the above restriction, similar to condition (1.2) (and also (1.3) in [19]), 
is

πR2(n) ∼ M
n
2 . (1.4)

Let Pn(M, A ) denote Daubechies’ localization operator that projects onto the n-iterate 
spherically symmetric Cantor set with base M and alphabet A defined in a disk whose 
radius R(n) > 0 satisfies (1.4). Then for some constant B > 0, we find that

‖Pn(M,A )‖op ≤ B

(
|A |
M

)n
2

for n = 0, 1, 2, . . . ,

where |A | < M denotes the size of the alphabet. This is similar to the asymptote for the 
mid-third Cantor set, which was estimated in part I [19] and was shown to be precise. 
Compared to the general case, we always have that the asymptote is precise for the 
alphabet A = A = {0, 1, . . . , |A | − 1} and never precise for {M − 1, M − 2, . . . , M −
|A |}. Moreover, for the alphabet A , the largest eigenvalue corresponds the Gaussian 
eigenfunction, independent of radius and iterate, which was not established for the mid-
third Cantor set.

While several properties transfer naturally from the non-indexed to the indexed case 
in section 4, for an arbitrary indexed base and alphabet, we do not always maintain 
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good control over the operator norm. Therefore we present some simple conditions on 
the bases {Mj}j and alphabets {Aj}j which guarantees that the operator norm decays 
to zero for increasing iterates n.

2. Preliminaries

2.1. Daubechies’ localization operator

In order to produce a joint time-frequency representation of a signal f ∈ L2(R), we 
consider the Short-Time Fourier Transform (STFT), dependent on a fixed, non-zero 
window function φ : R → C. At point (ω, t) ∈ R × R, at frequency ω and time t, the 
STFT of f with respect to the window φ, is then given by

Vφf(ω, t) =
∫
R

f(x)φ(x− t)e−2πiωxdx.

If we assume φ ≡ 1, we retrieve the (regular) Fourier transform of f , without any time-
dependence. For a joint time-frequency description, we assume φ to be non-constant. 
In particular, if we consider windows φ ∈ L2(R), with ‖φ‖2 = 1, the STFT becomes 
an isometry onto some subspace of L2(R2), i.e., 〈Vφf, Vφg〉L2(R2) = 〈f, g〉 for any f, g ∈
L2(R). Thus, we obtain a weakly defined inversion formula, where the original signal f
is recovered from Vφf via inner products.

Daubechies’ localization operator, introduced in [10], is based on the idea of modifying 
the STFT of f by a multiplicative weight function F (ω, t) before recovering a time-
dependent signal. The purpose of the weight function is to enhance and diminish different 
features of the (ω, t)-domain R2, e.g., by projecting onto a subset of R2. Characterized 
by our choice of window φ and weight F , we denote the localization operator by PF,φ, 
which can be weakly defined as

〈PF,φf, g〉 := 〈F · Vφf, Vφg〉L2(R2) ∀ f, g ∈ L2(R).

Since its conception, this operator has not only been studied as an operator between L2-
spaces, but also more broadly as an operator between modulation spaces, and therein 
questions regarding boundedness and properties of eigenfunctions and eigenvalues remain 
relevant (see [8], [9], [6]). If we stick to the L2(R)-context, and assume the weight to be 
real-valued and integrable, the operator PF,φ : L2(R) → L2(R) becomes self-adjoint, 
compact. In particular, this means that the eigenfunctions of PF,φ form an eigenbasis 
for L2(R), and the operator norm ‖PF,φ‖op is given by the largest eigenvalue in absolute 
value.

Similarly to Daubechies’ classical paper [10] and what was done in part I [19], we shall 
focus our attention to weights that are spherically symmetric, that is, for some integrable 
function F : R+ → R, we consider
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F (ω, t) = F (r2), where r2 = ω2 + t2. (2.1)

Combined with a normalized Gaussian window,

φ(x) = 21/4e−πx2
, (2.2)

the eigenfunctions of PF,φ are known, with explicit formulas for the associated eigenval-
ues:

Theorem 2.1. (Daubechies [10]) Let the weight F and window φ be given by (2.1) and 
(2.2), respectively. Then the eigenvalues of the localization operator PF,φ read

λk =
∞∫
0

F
( r

π

) rk

k! e
−rdr, for k = 0, 1, 2, . . . , (2.3)

such that PF,φHk = λkHk, where Hk denotes the k-th Hermite function,

Hk(t) = 21/4
√
k!

(
− 1

2
√
π

)k

eπt
2 dk

dtk (e−2πt2).

Interestingly, it was recently shown in [5] that any Hermite function Hj as window 
and spherically symmetric weight yield localization operators with the same eigenbasis 
{Hk}k. Another area that is being investigated is the aptly named inverse problem, 
where one instead derives properties of the weight (symbol) based on knowledge of the 
eigenfunctions. E.g., for Daubechies’ operators with a Gaussian window that project 
onto a simply connected domain D ⊆ R2, we know by [1] that if Hj is an eigenfunction 
for some j, then D reduces to a disk centered at the origin. More general situations are 
studied in [3], [4].

Proceeding with the direct problem and Daubechies’ classical result, formula (2.3)
represents a powerful tool for analyzing the localization operator and estimating the 
operator norm. In the subsequent discussion, we will only consider operators on the 
form as in Theorem 2.1. More precisely, we consider the case when F projects onto some 
spherically symmetric subset E ⊆ R2. That is, F (r) = χE(r) for some subset E ⊆ R+
such that E = {(ω, t) ∈ R2 | ω2 + t2 ∈ E}. For the sake of simplicity, we will denote the 
associated localization operator by PE , whose eigenvalues are given by

λk =
∫

π·E

rk

k! e
−rdr for k = 0, 1, 2, . . . ,

where π ·E := {x ∈ R+ | xπ−1 ∈ E}. Here it is worth noting that if we fix the measure 
|E|, we optimize the operator norm if E corresponds to a ball centered at the origin. 
More precisely,
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∫
π·E

rk

k! e
−rdr ≤

π|E|∫
0

e−rdr = 1 − e−π|E| for k = 0, 1, 2, . . . , (2.4)

which was proved in Appendix A in [19].
Since these will appear frequently, we shall denote the above integrands by

fk(r) := rk

k! e
−r for k = 0, 1, 2, . . .

We recognize the function fk(r) as a gamma probability distribution, which is monoton-
ically increasing for r ∈ [0, k] and decreasing for r ≥ k.

Finally, observe that these operators can also be studied from the perspective of 
Toeplitz operators on the Fock space. In particular, in [16] Galbis considers Toeplitz 
operators with radial symbols and derive non-trivial norm estimates for such operators.

2.2. Generalized Cantor set construction

Fix a positive integer M , called the base, and a non-empty proper subset A ⊆
{0, 1, . . . , M − 1}, called the alphabet. The n-iterate (or n-order) discrete Cantor set
is then defined as a subset of ZMn = {0, . . . , Mn − 1} of the form

C(d)
n (M,A ) :=

⎧⎨
⎩

n−1∑
j=0

ajM
j
∣∣ aj ∈ A for j = 0, 1, . . . , n− 1

⎫⎬
⎭ . (2.5)

The discrete version corresponds to the “continuous” version based in the interval [0, R]
by

Cn(R,M,A ) = RM−n · C(d)
n (M,A ) + [0, RM−n] for n = 0, 1, 2, . . . , (2.6)

where a ·X = {x | x · a−1 ∈ X} and X + [0, b] = ∪x∈X [x, x + b] for set X and scalars 
a, b > 0. Let |A | denote the cardinality of the alphabet A . Then the measure of the 
n-iterate Cantor set is given by

|Cn(R,M,A )| =
(
|A |
M

)n

R. (2.7)

In particular, for base M = 3 and alphabet A = {0, 2}, we recognize (2.6) as the 
standard mid-third n-iterate Cantor set, with measure (2/3)nR. Another noteworthy 
alphabet, that will appear frequently in the subsequent discussion, is

A = A := {0, 1, . . . , |A | − 1},
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which we will refer to as the canonical alphabet of size |A |. Such a redistribution of the 
alphabet does not alter the fractal dimension, i.e., the sets Cn(R, M, A ) and Cn(R, M, A )
will still share the fractal dimension ln |A |

lnM .
For each n-iterate based in [0, R], we define a corresponding map Gn,R,M,A : R →

[0, 1], known as the Cantor function, given by

Gn,R,M,A (x) := |Cn(R,M,A )|−1

{
0, x ≤ 0,
|Cn(R,M,A ) ∩ [0, x]|, x > 0.

(2.8)

Since Gn,R,M,A (x) = Gn,1,M,A (xR−1), we set Gn,M,A := Gn,1,M,A , for simplicity. It is 
well-known that for the mid-third Cantor set the associated Cantor function is subad-
ditive (see [11]). However, with an arbitrary alphabet, subadditivity can no longer be 
guaranteed. Instead we present a weaker version, sufficient for our purpose, utilizing the 
canonical alphabet (see Appendix A for details).

Lemma 2.2. Let Gn,M,A denote the Cantor-function, defined in (2.8). Then for any x ≤ y,

Gn,M,A (y) − Gn,M,A (x) ≤ Gn,M,A (y − x). (2.9)

For A = A , the above inequality is just standard subadditivity.

For the disk of radius R > 0, centered at the origin, we consider a spherically sym-
metric n-iterate, based on the n-iterate Cantor set in (2.6), as a subset of the form

Cn(R,M,A ) = {(ω, t) ∈ R2 | ω2 + t2 ∈ Cn(R2,M,A )} ⊆ R2. (2.10)

This means we consider weights of the form

F (r) = χCn(R2,M,A )(r) for R > 0 and n = 0, 1, 2, . . .

The eigenvalues of Daubechies’ localization operator PCn(R,M,A ) then read

λk(Cn(R,M,A )) =
∫

Cn(πR2,M,A )

fk(r)dr for k = 0, 1, 2, . . . (2.11)

3. Localization on generalized spherically symmetric Cantor set

In this section we describe the behavior of the operator norm, ‖PCn(R,M,A )‖op as a 
function of the iterates n. The results are formulated in section 3.1, with proofs and 
proof strategy in the subsequent sections 3.2-3.5.
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3.1. Results: bounds for the operator norm

Below we present three theorems regarding the operator norm of PCn(R,M,A ). The 
first theorem shows that ‖PCn(R,M,A )‖op can be bounded in terms of the “first eigen-
value” λ0(Cn(R, M, A )), thus revealing the significance of the canonical alphabet A =
{0, 1, . . . , |A | − 1}.

Theorem 3.1. The operator norm of PCn(R,M,A ) is bounded from above by

‖PCn(R,M,A )‖op ≤ 2λ0(Cn(R,M,A )).

Further, for the canonical alphabet A = A , we have that

‖PCn(R,M,A )‖op = λ0(Cn(R,M,A )).

In the next theorem we present an upper bound estimate for the operator norm.

Theorem 3.2. There exists a positive, finite constant B only dependent on |A | and M
such that for each n = 0, 1, 2, . . .

(
πR2 + 1

) ln |A |
ln M

|A |n
(
1 − e−M−nπR2) · ‖PCn(R,M,A )‖op ≤ B ∀ πR2 ∈ [0,Mn].

Proofs of Theorem 3.1 and 3.2 are found in section 3.3 and 3.4, respectively.

Remark. If the alphabet, A , is equal to the canonical alphabet, A , then the left-hand-
side of the inequality of Theorem 3.2 can be bounded from below by a positive constant, 
thus making the asymptote precise.

If we now enforce condition (1.3) on the radius R, we obtain the following result:

Theorem 3.3. Suppose the radius R depends on the iterates n so that R(n) → ∞ as 
n → ∞ while πR2(n) ≤ Mn for all n = 0, 1, 2, . . . Then there exist positive, finite 
constants BL ≤ BU only dependent on M and |A | such that

(a) for an arbitrary alphabet A we have the upper bound

‖PCn(R(n),M,A )‖op ≤ BU

(
|A |
M

)n (
πR2(n)

)1− ln |A |
ln M , and

(b) for the canonical alphabet A = A , we also have the lower bound

‖PCn(R(n),M,A )‖op ≥ BL

(
|A |

)n (
πR2(n)

)1− ln |A |
ln M .
M
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(c) Conversely, at any alphabet size 0 < |A | < M , there exist alphabets A such that

‖PCn(R(n),M,A )‖op · ‖PCn(R(n),M,A )‖−1
op → 0 as n → ∞.

Recall that the quantity ln |A |
lnM is the fractal dimension of the Cantor set with base M

and alphabet A . It should be noted that the exponent ln |A |
lnM − 1 in Theorem 3.3 (a) was 

already suggested in [19]. Since the associated upper bound holds for all alphabets and 
bases, this immediately begs the question whether the asymptote is precise regardless of 
alphabet and base. By Theorem 3.3 (b) and also Corollary 4.1 in [19], we conclude that 
the asymptote is precise for the Cantor set with canonical alphabet and for the mid-third 
Cantor set, respectively. However, by Theorem 3.3 (c), it becomes clear that we cannot
extend this result to every alphabet. A constructive proof of Theorem 3.3 (c) is found 
in section 3.5.

3.2. Main tool: relative areas

Similarly to section 4 in [19], our main tool is the concept of relative areas, namely

Ak,M,A (s, T ) :=

⎡
⎢⎣∑
a∈A

s+(a+1)TM−1∫
s+aTM−1

fk(r)dr

⎤
⎥⎦ ·

⎡
⎢⎣

s+T∫
s

fk(r)dr

⎤
⎥⎦
−1

. (3.1)

The relative areas measures the local effect on the integrals that define the eigenvalues 
λk(. . . ) when we increase from one iterate n to the next n + 1. These are in general 
easier to work with rather than the eigenvalues themselves directly. Hence, we shall 
attempt to derive properties of the relative areas that transfer to the global behavior of 
the eigenvalues.

Initially, note that A0,M,A (s, T ) is independent of the starting point s ≥ 0, which 
yields the nice recursive relation for the first eigenvalue

λ0(Cn+1(R,M,A )) = A0,M,A (·, πR2M−n)λ0(Cn(R,M,A )). (3.2)

For the canonical alphabet A = A , (3.1) reduces to

Ak,M,A (s, T ) =

⎡
⎢⎣

s+|A |TM−1∫
s

fk(r)dr

⎤
⎥⎦ ·

⎡
⎢⎣

s+T∫
s

fk(r)dr

⎤
⎥⎦
−1

, (3.3)

from which the relative area A0,M,A (·, T ) attains the simple form

A0,M,A (·, T ) = 1 − e−
|A |
M T

1 − e−T
. (3.4)
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This relative area will play a significant role throughout the subsequent discussion. We 
conclude this section by showing A0,M,A (·, T ) to be monotone, and illustrate how local 
effects can transfer to global behavior.

Lemma 3.4. The relative area A0,M,A (·, T ) is monotonically increasing in the argu-
ment T .

Proof. Set ε := |A |
M < 1, and simply differentiate (3.4) to obtain

∂

∂T
A0,M,A (·, T ) = ∂

∂T

(
1 − e−εT

1 − e−T

)
= e−T

(
εe(1−ε)T + (1 − ε)e−εT − 1

)(
1 − e−T

)−2
.

It suffices to show that the second factor in the above expression is always positive, i.e.,

hε(T ) := εe(1−ε)T + (1 − ε)e−εT − 1 ≥ 0 ∀ T ≥ 0.

The latest claim is evident as

∂hε

∂T
(T ) = ε(1 − ε)e−εT (eT − 1) ≥ 0 ∀ T ≥ 0 and hε(T ) → 0 as T → 0. �

By monotonicity of A0,M,A (·, T ) and the recursive relation (3.2), it follows that the 
associated eigenvalue λ0(. . . ) is increasing as a function of the radius, i.e.,

λ0(Cn(R1,M,A )) ≤ λ0(Cn(R2,M,A )) ∀ R1 ≤ R2 and n = 0, 1, 2, . . . (3.5)

Monotonicity will also prove particularly useful both in section 3.5 and section 4.

3.3. Proof of Theorem 3.1

To begin with, we compare the relative areas with the canonical alphabet, for which 
we have the rather remarkable result.

Lemma 3.5. Let {Ak,M,A }k be given by (3.3). Then for any 0 < |A | ≤ M and s ≥ 0, T >

0, we have the ordering

Ak,M,A (s, T ) ≥ Ak+1,M,A (s, T ) for k = 0, 1, 2, . . .

Proof. For convenience, we define Ak(s, T, |A |TM−1) := Ak,M,A (s, T ), and show that 
the difference

Ak(s, T, t) −Ak+1(s, T, t) ≥ 0 ∀ t ∈ [0, T ].

Firstly, we write the difference with a common denominator, which, by Fubini’s theorem, 
yields
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s+t∫
s

fk(x)dx

⎡
⎣ s+T∫

s

fk(y)dy

⎤
⎦
−1

−
s+t∫
s

fk+1(x)dx

⎡
⎣ s+T∫

s

fk+1(y)dy

⎤
⎦
−1

=
s+t∫
s

s+T∫
s

(
fk(x)fk+1(y) − fk(y)fk+1(x)

)
dydx ·

⎡
⎣ s+T∫

s

fk(r)dr
s+T∫
s

fk+1(r)dr

⎤
⎦
−1

.

Since the integral

s+t∫
s

s+t∫
s

(
fk(x)fk+1(y) − fk(y)fk+1(x)

)
dydx = 0,

the difference is reduced to

Ak(s, T, t) −Ak+1(s, T, t) =
s+t∫
s

s+T∫
s+t

(
fk(x)fk+1(y) − fk(y)fk+1(x)

)
dydx ·

[
. . .

]−1
.

Inserting the definition fk(r) := rk

k! e
−r into the above integrand, we obtain

fk(x)fk+1(y) − fk(y)fk+1(x) = 1
k!(k + 1)!x

kyk(y − x)e−(x+y),

which is always positive since s ≤ x ≤ s + t ≤ y ≤ s + T . �
For the canonical alphabet, we can immediately conclude with the following corollary:

Corollary 3.1. The largest eigenvalue of the operator PCn(R,M,A ) is λ0(Cn(R, M, A )), 
and consequently the operator norm is given by

‖PCn(R,M,A )‖op = λ0(Cn(R,M,A )).

Proof. Since the relative area A0,M,A (·, T ) is independent of the starting points s ≥ 0
and bounds all {Ak,M,A (s, T )}k, it is clear that

λk(Cn+1(R,M,A )) ≤ A0,M,A (·, πR2M−n) λk(Cn(R,M,A ))

which, by the relation (3.2) and observation (2.4), eventually yields

λk(Cn+1(R,M,A )) ≤ λk(C0(R,M,A ))
n∏

j=0
A0,M,A (·, πR2M−j)

≤ λ0(Cn+1(R,M,A )) for k = 1, 2, 3 . . . �



12 H. Knutsen / Journal of Functional Analysis 282 (2022) 109412
For a general alphabet, we compare A0,M,A (·, T ) to Ak,M,A (s, T ) for starting point 
s ≥ k.

Corollary 3.2. Let {Ak,M,A }k be given by (3.1). Then for 0 < |A | ≤ M

A0,M,A (·, T ) ≥ Ak,M,A (s, T ) ∀ s ≥ k, T > 0 and k = 0, 1, 2, . . .

Proof. Since fk(r) is monotonically decreasing for r ≥ k, it follows that

Ak,M,A (s, T ) ≥ Ak,M,A (s, T ) for s ≥ k,

which combined with the ordering in Lemma 3.5, yields the result. �
By the same argument as in Corollary 3.1, we utilize Corollary 3.2 to obtain the bound

∫
Cn+1(πR2,M,A )+s

fk(r)dr ≤ A0,M,A (·, πR2M−n)
∫

Cn(πR2,M,A )+s

fk(r)dr

≤ λ0(Cn+1(R,M,A )) for s ≥ k. (3.6)

Relating the shifted iterates Cn(. . . ) + s to the non-shifted iterates Cn(. . . ), we present 
an almost analogous statement to Lemma 3.5 in [19].

Lemma 3.6. Let L > 0. Then for every fixed k, n = 0, 1, 2, . . . , we have

(A)
∫

Cn(L,M,A )∩[k,∞)

fk(r)dr ≤
∫

Cn(L,M,A )+k

fk(r)dr and

(B)
∫

Cn(L,M,A )∩[0,k]

fk(r)dr ≤
∫

Cn(L,M,A )+k

fk(r)dr.

Proof. Both cases (A) and (B) follow the same steps as in Lemma 3.5 in [19] but with 
the subadditivity property for the mid-third Cantor function exchanged for the weaker 
version of Lemma 2.2 for the general Cantor function. Similarly to [19], for the case (B), 
we use that f(k+r) ≥ f(k−r) for all r ∈ [0, k] and reflect the elements Cn(L, M, A ) ∩[0, k]
about r = k before proceeding with weak subadditivity. �

Finally, by combining inequality (3.6) with Lemma 3.6, we obtain the desired result

λk(Cn(R,M,A )) ≤ 2λ0(Cn(R,M,A )) for k, n = 0, 1, 2, . . .

3.4. Proof of Theorem 3.2

Proceeding, we present an exact formula for the first eigenvalue:
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Lemma 3.7. The first eigenvalue of the operator PCn(R,M,A ) is given by

λ0(Cn(R,M,A )) =
(
1 − e−M−nπR2) n∏

j=1

∑
aj∈A

e−ajM
−jπR2

. (3.7)

Further, we have the inequality

λ0(Cn(R,M,A )) ≤
(
1 − e−M−nπR2) n∏

j=1

(
1 − e−|A |M−jπR2

1 − e−M−jπR2

)
, (3.8)

with equality precisely when A = A = {0, 1, . . . , |A | − 1}.

Proof. For simplicity, set R := πR2. By definition (3.1), it is straightforward to compute 
the relative area A0,M,A , which inserted into the recursive relation (3.2) yields

λ0(Cn+1(R,M,A )) =
(

1 − e−RM−(n+1)

1 − e−RM−n

) ∑
an+1∈A

e−an+1RM−(n+1)
λ0(Cn(R,M,A )).

This in return means

λ0(Cn+1(R,M,A )) =
(
1 − e−R) n+1∏

j=1

(
1 − e−RM−j

1 − e−RM−(j−1)

) ∑
aj∈A

e−ajRM−j

.

Since the product 
∏

j

(
1 − e−RM−j)(1 − e−RM−(j−1))−1 is telescoping, only the initial

denominator and final numerator remain, and identity (3.7) readily follows. For the 
inequality case, merely note that the negative exponential function is monotonically 
decreasing and with the canonical alphabet A = {0, 1, . . . , |A | − 1}, we recognize the 
appearance of the geometric series. �

Using result (3.8) for the eigenvalue λ0(Cn(R, M, A )), we compute the asymptotes of 
said eigenvalue, which, combined with Theorem 3.1, concludes the proof of Theorem 3.2.

Proposition 3.1. There exists a finite constant B ≥ 1 only dependent on |A | and M such 
that

B−1 ≤

(
πR2 + 1

) ln |A |
ln M

|A |n
(
1 − e−M−nπR2) · λ0(Cn(R,M,A )) ≤ B ∀ πR2 ∈ [0,Mn].

Proof. The proof follows a similar technique to that of Proposition 4.1 in [19], with minor 
modifications. By Lemma 3.7, the first eigenvalue of the operator PCn(R,M,A ), with the 

canonical alphabet A , is given by
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λ0(Cn(R,M,A )) =
(
1 − e−M−nπR2) n∏

j=1

(
1 − e−|A |M−jπR2

1 − e−M−jπR2

)
.

Hence, it suffices to show

B−1 ≤
(
x + 1

) ln |A |
ln M |A |−n

n∏
j=1

(
1 − e−|A |M−jx

1 − e−M−jx

)
≤ B ∀ x ∈ [0,Mn].

Utilizing the factorization (1 − yk) = (1 − y)(1 + y + y2 + · · · + yk−1) for k ∈ N and 
expressing the product as a sum, the above statement reads

− lnB ≤
n∑

j=1
ln

(
1 + e−x/Mj

+ e−2x/Mj

+ · · · + e−(|A |−1)x/Mj
)

−
(
n− ln(x + 1)

lnM

)
ln |A | ≤ lnB ∀ x ∈ [0,Mn].

These inequalities follow by the aid of two claims

(i) there exists a finite, positive constant β such that for y ∈ [0, 1]

−β ≤
∞∑
j=1

[
ln

(
1 + y1/Mj

+ y2/Mj

+ · · · + y(|A |−1)/Mj
)
− y1/Mj

ln |A |
]
≤ β, and

(ii) there exists a finite positive constant γ such that

−γ ≤
n∑

j=1
e−x/Mj −

(
n− ln(x + 1)

lnM

)
≤ γ for x ∈ [0,Mn].

For claim (i), we consider the function ψk(y) := ln(1 + y + y2 + · · · + yk−1) − y ln k for 
y ∈ [0, 1]. Since ψk is continuous and smooth in [0, 1], we have that

ck := max
y∈[0,1]

∣∣∣∣dψk(y)
dy

∣∣∣∣ < ∞,

from which we may define the linear spline

hk(y) := ck ·
{
y, y ∈ [0, 1/2]
(1 − y), y ∈ [1/2, 1].

By the fact that ψk(0) = ψk(1) = 0, it is clear that ψk is bounded by the spline such 
that
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−hk(y) ≤ ψk(y) ≤ hk(y) for y ∈ [0, 1].

Thus, the sum in claim (i) is bounded from above and below by ± 
∑∞

j=0 h|A |(y1/Mj ), 
respectively. From here the proof is essentially the same as for claim (i) in Proposition 4.1 
in [19]. The same goes for claim (ii), where the only modification is that 3j is exchanged 
for M j > 1. �
3.5. Proof of Theorem 3.3 (c): counterexample to precise asymptotic estimate

For our counterexample, we shall consider the reverse canonical alphabet, that is,

A = A := {M − 1,M − 2, . . . ,M − |A |},

where M denotes the associated base of the Cantor set. As it turns out, this Cantor set 
construction is merely a shifted version of the Cantor set with canonical alphabet, A .

Lemma 3.8. Let A denote the reverse canonical alphabet of size |A |. Then the Cantor 
set with alphabet A and base M can be expressed as

Cn(R,M,A ) = R ·
(
M − |A |

) n∑
j=1

M−j + Cn(R,M,A ) for n = 0, 1, 2, . . .

Proof. By definition (2.5), the discrete Cantor set with the reverse canonical alphabet 
is given by

C(d)
n (M,A ) =

⎧⎨
⎩

n−1∑
j=0

ajM
j
∣∣ aj = M − |A |, . . . ,M − 1 for j = 0, 1, . . . , n− 1

⎫⎬
⎭

=

⎧⎨
⎩

n−1∑
j=0

(
aj + M − |A |

)
M j

∣∣ aj = 0, 1, . . . , |A | − 1 for j = 0, 1, . . . , n− 1

⎫⎬
⎭

=
(
M − |A |

) n−1∑
j=0

M j + C(d)
n (M,A ).

The continuous version then follows once we apply definition (2.6) to the last identity. �
Hence, for the operator PCn(R,M,A ), the eigenvalues read

λk(Cn(R,M,A )) =
∫

πR2
inner+Cn(πR2,M,A )

fk(r)dr for k = 0, 1, 2, . . . ,

where the inner radius Rinner = Rinner(n, M, |A |) ≥ 0 is given by
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R2
inner = R2 ·

(
M − |A |

) n∑
j=1

M−j . (3.9)

According to condition (1.3), we consider radii R(n) that tends to infinity as n → ∞, 
which also means that the inner radius Rinner = Rinner(n) → ∞ as n → ∞. Based on 
this inner radius, we may, in fact, exclude certain eigenvalues from being the largest. 
More precisely, let �·� denote the floor function, rounding down to the nearest integer. 
Since the difference between two integrands fk+1(r) − fk(r) ≥ 0 for r ≥ k + 1, it is clear 
that largest eigenvalue λk(. . . ) must have index k ≥ �πR2

inner�.
Proceeding, we consider the universal upper bound provided by Lemma 3.6, namely

2
∫

k+Cn(πR2,M,A )

fk(r)dr ≥ λk(Cn(R,M,A )) for k = 0, 1, 2, . . . , (3.10)

which holds for all alphabets, including A = A . We begin by computing the associated 
relative areas as k → ∞.

Lemma 3.9. Let Ak,M,A (s, T ) be the relative area given by (3.3) over the interval [s, s +T ]. 
Suppose the starting point s depends on k so that s = ak for a > 1. Then

lim
k→∞

Ak,M,A (ak, T ) =
1 − exp

[
− |A |

M T
(
1 − 1

a

)]
1 − exp

[
−T

(
1 − 1

a

)] . (3.11)

For s = k, the limit reduces to limk→∞ Ak,M,A (k, T ) = |A |
M .

Proof. Set t := |A |TM−1 ∈ [0, T ] for simplicity. By inserting the definition of the 
integrands fk(r) = rk

k! e
−r, we obtain

lim
k→∞

Ak,M,A (ak, T ) = lim
k→∞

s+t∫
s

fk(r)dr

⎡
⎣ s+T∫

s

fk(r)dr

⎤
⎦
−1

= lim
k→∞

t∫
0

e−r
(
1 + r

ak

)k

dr

⎡
⎣ T∫

0

e−r
(
1 + r

ak

)k

dr

⎤
⎦
−1

.

Now, identity limk→∞
(
1 + x

k

)k = ex ensures we can utilize the dominated convergence 
theorem and exchange the order of the integrals and limit, so that

lim
k→∞

Ak,M,A (ak, T ) =
t∫
e−r lim

k→∞

(
1 + r

ak

)k

dr

⎡
⎣ T∫

e−r lim
k→∞

(
1 + r

ak

)k

dr

⎤
⎦
−1
0 0
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(

=
t∫

0

e−r
(
1− 1

a

)
dr

⎡
⎣ T∫

0

e−r
(
1− 1

a

)
dr

⎤
⎦
−1

= 1 − e−t
(
1− 1

a

)
1 − e−T

(
1− 1

a

) for a > k.

For s = k, i.e., a = 1, the final integrands reduce to e−r
(
1− 1

a

)
= 1. �

Remark. Comparing the above limit to the relative areas of λ0(Cn(R, M, A )) in (3.4), 
we find that limk Ak,M,A (ak, T ) = A0,M,A (·, (1 − 1

a )T ).

Although the limit of Lemma 3.9 has a familiar form, it must be handled with some 
care as it, in fact, represents a lower bound rather than an upper one.

Lemma 3.10. Suppose the factor a ≥ 1.

A) The limit relative area is an infimum in the sense that

Ak,M,A (ak, T ) ≥ lim
j→∞

Aj,M,A (aj, T ) for k = 0, 1, 2, . . .

(B) Conversely, fix ε > 0. Then

Ak,M,A (ak, T ) ≤ lim
j→∞

Aj,M,A ((1 + ε)j, T ) for ak + T ≤ (1 + ε)k.

In particular, the inequality holds for T ≤ εk

2 and a ∈
[
1, 1 + ε

2

]
.

Proof. We start with (B) and relate this to (A). Set t := |A |TM−1 and notice that

lim
j→∞

Aj,M,A ((1 + ε)j, T )

=
ak+t∫
ak

e
−x

(
1− 1

1+ε

)
dx

⎡
⎣ ak+T∫

ak

e
−y

(
1− 1

1+ε

)
dy

⎤
⎦
−1

for k = 0, 1, 2, . . .

On this form we compute the difference limj Aj,M,A ((1 +ε)j, T ) −Ak,M,A (ak, T ), which, 
by the same technique as in Lemma 3.5, yields

ak+t∫
ak

ak+T∫
ak+t

e−(x+y)
[
yke

x
1+ε − xke

y
1+ε

]
dydx ·

⎡
⎣ ak+T∫

ak

yke−ydy
ak+T∫
ak

e
−

(
1− 1

1+ε

)
xdx

⎤
⎦
−1

.

If the above integrand is always positive or always negative, this translates directly to 
the sign of the difference. This is the same as asking if the function

lnQ(x, y) =
(
k ln y − y

1 + ε

)
−

(
k ln x + x

1 + ε

)
=: ln q(y) − ln q(x)
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is always positive or always negative for ak ≤ x ≤ ak+t ≤ y ≤ ak+T . Since the derivative 
(ln q)′ (x) ≥ 0 for x ∈ [k, (1 + ε)k], it follows that lnQ(x, y) ≥ 0 for k ≤ x ≤ y ≤ (1 + ε)k
and thus part (B). For part (A), we simply consider 1 + ε = a, which yields (ln q)′(x) ≤ 0
for x ≥ ak. �

Now, it is tempting to suggest a common upper bound regardless of starting point 
s = ak:

Example 3.1. Suppose L > 1 is constant and that a ∈ [1, L] and T ≤ Lk for all iterates 
n. By Lemma 3.10 part (B), we have that

Ak,M,A (ak, T ) ≤ lim
j→∞

Aj,M,A (2Lj, T ) = A0,M,A

(
·,
(
1 − (2L)−1)T )

.

However, this estimate for the relative area is essentially the same as for λ0(Cn(R, M, A )), 
only with a scaled radius, R �→

√
1 − (2L)−1R, which, by Theorem 3.3 (a) and (b), does 

not change the asymptotes.

With this example in mind, we divide the integral 
∫∞
k

fk(r)dr into a significant and 
insignificant part, thus, gaining more control over the starting points s = ak. In the next 
lemma, we show what we mean by insignificant.

Lemma 3.11. For any fixed ε, δ > 0, there exists a positive integer K, so that the integral

∞∫
(1+ε)k

fk(r)dr = e−(1+ε)k
k∑

n=0

1
n!

(
(1 + ε)k

)n
< δ ∀ k ≥ K.

Proof. Using the lower bound version of Stirling’s approximation formula for the factorial

√
2πnn+ 1

2 e−n ≤ n! for n = 1, 2, 3, . . . ,

we determine a simplified upper bound for the summand

k∑
n=1

1
n!

(
(1 + ε)k

)n ≤ 1√
2π

k∑
n=1

(
(1 + ε)k

n

)n
en√
n
≤ k√

2π
(1 + ε)kek.

In the final inequality, we have used that the function

gA(n) :=
(
A

n

)n

is monotonically increasing for 1 ≤ n ≤ Ae−1.

Applying the negative exponential e−(1+ε)k to the upper bound, we obtain
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e−(1+ε)k
k∑

n=1

1
n!

(
(1 + ε)k

)n ≤ k√
2π

exp
[
−

(
ε− ln(1 + ε)

)
k
]
,

and since ε − ln(1 + ε) > 0 for any fixed ε > 0, we are done. �
Proposition 3.2. Suppose the radius R depends on the iterates n such that R(n) → ∞ as 
n → ∞, and let γ > 0 be a multiplicative constant. Then for every ε, δ > 0, there exists 
a positive integer N such that for every iterate n ≥ N , we have that

(A)
∫

(
Cn(πR2,M,A )+k

)
∩
[
k,

(
1+ ε

2
)
k
] fk(r)dr ≤ 2λ0(Cn(

√
εR, M, A )) ∀ k ≥ γ · πR2(n), and

(B)
∫

(
Cn(πR2,M,A )+k

)
∩
[(

1+ ε
2
)
k,∞

) fk(r)dr ≤ δ · λ0(Cn(R, M, A )) ∀ k ≥ γ · πR2(n).

Proof. We consider iterations n so that the relevant indices k ≥ γ · πR2(n) ≥ 1.
For case (A), consider any fixed iterate n0 so that

M−n0 ≤ γ · ε
2 .

The interval size |I| of the n0-iterate Cantor set Cn0(πR2(n), M, A ) then satisfies

|I| = πR2(n)M−n0 ≤ ε

2k ∀ k ≥ γ · πR2(n).

By Lemma 3.10 (B) and identity limk Ak,M,A (ak, T ) = A0,M,A (·, (1 −a−1)T ), we obtain

∫
(
Cn(... )+k

)
∩
[
k,

(
1+ ε

2
)
k
]
fk(r)dr ≤

∞∫
k

fk(r)dr ·
n−1∏
j=n0

A0,M,A

(
·, ε

1 + ε
πR2M−j

)
. (3.12)

By the recursive relation (3.2) for λ0(Cn(. . . )), it is clear that

ε
1+επR

2M−n0∫
0

f0(r)dr ·
n−1∏
j=n0

A0,M,A

(
·, ε

1 + ε
πR2M−j

)
≤ λ0(Cn(

√
εR,M,A )), (3.13)

where we have simplified the argument 
√
ε(1 + ε)−1R ≤ √

εR by monotonicity of 
λ0(Cn(. . . )). Since the radius R(n) → ∞ as n → ∞, there exists a positive integer 
n1 so that the integral

2

ε
1+επR

2(n)M−n0∫
0

f0(r)dr ≥ 1 ≥
∞∫
k

fk(r)dr ∀ n ≥ n1. (3.14)
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Combining the three inequalities (3.12)-(3.14), then yields (A) with any N ≥ max{n0, n1}.
For case (B), observe first, by the subadditivity of the Cantor function Gn,M,A , that

∫
(
Cn(... )+k

)
∩
[(

1+ ε
2
)
k,∞

)
fk(r)dr ≤

∫
Cn(... )+

(
1+ ε

2
)
k

fk(r)dr.

Further, by Corollary 3.2 and the recursive relation (3.2) for λ0(Cn(. . . )), we have

∫
Cn(... )+

(
1+ ε

2
)
k

fk(r)dr ≤
∞∫

(
1+ ε

2
)
k

fk(r)dr
n−1∏
j=0

A0,M,A (·, πR2M−j)

=
∞∫

(
1+ ε

2
)
k

fk(r)dr ·

⎡
⎢⎣

πR2∫
0

f0(r)dr

⎤
⎥⎦
−1

· λ0(Cn(R,M,A )).

We now apply Lemma 3.11, whereas for any δ > 0 there exists a positive integer n2 so 
that

∞∫
(
1+ ε

2
)
k

fk(r)dr <
δ

2 and
πR2(n)∫

0

f0(r)dr ≥ 1
2 ∀ k ≥ γ · πR2(n) and n ≥ n2,

from which (B) follows with any N ≥ n2. For both cases, we chose threshold iterate N ≥
max{n0, n1, n2}. �
Proposition 3.3. Let A and A denote the canonical and reverse canonical alphabet, 
respectively. Suppose the radius R depends on the iterates n such that R(n) → ∞ as 
n → ∞ while πR2(n) ≤ Mn. Then the quotient

‖PCn(R(n),M,A )‖op · ‖PCn(R(n),M,A )‖−1
op → 0 as n → ∞.

Proof. Utilizing the universal upper bound (3.10), we have that

‖PCn(R,M,A )‖op ≤ sup
k≥�πR2

inner(n)	
2

∫
Cn(πR2,M,A )+k

fk(r)dr for n = 0, 1, 2, . . .

Now fix some ε, δ > 0. Since Rinner(n) → ∞ as n → ∞, we can apply Proposition 3.2
(A) and (B), and conclude that for some threshold iterate N0

‖PCn(R,M,A )‖op ≤ 4λ0(Cn(
√
εR,M,A ) + 2δ · λ0(Cn(R,M,A )) ∀ n ≥ N0.
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To see why this inequality readily yields the desired result, we insert the estimates of 
Theorem 3.3 (a) and (b). In particular, there exist a constant B > 0 (independent of ε) 
and threshold iterate N1 so that

λ0(Cn(R(n),M,A )) ≥ B−1
(
|A |
M

)n (
πR2(n)

)1− ln |A |
ln M and

λ0(Cn(
√
εR(n),M,A )) ≤ B

(
|A |
M

)n

ε1−
ln |A |
ln M

(
πR2(n)

)1− ln |A |
ln M ∀ n ≥ N1.

From these two estimates, and the fact that ‖PCn(R(n),M,A )‖op = λ0(Cn(R, M, A )), we 
obtain

‖PCn(R(n),M,A )‖op · ‖PCn(R(n),M,A )‖−1
op ≤ B2(4ε1− ln |A |

ln M + 2δ
)

∀ n ≥ max{N0, N1}.

Since ε, δ are arbitrary, and the constant B does not depend on either, we are done. �
4. Further generalizations: indexed Cantor set

So far in our discussion the base and alphabet have been fixed throughout the iter-
ations. Suppose we now instead let these two quantities vary, to obtain an even more 
general Cantor set construction. In particular, if we index the bases {Mj}∞j=1 and the 
alphabets {Aj}∞j=1 according to each iteration, we obtain the discrete construction

C(d)
n ({Mj}j , {Aj}j) :=

⎧⎨
⎩

n∑
j=1

aj

j−1∏
l=1

Ml

∣∣ aj ∈ Aj for j = 1, 2, . . . , n

⎫⎬
⎭ , (4.1)

which in return yields the continuous version

Cn(R, {Mj}j , {Aj}j) = R
(
M1M2 . . .Mn

)−1 · C(d)
n ({Mj}j , {Aj}j) (4.2)

+
[
0, R

(
M1M2 . . .Mn

)−1] for n = 0, 1, 2, . . . ,

where an empty product is, by convention, defined as 1. We shall refer to the above 
construction, Cn(R, {Mj}j , {Aj}j), as an indexed Cantor set.

Similarly to (2.10), we can also define an n-iterate spherically symmetric, in-
dexed Cantor set, Cn(R, {Mj}j , {Aj}j), and hence define the localization operator 
PCn(R,{Mj}j ,{Aj}j). With condition (1.4) in mind, a natural restriction on the radius 
seems to be

πR2(n) ≤ γ · (M1M2 . . .Mn)1/2, (4.3)



22 H. Knutsen / Journal of Functional Analysis 282 (2022) 109412

 

for some finite constant γ > 0, and it is this restriction we utilize when formulating our 
localization results. The results are found in section 4.1, with proofs in section 4.2 and 
4.3.

4.1. Results: sufficient decay conditions

As should be expected, for an arbitrary indexed Cantor set, we cannot guarantee that 
the operator norm of the associated localization operator decays exponentially or even 
converges to zero for increasing iterates. Below we present two theorems that reflect this. 
In the first theorem we present some sufficient conditions for which the operator norm 
indeed decays exponentially.

Theorem 4.1. Suppose we have an indexed Cantor set Cn(R, {Mj}j , {A }j) such that

|Aj |
Mj

≤ ε < 1 ∀ j ∈ N and Mj ∈ [M,M1+δ] for some finite δ > 0 and M > 1.

Further, suppose that the radius R satisfies the condition πR2(n) ≤ γ ·
(
M1M2 . . .Mn

)1/2

for some finite γ > 0. Then there exist finite constants α, β > 0 only dependent on ε, δ
and γ such that the operator norm satisfies

‖PCn(R(n),{Mj}j ,{Aj}j)‖op ≤ αe−βn for n = 0, 1, 2, . . .

The second theorem shows that bounded quotients such that supj
|Aj |
Mj

< 1 is not itself 
a sufficient condition for the localization operator to converge to zero in the operator 
norm.

Theorem 4.2. Fix γ > 0, and suppose the radius R satisfies πR2(n) =γ·
(
M1M2 . . .Mn

)1/2.
Then there exist indexed bases {Mj}j and alphabets {Aj}j with |Aj |

Mj
≤ ε < 1 ∀ j ∈ N

such that

lim inf
n→∞

‖PCn(R(n),{Mj}j ,{Aj}j)‖op > 0.

4.2. Set-up and simple example

Based on our analysis of its simpler sister-operator PCn(R,M,A ), we begin by deducing 
some analogous results for PCn(R,{Mj}j ,{Aj}j). In particular, identity (3.2) can be replaced 
by

λ0(Cn+1(R, {Mj}j , {Aj}j)) = A0,Mn+1,An+1(·, πR2(M1M2 . . .Mn)−1) (4.4)

·λ0(Cn(R, {Mj}j , {Aj}j)).
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Further, as a matter of additional indexing in the proofs, it follows that an analogue of 
Theorem 3.1 must hold for the indexed localization operator, namely

‖PCn(R,{Mj}j ,{Aj}j)‖op ≤ 2λ0(Cn(R, {Mj}j , {Aj}j)) for n = 0, 1, 2, . . . .

By the above inequality, it suffices to establish decay conditions for the first eigenvalue 
with canonical alphabets. Therefore, by the recursive relation (4.4), the relative areas 
{A0,Mj ,Aj

}j are of particular interest. Recall from result (3.4) that these relative areas 
only depend on the base Mj and alphabet A j via the quotient |Aj |

Mj
. Hence, for simplicity, 

we set

A |Aj |
Mj

(T ) := A0,Mj ,Aj
(·, T ).

Recall, by Lemma 3.4, that the relative area A |Aj |
M

(T ) is a monotonically increasing
function for T > 0. This again easily translates to the first eigenvalue with canonical 
alphabets being an increasing function as a function of the radius, i.e.,

λ0(Cn(R1, {Mj}j , {Aj}j)) ≤ λ0(Cn(R2, {Mj}j , {A j})) ∀ R1 ≤ R2 and n = 0, 1, 2, . . .

Thus, in the proof of Theorem 4.1 (and in Theorem 4.2), we need only consider the 
equality case of condition (4.3). From the general formula

λ0(Cn(R(n), . . . )) =
(
1 − e−πR2(n)

) n∏
j=1

A |Aj |
Mj

(
πR2(n) · (M1 . . .Mj−1)−1) , (4.5)

we shall consider the eigenvalue on the form

λ0(Cn(R(n), . . . )) =
(
1 − e−γ·(M1...Mn)1/2

) n∏
j=1

A |Aj |
Mj

(
γ

[
Mj . . .Mn

M1 . . .Mj−1

]1/2
)
. (4.6)

We conclude this section with a simple example where the operator norm ‖PCn(... )‖op
does not decay to zero as the iterate n → ∞.

Example 4.1. (Cantor set of positive measure) The measure of the n-iterate indexed 
Cantor set is given by

|Cn(R, {Mj}j , {Aj}j)| = R

n∏
j=1

|Aj |
Mj

.

Hence, if |Aj |
Mj

→ 1 as j → ∞ at a sufficient rate, the above product does not converge 
to zero as n → ∞, and so the Cantor set itself has positive measure. That is, for such 
a choice of bases {Mj}j and alphabets {Aj}j , there exists some 0 < ρ < 1 for which 
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|Cn(R, {Mj}j , {Aj}j)| ≥ R · ρ > 0 for all n = 0, 1, 2, . . . Using the integral formula for 
the first eigenvalue as a lower bound for the operator norm, it follows that

‖PCn(R,{Mj}j ,{Aj}j)‖op ≥
∫

Cn(πR2,... )

e−rdr ≥ e−πR2 |Cn(πR2, . . . )|

≥ e−πR2
πR2 · ρ ∀ n ∈ N.

This shows that for a Cantor set of positive measure lim infn ‖PCn(R,... )‖op > 0 when 
the radius R is fixed.

If we instead let R = R(n) increase according to the iterates n, we can choose canonical 
alphabets Aj = Aj , which guarantees that the first eigenvalue λk(R(n), . . . ) is also 
increasing. Hence, lim infn ‖PCn(R(n),Mj ,Aj)‖op > 0.

4.3. Proofs of Theorem 4.1 and Theorem 4.2

Since the first factor in (4.6) tends to 1 as n → ∞, convergence of the operator norm 
is determined by the remaining product 

∏n
j=1(. . . ). For simpler notation we assume the 

constant γ = 1 in both proofs.

Proof. (Theorem 4.1) Initially, note that by the interpretation as a relative area, the 
function A |Aj |

Mj

must also be monotonically increasing in terms of the index |Aj |
Mj

. Since 

the index is bounded by ε, we obtain the basic inequality

n∏
j=1

A |Aj |
Mj

([
Mj . . .Mn

M1 . . .Mj−1

]1/2
)

≤
n∏

j=1
Aε

([
Mj . . .Mn

M1 . . .Mj−1

]1/2
)
.

From the second condition Mj ∈ [M, M1+δ], we determine an upper bound for each 
argument in the relative area Aε(. . . ). More precisely, we maximize the factors in 
the numerator, Mj , . . . , Mn ≤ M1+δ, and minimize the factors in the denominator, 
M1, . . . , Mj−1 ≥ M , so that

Mj . . .Mn

M1 . . .Mj−1
≤ M (1+δ)(n−(j−1)) ·M−(j−1) = M (1+δ)n−(2+δ)(j−1) for j = 1, 2, . . . , n.

By monotonicity of Aε, it follows that

n∏
j=1

A |Aj |
Mj

([
Mj . . .Mn

M1 . . .Mj−1

]1/2
)

≤
n−1∏
j=0

Aε

(
M [(1+δ)n−(2+δ)j]/2

)
.

We now define the set of factors which yields negative exponents in the argument M [... ]/2, 
i.e.,
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Sn :=
{
j ∈ {0, 1, . . . , n− 1}

∣∣ (1 + δ)n− (2 + δ)j ≤ 0
}
. (4.7)

For these factors the argument satisfies M [... ]/2 ≤ 1, which, by monotonicity, means∏
j∈Sn

Aε

(
M [... ]/2

)
≤

∏
j∈Sn

Aε(1) = Aε(1)|Sn|,

where |Sn| denotes the cardinality of Sn. Since the relative areas Aε(T ) ∈ (0, 1) ∀ T > 0, 
the remaining factors in {0, 1, . . . , n − 1} \ Sn can be bounded by 1. Hence, in order to 
prove exponential decay in the operator norm, it suffices to verify that |Sn| ≥ a · n for 
some constant a > 0. The latest claim is easily verified by a closer inspection of definition 
(4.7), where Sn can be expressed as

Sn =
{⌈(

1 + δ

2 + δ

)
n

⌉
,

⌈(
1 + δ

2 + δ

)
n

⌉
+ 1, . . . , n− 1

}
.

Thus, we conclude that |Sn| ∼
(
1 −

(
1+δ
2+δ

))
n. �

Proof. (Theorem 4.2) We will construct a sequence of bases {Mj}j and alphabet cardi-
nalities {|Aj |}j , where the product does not converge to zero as the iterate n tends to 
infinity.

For any fixed ε ∈ (0, 1), chose an initial base M > 1 and alphabet size |A | < M such 
that |A |

M ≤ ε. Set M1 := M and |A1| := |A |, and for j > 1 set Mj := M1M2 . . .Mj−1

and |Aj | := |A |
M Mj ∈ N so that the fraction |Aj |

Mj
remains constant and equal to |A |

M =: θ. 
With this construction, the product in (4.6) reads

n∏
j=1

Aθ

([
Mj . . .Mn

M1 . . .Mj−1

]1/2
)

= Aθ

(
[M1 . . .Mn]1/2

) n∏
j=2

Aθ

(
[Mj+1 . . .Mn]1/2

)
(4.8)

=Aθ

(
[M1 . . .Mn]1/2

)(
Aθ

(
[M3 . . .Mn]1/2

)
. . .Aθ

(
[Mn−1Mn]1/2

)
Aθ

(
M1/2

n

)
Aθ (1)

)
.

Proceeding, we make the following two basic observations

(i) Aθ(T ) ≥ 1 − e−θT (which is still monotonically increasing) and
(ii) Mj ≥ M ∀ j ∈ N.

Combining these two observations with product (4.8), then yields the lower bound

n∏
j=2

Aθ

(
[Mj+1 . . .Mn]1/2

)
≥

n∏
m=2

(
1 − e−θNm

)
≥

∞∏
m=2

(
1 − e−θNm

)
,

where we have defined N := M1/2 for simplicity. It remains to show that the right-hand-
side of the above inequality does not converge to zero for any fixed N > 1 and θ ∈ (0, 1). 
Exchanging the product for a sum, the statement is equivalent to showing that
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∞∑
m=2

ln
(
1 − e−θNm

)
> −∞ for any fixed N > 1 and θ ∈ (0, 1).

Utilizing the lower bound ln(1 − x) ≥ − 
(

x
1−x

)
for 0 < x < 1, we obtain

∞∑
m=2

ln
(
1 − e−θNm

)
≥ −

∞∑
m=2

e−θNm

1 − e−θNm ≥ −
(
1 − e−θ

)−1
∞∑

m=2
e−θNm

,

where the last sum converges by comparison with the geometric series. �
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Appendix A. Omitted proof in section 2.2: weak subadditivity

Lemma 4.3. Let Gn,M,A denote the Cantor-function, defined in (2.8). Then for any x ≤ y,

Gn,M,A (y) − Gn,M,A (x) ≤ Gn,M,A (y − x). (A.1)

Proof. Initially, note that the quantity Gn,M,A (y) − Gn,M,A (x) measures the portion of 
the n-iterate Cantor set Cn contained in the interval I = [x, y]. Since the n-iterate is 
based in the interval [0, 1], we only need to consider the case when I � [0, 1].

By definition, we have that the n-iterate Cantor set Cn effectively partitions [0, 1] into 
Mn subintervals {Ink }M

n

k=1, which we will refer to as the n-blocks. These blocks will either 
belong to Cn or have zero intersection, i.e., |Ink ∩ Cn| = |Ink |(= M−n) or = 0. By the 
recursive construction, it follows that In−1

k ∩ Cn either contains an entire alphabet of 
n-blocks or no n-blocks at all, i.e., |In−1

k ∩ Cn| = |A |M−n or = 0. In general,

(i) an (n − j)-block In−j
k satisfies |In−j

k ∩ Cn| = |A |jM−n or = 0.

Based on the distribution of the canonical alphabet, we deduce that

(ii) for any positive integer m and positive parameter a,

Gn,M,A (mM j−n + a) = min
{

1,Gn,M,A (mM j−n) + Gn,M,A (a)
}
.

Furthermore, utilizing result (i) and normalizing the Cantor function,
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(iii) for m ≤ M consecutive (n − j)-blocks,

Gn,M,A (mM j−n) = min{m, |A |}|A |j−n.

Since the measure of any interval I � [0, 1] can be uniquely expressed as

|I| = a +
n−1∑
j=1

mjM
j−n (A.2)

for integers 0 ≤ mj < M and parameter 0 ≤ a ≤ M1−n, we are now able to derive 
a more explicit formula for Gn,M,A . In particular, by recursive use of (ii) and finally 
inserting result (iii), we obtain

Gn,M,A (|I|) = Gn,M,A

(
a +

n−1∑
j=1

mjM
j−n

)

=min

⎧⎨
⎩1,Gn,M,A

(
a) +

n−1∑
j=1

Gn,M,A (mjM
j−n

)⎫⎬⎭
=min

⎧⎨
⎩1,min{aMn, |A |}|A |−n +

n−1∑
j=1

min{mj , |A |}|A |j−n

⎫⎬
⎭ . (A.3)

Thus, it remains to show that the left-hand side of inequality (A.1) is bounded by 
(A.3). For this purpose, we shall utilize the following results:

(iv) An interval of size |I| ≤ M1−n satisfies

Gn,M,A (y) − Gn,M,A (x) ≤ min{|I|Mn, |A |}|A |−n.

(v) An interval of size |I| ≤ M j−n for j ∈ N contains at most |A |j n-blocks, i.e.,

Gn,M,A (y) − Gn,M,A (x) ≤ |A |j−n.

In the case (iv), observe that I will at most intersect two (n −1)-blocks, say Ik and Ik+1. 
If both intersections of Ik and Ik+1 with Cn is non-zero, then the alphabet of n-blocks 
will have the same distribution in each (n − 1)-block. Hence, by (i),

|I ∩ Cn| = |I ∩ Ik ∩ Cn| + |(I −M1−n) ∩ Ik ∩ Cn| ≤ |Ik ∩ Cn| = |A |M−n,

which yields (iv) after normalization. Result (v) follows by a similar argument.
Based on observation (v), consider the case when (m − 1)M j−n < |I| ≤ mM j−n

for some integer 0 < m ≤ M . Set x0 := x and xm := y and partition the interval 
I = [x, y] = ∪m−1

l=0 [xl, xl+1] such that xl < xl+1 and xl+1 − xl ≤ M j−n. Then
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(vi) Gn,M,A (y) −Gn,M,A (x) =
m−1∑
l=0

(
Gn,M,A (xl+1) −Gn,M,A (xl)

)
≤ min{m, |A |}|A |j−n.

Finally, for an arbitrary interval I = [x, y] ⊆ [0, 1], we utilize the partitioning associated 
with (A.2) along with results (iv)-(vi) to conclude that Gn,M,A (y) −Gn,M,A (x) is indeed 
bounded from above by (A.3). �
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